
PortOS:
An Educational Operating System for the Post-PC Environment

Benjamin Atkin Emin Gün Sirer

Computer Science Department
Cornell University
Ithaca, NY 14853

{batkin, egs}@cs.cornell.edu

Abstract

In this paper, we describe PortOS, an educational operating
system designed to complement undergraduate and
graduate level classes on operating systems. PortOS is a
complete user-level operating system project, with phases
covering concurrency, synchronization, networking and file
systems. It focuses particularly on ad-hoc and peer-to-peer
distributed computing on mobile devices. This paper
discusses alternative approaches to operating system
projects, and presents our particular design point along with
pedagogical justifications.

1 Introduction

Operating systems form an integral part of the
undergraduate and graduate curriculum at many
institutions. A typical operating systems course serves
many purposes, covering a range of material from system
design principles and concurrent programming to
implementation tradeoffs and software engineering for
large systems. Operating systems classes frequently rely on
a practicum project to span this large space.

In this paper, we describe PortOS, an educational operating
system we developed to facilitate operating systems
instruction. PortOS is comprised of six assignments that
cover concurrency, networking and filesystems. PortOS
ultimately culminates in a complete, user-level operating
system which supports a GUI application that performs
peer-to-peer messaging between mobile hosts without a
central server.

The main motivation to develop a new system stemmed
from a fundamental and quantifiable shift in the global
computing landscape from desktop and centralized
mainframe operating systems towards mobile, embedded
and wireless systems [5]. Dubbed ubiquitous computing
[13] or the Post-PC environment, this trend towards
embedding computers in everyday devices shifts the focus
of system development away from multi-user timesharing
issues towards distributed systems. While the impact of
these changes on the theoretical course material is small –
after all, most OS courses cover networking and routing –
the project component of the course should reflect the types
of distributed computing challenges that the students would
face in a highly mobile environment. In addition, a
secondary motivation in re-examining existing operating
systems projects was sheer necessity. Unlike most other
educational tools, OS projects are usually highly system-
dependent and need constant upkeep to evolve with
changing platforms. We found that most of our students
had Windows PCs at home, that our computing clusters
were mostly composed of PCs, and that mobile handheld
devices within our department ran Windows CE. We
needed a project that would span these wireless, mobile
hosts as well as support personal computers. Consequently,
PortOS differs from other educational systems in use in that
it focuses on distributed computing on mobile computers,
and it supports Windows NT/98/2000/ME as well as the
CE/PocketPC/Handheld PC 2000 platforms.

PortOS is a multi-phase operating systems project designed
to accompany a traditional presentation of operating
systems found in OS textbooks [8, 10, 12]. These texts
provide some insight into implementation issues, but
mostly focus on theory. PortOS complements them with
subprojects covering threads, scheduling, unreliable
datagrams, reliable streams, ad hoc routing and file
systems. Students program in C against a realistic, but
sanitized, machine model. They use a familiar integrated
development and debugging environment, even though
they are developing systems code. This paper presents the
project, and the motivation behind it.

This work is supported in part by ONR Grant N00014-01-1-0968. The
views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of these organisations or of the
Government.

The rest of the paper is structured as follows. In the next
section, we outline the guiding principles behind the system
design and examine some alternatives. Section 3 describes
the subprojects in further detail. We discuss related work
on educational operating systems projects in section 4 and
conclude in section 5.

2 The PortOS Platform

Three main principles guided the design of PortOS:

1. Provide a sanitized but realistic environment: The
students should write operating systems code just
as they would if they were implementing a native
kernel. That is, the machine model, including
atomic access primitives and interrupt model,
should mimic an actual hardware implementation.
At the same time, however, students should be
shielded from complications and quirks found in
real systems, such as time -dependent device
behavior and complex bus signaling protocols.

2. Support common platforms: The post-PC
environment is characterized by diverse, mobile
clients. Each student in the class is provided with
a PDA, and we want the students’ projects to run
seamlessly on PDAs and desktop clusters.

3. Support familiar development environments:
Kernel programming should not necessitate
learning an entirely different programming,
debugging and build environment.

These three principles defined our choice of a language and
platform for the PortOS project.

