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Abstract

We present a simple rate matching-based mechanism for
voltage adaptation in a microprocessor running a mul-
tiprogrammed workload. The mechanism incorporates
a set of architecture and operating system extensions
through which applications can communicatetheir actual
and desired progress to the operating system. Using this
feedback, the operating system uses a modified schedul-
ing algorithmto run all applicationsat asingle, globally-
optimal voltage. We demonstrate that significant energy
savings are possible with asimple, practical set of exten-
sions to the architecture and operating system.

1 Introduction

Power conservationiscritical in many computational set-
tings. It iswell known that improvementsin battery ca-
pacity have not tracked theincreased power requirements
in modern processors. Energy efficiency iscritical inmo-
bile and ubiquitous computing environments, including
sensor networks and hand-held devices, where form fac-
tor constrains the total battery capacity. Voltage scaling
is a promising mechanism for reducing the power con-
sumption, thereby extending the battery life of such de-
vices. Energy efficiency is aso important in high-end
processors, where thermal limits constrain the maximum
power consumption of a processor. Voltage scaling in
this scenario would be useful to prevent the proecessor
from exceedings its thermal budget.

There is a wealth of research on voltage scaling algo-
rithms[20, 3, 7, 8, 16, 23, 27]. Thiswork has mostly fo-
cused on operating system (OS) techniques for selecting
a globally optimal voltage setting. The primary driving
factor in this class of selection agorithms has been the
total system idle time. The operating system typically
scales the voltage (and frequency) down in response to
idle periods and increases it during bursts of activity to
try and find the lowest possible voltage setting that elim-
inates idleness. Such schemes are compelling because
they only require minor changes to the operating system
scheduler and no application-level modifications. How-
ever, heuristic-based, operating system driven algorithms
tend not to exhibit stable behavior, nor do they robustly

converge to a single optimal operating point. This has
led to arecent experimental study that thoroughly evalu-
ated many previous voltage scaling schemes to conclude
that “No heuristic policy that we examined achieved
[the optimal voltage and frequency].”! [8] Part of the
reason why these heuristic approaches are limited is be-
causethey are driven solely by system idletime and have
no application-specific information.

Other work has examined how to select the optimal
voltage given complete information about application
start times, deadlines, and computation needs [12, 20].
Given complete application knowledge, these omniscient
schemes can optimally pick the operating voltageto min-
imize energy requirements while meeting application
deadlines. However, while such schemes can provide
lower bounds on energy requirements, they are hard to
use in practice because they require complete applica
tion information. Due to data-dependent execution and
hardware effects such as cache misses, estimating future
execution time for an application is a daunting task.

We contend that the problem with these two extremesis
the lack of application-specific information. OS-directed
schemes do not take any application-specific deadlinein-
formation into account, while omniscient schemes as-
sume an impractical level of application knowledge. The
problem stems from the lack of an interface by which
application writers can inform the hardware of relevant
information for making energy-optimal decisions.

In this paper, we propose a new interface through which
applications can independently express their power
needs to dynamically select the globally optimal operat-
ing voltage. An interface for power-aware voltage adap-
tation should exhibit the following properties:

e Simplicity. It should be practical and intuitive to
use. In particular, their use should not be predicated
on detailed knowledge of future application behav-
ior.

« Efficiency. It should provide sufficient information
for the hardware to make optimal or near-optimal
voltage scheduling decisions with minimal run-time
overhead.

1Emphasisin the original.




e Protection. It should alow the operating system
to make per-process voltage scheduling decisions.
Applications should not be able to override energy
limits imposed on them by the operating system.

« Flexibility. It should enable applications to imple-
ment any voltage selection algorithm. Variations
in application execution bursts necessitate differing
voltage adaptation schemes.

e Compatibility. It should not preclude legacy appli-
cations from being executed without modification.

We propose a set of simple extensions that achieve these
goals via fine-grained rate-matching. Our approach re-
lies on extracting explicit progress information from the
application. The hardware can then use this information
to tune its voltage and frequency to match application
needs. Applications provide their target execution rate
on initialization, and include progress indicatorsin criti-
cal locationsin the code. The progressindicators specify
the actual application execution rate, which is then ad-
justed to match the target rate by scaling the operating
voltage.

