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ABSTRACT 
This paper presents an approach for formally specifying and 
enforcing security policies on web service implementations. 
Networked services in general, and web services in particular, 
require extensive amounts of code to ensure that clients respect site-
integrity constraints. We provide a language by which these 
constraints can be expressed and enforced automatically, portably 
and efficiently. Security policies in our system are specified in a 
language based on temporal logic, and are processed by an 
enforcement engine to yield site and platform-specific access control 
code. This code is integrated with a web server and platform-
specific libraries to enforce the specified policy on a given web 
service. Our approach decouples the security policy specification 
from service implementations, provides a mandatory access control 
model for web services, and achieves good performance. We show 
that up to 22% of the code in a traditional web service module is 
dedicated to security checking functionality, including checks for 
client sequencing and parameter validation. We show that our 
prototype language implementation, WebGuard, enables web 
programmers to significantly reduce the amount of security checking 
code they need to develop manually. The quality of the code 
generated by WebGuard from formal policy specifications is 
competitive with the latency of handcrafted code to within a few 
percent. 

Categories and Subject Descriptors 
D.4.6 [Operating Systems]: Security and Protection -- access 
controls  

General Terms 
Security 

Keywords 
Access control, Web services. 

1. INTRODUCTION 
Following the introduction of standardized protocols for hypertext 
transfer and the debut of browsers eight years ago, the web has 
become a critical part of our computing infrastructure. The number 
of web sites around the globe has been increasing exponentially, 

doubling roughly every six months [17]. Many application servers, 
web-programming languages, toolkits, libraries, modules and 
application servers have been proposed to facilitate the quick 
construction of such services. Indeed, it is possible to rapidly create 
versatile web sites by combining generic software, such as a web 
server, a database, a scripting language and some standard libraries, 
with site-specific code that encodes the unique functionality of a 
site. The current diversity of the web and its fast growth clearly 
demonstrates that this modular combination approach, whether it 
uses AOLServer, PostgreSQL, and Tcl, or Apache, Oracle and PHP, 
or IIS, SQL Server and .NET, or any of the myriad other 
combinations of application servers and site-specific code, is 
immensely successful. 

Yet, this modular component approach fails to address security, a 
critical, cross-cutting concern in networked service design. 
Typically, it is entirely up to the web programmer to define and 
enforce security policies by implementing the appropriate security 
checks in site-specific code. This is highly error-prone for three 
reasons. First, a typical web server maps all requests from all clients 
into a single privileged entity, rendering standard operating system 
and database access control mechanisms useless. For example, 
requests from privileged users and unprivileged users alike get 
handled by threads belonging to a server process; consequently, 
user-based file access authentication and access checks to database 
tuples, performed by the operating system and the database server 
respectively, become ineffective. The programmer must explicitly 
insert the right checks into the web service code to authenticate 
every file and database access request from every client. In essence, 
every web programmer must be as diligent as the writer of 
privileged system programs that operate with the setuid bit set [27, 
8, 6]. Second, the HTTP protocol is mostly stateless, making it 
difficult to check, for instance, the order in which certain actions 
need to occur, or to check and validate input parameters to POST 
methods. For example, a web-based auction site, which typically 
supports dozens of different kinds of actions, needs to check before 
each operation that the user performing the action has properly 
visited the login page and has been properly authenticated and that 
the input parameters are of the right type. Finally, the security 
policies, as well as site implementations, change frequently. 
Keeping the two up to date and matched with each other is an 
operationally difficult task, where the omission of a check can result 
in a security breach. As a consequence of these three properties, 
even highly visible and commercially backed web sites have had 
difficulty ensuring the security of the interfaces they expose on the 
web [9]. 

In this paper, we present an approach for automatically enforcing 
security policies on web sites. The main goal of our work is to 
automate and componentize security and access control services for 
web services; that is, to take security out of the domain of the web 
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programmer, where it is error-prone, costly and difficult, and into 
the domain of automatic tools guided by a security administrator. 
Just as web programmers pick, choose and compose modular service 
implementations, so should they be able to specify, compose and 
modify security policies without having to rewrite site-specific code. 
Our goals for an automated scheme for security enforcement on web 
services include the following properties: 

• Secure: The reference monitor implemented by the automatic 
enforcement engine must correctly implement a given policy, 
and be insurmountable by clients. It should be suitable for 
mandatory access control over untrusted clients.  