We decided to use the C language for PortOS assignments.
The previous version of our class was based around a
filesystem project written in Java. We decided not to use
Java, even though this is the language of instruction for the
introductory computer science class at our institution,
because it is too high-level. That is, it provides too much of
the functionality that we would like to have our students
understand deeply and implement. In particular, we wanted
the students to understand the implementation of threading,
scheduling, synchronization and memory management
services, which are provided by the Java runtime. A second
problem with Java is that its lack of support for unsigned
types and packed bit-fields makes it difficult to write
networking code that can interact with existing, legacy
services on the network. At the other extreme, we decided
against exposing students to assembler because assembler
programming is too low-level, which interferes with
portability, makes modular programming difficult, and
detracts from higher-level issues such as interface design.

Our choice of platform was also determined by the three
principles of favoring sanitization, common platforms and
familiar tools. Initially, we considered structuring the
project as a set of extensions to Linux, NetBSD, FreeBSD
or Windows NT source code. These systems are attractive

because they are deployed, commercial-grade systems for
which many applications exist and with which most
students are familiar. But after closer inspection of the
software environment in these kernels, we decided that they
would be a poor platform for an educational course (though
some of our students have gone on to apply their skills to
open source development on Linux after our class). These
systems have three problems in an educational setting.
First, they often provide bad examples of the concepts
taught in an OS class. For instance, most OS classes stress
the importance and proper usage of universally studied
synchronization primitives, such as semaphores and
condition variables. Linux, BSD variants and Windows NT
do not support either semaphores or condition variables in
the kernel (this is not to be confused with the POSIX
interface Linux and BSD variants provide to user
applications; that interface is not available to in-kernel code
on these platforms). In fact, all of these systems support
what can at best be called “condimaphores,” that is ad hoc
synchronization primitives whose semantics are non-
standard, obscure, and hard to explain [11]. In addition,
lack of preemption among kernel threads makes these
systems unsuitable for educational use. In essence, the
entire kernel is arranged as a big monitor. Such a design
may be suitable for a large, collaborative software project
as it simplifies the programming model, but it is
undesirable in a classroom setting as it will mask common
synchronization errors students make [2]. Finally, a native
kernel would expose the students to the vagaries of SCSI
drivers, memory layout of VGA cards and other hardware
quirks, which would detract from the fundamental course
material.

Consequently, we decided to develop PortOS as a portable
layer that resides on top of an existing commercial
operating system. PortOS in turn provides a machine model
to the systems programmer that closely mimics the
underlying hardware, while virtualizing devices. Providing
such an emulation layer on top of Windows NT and CE
was not straightforward. Unlike the actual hardware, the
Windows operating systems provide rigidly synchronous
semantics for I/O events. Network packets, data blocks
from the disk, timer interrupts and screen refresh interrupts
are not taken on the stack of the currently executing thread
– a thread has to explicitly wait and possibly block to
perform these operations. The internals of PortOS are
concerned with synthesizing interrupts that match the
asynchronous interrupt model found on x86 and
StrongARM processors. The students thus build a realistic
system, on the emulated virtual hardware provided by the
PortOS layer, rather than on a simulator.

3 The PortOS Project

The ultimate goal of the PortOS project is to build a
prototype operating system that supports a peer-to-peer
messaging application for mobile hosts in an ad-hoc
network. The project is comprised of six phases that build

up to this objective, which are designed to take two weeks
each. The first four phases are intended to be completed in
sequence, while the last two are independent of the
previous phases, allowing them to be moved or omitted
entirely. At each phase, we provide the students with a
complete system image to build on, effectively providing a
sample solution to the previous phase. Though students are
encouraged to reuse their own solutions, in practice many
have chosen to use our sample solutions in order to start
with a bug-free “clean slate” in each new phase of the
project.

In the following subsections, we describe the machine
model PortOS provides and outline the subsystems students
are expected to implement.