This paper makes the following contributions. First, it
introduces a simple, efficient, and flexible interface for
application-directed voltage control. The interface is
easy and intuitive to use; it typically requires the addi-
tion of a small amount of code to initialize the system,
and a single call in the main application loop. Second,
we show that this interface when used independently by
competing applications leads to a globally optimal dy-
namic voltage level. Our interface provides a way for
each application to pursue the best voltage for its own
application-specific goas. In aggregate, the global sys-
tem convergesto the optimal voltage without the operat-
ing system having to explicitly deriveit from application
characteristics or needs. Finally, we show that this in-
terface permits an efficient implementation that achieves
significant power savings. For a demanding multipro-
grammed workload, our implementationin the Linux op-
erating system is within 3.4% of optimal and achieves
42% reduction in energy on average.

The rest of the paper is organized as follows. Section 2
relates our contributions to previouswork. Section 3 de-
scribes our API for voltage management, in the context
of asingle application. Section 4 shows how the API can
be used to achieve globally optimal voltage selectionina
multiprogrammed environment. Section 5 describes our
Linux implementation, and shows that achieves perfor-
mance that is close to the optimal.

2 Related Work

For any dynamic voltage adaptation scheme to be fea
sible, the hardware must support operation at multiple
voltage levels. Current commercial processors support
asmall number of discrete voltage/frequency adjustment
options. Intel’s Maobile Pentium 111 with SpeedStep has
two levels of operation [10] and AMD’s Mobile Athlon
4 with Power NOW! [1] hasfivelevels. Thissmall range
of voltage adjustment can only support very coursegrain
voltage adjustments, such as lowering the voltage when
a system switches to battery power. Transmeta's Cru-
soe processor is one of the few commercial processorsto
support fine-grain voltage/frequency adjustments. How-
ever, unlike our voltage-adaptive scheme the Crusoe's
voltage/frequency adjustments are not directly driven by
the application. Crusoe’'s power management software
monitors power consumption by sampling CPU sleep
states and using heuristics to adjust the voltage and fre-
quency of the processor [6]. Some low-power embed-
ded processors, such as the Intel 80200 Processor [11],
also support fine-grain voltage/frequency adjustments.
The existence of these capabilities in modern processors
has spurred researchers to examine algorithms for volt-
age/frequency management.

Previous work on voltage adaptation has focused on op-
erating system techniques that choose an operating volt-
age which minimizesidle time. Early work by Weiser et
a. showed the potential benefits of voltage scaling [27].
They looked at two schemes, FUTURE and PAST, that
examine idle time in scheduling windows to determine
the voltage setting for the next epoch and compared these
to OPT, the optimal strategy. This work was further ex-
tended by Govil et a. which examined many other can-
didate strategies for voltage scheduling using the same
framework as Weiser [7]. They showed that when eval-
uating a range of applications with a single scheduling
policy, simple strategies achieved energy savings that
were comparabl eto those obtained by more sophisticated
strategies. Martin examined the effect of non-ideal bat-
tery behavior and memory performance, and uses this
to formulate a more sophisticated model of the effect of
voltage/frequency scaling on system lifetime[18]. Grun-
wald et al. experimentally evaluate different voltage scal-
ing policies on Itsy, a prototype hand-held computer [8].
They conclude that none of the policies proposed to date
work well in the general case. These papers share a set
of common characteristics: (i) They investigate single
system heuristics that have to operate well across awide
range of applications; (ii) They areall coarsegrained and
interval based. The system re-evaluates the voltage set-
ting only when the scheduler is invoked. The choice of
the interval is determined by the scheduler, independent



of application needs; (iii) They aredriven entirely by sys-
tem idletime, whichis not directly related to application
needs. Inferring computation needs from idle time mea-
surements is complicated by phenomena like deceptive
idletimes[13], where applications might remainidle due
to outstanding 1/0 requests. These three characteristics
have limited the efficiency of such schemes. In contrast,
our rate-matching based approach enables application-
controlled voltage adaptation, facilitates scheduling at
finer granularity, and is directly driven by application
progress.