• Automatic: Security enforcement should not depend on manual 
intervention and discretionary conformance by site 
programmers. Security policies should be modular, component-
based, and aspect-oriented; they need to be imposed via 
automatic means to reduce site development time.  

• General purpose: The language used to express security 
policies should be sufficiently general to express the common 
security concerns for web applications. Further, it should be 
concise to make the expression and modification of the security 
policy cheap and easy. 

• Portable: The security enforcement mechanism should support 
the various different web server platforms. Changing the 
underlying platform should require no user intervention or 
changes to the security policy or the site-specific code. 

• Backwards compatible: Existing site implementations should 
not need to be modified to use new automatic tools. No changes 
to the browsers should be necessary.  

• Performance: The latency overhead of automatic security 
policy enforcement should be comparable to manually secured 
code. 

We have designed and implemented a technique for security 
enforcement on web sites that exhibits these properties. Specifically, 
in this paper, we present and evaluate a scheme for enforcing 
security policies on networked services via code generation and 
interposition. This general-purpose, portable, low overhead 
mechanism enables the enforcement of security policies on a web 
site by automatically generating the requisite access control checks 
from a policy specification written in a policy-specification 
language, and transparently interjects these checks across a web site. 
Typically the automatically generated enforcement code will be 
placed at the prologues and epilogues for each function, or script, 
exposed through a URL. The security enforcement code executes 
within the trusted context of the server host, protected from client 
tampering. Automatic generation of the reference monitor means 
that security specifications can be decoupled from the site 
implementation, developed and tested separately, and combined 
automatically. We show that our system achieves overheads within 1 
to 2% of handcrafted, manually secured web services. 

Our approach makes three contributions by automating the costly 
and error-prone task of manually inserting security checks in web 
services: (1) it provides a separation of the web site implementation 
from the high-level security policy,  (2) it provides a general and 
versatile access control model for web services according to security 
policies specified in a domain-specific language, and (3) it 
demonstrates, through an implementation, that the requisite 

overhead for automatically generated security enforcement code can 
be less than a few percent of the overall transaction time.  

The next section describes related work. Section 3 presents the 
overall architecture of our system and outlines our implementation 
WebGuard of the enforcement mechanism. Section 4 presents 
measurements that demonstrate that the enforcement mechanism is 
efficient, effective at reducing the task of the web programmer, and 
scales well under load. Section 5 summarizes our contributions and 
concludes. 

2. RELATED WORK 
Web systems are particular instances of networked systems, for 
which a wealth of access control models exist. Early work [3, 5, 15, 
16, 20] has examined rigid, hierarchical models for securing the 
interface exposed by stand-alone operating systems against 
untrusted applications. Lattice-based access control models 
generalize the notion of security hierarchies [25]. We share with 
more recent work on access control models the insight that security 
policies need to be flexible and accommodating. Specifically, the 
domain and type enforcement model [1, 7] has been proposed as a 
practical mandatory access control system based on a partially 
ordered, non-hierarchical labelling system and an access mapping 
from correspondingly labelled execution domains. In a similar vein, 
role-based access control [14, 24] introduces the concept of roles for 
different subjects and grants access rights to subjects based on their 
roles. The role-based access control model has been applied to web 
services [2], where incoming requests are classified by the current 
active role of the originator. We note that this work is 
complementary to ours, in that these models can be expressed in our 
policy specification language. In this respect, our work is similar to 
logic-based access control frameworks [18], which describe an 
access control model capable of supporting different security 
requirements and multiple policies. We differ from previous 
approaches, however, in that the specification language we use 
naturally captures the notion of time, whereas indirect or external 
means are necessary to encode time-dependent behaviour and 
enforce sequencing constraints under non-temporal models and 
languages. 

