Safe Dynamic Linking in an Extensible Operating System

Emin Gun Sirer Marc E. Fiucynski Przemystaw Pardyak
Brian N. Bershad

Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195

November 3, 1995

1 Introduction

The protection of operating system code from user code in most systems is based on the separation provided
by an architecturally enforced user/kernel boundary. The boundary isolates an application from the kernel
and from other applications. Only through the system call interface can applications interact with kernel
services or one another. The system call interface has worked well in the past because the number of services
and service interfaces offered by the operating system has been relatively small and static, and the frequency
of service interaction has been low. Consequently, trust relationships could be accurately and efficiently
expressed through the user/kernel boundary.

Operating system requirements are changing, though, and thereby changing the structure of systems.
Systems are now being used to support a variety of applications, such as multimedia [Rad93], multiprocess-
ing [WW94], and distributed memory management [FMP*95] that were once considered “fringe” services.
In response to these changing demands, systems are now being designed to support application-specific
extensions that change the behavior, and commonly the interfaces, of the operating system.

In this paper, we describe the dynamic linking mechanisms used to define and access service interfaces in
the SPIN operating system. SPIN is an extensible system that provides extensive support for executing safe
code in the kernel’s address space. Code is safe if it cannot violate the interfaces against which it has been
compiled without causing a checked runtime error. Safety requires that interfaces can not be circumvented
using unsafe memory operations such as pointer casting. For example, a program using unsafe memory
operations could force a call to a system-private function (such as HALT) by forging a pointer to a function
through a cast operation. Clearly, such casts must be disallowed if dynamically linked code is to execute safely.
Several projects, including our own [BSPT95], are now exploring the use of kernel extension technologies
which preclude unsafe pointer operations [WLAG93, Luc9h, VGA94, EKJ95]. With SPIN, applications define
system extensions using the well-defined safe subset of Modula-3 [Nel91].

Once an infrastructure for the safe execution of code is in place, though, it is necessary to consider
the machinery for naming and linking that safe code into a running system. In this paper we describe a
dynamic linker that provides for the safe presentation and occlusion of interface implementations for safe
code executing within the kernel. Our linker defines the environment in which safe code executes, enabling
code to name, combine, communicate, and authorize interfaces and collections of interfaces safely within the
kernel. The key attributes of our linker are:

e Precision. The unit of linkage in our system is the domain, which is a collection of code, data, and
exported symbols. Domains are constructed from interfaces and their underlying implementations. The
symbols exported from a domain are those that are described in the domain’s component interfaces.

e Security. Domains are named by typesafe references that act as capabilities. A domain can be safely
passed to other code for use as a source of symbols in a subsequent linking operation. Domains can also
be registered with an authorization function in an in-kernel nameserver. A potential interface client can
interrogate the nameserver for a domain containing the interface’s implementation. The nameserver
provides access to the domain only if the registered authorization procedure allows it.

e Flexibility. Domains can be stacked or combined allowing services to be arbitrarily composed and
presented to clients at runtime.

e Simplicity. Any code within the kernel can create a domain from an interface against which it has
already been linked. This allows extension code to construct new domains that encapsulate existing
and accessible service interfaces. We use automatically generated stubs to handle the import and export
of interfaces through domains.

e Speed. Code in separate domains is linked by replacing symbol names with symbol values within
the code as in traditional static linking. Once linked, cross-domain access can occur without system
interaction.

SPIN’s dynamic linker enables, but does not require, applications to execute within the kernel. SPIN also
provides a conventional address space abstraction and a mechanism for crossing the user/kernel boundary. In
this way, applications can execute entirely within the kernel, entirely in user-space within their own address
space, or in some combination of both spaces. For example, our UNIX server is partitioned into a kernel
component that provides a thread and virtual memory interface similar to the one found in the Mach kernel,
and a user-level component with a structure similar to the CMU’s UNIX server [GDFR90].

In the rest of this paper we describe the design and interface for our dynamic linker. We describe the
interface first in terms of the linker’s primitive operations used to manipulate domains at runtime. We then
describe a higher level configuration interface for system and application programmers. The higher level
interface is used to automatically generate code that invokes the appropriate lower level linking operations
to achieve some desired configuration at runtime.