There has been much work (both theoretical and simula-
tion based) on optimal voltage scheduling policies based
on complete information about application deadlines, ar-
rival times, and computation workload. Hong et al. look
at the voltage scheduling problem given full information
about periodic tasks [9]. Pering et a. describe the de-
sign of a low-power microprocessor system that incor-
porates dynamic voltage scaling [20]. They build on a
real-time OS infrastructure, and assume that application
deadlines and computation needs are available to their
scheduler. Ishihara et al. make the same assumptions
and approach the optimal voltage scheduling problem
through linear programming [12]. Manzak et a. pro-
vide techniques to compute the optimal task voltages for
a number of tasks that have a common, global dead-
line [16]. More recent work makes similar assumptions
when implementing their real-time dynamic voltage scal-
ing algorithms [19, 28]. This body of work relies on ex-
plicit application deadline information, and total appli-
cation execution time for at least one reference voltage.
In practice, these two metrics, especialy the latter, may
be difficult to obtain. Furthermore, having the applica-
tion compute an accurate estimate of future workload is
likely to incur an unacceptable performance penalty. In
contrast, our rate-matching based approach does not re-
quirethat the application make any estimates of its future
behavior.

Simunic et a. present techniques that use a change-point
detection algorithm to detect the differencein arrival and
service rates for an MPEG player and MP3 player [23].
They assume the presence of a power manager that can
monitor these rates and the number of frames decoded
by the two players. Their technique also uses an off-line
calculation to determine thresholds for the change-point
detection algorithm. Our rate-matching based, approach
while similar in spirit, relies only on run-time informa-
tion and does not require an off-line calculation phase.
Further, it is not limited to applications with input and
output queues that can be monitored by dedicated hard-
ware.

3 Voltage Scaling API

Our API achieves application-driven adaptivity by rate-
matching. We call this APl RMVS, for rate-matching
voltage scaling. We begin with the minimal set of opera-
tions that provide a mechanism by which the application
can inform the hardware about its progress. The hard-
ware can then pick the optimal voltage level to reduce
energy consumption given atarget progress guarantee.

3.1 API Description

The voltage control system is centered about a counter,
VCNT, which captures the application’s progress. This
counter is periodically incremented by the application
via the PROGRESS operation, and decremented by the
system at arate specified by the VRATE register. Equilib-
rium is achieved when theincrement and decrement rates
balance and keep the counter at a near-constant value.

If the program runs too slowly, then the application-
controlled increments will occur less often than the
system-controlled decrements and the counter will even-
tually underflow. Likewise, if the application runs too
quickly, then the counter will eventually overflow. These
conditions are signals to adjust the voltage up or down
respectively.

Such conditions are reflected to the application through
exceptions. Throughout this paper, we will refer to these
exceptions as counter exceptions. They are handled by
an exception handler that picksthe new operating voltage
for the application. The exception handler does so by
writing the VLT register, which in turn updates the actual
supply voltage level.

For protection reasons, the exception handler should not
be able to adjust VLT to an arbitrary value. Otherwise,
malicious applications could consume more power than
their allotment and circumvent OS resource management
decisions. The OS has the ability to set hard bounds on
VLT via the registers VM N and VMAX. These bounds
could be the physical limits at which the processor can
operate, or the OS may wish to restrict the voltage level
further. For example, to extend battery life when a lap-
top is not plugged in to a wall socket, the OS may set
VMAX to something far lower than it would if there is
more power available.

If the counter hits zero while an application is running
and VLT is aready equal to VMAX, then the application
cannot meet its current performance goal. Depending
on the nature of the application, it may then want to
exit, continue running at the highest allowable voltage
level, or modify its performance regquirement, possibly



| Reg | Description |
CMAX | Maximum counter |level
VINCS | Incrementssince last voltage exception
VINS Instructions since last voltage exception
VLT Supply voltage level
VMAX | Maximum allowable supply voltage
VMIN Minimum allowable supply voltage
VRATE | Counter decrement rate (Hz)
VCNT | Counter

Table 1: New registersintroduced by the voltage-adaptive ISA
extensions.

| Instruction | Description |
PROGRESS | Increments counter by one
HALT Stops processor until interrupt

Table 2: New instructions introduced by the voltage-adaptive
ISA extensions.

performing a quality-of-service adjustment. For exam-
ple, an scalable video-decoder that cannot meet its frame
rate goal, even at VMAX, may choose to use fewer colors,
lower resolution, or a lower frame rate. Likewise, if a
program is running too quickly while aready at VM N,
it may want to do nothing and continue running at this
level, or change its quality-of-service by switching to
more colors or higher resolution.