Related work on access control and system specification has 
examined how to fold temporal properties into system or security 
policy specifications. In [4], the researchers extend the role-based 
access control model with time-dependent functionality to yield 
Temporal RBAC (TRBAC). TRBAC supports periodic activations 
and deactivations of roles, and temporal dependencies among those 
activation and deactivations. Lamport’s temporal logic of actions 
[21] provides a framework to reason about the time-dependent 
behaviour of complex software components. Finally, the guarded 
commands of Dijkstra [12] provide a technique for program 
verification. Our system shares some similarities with these 
approaches, in that temporal dependencies and inter-action 
dependencies are expressly modelled in our security policy using 
explicit predicates. We differ from these systems in our application 
domain of web services, our focus on automatically generating 
enforcement code, and our focus on portability, backwards-
compatibility and performance. 

Many others have examined the construction of efficient reference 
monitors for security enforcement. EM [26] provides a formal, 
automata-based definition of enforcement monitors that rely on 
execution prefixes, and SASI [13] provides an EM-based approach 



for performing security enforcement on a virtual machine interface. 
WebGuard builds on the prefix-based enforcement mechanism 
formalized in EM. It targets web services instead of a virtual 
machine and our implementation encodes security predicates as 
free-form predicates instead of as automata. 

Some researchers have examined access control for web services. In 
particular, recent work [10, 11] has examined how to protect loosely 
structured XML data. Typically, however, web programmers are 
trusted not to write code that contains vulnerabilities by embedding 
the right checks into the site-specification. Guidelines offer tips on 
how to write secure web applications [28]. We guard against such 
attacks without cooperation from the web programmers and without 
modifying the site implementation. 

3. SYSTEM ARCHITECTURE 
The general-purpose mechanism we propose for enforcing security 
on web sites has three major components: a security policy, an 
enforcement engine, and the resulting, automatically generated 
enforcement code. First, web developers express a suitable security 
policy for a web site in the WebGuard security language, which is 
loosely based on temporal logic. This policy serves as an input to 
the enforcement engine, which also reads in a platform specification 
for the targeted web server platform. The enforcement engine 
generates site- and platform-specific security enforcement code from 
these two inputs. The generated code is then integrated into the web 
server. Figure 1 provides a brief outline of the end-to-end operation 
of our system. Because all the session related information is stored 
in a backend database, accessible to all servers, our security 
enforcement architecture works correctly across a web server 
cluster, found in a typical three-tiered web server. Note that our 
mechanism involves modifications only on the server side and 
places no requirements on client browsers. The security policy is 
independent of the site implementation as well as the platform, and 
thereby provides isolation from the platform and implementation, as 
well as portability to different platforms. 

Below, we describe each of the steps involved in enforcing security 
on web services using this approach. 

3.1 Security Policies 
We use a domain-specific, special-purpose language to express 
security polices. Our language is draws upon features from temporal 
logic, a well-developed branch of modal logic. Temporal logic has 
been applied both to the specification and verification of program 
behavior [22], and to the specification of system behavior [21]. We 

borrow features from temporal logic to concisely capture time and 
sequence dependencies, which are common in web applications, in 
our policy specification language. For instance, users have to log in 
before reading their email, or users have to fill in form A before 
moving on to fill in form B. The WebGuard language can easily 
express such security requirements. Table 1 provides the simplified 
grammar for our policy specification language in Backus-Naur form. 

 
The types of access control specifications most commonly used by 
web applications consist of predicate rules, sequencing rules and 
implication rules. Predicate rules resemble guarded commands, as 
they specify that the action can only proceed if the condition is 
satisfied. Sequencing rules are used to express temporal 
dependencies on a user’s actions in the past. Implication rules are 
used to specify dependencies on, or requirements from, future 
behaviour. For instance, implications can be used to specify that, 
following a user’s visit to a page to initiate a transaction, either the 
user must visit another URL to complete the transaction, or the 
system ought to abort the transaction and clean up system state.  