2 Interfaces, protection, and access

An operating system kernel relies on interfaces to both define and restrict access to system services. In
a conventional kernel, the system call dispatch facility completely defines the set of services available to
applications. In a system where untrusted code executes within the kernel, services must be protected through
more restrictive linkage mechanisms. Simply because a potential client has been compiled against an interface
does not imply that the client has the right to use that interface. For example, the SPIN kernel implements
a set of functions that manipulate processor priority level in the SPL interface. Clients call functions such as
SPL.High(), or SPL.Restore() to raise and restore the processor interrupt level. These functions can not be
made available to arbitrary applications running in the kernel, yet application code can easily be compiled
against the SPL interface, which is described by a file somewhere in the file system. Even if the file were
protected, there are no mechanisms that prevent clients from providing their own version of the interface file
and presenting it to the compiler. However, a client that intends to use a service described by an interface
must be authorized prior to the use.

Authorization can occur either at link-time or at call-time. Link-time authorization is superior in that it
need be done only once, when a client first contacts a service, and its overhead can be amortized over many
calls. Traditional operating systems that export a system call interface effectively perform authorization at
call time, since all exported procedures are accessible by clients regardless of their privilege status. The
system calls that are restricted to a subset of users must check, themselves, if the call is being performed by
an authorized user. This check can be error prone and costly when services export fine-grained operations.

Our linker enables services to perform authorization at the point where extension code is being linked
into the kernel. For example, the kernel exports the specific SPL interface only to privileged applications.

There are no restrictions to compile-time access to the interface description file for SPL, but at link time,
non-privileged applications would fail to link.

3 Dynamic linking primitives

The kernel’s dynamic linker manipulates code within specific domains, each of which is a collection of code
and data with an associated symbol table that describes the symbols that are exported by the domain.
The symbols exported by a domain are those that are intentionally exzternalized by the compiler and the
assembler based on programmer directives. For example, a code module that implements an interface im-
plicitly externalizes the symbols that define the entry points described in the interface. In terms of dynamic
linking, all domains are created at runtime, either by operating on accessible interfaces, or by manipulating
existing domains. Our build environment, though, provides tools for specifying statically, at compile time,
any domains that should be created at runtime, or that are required at runtime, for a particular target being
built.

Domains can be intersecting or disjoint, which enables applications to share services or define new
ones. Figure 1 summarizes the major operations on domains. A domain is created using either Create
or CreateFromInterface. The former define domains from object files or libraries, while the latter defines
them from interfaces already accessible within a loaded module. Any symbols exported either by modules
defined in the object file (Create) or the modules implementing the interface itself (CreateFromInterface)
are exported from the domain. Any imported symbols and unresolved symbols are left unresolved. Unresolved
symbols correspond to interfaces imported by code within the domain for which implementations have not
yet been found.

INTERFACE Domain;
TYPE T <: REFANY; (* Domain.T is opaque *)

PROCEDURE Create(coff:CoffFile.T):T;
(* Returns a domain created from the specified object
file (‘‘coff’’ is a standard object file format). *)

PROCEDURE CreateFromInterface(interface: RTCode.InterfaceUnit):T;
(* Create a domain containing interfaces defined by the
calling module. This function allows modules to
name and export themselves at runtime. An RTCode.InterfaceUnit
is a runtime descriptor for a specific interface. *)

PROCEDURE Resolve(source,target: T);
(* Resolve any undefined symbols in the target domain
against any exported symbols from the source.*)

PROCEDURE Unresolve(source,target: T);
(* Change all symbols in the target domain that were previously
imported from the source domain to be unresolved. *)

PROCEDURE Combine(dl, d2: T):T;
(* Create a new aggregate domain that exports the

interfaces of the given domains. *)

END Domain.

Figure 1: The Domain interface.