The amount of hysteresisin the system can be controlled
by limiting the range of the VCNT register. To accom-
plish this, we provide a new register CMAX that bounds
the maximum possible counter value. Note that aCM N
register is unnecessary, as the amount of hysteresis only
depends on the range of values the counter can take, not
the absolute value of the counter itself. With this mod-
ification, exceptions are reported when the counter hits
zero or CVAX. To keep the hysteresis symmetric, VCNT
istypically initialized to CVAX/2.

To more quickly arrive at the equilibrium voltage level
(i.e. thelevel at which the rate of increments equals the
rate of decrements), a counter exception handler needsto
know the number of instructions and the total number of
counter incrementssince the last exception. Thesevalues
are stored in VI NS and VI NCS, respectively. After the
exception handler has changed the voltage, it typicaly
resets the counter to CVAX/2.

By default, an application begins with VRATE set to
zero. This has the effect of turning off the voltage con-
trol mechanism if the application does not contain any
PROCGRESS instructions. Thisallowslegacy applications
to execute with no modification.

Finaly, there are also times when the processor is truly
idle and just needs to wait until it receives an interrupt
(from a timer, for instance). In this case, the HALT in-
struction causes the processor to wait until an external
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Figure 1. Number of instructions required to decode framesin
an MPEG video sequence.

interrupt occurs. The HALT instruction has already been
adopted and implemented in many modern ISAs, and is
simply included here for completeness.

3.2 ExampleApplication

In this section, we illustrate how to integrate our exten-
sionsinto real applications. We focus on avideo decoder
with a fixed, average-case throughput goal. An MPEG
video decoder with its periodic structure provides a good
example of how our extensions can be used to control
the average-case behavior of an application. Modifying
applicationsinvolvestwo steps: inserting PROGRESS in-
structions appropriately into a program, and determining
application-specific values for VRATE and CVAX.

Even with a regular benchmark like MPEG, it is diffi-
cult to specify its future computation requirements based
on its immediate inputs. Each frame may have drasti-
cally different computational requirementsfor decoding,
with some using as many as three times as many dynamic
instructions as others [2]. A graph of the number of in-
structions needed to decode framesfor a116-framevideo
clip is shown in Figure 1. This figure shows that even
a regular benchmark like MPEG exhibits irregular and
time-varying computational needs that are hard to cap-
ture.

To provide an indication of progress to the hardware, the
application writer needs to place PROGRESS operations
at appropriatelocations. A natural choicefor MPEG isto
place one operation at the end of the code that decodes a
single frame. We found thisto be a straightforward mod-
ification for the benchmarks we examined in this paper.
Generally, the PROGRESS operationswere placed in the
main dispatch loop of event-driven applications.

Thedesired rate of progressis determined by thevaluein
VRATE. For MPEG, this corresponds precisely with the
designed frame rate. Therefore, VRATE is set to 30Hz
for a 30 frames/sec (fps) target.



T T T
"mpeg_long_vonestep_g8.txt"

3l
ZISM
s 4

15 b

vdd (V)

1 I I I I I I I
0 1e+10 2e+10 3e+10 4e+10 5e+10 6e+10 7e+10 8e+10
time (x2 ns)

35 T

"mpeg_| ‘ong_vonm‘ep_gl&.\xl"

vdd (V)
N

o ow

‘
L

Il Il Il Il Il Il Il
0 let10  2e+10  3e+10  4e+10  Se+l0  6e+l0  7e+l0  8e+10
time (x2 ns)

Figure 2: Voltage level for an MPEG video decoder with (top)
CVAX = 8 and (bottom) CMAX = 16.