An action in our system corresponds either to a URL invocation 
initiated by a client, or to the execution of a server-side script 
initiated by the security module. We use familiar procedure call 
syntax for expressing both kinds of actions. Client-initiated URL 
invocations are distinguished by the prefix “http://”, whereas server-
side function calls are identified simply by the name of the library 
procedure. These server-side security enforcement libraries are 
provided by the platform-specific module, and implement 
commonly used functions, such as those for validating inputs, 
parsing cookies, and checking the cryptographic integrity of data 
stored in cookies or form variables. 

In the discussion below, we provide a simplified running example 
from an e-publishing system. To authenticate a user, a web server 
typically will check a submitted password and issue a 
cryptographically encrypted authentication token. This operation 
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Figure 1. System Architecture 

Security-rule -> predicate-rule |  
                          sequence-rule | 
                          implication-rule 
predicate-rule -> condition PREDICATES action 
sequence-rule -> condition BEFORE action 
implication-rule -> action [AND condition] IMPLIES 
                               [EVENTUALLY (time)] (action| id=id) 
condition -> term (OR term)* 
term -> factor (AND factor)* 
factor -> NOT word | word 
word -> simple| (condition) 
simple -> id op id | id ELEMENTOF setid | 
               NOTNULL id | id | action 
action -> http://sitename/path [([COOKIE | CONN] (id id)*)] 
                | function | set-op 
op -> =|<|>|>=|<=|!= 
set-op -> ADD(id, setid)| REMOVE(id, setid) | 
CREATE(setid)| DROP(setid) 

Table 1. Grammar for the WebGuard Security Policy 
Specification Language 



can be specified in our policy language with the following 
implication clause: 

This implication is an imperative, performed immediately when a 
user submits a valid password. The policy language also enables 
actions to be deferred for any amount of time. The EVENTUALLY 
clause will schedule a routine for future execution; this is typically 
used for cleaning up server-side state. In this example, once the 
policy issues an authorization token, predicate clauses can be used 
to enforce that only authenticated users can perform certain actions. 
This would be expressed in our policy specification language as 
simply: 

Sequence clauses can be used to specify linear dependencies 
between user actions. For instance, suppose that, for a user to 
publish a submitted article, she needs to have read the article in the 
past and be a member of the site editors group. This can be naturally 
expressed in our security language with the following policy (for 
simplicity, we leave out the predicates that validate the authenticity 
of the submitted cookie, and concentrate on the sequence clause): 

This clause also demonstrates variable scoping and argument 
passing, two of the more subtle aspects of our policy specification 
language.  

Variable scoping and value binding occurs at each URL invocation. 
The enforcement engine identifies the user-initiated actions and 
generates code to record those parameters, such as ArticleID1 
above, that will later be used in logic predicates (Our current 
implementation records all arguments, but a two-pass optimization 
or the construction of def-use chains can be used to record only the 
minimal set that is later used). The requirement that the published 
article match a previously read article is expressed by the predicate 
ArticleID1= ArticleID2, which relates the fetch_msg action in the 
past to the publish_article invocation. Note that the sequence clause 
is evaluated after all variable bindings have taken place; that is, 
ArticleID2 is bound first to the parameters passed to the 
publish_article method, before the article equality predicate is 
evaluated. While this appears counter-intuitive, it results in concise 
specifications without auxiliary, temporary variables, and correct 
semantics. 

Variable bindings are specified in terms of (InputParameter 
VariableName) pairs. In the example above, Article is the input 
parameter from the web page. Typically, it specifies a field name in 
a web form submitted by the HTTP POST command, or a parameter 

specified as part of the URL in an HTTP GET command. For 
instance, q is an input parameter to the invocation 
“http://www.google.com/search?q=sacmat.” The variable binding 
http://www.google.com/search(q QueryString) creates a new 
variable called QueryString and sets its value to “sacmat” when 
invoked as shown. While the InputParameter looks like a type 
specification, it is not a type but a parameter name. It relates 
variables used in the security policy to the web implementation and 
serves as the mapping function between information used in the 
policy and the concrete format in which it is passed from clients to 
the web server by the site implementation. 