3.1 Phase 1: Threads and Synchronization

The first phase of the project introduces concurrent
programming via a threads package which students
implement. This phase also includes the implementation of
semaphores for synchronization. We supply the students
with code for context switching, initial stack setup, and
atomic memory access (namely, stack_initialize,
stack_switch, test_and_set, and compare_and_swap) to
obviate the need for writing x86 and StrongARM assembly
code. Figure 1 illustrates the interface students implement.
For this phase of the project, thread switching is performed
via a simple, round robin, non-preemptive scheduler. To
test their work, the students implement a variant of the
single producer, multiple consumer problem.

Figure 1. The interface students are expected to
implement for Phase 1 includes support for threading
and synchronization.

Overall, this phase of the project is quite traditional. An
alternative approach is to ask students to write assembler
code to start up a thread and perform context switching. We
opted not to follow this strategy because it required
assembler programming on two different platforms. In
addition, concurrency is a complicated concept: it is hard to
understand it without a context switch routine, and hard to
implement a context switch routine without understanding
it. We sidestep this dilemma by providing primitives in
assembler.

3.2 Phase 2: Preemptive Scheduling

Applications which interact with the user need good
response time. Phase 2 improves response time by
extending the thread implementation from the first phase to
use preemptive scheduling. Along the way, the students
also replace the previous round-robin scheduler with a
multi-level feedback queue. The new scheduler awards
more, but shorter time slices to any process that routinely
blocks before using up its allocated time slice. We provide
a test program so that students can visually verify that their
scheduler is working correctly, in the same spirit as [1], but
with a textual interface.

3.3 Phase 3: Unreliable Networking

The third phase of the project introduces networking via an
unreliable datagram service. The students implement a
UDP-like protocol on top of a virtual network card PortOS
provides. This phase of the project also introduces the
concept of ports as communication endpoints, and requires
proper synchronization and buffering to coordinate
message delivery. Figure 2 describes the interface the
students have to implement on top of the I/O interrupts they
receive from the virtual network card. Since it incorporates
a synchronous receive operation, the students must
translate asynchronous packet arrivals into waking up the
appropriate waiting thread via a packet classifier.

Figure 2. The network interface introduces ports as
communication endpoints and unreliable datagrams.

3.4 Phase 4: Reliable Streams

Unreliable datagrams are not adequate as a general-purpose
foundation for reliable distributed systems. The next phase
of the project involves adding a reliable, TCP-like stream
protocol. Our protocol is much simplified in comparison to
TCP, by omitting handshakes, sender and receiver windows
and other performance enhancements. But it captures the
essential problem in reliable protocol design: how to
deliver packets to a given destination despite transient
failures within the network. Students need to implement
acknowledgements, resends, and duplicate suppression. At
most a single packet is ever required to be in transit
between a sender-receiver pair of ports, which precludes a
high data rate, but is easier to implement. The interface
students implement for this assignment is identical to the

thread_t thread_fork(proc_t proc,
 arg_t arg)
thread_t thread_create(proc_t proc,
 arg_t arg)
void thread_stop()
void thread_start(thread_t t)
void thread_yield()
semaphore_t semaphore_create()
void semaphore_destroy(semaphore_t sem)
void semaphore_initialize(semaphore_t sem,
 int count)
void semaphore_P(semaphore_t sem)
void semaphore_V(semaphore_t sem)

port_t port_local_create()
port_t port_remote_create(
 network_address_t addr,
 int id)
void port_destroy(port_t port)
int msg_send(port_t local, port_t remote,
 msg_t msg, int len)
int msg_receive(port_t local,
 port_t* remote,
 msg_t msg, int *len)

previous phase. To test the robustness of the students’ code,
the PortOS network card drops or duplicates packets with
some probability to simulate failures encountered in wide
area networks.

3.5 Phase 5: Ad-Hoc and Peer-to-Peer Applications

This phase gives students the opportunity to experiment
with distributed computing in a wireless setting. In
particular, this phase introduces ad-hoc networking, where
mobile nodes form self-organizing networks over wireless
links. Since each node can communicate only with its
nearby neighbors within a transmission radius, nodes must
cooperate to find a suitable, multi-hop route to forward
packets to their destinations.