CVAX determines how quickly the rate of PROGRESS
operations approaches the equilibrium VRATE. CMAX
can be thought of as the size of the window over which
the PROGRESS-rate is averaged, and hence the sensitiv-
ity of the mechanism. Note that if CMAX = 2, then any
counter increment or decrement will immediately cause
an exception. On the other hand, if CMAX is large (say
2000), then at least a thousand decrements (= 33 sec-
onds) must occur before a counter exception could al-
low the system to adjust its throughput. For the MPEG
video decoder, the desired sensitivity depends on the
amount of buffering available. In general, we would like
to make the mechanism as insensitive as possible within
the constraints of the application, since changing volt-
age levels adds to the energy and time overhead cost. If
the number of buffered frames is b, then we should en-
sure that CMAX/2 < b. Otherwise, the buffer may run
out of frames before an exception occurs! In practice,
one might further restrict this bound to avoid having the
buffer becoming nearly depleted.

A small value of CMAX makesthe voltage scaling scheme
very sengitive to variationsin the arrivals of PROGRESS
operations. Figure 2 shows the variation in voltage while
looping avideo clip between acomputationally intensive
sequence and very still sequence, requiring about half as
much computation per frame. The system with larger
CVAX experiences far less voltage adjustment without
significant increasein the convergencetime, as compared
to the system with the smaller value of CVAX.

This example demonstrate the flexibility and versatility
of our API. By selecting appropriate settings for the reg-
istersthat control voltage adaptation, a variety of adapta-
tion schemes can be selected to suit application needs.

3.3 Implementation Considerations

The API described above can be implemented using in-
struction set architecture (ISA) extensions, or by using a
system call interface with little/no architectural support.

Extending the ISA. The overall impact of our ISA ex-
tensions on the main processor execution path is modest,
especially when integrating such an | SA extensionwith a
MIPS-like I SA that supports coprocessors[14]. The ISA
extension aong with its accompanying registers is im-
plemented as a voltage management coprocessor (VU),
and the primary decode need only classify the proposed
extensions as VU instructionsto be routed to the voltage
management coprocessor. The only interaction between
the primary processor datapath and the VU is through
move instructions that transfer datato and from VU reg-
isters. Protection can be achieved by only allowing user-
mode code access the progress operation and the supply
voltage level register. We implemented this modification
to the RTL-level description of an asynchronous MIPS
processor, and it had no noticeable impact on the perfor-
mance of the processor.

Voltage Calculation. When the counter value exceeds
CMAX or drops below 0, application-level code must be
executed to adjust the operating voltage. The simplest
strategy we adopt is called | NCDEC, where the voltage
is decreased by afixed amount if the counter crosses the
low threshold, and increased by a fixed amount if the
counter exceeds CMAX. In general, an application could
adopt more sophisticated strategies when determining its
new voltage in response to a counter exception.

Voltage Adaptation. The granularity of our voltage-
adaptive scheme is determined by the granularity of the
adjustable voltage regulator. The regulator can be de-
signed in a number of ways. One simple solution is to
use off-chip voltage regulators that are readily available
for high-performance microprocessors. The maximum
voltage switching latency for typical off-chip regulators
isapproximately 250us [22] and we will assumethisreg-
ulator characteristic in the simulations presented in the
latter sections of this paper.2 Other regulator optionsin-
clude custom off-chip regulators or integrated on-chip
regulators which will have smaller voltage latencies on
the order of 70us [3, 15].

If the processor implementation uses asynchronous cir-
cuits, then scaling the voltage automatically scales the
performance of the system [17] and no further support is
necessary. If the processor uses clocked circuits, then the
underlying hardware must scal e the operating frequency
of the processor along with its voltage.

Counter Updates. The reference clock provides a peri-
odic timing signa to the processor. This is required to
produce an absolute time reference so that the voltage-
adaptive logic can keep track of how fast the processor

2This latency strongly depends both on the capacitance between
V dd and GN D, and the direction and amount of the voltage change.



is running, regardless of its current operating voltage.
In our implementation, the reference clock controls how
often the voltage counter is decremented. The VRATE
register controls the rate the counter is decremented by
dividing down the reference clock frequency. The refer-
ence clock may either be integrated on-chip with the rest
of the processor (using an additional fixed supply volt-
age) or can be an external oscillator.

4 From Local to Global Voltage Se-
lection

The preceding section described how applications ex-
press their energy needs in isolation. In this section, we
show how this can be combined with scheduling deci-
sionsin the operating system to achieve globally optimal
voltage selection.

