
Protection is a Software Issue

Brian N. Bershad Stefan Savage Przemys law Pardyak

David Becker Marc Fiuczynski Emin G�un Sirer

fbershad,savage,pardy,becker,mef,egsg@cs.washington.edu

Dept. of Computer Science and Engineering FR-35

University of Washington

Seattle, WA 98195, U.S.A.

1 Some misconceptions about protec-

tion

There is a misconception in much of the operat-
ing systems community that hardware mechanisms are
the only way to ensure system integrity in the pres-
ence of malfunctioning or malicious code [Cheriton &
Duda 94, Golub et al. 90, Cheriton & Zwaenepoel
83]. For example, for almost 10 years we've heard
tales of how microkernels are more reliable than mono-
lithic systems because they rely on hardware imple-
mented address space boundaries to enforce protec-
tion between independent subsystems. Despite this,
our microkernel-based systems seem to crash about
as often as our conventional systems. A lot of our
friends say the same thing. Before microkernel sys-
tems, layered protection hierarchies were asserted to
have greater reliability. Intel x86 processors pro-
vide a layered protection model, and yet in prac-
tice operating systems using this processor do not ex-
hibit exceptional degrees of robustness. And then, of
course, every few years brings another suggestion for
a hardware-based capability system together with the
always unful�lled promise of increased system reliabil-
ity [Berstis 80, Organick 83]. These experiences have
revealed that hardware supported protection does not
inherently improve the reliability of complicated soft-
ware systems.

The reality is that modern operating systems are
strongly dependent on software mechanisms to pro-
tect system resources from users. This is true despite
the fact that the promoters of these systems imply
that their reliability and integrity derive solely from
the use of a core set of protected hardware mecha-
nisms, such as address spaces and protected supervisor
mode [Custer 93, Cheriton & Duda 94]. While typical
microprocessors provide cheap and e�ective hardware
mechanisms to protect the \load word/store word" in-
terface, operating systems are forced to abstract and
virtualize this interface to export a far richer set of
resources such as �les, sockets, threads, and consoles.
The access semantics for these resources are almost
always protected by software checks and not hard-

ware. For example, protection issues such as \should
I allow this process to terminate that process?", \is
there enough memory to spawn a new task", \has that
thread had more than its share of CPU time", \can
I write to that �le" or \can this process really halt
the machine?" are not typically resolved automati-
cally in hardware. Processor architectures simply do
not provide enough �ne-grained control over access to
shared system resources to ensure that a program only
accesses the resources to which it is allowed.

1.1 Position statement

Our position is that software protection mecha-
nisms are not only necessary, but have inherent ad-
vantages over hardware for enforcing the protection
requirements of an operating system. Software is 
ex-
ible, explicit, precise, and in many cases, open to in-
credible optimizations. By contrast, hardware mech-
anisms are rigid, implicit, imprecise, and unoptimiz-
able.

To see this, consider the implementation of a typi-
cal window system which isolates access to individual
rectangular regions of the screen. Hardware protec-
tion mechanisms can accomplish this goal, but at sig-
ni�cant cost. This cost arises because the hardware
mechanism, a protected virtual memory page, is rigid,
implicit and imprecise for the task of protecting win-
dow relative operations. It is imprecise because it is
limited to addressing contiguous address ranges, rigid
because it can not be easily altered to address rectan-
gular non-contiguous columns of memory, and implicit
because the programmer uses the memory interface
and not window operations. It is also hard to opti-
mize and the cost of protection is frequently incurred
even when a safe operation is being invoked.

A software interface, like the UNIX X-Windows sys-
tem, is generally able to provide higher performance
because its protection implementation is specialized
for window relative operations. In the X server, win-
dows have a simple and inexpensive representation
(the integer), and their interface requires programmers
to be explicit about the action they require. This al-

1



lows the server to safely manage screen resources and
clip user interactions to the boundaries of a particular
part of the screen. Moreover, the cost of this protec-
tion may be amortized over the length of an entire
operation. For instance, a line drawing operation can
eliminate most checks if both end points are found to
lie within the window. Hardware mechanisms are ap-
propriate for coarse grain isolation of the entire screen
bu�er, but �ner grain control is far better suited to
software. For this reason, the X server is typically im-
plemented by mapping the whole of the frame bu�er
into its own privileged virtual address space and vali-
dating client requests at run time.

2 Di�erent kinds of protection mecha-

nisms

We make the observation that there are basically
two kinds of protection mechanisms. Those which
implicitly restrict the ability to name a resource and
those which explicitly prevent a named resource from
being misused. In modern systems these mechanisms
are implemented in both hardware and software as fol-
lows:

Conditionals { �ne-grained access control through
explicit \if" statements embedded in the source
code.

Data scoping { per-process data structures which
implicitly restrict the set of resources a process
can access.

Address spaces { coarse-grained support to implic-
itly control the naming of physical memory.

Memory Protection { coarse-grained support for
explicit control of read, write, and execute access
to nameable addresses.