Web servers can get information from client side through three 
sources; consequently, there are three different kinds of variable 
definitions. The first deals with explicit parameters. Arguments that 
appear after a question mark in a GET URL, or those sent as query 
content in POST method are explicit parameters. Since they are so 
common, they require no special annotation in the policy. Clients 
can also pass information to the web server via browser cookies 
[19]. Such parameters are identified by a special COOKIE keyword. 
The information in cookies is assumed to be in a standard URL-
encoded format, so the policy engine can easily retrieve and parse 
them – all cookies attached by the policy conform to this format. 
Finally, there is implicit information embedded in the connection, 
for example, the IP address of the client. The CONN keyword can 
be used to extract and bind variables to such information. 

Overall, there are three main advantages to using a special-purpose 
language to express security policies, and to generate enforcement 
code automatically from security policies. First, this approach 
separates the policy expression from the particular web 
implementation. The security policies are the same no matter what 
web platform is used. Changes to the policy do not require 
modification of the site-specific code, a costly and error-prone 
undertaking. Second, it’s natural to express web security policies in 
temporal logic. The interaction between a client and web services is 
typically sequential; the WebGuard language can naturally capture 
this key characteristic. Finally, the mapping between the security 
policy and the corresponding site is straightforward. Each exposed 
URL has a well-defined name, and three straightforward techniques 
for extracting and binding variables to all data passed to that URL. 

3.2 Enforcement Engine 
Our enforcement engine automates the task of converting security 
policies into access control code specific to a particular platform and 
web site. This translation process works much like a compiler. First, 
the enforcement engine parses the policy into an abstract syntax tree 
(AST), and then translates this AST into security checking code 
specific to a chosen platform and site implementation. To factor out 
dependencies on web platforms, we parameterize the enforcement 
engine with a translator from an abstract code generation interface to 
concrete web server code. This platform-specific translator converts 
the AST into a sequence of code in a language, such as Tcl, PHP or 
.NET, that is appropriate for the chosen server platform. Our 
implementation supports three diverse server platforms: 
.NET+IIS+SQL Server, AOLServer+PostgerSQL, and 
Apache+MySQL. The abstract interface to the translator isolates 
such platform dependencies from the core policy enforcement 
engine, and enables WebGuard to support a diverse selection of web 
server platforms 

http://sitename/login(user userid, passwd 
passwordid) AND 
MD5Hash(passwordid) = Extract(user, “password”, 
user_col=userid) IMPLIES  
CreateAuthToken(token_name, userid, passwordid) 

ValidityCheck(authtoken) PREDICATES  

http://sitename/rankarticle(Article ArticleID3) 

http://sitename/fetch_msg(Article  
ArticleID1, COOKIE cookiename cookievalue)  
AND (Extract(cookievalue, “userid”, user) 
ELEMENTOF editors)  
AND ArticleID1 = ArticleID2   
BEFORE 
http://sitename/publish_article(Article 
ArticleID2) 



The code generated by the Enforcement Engine requires some run 
time support to carry out its tasks. For instance, user authentication 
and secure communication requires some common cryptographic 
functions for their operation. A run-time component, specific to the 
server platform, provides this functionality. Wherever possible, we 
simply redirect our runtime library calls to use the native 
implementation of such functions for maximum efficiency. Our 
runtime library needs to be loaded into the web server at start-up, 
but does not require any binary modifications to the server binary 
itself. Our work with policy translation has shown that this 
mechanism for automatic security enforcement is portable across 
multiple platforms. 

3.3 Enforcement Code 
The enforcement code generated by our enforcement engine is 
driven entirely by the security policy specification, and is thus 
entirely application-specific. However, there are two major axis of 
freedom for the implementation of this code that has a strong impact 
on its performance. Namely, the integration of the enforcement code 
with the site implementation, and the techniques it uses to represent 
server-side state determine the efficiency of the overall access 
control mechanism. In this section, we describe our implementation 
choices in these two areas. 