4.1 Optimal Voltage for a Single Applica-
tion

Our model for the effect of voltage scaling on the perfor-
mance and energy requirements of adesign uses the con-
ventional first-order approximation for energy and delay.
Let k be the number of units of work that a processor op-
erating at voltageV can completein t unitsof timeusing
E units of energy. We assume that these quantities are
related by the following equations:

Vit
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where the quantities Vo and C are constants that depend
on the design.® For the purpose of analysis, atask corre-
spondsto agiven amount of work that must be completed
by a certain time. Give a set of such tasks, we can deter-
minethe voltage schedulethat minimizesthetotal energy
required by the system. Some properties this schedule
obeys are:

Property 1. The optimal voltage schedule is piecewise
constant, with changes occuring when tasks are com-
pleted. The proof of this follows from (1) and (2).
This can also be established for more complex func-
tional formsby posing thefollowing variational problem:
Given afixed amount of work to be completed in afixed
amount of time, what is the optimal V (t) that minimizes

SThis first order model neglects threshold voltage effects, leakage,

and short-circuit current terms in the equation for energy and delay.

the total energy? Since both k and E are functions of
only V (t) and other constants, the optimal solution is
V (t) isaconstant.

Property 2. In an optimal voltage schedule, the volt-
age can increase only when new tasks enter the system;
otherwise, the voltage is a non-increasing function with
changes in voltage occurring only when tasks leave the
system. This can be proved in the same way as Prop-
erty 1.

These two properties provide us with some intuition re-
garding the behavior of the optimal voltage curve.

4.2 Globally Optimal Voltage Selection

Consider asimple scheduler with two tasks A and B. For
simplicity, we assume that task A has ka units of work
that need to be completed in t time dices, and B has
kg units of work that need to be completed in the same
number of time dicest.

A priority scheduler schedules task A with probability
p and B with probability (1 — p). Therefore, pt dlices
are allocated to task A, and (1 — p)t dlices are alocated
to task B. In this situation, we would like to use the
following voltages for A and B:

Voka
V =
A pt
Vokg
V
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where Vj is the voltage where a process can complete
one unit of work in onetime dlice.

Therefore, the energy used after t slices (normalized by
the average capacitance per unit of work) is given by:
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We can complete this joint task using the minimum
amount of energy when:
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In other words, the optimal scheduling strategy isto treat
the combined job “A + B” as onejob running at a sin-
gle voltage that is chosen precisely so that both tasks can
meet the joint deadline. This result easily generalizes
to the case of n processes, where the optimal schedul-
ing policy once again equalizes al the voltages, and the
scheduling probability is proportional to the amount of
work to be performed.

In general, if we haven tasks with periodic deadlinesthat
have dlice alocations s1, S, ..., Sh operating at steady

state voltages of V1, . . ., Vi, each task completing work
givenby K1, ..., kn units per deadline. We know that
V -
Vi — Okl
Sj

where Vj is the voltage where a task can complete one
unit of work per slice. As the operating system sched-
uler, we can observe the values V; and sj. Each task
should receive a priority that is proportional to its work
ki. Therefore, the operating system scheduler can com-
pute the new dlice values

ki Visi/Vo
S. = =
i N N
Y= ki 2j=1Visi/Vo
e, s = ST 3
>i=1Visi

Therefore, to minimize energy, the operating system
should dynamically adjust its scheduling policy using
equation (3). Note that the quantities Vi and s; are both
known to the operating system: V; is maintained in our
ISA as aregister in the voltage unit; s; is the proportion
of timethat is allocated to the process by the scheduler.

We modified the Linux scheduler according to equa
tion (3) to use per-process voltage information to adjust
scheduling priorities of the processes that participated in
dynamic voltage scheduling. Once the scheduler priori-
ties have been correctly adjusted, each application with
anon-zero VRATE will automatically pick its own local
voltage to be the same as the globally optimal voltage
choice.

Note that as opposed to previouswork onidle time mini-
mization, the voltagelevel isour systemis determined by
a combination of application information and operating
system scheduling. While previous work has examined
the problem of finding a single global voltage that satis-
fies all applications, we enable each application to deter-
mine its own voltage level that is appropriate for its own
progress metric. The operating system uses the voltage
information per application to change scheduling prior-
ities, and this combination results in a globally optimal
choice of voltage.