The Resolve operation serves as the basis for dynamic linking. It takes a target and a source domain,
and resolves any unresolved symbols in the target domain against symbols exported from the source. During
resolution, text and data symbols are patched in the target domain, which ensures that, once resolved,
domains are able to share resources without protection overhead or system interaction. Resolution only
resolves the target domain’s undefined symbols; it does not cause additional symbols to be exported. For
example, suppose domain A, exports symbol x and imports symbol y. If A is resolved against domain B, which
exports symbol y, then A’s export set has x in it, but not y, and A’s reference to symbol y has been patched
to access the exported y from B. Cross-linking, a common idiom, occurs through a pair of Resolve operations.

The Unresolve operation is the inverse of a Resolve operation, in that it breaks a symbol to value
association that was made in a previous Resolve operation. The symbols that were previously imported
from the source domain are changed to be undefined, and can be relinked against a newer version of the
interface.

The Combine operation creates linkable namespaces that are the union of existing domains, and is used
to bind together collections of related interfaces. For example, if domains A and B from the previous example
were combined, the resulting domain would export both x and y. A combination domain is similar to an
incrementally linked object file supported by many UNIX loaders.

We commonly combine sets of kernel interface implementations into a single domain that kernel extensions
can resolve against, rather than a list of individual domains to simplify linking. At boot time, for example, the
kernel defines a domain called SpinPublic which contains the interfaces available to all code that executes
within the kernel. Any extension can be linked against the SpinPublic domain. Conceptually, the interfaces
in SpinPublic correspond to those defined in a traditional kernel system call interface — simply making them
available for use does not violate the system’s integrity. A second domain, SpinPrivate, contains interfaces
for privileged services. These interfaces, if misused, could result in system failure, so the SpinPrivate domain
is only made available to a few, privileged clients. An unprivileged, but potentially malicious, extension, could
not resolve its reference to an interface contained within the SpinPrivate domain.

3.1 Creating domains

The most common way to create a domain is to specify an interface against which the creator has already
been linked (statically or dynamically). A common idiom is for a module to create a domain for itself and
pass 1t out to authorized clients. For example, the kernel’s SPL module creates a domain that contains the
implementation of an interface it exports using a code fragment that looks like this:

MODULE SPL EXPORTS SPL;
IMPORT Domain;

VAR d : Domain.T;
PROCEDURE High() : T ...
PROCEDURE Restore(s: T)...

BEGIN
d := Domain.CreateFromInterface(INTERFACE_UNIT(SPL)));
END SPL.

The builtin function INTERFACE UNIT describes the specific language-level interface named in the argu-
ment [?]. There is little that can be done using an interface unit with the exception of creating a new domain
that wraps the interface, which can later be used to link code requiring access to this implementation of SPL.

4 Safety

Until a domain has been completely resolved (that is, all symbols have been assigned values by the linker),
it 1s not eligible for execution. This restriction prevents code that is “language-safe” but not “system-safe”

from executing. Language-safe code 1s any code that has passed through the compiler, and has been verified
to not cause any unchecked runtime errors. More strongly, system-safe code is any code that is language-safe,
and does not access interfaces for which it is unauthorized.

Domains created using the CreateFromInterface operation can only be created through a pre-existing
linkage to the interface. The call to INTERFACE UNIT(SomeInterface) forces a reference to symbols within
SomeInterface,and can only execute after the calling module has been fully resolved. Simply put, the ability
to call INTERFACE UNIT on an interface is prima facie evidence that the caller has been given the right to
access the specific interface. Once the caller has been linked, either statically or dynamically, the interface
becomes legitimately nameable by the caller and can be encapsulated within a domain.

4.1 Why not objects?

Object-based systems [WLH81, LCJS87, JLHB88, Bro94] offer a model in which a protected object instance
acts as an unforgeable capability that governs access to the methods of that object. In effect, the object refer-
ence enables an implicit form of call-time authorization. For instance, in an object-based system, a privileged
server would protect its interface by exporting an object type, e.g. SPL.T, which contains the entry points
as its methods. Clients of such an interface would have to obtain an instance spl of an SPL.T, and invoke a
method on it to request service, e.g. spl.restore() (the C++ equivalent would be spl->restore()).