All enforcement code generated by our enforcement engine operates 
in the prologue and epilogue code for web services. We structure 
our security enforcement mechanisms such that all security checks 
and state management operations occur at the entry and exit of web 
service invocations. The advantage of this approach is that it greatly 
simplifies the platform-specific component. Most web servers are 
typically structured as event-processing systems, and support 
interposition of event filters. Consequently, the platform specific 
code can register generated code snippets with the web server as 
event filters, and thus integrate them with the site implementation 
without having to parse the site-specific code and merge it with the 
implementation. The disadvantage of this approach is that the code 
we generate may recalculate or re-extract values that the site-specific 
code calculates or extracts anyway. We show in the evaluation 
section that this duplication is minimal and does not adversely affect 
the performance of our approach. 

Typical security policies need to keep track of some, possibly 
extensive, state in order to make informed access control decisions. 
There are two major alternatives for state management in web 
services. A server-side approach stores all information, in particular, 
the variable bindings introduced by the security policy, in a 
permanent database on the server. This approach has the advantage 
that the state is easy to manipulate, secure from client tampering, 
and centralized such that a user accessing the same service via 
multiple devices perceives a single, consistent view. It has the 
disadvantage that it may pose a bottleneck on the server, and may 
not scale well. An alternative is to push and distribute the security-
relevant state onto the clients. For instance, cookies could be used to 
store per-user histories and variable bindings. Naturally, any 
information kept by the clients needs to be made tamperproof and 
resilient against replay attacks, through the judicious use of 
encryption and digital signatures. The advantage of this approach is 
that it scales well under load. The disadvantage, however, is that a 
user who accesses the same service via two different browsers may 
see two different behaviours, depending on the security state stored 
in that browser. Worse, this approach enables users to destroy 
security-critical information, and possibly mount denial-of-service 

attacks. Finally, some users reject cookies, reducing the applicability 
of this technique. We chose the server-side approach for the security 
code we generate automatically. All information is kept securely in a 
database on the server side. For every valid session, the database 
keeps track of the recent, relevant security state that may be required 
when the user visits certain web pages in the future that use past 
variable bindings in their predicates. Outdated sessions are deleted 
periodically, so this state table can be kept to a reasonable size. In 
the next section, we evaluate the efficiency of our implementation 
mechanisms. 

4. EVALUATION 
This section evaluates the effectiveness, performance and scalability 
of our automatic security enforcement mechanism. These 
experiments are performed on OpenACS and .NET platforms. For 
OpenACS, we first examine the amount of security checking code in 
a popular web portal, and show that security checking poses a 
substantial burden for typical web programmers, and that our 
security policy specification mechanism can improve this 
significantly. Next, we give the average access time of a web page 
with and without our security enforcement, and show that the 
absolute overhead of our services is small. Finally, we compare the 
average access time of web services using handcrafted security 
checks versus access controls automatically generated by our 
mechanism. For the .NET platform, we first examine the average 
access time of a web page with and without security enforcement 
when the web server is under load. Then we also compare the 
overhead of automatically generated code with the hand-written one. 
These experiments results show that our approach is an effective and 
efficient way to enforce security on web services. 

The first four experiments are performed on OpenACS-
3.2.5+AOLserver-3.4+ PostgreSQL-7.1.2 on  Linux 2.4.3-20mdk 
[23]. OpenACS is an open source portal and toolkit for scalable 
community-oriented web applications that has a large, active user 
community and is in use at many commercial sites. It is based on the 
highly optimized web server AOLserver, which is in production use 
at AOL. The hardware configuration consists of a 1.7 GHz Pentium 
server, with 1GB memory, 256Mbyte cache, 40GB hard disk, with 
two network interfaces that support a 100Mbit/sec LAN and 56K 
modem, respectively. Clients are similarly configured. All 
experiments indicate the mean of 10 measurements. 

The first experiment shows that code for security checking accounts 
for a substantial fraction of a web site implementation. Table 2 
provides a breakdown of the number of non-blank,  non-comment  

Table 2. Manually written security enforcement code accounts 
for a substantial fraction of programmer effort with current state 
of the art. The table shows a breakdown of total number of non-
blank lines for site functionality and the percentage dedicated to 

security checking and enforcement. 