Thevoltage scheduling that resultsis quite different from
what one would observe with a Weiser-style idle time
scheduler. For instance, consider asingle, cpu-bound ap-
plication. An idle time scheduler would always run this
application at a high voltage, because each scheduling
interval has no idle time. The insertion of PROGRESS
instructions in the application gives the hardware addi-
tional information about the actual needs of the applica-
tion which may not always be reflected in the idle time.
This enables usto save energy without lossin application
performance.

An interesting result of this schemeisthat the overall av-
erage voltage-level of the processor will scale with the
load on the system. If there are m copies of the pre-
vious video application using the CPU and if the proces-
sor’sthroughput scaleslinearly with the voltagelevel, the
overal system voltagewill also increaselinearly with m.

5 Reaults

Due to the absence of hardware that provides an im-
plementation of our API, we evaluated its effectiveness
with a simulation-based study. The simulator we use is
based on Bochs, an open-source, x86 simulator that in-
cludes models for the network, disk, and other devices
and can boot the Linux operating system. We adopted a
full system approach to simulation because our proposed
extensions include both operating system and architec-
ture modifications.

The core simulator was modified to support the APl asan
I SA extension. Theeffect of voltage scaling only impacts
the energy and performance of the processor, and Bochs
was modified to correctly account for a selective slow-
down/speedup of the processor. We augmented Bochs
to aso record the energy consumption of the processor.

Name Description

austin clip from Austin Powers

bach clip from a Bach composition
godfather | clip from The Godfather

hal2001 | clip from 2001

jesse Jesse by Joshua Kadison

kennedy | clip of John F. Kennedy speaking
lastresort | clip from Last Resort by Papa Roach
mozart Ein Kleine Nacht Musik by Mozart
pachebel | Canonin D by Pachebel

rebecca Rebecca by Pat McGee Band

fear clip of Roosevelt’s nothing to fear speech
infamy clip of Roosevelt’s Pearl Harbor speech

Table 3: Audio files used asinput for benchmarks.



The simulator supports voltage levels ranging from 1.5V
to 0.3V in 0.1V steps. Our simulator also takes the non-
linear dependence between voltage and throughput into
account, aswell as accounting for those times that do not
scale with voltage (cache misses, disk access, etc). The
simulator also calculates the optimal energy that an ap-
plication could operate at if it had perfect knowledge of
future behavior based on the arrival times of tasks using
the analysis from Section 4. All the reported results cor-
respond to applications that run on our modified Linux
being simulated on amodified version of Bochs.

We modified a Linux 2.4 kernel to include al the nec-
essary operating system support for our API. The thread
structure was modified to include al the values for the
registers introduced by the API. In addition, the context
switch routine was modified to save and restore the hard-
ware registers that correspond to our API. Processes that
operate at constant voltages have VRATE set to zero. The
voltage state is shared by child processes so that the time
taken by sub-tasks spawned by a parent is correctly ac-
counted for.

Benchmarks. We used a set of six benchmark programs
(shown in Table 4), attempting to use a range of differ-
ent application types to illustrate the applicability of the
proposed API. t oast and unt oast are audio codecs,
andnpgl123isan MP3player. go isagame-treesearch,
and we modified it to limit the search it performs by reg-
ulating the amount of work per move. This adaptively
prunes the search tree based on computational require-
ments. ehgmni is aray-tracer that we modified so as it
would render scenes at afixed framerate. Finally abyss
is aweb-server that was modified to respond to web traf-
fic at afixed rate. The multimedia benchmarks used a
variety of input data sets that are described in Table 3.
Modifying each benchmark was asimpletask, and it took
us less than an hour per benchmark to perform the nec-
essary modifications. Unlike other related work where
the quality of service was varied to meet performancere-
quirements [20], our benchmarks provide a fixed quality
of service—i.e. each run of a benchmark correspondsto
the same amount of work.

5.1 Calibration

We calibrated the time and energy reported by Bochs
against the time and energy we measured from a
400 MHz Pentium |1-based system with 128MB mem-
ory, 4GB disk, and the Intel 440BX chipset. The time
taken by each application was measured using the Unix
t i me command on Bochsaswell ason thereal machine.
The runtimes of the applications ranged from 4.43 secs
(low) to 24 secs (high). For calibration purposes, we used
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Figure 3: Results of calibration against measured data.

four of the audio data sets (jesse, mozart, pachebel, re-
becca). For energy calibration, we charged a different
energy cost for each instruction type (integer, floating-
point, memory). The results of the energy reported by
the simulator were compared agai nst measurementsfrom
the Pentium Il system. We measured the current being
used by the processor by attaching a probe to the voltage
regulator on the motherboard.