Clearly, the �rst two mechanisms are \software
mechanisms" in that they are enforced by the pro-
grammer or a compiler. The mechanisms come in the
form of additional logic in the operating system that
ensures that programs do not misbehave with respect
to a set of high level semantics about shared resources.

The last two mechanisms, usually implemented in
hardware, ensure that programs do not directly share
large regions of memory that are not intended to be
shared, but allow them to share memory in limited
ways. This functionalitymay also be provided through
software using pointer-safe languages [Nelson 91] or
software fault isolation [Wahbe et al. 93] to restrict
the set of addresses that may be referenced.

Choosing the protection mechanism for a particu-
lar resource depends on both the relative execution
cost of protection implemented in hardware or soft-
ware, as well as the appropriateness to the task. Hard-
ware mechanisms such as address spaces and memory
protection are well suited to isolating large regions of
contiguous physical memory when changes in protec-
tion are relatively infrequent. Fine-grained protection,

protection that changes frequently, or protection of re-
sources which are not easily represented through con-
tiguous ranges of memory, are best implemented in
software, as it is 
exible, has lower execution cost,
and is much easier to optimize.

There is a synergy between the protection provided
by hardware and software. Software mechanisms usu-
ally rely on hardware as a foundation to ensure their
own integrity, while changes in hardware protection
are usually controlled and limited through software
mechanisms. Speci�cally, any software mechanism
which is itself not protected by another software mech-
anism must be protected by hardware, otherwise it is
useless. For example, those important \if" statements
in the �le system which implement access control fa-
cilities would be meaningless if any program could
cause them to always return true. Hardware memory
protection is likewise useless without software condi-
tionals to control it. For instance, the capability to
map the screen bu�er into an address space is limited
by hardware, but ultimately controlled by those im-
portant \if" statements which govern whether or not
mmap(ScreenBuffer) is allowed for a particular pro-
cess.

3 Static protection mechanisms

Fundamentally, a protection mechanism exists to
enforce a constraint against what a program can do.
If that constraint can be statically assumed, then addi-
tional protection mechanisms, such as those described
in the previous section, are unnecessary, or can be
replaced with simpler ones. We commonly see this
behavior within the implementation of internal inter-
faces of an operating system kernel. There, kernel
code implicitly assumes that other pieces of the kernel
using that code obey system calling conventions, re-
lease locks at the right time, do not pass references to
stack-allocated or improperly scoped variables, and so
on. Because of these assumptions, the kernel imple-
mentation can be streamlined to avoid checks which
ensure that protection is not being violated. Many
checks can also be enforced at compile time. Tech-
niques such as 
ow-analysis [Chambers & Ungar 90]
and dynamic code generation [Keppel et al. 93] can
be used to leverage the compiler even further in the
elimination of runtime checks. Moreover, compilers
of languages that enforce name scoping allow an even
larger number of static assertions to be expressed and
veri�ed at compile-time.

Static protection mechanisms are made possible by
the existence and assertion of a set of assumptions
about the behavior of code. If we could assume that
code never behaved badly, then no protection mech-
anisms would be necessary. If we could assume that
code might only violate interface semantics, but never
invoke a load or store to a memory location outside
of its purview, then we could eliminate address pro-
tection checks. If we could assume that code would
never name a resource to which it was not granted
access, then we could eliminate access checks to re-
sources more complicated than simple memory. If we
could assume that code had bounded execution time

2



then we could run arbitrary fragments of user-code in
the kernel without fear of \losing" the processor. As-
sumptions such as these can improve the structure and
performance of incrementally constructed and special-
ized system code [Massalin & Pu 89].

4 Flexible software protection

Several projects are currently seeking to improve
the number and quality of the assumptions that can
be made of code that interacts with an operating sys-
tem [Engler et al. 94, Lucco 94, Bershad et al. 94].
The fundamental idea in these projects is that by con-
straining the actions of user code, that code can in-
teract more closely with untrusting code that would
otherwise require a runtime protection mechanism.
For example, by limiting the range of addresses to
which a code module can load, store, or jump, and
denying it access to privileged machine instructions,
it becomes possible to install arbitrary user code into
the kernel. By enforcing or deriving invariants about
data types, and access protocols through safe design
and compiler automation, it is additionally possible
to allow untrusted user code to access shared ma-
chine resources [Savage & Bershad 94]. The advan-
tage of these approaches is that the cost of hardware
protection mechanisms (trap, context-switch, system
call dispatch, parameter marshaling) can be elimi-
nated from the picture. Of course, this only becomes
true because exactly those functions provided by the
user/kernel hardware boundary { what has recently
been called \the red line" [Cheriton 94] { have been
supplanted by software of equivalent functionality, but
greater 
exibility. This 
exibility allows system soft-
ware to be incrementally specialized to the needs of
its applications in ways that would be impossible, or
far too expensive, to implement in systems protected
by static hardware mechanisms.