Module Name Security lines Total lines Percentage 

Bulletin Board 1345 9372 14.35% 

Chat 183 842 21.7% 

User Groups 178 2708 6.57% 

Total 1706 12922 13.20% 



lines dedicated to security checking for three central modules in the 
OpenACS toolkit. Roughly 7 to 22% of the code in a web site exists 
solely for security enforcement. In the case of the OpenACS toolkit, 
all of these lines were written manually. While there is some 
structure to this code, it is neither uniform nor simple, thereby 
rendering a security audit of the toolkit difficult. 

We provide a more detailed breakdown of the security related 
code for one of the modules, and quantify the impact of 
automatically generating security enforcement code. Table 3 
shows the number of security-related lines in the chat module. In 
this classification, we manually categorized the security code into 
“temporal” and “non-temporal” categories. The former refers to 
security checking code that relies on or enforces a certain 
sequence between service invocations, while the latter captures 
the amount of code dedicated to input validation and 
authentication. First, this table shows that web programmers 
spend roughly half their security enforcement effort on ensuring a 
desired temporal sequence on top of the stateless HTTP protocol. 
Our security policy specification language can, trivially and 
cogently, express such dependencies, as well as the more ad hoc, 
site specific security code in the non-temporal category. Overall, 
our automatic code generation can eliminate 56% of the code 
dedicated to security checking. This code is instead replaced by a 
specification of 29 lines. 
 
Table 3. Breakdown of security-related code in the Chat module. 
Our approach can eliminate more than half of the manual effort 
required to secure a site. 

Total lines  842 

Total lines for security checks 183 

Total lines for temporal checks 97 

 
Original 
System 

Total lines for non-temporal checks 86 

Total lines of security enforcement code 
in our policy 29  

WebGuard Total lines written manually using 
automatic check generation 80 

 Percent improvement in manual effort 56.3% 

 

Interestingly, this classification effort revealed some instances of 
both redundant and missing checks in the OpenACS toolkit. As the 
toolkit evolved over time and was edited by multiple authors, some 
security checks were performed redundantly using alternative 
mechanisms, while others were dropped. Automatic enforcement of 
policies across a web site reduces the possibility for such incidents 
by decoupling the security policy from the implementation. 

The next experiment examines the access latency with and without 
our automatic enforcement mechanism using a microbenchmark, 
and shows that our enforcement strategy does not imply a large 
overhead. The microbenchmark consists of a policy based on a 

sequence clause, which gets compiled down to two code snippets, to 
be executed from within the function prologue and epilogue, 
respectively. The web service being invoked is a null service that 
does not access the database; consequently, there are no operations 
that would mask the latency that code our enforcement engine 
generates. The prologue code performs a database lookup and a 
corresponding security check, while the epilogue performs a 
database insertion. Figure 2 shows the overhead of the overall 
benchmark, as well as the overhead of the prologue and epilogue in 
isolation. The measurements were performed under two separate 
network conditions. The LAN measurements refer to a 100 Mbit/sec 
Ethernet, while the Modem measurements were collected using a 
56K serial modem. We report the observed client latency for 500 
consecutive operations, normalized to the case where no security is 
performed on the server. Overall, the overhead associated with a 
security constraint is 2% for the modem case, where the latency of 
our security mechanism is negligible compared to network latencies. 
The LAN case represents a worst-case scenario for our scheme, yet 
the overhead we observe is less than 12% over an insecure, null call. 
Given that the standard deviation in these network measurements is 
around 5%, the latency of our approach is low, compared to an 
insecure web access. 
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Figure 2. Access time for a single page access with and without 
security enforcement. The overhead of the automatically 
generated security checks is low: less than 12% for a 100 Mbit 
LAN, and negligible for modem users. 
 