We rejected the object approach because it places all interfaces into a single namespace, causing the names
of interfaces and types to become a global resource for which conflicts can occur. Using the objects approach
for protection also requires that all interfaces be defined in an object oriented fashion. Moreover, the lack
of access control on the global namespace makes exporting restricted views difficult, since correctly guessing
the name of a type can allow a client to narrow a restricted object to a subtype with greater privileges.
Consequently, some sort of namespace management facilities are required. Our dynamic linker provides
these facilities, making it possible to implement large systems in either an object-based or interface-based
approach [LT89].

4.2 Exporting and importing domains at runtime

A domain can either be passed directly to another module as an instance of a Domain.T, or to a nameserver
that maps all domains into a global namespace indexed by strings. In the first case, the exporting module can
define an arbitrary protocol through which potential clients obtain a legitimate instance of the domain de-
scriptor. For example, our kernel’s console module exports two interfaces: Console and ConsolePrivate. All
extensions are given access to the Console interface, but privileged code can use the ConsolePrivate inter-
face. Console exports a procedure GetPrivateInterface() that returns a Domain.T for the implementation
of ConsolePrivate. The code that implements this function is essentially as follows:

MODULE Console EXPORTS Console, ConsolePrivate;

PROCEDURE (*ConsolePrivate*)GetPrivateInterface() : Domain.T =
BEGIN
IF IsPrivileged(Identity.Self()) THEN
RETURN Domain.CreateFromInterface(INTERFACE_UNIT(ConsolePrivate));
ELSE
RETURN NIL;
END;
END GetPrivateInterface();

Alternatively, domains can be exported through a nameserver that is part of the SpinPublic domain
(all code that executes within the kernel can access the nameserver). The nameserver is not part of the
linker itself; it is simply an auxiliary structure that modules can use to advertise and learn about domains.
An exporter registers a Domain.T descriptor with the nameserver, together with an optional authorization

procedure that is called each time someone requests the domain from the nameserver. A module acquires a
domain handle by calling NameServer.Query and passing in the name of the interface to be imported. The
call either returns a Domain.T that holds the implementation of that interface, or raises an exception when
the named domain has not been registered with the nameserver, or when access to the caller is denied.

Since it is an error to execute code within a domain that has not yet been fully resolved, domains are
unable to resolve themselves. We use small, specialized binder procedures to link together a collection of
domains into a single executable. The binder procedure is automatically generated when the extension is
itself built. The binder acquires a domain descriptor for each interface in the program that it is binding, and
cross links and combines these domains into a new domain in order to create a fully resolved application.
Once a domain has been fully resolved, it can be initialized with Domain.Initialize(d), which runs any
startup code contained within the domain. The startup code is located at the analog of the _start symbol
found in typical UNIX binaries.

4.3 Automatic construction of domains and binders

The runtime import and export of modules and interfaces can be tedious and error prone since all components
must be precisely described, both to the compiler at static compilation time, and to the domain system at
link and run time. For the most part, though, usage is stylized and can be expressed within code templates
that are automatically generated during program build time. From the standpoint of the provider or client
of an interface, dynamically linked code looks and runs like statically linked code. Minimally, the only
difference between static and dynamically linked code is found in the build directives that drive the system’s
configuration. Neither the dynamic linker nor the kernel implements the machinery for making resolution
transparent. This occurs within code generated during the build process. Indeed, the import and export
“stubs” used to make dynamic linking transparent are similar in spirit and structure to the import and export
binding stubs found in every Remote Procedure Call system built in the last decade. The big difference, of
course, is that dynamically linked code, once linked, is accessible directly, whereas RPC services require
several levels of indirection.

Our build process relies on a program configuration language called quake to automatically construct
domains and binders. Quake 1s distributed as part of DEC SRC’s Modula-3 build environment, and serves
the same purpose as make, in that 1t operates on files and dependency information.

We have defined several quake directives that make it easy to create, export, and import domains for
dynamic linking. Quake is also used to compose modules statically. To illustrate the use of the linking
commands, we briefly describe the specification of a code module using static linking, and then show how to
define 1t to be dynamically linked.

Consider a kernel extension that sends and receives UDP packets. The extension is implemented in a
module called UDP which exports an interface of the same name.