All these projects are in e�ect replacing one set
of assumptions { \code is well-behaved" { with an-
other { \we can ensure that code is well-behaved us-
ing automatic software mechanisms such as a com-
piler." Clearly, if we cannot assume the integrity
of the automatic mechanisms, then it is not feasible
to rely on them. It has been argued that compilers
are notoriously buggy, and that it is unwise to assign
them the responsibility for system integrity [Cheriton
94]. While there may exist buggy compilers, not all
compilers generate bad code. In fact, serious com-
pilers are often required to \work around" more se-
rious bugs that frequently arise in chip implementa-
tions [Crothers 94a, Crothers 94b, Hummel 92].

There is nothing inherent about hardware that
makes it more bulletproof than software. Because
hardware is not a su�cient mechanism to ensure the
integrity of the whole system, software mechanisms
remain necessary. The operating system should there-
fore provide a protection infrastructure that permits
those software mechanisms to be reliably applied with
minimum overhead.

References

[Bershad et al. 94] Bershad, B. N., Chambers, C., Eggers,
S., Maeda, C., McNamee, D., Pardyak, P., Sav-
age, S., and Sirer, E. G. SPIN { An Extensible
Microkernel for Application-speci�c Operating
System Services. In Proceedings of the 1994 Eu-
ropean SIGOPS Workshop, September 1994.

[Berstis 80] Berstis, V. Security and Protection of Data in
the IBM System/38. In Proceedings of the 7th
Symposium on Computer Architecture, pages
245{252, May 1980.

[Chambers & Ungar 90] Chambers, C. and Ungar, D.
Iterative Type Analysis and Extended Mes-
sage Splitting: Optimizing Dynamically Typed
Object-Oriented Language Based on Proto-
types. In Proceedings of the SIGPLAN'90 Con-
ference on Programming Language Design and
Implementation, pages 150{164, June 1990.

[Cheriton & Duda 94] Cheriton, D. R. and Duda, K. J.
A Caching Model of Operating System Ker-
nel Functionality. In Proceedings of the First
USENIX Symposium on Operting Systems De-
sign and Implementation (OSDI), pages 179{
194, November 1994.

[Cheriton & Zwaenepoel 83] Cheriton,
D. R. and Zwaenepoel, W. The Distributed V
Kernel and its Performance for Diskless Work-
stations. In Proceedings of the Eighth Sympo-
sium on Operating Systems Principles, pages
129{140, October 1983.

[Cheriton 94] Cheriton, D. R. Low and High Risk Op-
erating System Architectures. In Proceedings
of the First USENIX Symposium on Operting
Systems Design and Implementation (OSDI),
page 197, November 1994.

[Crothers 94a] Crothers, B. Faulty FPU 
ubs math in
certain equations. InfoWorld, 16, November
1994.

[Crothers 94b] Crothers, B. Multithreading gets lost on
P100 systems. InfoWorld, 16, November 1994.

[Custer 93] Custer, H. Inside Windows NT. Microsoft
Press, 1993.

[Engler et al. 94] Engler, D., Kaashoek, M. F., and
O'Toole, J. The Operating System Kernel as
a Secure Programmable Machine. In Proceed-
ings of the 1994 European SIGOPS Workshop,
September 1994.

[Golub et al. 90] Golub, D., Dean, R., Forin, A., and
Rashid, R. Unix as an Application Program.
In Proceedings of the 1990 Summer USENIX
Conference, pages 87{95, June 1990.

[Hummel 92] Hummel, R. L. Programmer's Technical Ref-
erence: The Processor and Coprocessor. Zi�-
Davis Press, 1992.

3



[Keppel et al. 93] Keppel, D., Eggers, S., and Henry, R.
Evaluating Runtime-Compiled, Value-Speci�c
Optimizations. Technical Report UW-CSE-
93-11-02, Department of Computer Science
and Engineering, University of Washington,
November 1993.

[Lucco 94] Lucco, S. High-Performance Microkernel Sys-
tems. In Proceedings of the First USENIX
Symposium on Operting Systems Design and
Implementation (OSDI), page 199, November
1994.

[Massalin & Pu 89] Massalin, H. and Pu, C. Threads and
Input/Output in the Synthesis Kernel. In Pro-
ceedings of the Thirteenth ACM Symposium on
Operating Systems Principles, pages 191{201,
December 1989.

[Nelson 91] Nelson, G., editor. System Programming in
Modula-3. Prentice Hall, 1991.

[Organick 83] Organick, E. I. A Programmer's View of the
Intel 432 System. McGraw-Hill, 1983.

[Savage & Bershad 94] Savage, S. and Bershad, B. N.
Some Issues in the Design of an Extensible
Operating System. In Proceedings of the First
USENIX Symposium on Operting Systems De-
sign and Implementation (OSDI), page 196,
November 1994.

[Wahbe et al. 93] Wahbe, R., Lucco, S., Anderson, T. E.,
and Graham, S. L. E�cient Software-Based
Fault Isolation. In Proceedings of the Four-
teenth ACM Symposium on Operating Systems
Principles, pages 203{216, December 1993.

4