Next we examine the performance of our system under load to 
determine its scalability. Figure 3 shows the result of experiments 
that perform concurrent accesses on a web service from multiple 
users. We use five machines in the same lab with the web server 
connected by a 100Mbit/sec LAN to generate a continuous synthetic 
load on the web servers simultaneously. We simulate 5, 15, 25, and 
50 concurrent clients, while all other experiment parameters are kept 
the same as the previous experiment. The access time for the 
original, insecure, null web service has been normalized to 1. 
Overall, the overhead introduced by automated security enforcement 
is within 18%. The sustained clickthrough rate for the server in the 
experimental set-up with 50 concurrent hosts corresponds to roughly 
5.7 million hits/day. 
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Figure 3. Average access time for multiple concurrent clients 
from LAN, with and without security enforcement. The 
overhead of automatically generated security checks is low, less 
than 18%, even under load. 
Finally, we compare the overhead of the security checking code 
generated by our enforcement engine to the overhead of handcrafted 
security enforcement code in the OpenACS toolkit. We examine an 
authentication benchmark, where a user’s request to enter a chat 
room is checked for proper authentication and the request 
parameters are validated. The page is repeatedly accessed 200 times 
from the client. Figure 4 shows that the overhead of our automatic 
approach is negligible. 
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Figure 4. The overhead of automatic security enforcement 
compared to manually implemented security checks for an 
authentication microbenchmark under OpenACS.  
We next examine the .NET platform and show that the WebGuard 
performs well across different web servers. We examine the 
scalability and comparing automatically generated code with hand-
written code. For the scalability experiment, we use the same five 
machines as above to simulate concurrent client access from a LAN. 
The web server is running on a computer with the same hardware 
configuration as that running OpenACS, but with Windows 2000 
Server, IIS5.0 and SQL Server 2000. Figure 5 shows the impact of 
security enforcement, normalized to an insecure implementation of 
the web page.  The overhead introduced by automatically generated 
security enforcement code on Microsoft Server 2000 + .NET 
platform is less than 20% under load.  
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Figure5. Average access time for multiple con current clients 
from LAN, with and without security enforcement. The 
overhead of automatically generated security checks is less than 
20% under load. 
To compare the automatically generated code with hand-written 
code, we use a BEFORE rule micro-benchmark, where a user has to 
read one article before evaluate it.  The experiment is performed 
inside a 100Mbps LAN. As above, the result is average of 10 
measurements; each of them is 100 times continuous request to the 
web page. The result in figure 6 shows our mechanism also works 
well on .NET platform. The manual enforcement time is normalized 
to one. The overhead introduced by auto-generated code over 
manually written code is less than 5%. 
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Figure 6. The overhead of automatic security enforcement using 
WebGuard compared to manually implemented security checks 
on .NET platform. 
Two high-level observations account for the low overhead and high 
performance of our implementation. First, the temporal features in 
our language match the web domain well. Consequently, the quality 
of the access control code generated from policies expressed in this 
language is good. Second, the platform-specification enables our 
access control mechanism to take advantage of native functionality 
where possible, thus allowing the automatically generated code to 
use fast primitives while retaining portability. 

The experiments above demonstrate that implementing security 
enforcement accounts for a large fraction of web site 
development. Automatic enforcement mechanisms, such as the 
approach presented here, can save substantial programming effort, 



reduce errors, and perform about as well as hand-optimized code. 
This mechanism also enhances portability and can support 
different web server platforms. 

5. CONCLUSION 
This paper outlines an automatic, efficient and portable scheme for 
enforcing security policies on web services. We present quantitative 
measurements from an open source portal implementation to show 
that manual security checking code constitutes a sizeable fraction of 
a web site implementation. Our automatic approach saves the web 
developers from tedious and error-prone work, and improves the 
security of web sites by decoupling security policies from site-
specific functionality. Our temporal logic-based policy specification 
is versatile, and naturally captures and enforces the linear flow 
between web pages that is a part of the web navigation model, but is 
not directly expressed or enforced by any other mechanism. 
Through a well-defined API, our code translation engine is portable 
across multiple server, operating system and database platforms. Our 
implementation shows that this mechanism can be realized 
efficiently with little overhead. Overall, we hope that effective, 
automated tools based on formally specified security policies can 
lead to quicker, cheaper and more secure web development. 
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