The quake commands that package the interface and implementation as a library against which clients
statically link 1s described as:

Module("UDP") # compile the module UDP against the interface UDP.
Library("UDP") # package the result into a library called libudp.a

A client called SomeClient that imports this library i1s described by

Import ("UDP") # statically link against the UDP library.
Module("SomeClient") # Compile the module "SomeClient."
Program("test") # Generate the program called "test."

With dynamic linking, we compile the module “UDP,” but also provide directives at buildtime that
enable the interface to be exported at runtime:

Create a new domain called UDP-extension.
DomainCreate("UDP-extension")

Compile the module UDP against the interface UDP.

Module("UDP")

Export the UDP interface as part of the UDP-extension domain.
DomainModule("UDP-extension', "UDP")

Create a dynamically linkable object file called "UDP-extension.'
Extension("UDP-extension")

The DomainModule command creates an auxiliary interface and module called UDPInterface that defines
an Export function. The implementation of UDP should call the export function to register the UDP interface
with the nameserver. The Extension command compiles the UDPInterface module as well as the UDP
module, and statically links them together.

To illustrate the client side, consider the structure of a simple multicast extension called “UDPmcast”
that takes packets in on one port and retransmits them out a number of others. This extension, which is to
be dynamically linked against the “UDP-extension” domain, is described as follows:

Generate a binder that imports the UDP-extension domain.
DomainImport ("UDP-extension'")

Compile the module UDPmcast against its interface.
Module("UDPmcast")

Create a dynamically linkable object file called "UDPmcast.'
Extension("UDPmcast')

The DomainImport directive generates the binder function for UDPmcast that at runtime queries the
nameserver for the domain associated with 7 UDP-extension”, creates a domain for the module UDPmcast,
and resolves it against the domain returned from the nameserver.

5 Related work

Operating systems now commonly provide an interface that allows applications to install new code into
a running kernel. Typically, these interfaces are used to dynamically link device drivers, file systems, and
network protocols into a running system. The advantage of this approach 1s that a kernel can be shipped
minimally configured, and specialized at runtime to a particular installation with little runtime penalty. In
the most straightforward and common implementations of kernel dynamic linkers; the download interface
provides unconstrained access to system services, which enables any piece of code, once installed into the
kernel, to interact with any other system resource. Consequently, the right to install code into a running
kernel is either limited, or the system has poor stability in the presence of extensions as is the case with
either the Macintosh operating system, or Windows.

The FLEX project at the University of Utah [OBLM93] provides a set of rich linking facilities based on
primitives similar to those described in this paper (Create, Resolve, Combine). That system is concerned
with the flexible specification of link-time constraints using a specialized linking language for composing
object files. Although we use a different language for specifying the composition, our approaches are similar.
We are not aware of any support in FLEX for interface authorization, so it 1s not clear how effective the
service is in managing shared code and data resources in a potentially hostile environment. We believe that
the simple mechanisms we describe for authorization could easily be provided within FLEX.

The Spring system [MGH%94] includes a versatile linker that supports sharing between applications
through cross address space linking. The linker manipulates object files, rather than interfaces or collections
of interfaces, making it more system-oriented rather than service-oriented. In addition, it’s not clear where
and how authorization and protection fit into Spring’s linkage model.

Protected shared libraries [BC94] are another way to reduce cross domain invocation latency through
safe colocation of servers and clients. They allow the programmer to colocate the clients with their servers in
the same address space, thereby reducing the number of user/kernel boundary crossings, and yet still retain

the safety guarantees of separate user-level services. Hardware protection within an address space is used to
isolate the client from the server. Cross-domain invocation occurs through a service gate, which is responsible
for changing access privileges accordingly. This scheme differs from ours in that we do not rely on hardware
to achieve code and data protection, but instead rely on language safety to replace authorization at call-time
with dynamic linking at bind-time.

6 Summary

Dynamic linking 1s a service that touches directly on compilers and operating systems. A compiler generates
directives that manipulate interfaces and collections of interfaces, and the operating system provides the
mechanisms to ensure that those directives are respected. In this paper, we have described a dynamic linking
interface that allows operating system services to safely present themselves to clients as linkable code units
which represent implementations of interfaces and collections of interfaces. Applications and system services
can interact with the dynamic linker either through its low-level domain-oriented service interface, or through
a higher level one specified at program build time.