Figure 3 shows the results of our calibration runs. The
y-axis shows the ratio of the metric reported by the sim-
ulator to the measured metric. Both energy and time cal-
ibration is reported per benchmark. The largest error in
energy measurementswe observed was an underestimate
by 13.9%, and the largest error we observed in timing
measurements was an overestimate by 4.2%. The aver-
age of the absolute values of the error percentages was
6.1% for the energy and 1.9% for the time.

5.2 Application Performance

Figure 4 shows the results of RMV'S on the six bench-
marks from Table 4. For benchmarkswith multipleinput
sets, we took the sum of the energy per input set which
corresponds to a workload that executes each clip from
Table 3 once. For each benchmark, we normalize the
reported energy against the energy required by the ap-
plication when no voltage scaling is performed (i.e. the
normal energy requirement for each application would be
1.0in Figure 4). Each application has two bars: one cor-

Benchmark | Description

t oast GSM encoder

unt oast GSM decoder

npgl23 mp3 player

go simulation of the game of go
ehgm ray tracer

abyss web server

Table 4: List of benchmarks
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Figure 5: RMVS with two applications running simultane-
ously.

responding to using RMV'S, and the other corresponding
to optimal voltage scheduling according to Section 4.

RMV'S uses 10% more energy than the optimal voltage
scaling strategy in the worst case (abyss), and 5.3% more
energy on average. Compared to not applying any form
of voltage scaling, RMV S saves 43% of the total energy
required on average.

5.3 Multiprogrammed Wor kloads

We now examine the effects of running multiple appli-
cations simultaneously. In each case, we keep track of
the per-application energy as well as the optimal per-
application energy. We report results from RMVS runs
for three different multiprogrammed workloads. Work-
load go+np3 corresponds to running the go bench-
mark and npg123 benchmark simultaneously. Work-
loadgsm mul ti correspondstotworunsof unt oast ,
the GSM decoder. Finadly 3app corresponds to go,
nMpgl123, and unt oast running simultaneously.

A summary of the results for the two application work-
loads is provided in Figure 5. Results from the three
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Figure 6: RMV'S with three applications running simultane-
ously.

application workload is shown in Figure 6. For each
workload, the per application energy consumption us-
ing RMVS is compared against the energy used by the
application under the optimal voltage schedule for the
workload. Our implementation of RMVS performs to
within 3.4% of the optimal, and reduces the energy re-
quirements of the workload by 42% on average.

Figure 7 shows the voltage as a function of time for
npgl123 with the “Bach” dataset. The voltage curve
shows the effect of using an incremental adjustment in
the voltage. For this particular run, the optimal voltage
lies between 1.0V and 1.1V . The discrete nature of the
voltage adaptation causes the voltage to periodically in-
crease by 0.1V before stabilizing at 1.0V for a further
interval.

Figure 8 shows the voltage as a function of time when
both go and mpgl123 are executing. The mp3 player is
playing a clip that ends at 12 seconds. The combination
of the two applications causes the processor to operate at
1.5V until the mp3 player completes. Notice how both
applicationsindependently chose the same voltage to op-
erate at due to the modified scheduler. Once the mp3
player completes, go isallowed to use alarger fraction of
the processor—immediately lowering its operating volt-
age and proceeding along the same phases as before.
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6 Summary

This paper presented a simple API for rate matching-
based dynamic voltage scaling. The API provides a
mechanism for applications to choose their own volt-
ages, and competing applications automatically adjust
their voltages to the same, globally optimal value due to
interactions with our proposed operating system sched-
uler. We evaluated our strategy on a calibrated, full sys-
tem simulator using anumber of applicationsrunning un-
der both single application and multiprogrammed work-
loads. Our results show that RMV S achieves an single
application energy reductionsthat are within 5.3% of op-
timal on average, and multiprocessor reductions that are
within 3.4% of the optimal.
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