Implementing projects based on ad-hoc networks poses
many challenges. Not only is the behavior of wireless links
highly variable and hard to reproduce, but also it is
impractical to test code with large numbers of mobile
computers at once. PortOS simplifies these problems by
emulating an ad-hoc network within a wired cluster. This
enables students to develop application code for handheld
devices on the desktop. The main primitives provided by
PortOS are unreliable broadcast and unicast functions.
These deliver packets only to the neighboring nodes within
range of the source node. A configurable network topology
map informs the PortOS emulation layer of the network
layout. Figure 3 shows an example of a network topology
file that provides an adjacency matrix for the nodes
comprising the network. PortOS also provides interfaces
through which the network topology can be modified at run
time to simulate host movement.

The goal of this phase is to introduce self-organization in
ad hoc networking in the context of a peer-to-peer
application. Students need to develop an ad hoc routing
algorithm [6, 9] to handle correct packet forwarding over
multiple hops, and on top of the algorithm, implement a
peer-to-peer instant messaging service. This requires that a
text message typed in by one student and addressed to
another is correctly and reliably routed and delivered over
an ad-hoc network, regardless of the location of the
intended recipient.

3.6 Phase 6: File Systems

The final phase of the project introduces storage systems
and atomic operations on secondary storage media. While it

can be integrated with the instant messaging application to
offer email services by saving messages onto the disk, it
can also be done independently of phase five.

The interface implemented by the students is a Unix-style,
multithreaded file system on top of a low-level disk
emulator that PortOS provides. The disk emulator
translates requests to read and write blocks into accesses to
a regular file in the Windows NT file system, thus saving
the students’ data onto stable storage and providing
continuity between sessions. The virtual disk interface
provides a simplified block interface to secondary storage.
This interface enables querying the disk block size, reading
a given disk block and committing a block to the disk. On
top of this interface, students build a traditional Unix
filesystem for file manipulation, as shown in Figure 4.

file_t file_create(char *filename)
file_t file_open(char *filename,
 int mode)
int file_read(file_t file, char *data,
 int maxlen)
int file_write(file_t file, char *data,
 int len)
int file_close(file_t file)
int file_unlink(char *filename)
int file_mkdir(char *dirname)
int file_rmdir(char *dirname)

 Figure 4. The file system interface for phase six, a
simplification of the traditional Unix systems calls.

To test the file system, we provide a shell incorporating a
set of simple file utilities, such as ls , mv and cat. For the
final project, some students implemented RAID storage
and file systems based on UFS and LFS on top of the disk
emulator. We are currently extending the emulator to
reorder disk accesses on the fly and simulate system
crashes in a repeatable manner.

3.7 Summary

While PortOS covers a broad spectrum of operating
systems topics, the amount of code that the students have to
write is modest. Table 1 summarizes the size of the code
we provide for each phase of the project, as well typical
figures for the amount of code the students write.

4 Related work

PortOS has been used as the project for our honors-level
operating systems course. In this respect it is comparable to
other instructional operating systems which have been
described in the literature [3, 12]. We briefly elaborate the
differences between PortOS and these systems, as well as
other styles of operating system projects.

q

ne

Figure 3. A topology file and the corresponding
broadcast network.

quark .xx.x
proton x.xx.
neutron xx...
electron .x..x
neutrino x..x.

neutron

neutrino

proton

electron quark

Component Provided
Code

Expected
Code

PortOS Core 1071 -

Threads and synchronization 219 ~600

Preemption 219 ~400

Datagram networking 539 ~300

Reliable stream networking 539 ~400

Ad-hoc routing 765 ~1000

File-system 958 ~1500

Testing code for all phases 1890 -

Table 1. Line counts for PortOS components.
Students start with the PortOS Core, and are
successively provided extra code in each of the
phases. The final column lists the typical length of an
adequate solution.

Our work is closest to Nachos [3] in form and content, but
focuses more on advanced projects. PortOS enables real
code to be linked to the kernel, rather than relying on cross-
compilation and simulation, which require a special build,
test and debug environment. Finally, it supports the
Windows operating system family, including
NT/98/2000/ME, but also CE/PocketPC and Handheld
2000.