References
[BC94] Arindam Banerji and David L. Cohn. Protected Shared Libraries. Technical Report 37, University of Notre Dame,
1994.

[Bro94] Kraig Brockschmidt. Inside OLE 2. Microsoft Press, 1994.

[BSPt95] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin G n Sirer, Marc Fiuczynski, David Becker, Susan
FEggers, and Craig Chambers. Extensibility, Safety and Performance in the SPIN Operating System. In Proceedings
of the Fifteenth ACM Symposium on Operating Systems Principles, Copper Mountain, CO, December 1995.

[EKJ95] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole Jr. Exokernel: An Operating System Architecture for
Application-Level Resource Management. In Proceedings of the Fifteenth ACM Symposium on Operating Systems
Principles, Copper Mountain, CO, December 1995.

[FMP*95] Michael J. Feeley, William E. Morgan, Frederic P. Pighin, Anna R. Karlin, Henry M. Levy, and Chandramohan A.
Thekkath. Implementing Global Memory Management in a Workstation Cluster. In Proceedings of the Fifteenth
ACM Symposium on Operating Systems Principles, Copper Mountain, CO, December 1995.

[GDFR90] David Golub, Randall Dean, Alessandro Forin, and Richard Rashid. Unix as an Application Program. In Proceedings
of the 1990 Summer USENIX Conference, pages 87-95, June 1990.

[JLHB&8] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained mobility in the Emerald system. A CM
Transactions on Computer Systems, 6(1):109-133, February 1988.

[LCJS87] Barbara Liskov, Dorothy Curtis, Paul Johnson, and Robert Scheifler. Implementation of argus. In Proceedings of
the Eleventh ACM Symposium on Operating Systems Principles, pages 111-122, November 1987.

[LT89] Henry M. Levy and Ewan D. Tempero. On the non-duality of modules and objects for distributed programming.
Technical Report 89-04-04, Department of Computer Science, University of Washington, Seattle, WA (USA), April
1989.

[Luc9s] Steve Lucco. The Bridge Web Page. Technical Report

http://www.cs.cmu.edu/afs/cs.cmu.edu/project /sfi/ www/top.html, Carnegie Mellon University, 1995.

[MGH?94] J. Mitchell, J. Gibbons, G. Hamilton, P. Kessler, Y. Khalidi, P.Kougiouris, P. Madany, M. Nelson, M. Powell, and
S. Radia. An overview of the spring system. In Proceedings of Compcon Spring 1994, February 1994.

[Nelo1] Greg Nelson, editor. System Programming in Modula-3. Prentice Hall, 1991.

[OBLM93] Doug Orr, John Bonn, Jay Lepreau, and Robert Mecklenburg. Fast and Flexible Shared Libraries. In Proceedings
of the 1998 Winter USENIX Conference, June 1993.

[Rad93] Steven Radecki. Multimedia With Quicktime. Academic Press, 1993. ISBN 0-12-574750-0.

[SSPB96] E.G. Sirer, S. Savage, P. Pardyak, and B.N. Bershad. “Writing an Operating System in Modula-3”. Submitted to
the First Workshop on Compiler Support for Systems Software, November 1996.

[VGA94] Amin M. Vahdat, Douglas P. Ghormley, and Thomas E. Anderson. Efficient, Portable, and Robust Extension of
Operating System Functionality. Technical Report CS-94-842, University of California at Berkeley, December 1994.

[WLAG93] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient Software-Based Fault Isolation.

[WLHS1]

[WWo4]

In Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles, pages 203—216, Asheville, NC,
December 1993.

William A. Wulf, Roy Levin, and Samuel P. Harbison. Hydra/C.mmp: An Ewvperimental Computer System.
McGraw—Hill, 1981.

Carl A. Waldspurger and William E. Weihl. Lottery Scheduling: Flexible Proportional-Share Resource Management.
In Proceedings of the First USENIX Symposium on Operating Systems Design and Implementation (OSDI), pages
1-11, Monterey, CA, November 1994.