As discussed in section 2, using a native kernel for studying
operating systems is impractical because of the complexity
and bad examples posed by a full-fledged system. An
additional problem, shared by stand-alone operating
systems, such as Minix [12], is that rewriting and
debugging the kernel often requires a dedicated machine.

Alternative approaches to ours include building up from a
raw machine simulator [4, 7], and using visualization tools
to aid students in understanding and implementing
operating systems algorithms [1].

5 Conclusions

PortOS is a new educational operating system construction
framework for use in an undergraduate-level operating
systems course. In addition to covering core material such
as concurrency, scheduling, and storage systems, PortOS
can serve as a platform for introducing the next generation
of challenges posed by ubiquitous computing, ad hoc
networks and mobile systems into the curriculum. PortOS
runs on the Windows family of operating systems for both
mobile and desktop hosts, and can be developed with
standard development tools.

PortOS was developed and used at Cornell in spring 2001
as a practicum for an undergraduate class of 64 students.
This earlier version of the software was refined by the
addition of ad-hoc networking and file system components,
which are based on final projects written on top of PortOS
by the students themselves. This experience has shown that

that PortOS is a suitable platform for introducing mobility,
issues, ad hoc networking, and ubiquitous computing into
the undergraduate systems curriculum.

PortOS can be downloaded from

http://www.cs.cornell.edu/People/egs/portos/index.html

Acknowledgements

We would like to thank the 414/415 class of spring 2001
who had to work the bugs out of the first version of this
course, and Sunny Gleason, for his help with the WinCE
port. PortOS is based on the minithreads system, developed
at CMU by Brian N. Bershad. We would also like to thank
Hewlett-Packard and Microsoft for providing the
infrastructure necessary to deploy mobile devices in our
course.

References
[1] Michael Bedy, Steve Carr, Xianlong Huang, and Ching-Kuang

Shene. A visualization system for multithreaded programming. In
Proceedings of the Thirty-First SIGCSE Technical Symposium on
Computer Science Education , pages 1-5, Austin, Texas, March 2000.

[2] Sung-Eun Choi and E Christopher Lewis, A Study of Common
Pitfalls in Simple Multi-Threaded Programs. In Proceedings of the
Thirty-first ACM SIGCSE Technical Symposium on Computer
Science Education, March 2000.

[3] W. Christopher, S. Procter, and T. Anderson. The Nachos
instructional operating system. In Proceedings of the 1993 Winter
USENIX Conference, pages 479-488, January 1993.

[4] John Dickinson. Operating systems projects built on a simple
hardware simulator. In Proceedings of the Thirty-First SIGCSE
Technical Symposium on Computer Science Education , pages 320-
324, Austin, Texas, March 2000.

[5] J. Hennessy. The Future of Systems Research. In IEEE Computer,
pages 27-33, August 1999.

[6] David B. Johnson and David A. Maltz. Dynamic Source Routing in
Ad Hoc Wireless Networks. In Mobile Computing, edited by
Tomasz Imielinski and Hank Korth, Chapter 5, pages 153-181,
Kluwer Academic Publishers, 1996.

[7] Mauro Morsiani and Renzo Davoli. Learning operating systems
structure and implementation through the MPS computer system
simulator. In Proceedings of the Thirtieth SIGCSE Technical
Symposium on Computer Science Education, pages 63-67, New
Orleans, Louisiana, March 1999.

[8] Gary Nutt. Operating Systems: A Modern Perspective. Addison
Wesley Longman, 2000.

[9] Charles E. Perkins and Elizabeth M. Royer. Ad hoc On-Demand
Distance Vector Routing. Proceedings of the 2nd IEEE Workshop on
Mobile Computing Systems and Applications, New Orleans, LA,
February 1999, pp. 90-100.

[10] Abraham Silberschatz and Peter Galvin. Operating System
Concepts. John Wiley and Sons, fifth edition, 1997.

[11] David A. Solomon, Inside Windows NT. Microsoft Press, second
edition, 1998.

[12] Andrew S. Tanenbaum and Albert S. Woodhull. Operating Systems:
Design and Implementation. Prentice Hall, second edition, 1997.

[13] M. Weiser. Some Computer Science Problems in Ubiquitous
Computing. In Communications of the ACM, July 1993.

