
An Access Control Language for Web Services
Emin Gün Sirer Ke Wang

Computer Science Department
Cornell University
Ithaca, NY 14853

{egs, kewang}@cs.cornell.edu

ABSTRACT
This paper presents an approach for formally specifying and
enforcing security policies on web service implementations.
Networked services in general, and web services in particular,
require extensive amounts of code to ensure that clients respect site-
integrity constraints. We provide a language by which these
constraints can be expressed and enforced automatically, portably
and efficiently. Security policies in our system are specified in a
language based on temporal logic, and are processed by an
enforcement engine to yield site and platform-specific access control
code. This code is integrated with a web server and platform-
specific libraries to enforce the specified policy on a given web
service. Our approach decouples the security policy specification
from service implementations, provides a mandatory access control
model for web services, and achieves good performance. We show
that up to 22% of the code in a traditional web service module is
dedicated to security checking functionality, including checks for
client sequencing and parameter validation. We show that our
prototype language implementation, WebGuard, enables web
programmers to significantly reduce the amount of security checking
code they need to develop manually. The quality of the code
generated by WebGuard from formal policy specifications is
competitive with the latency of handcrafted code to within a few
percent.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection -- access
controls

General Terms
Security

Keywords
Access control, Web services.

1. INTRODUCTION
Following the introduction of standardized protocols for hypertext
transfer and the debut of browsers eight years ago, the web has
become a critical part of our computing infrastructure. The number
of web sites around the globe has been increasing exponentially,

doubling roughly every six months [17]. Many application servers,
web-programming languages, toolkits, libraries, modules and
application servers have been proposed to facilitate the quick
construction of such services. Indeed, it is possible to rapidly create
versatile web sites by combining generic software, such as a web
server, a database, a scripting language and some standard libraries,
with site-specific code that encodes the unique functionality of a
site. The current diversity of the web and its fast growth clearly
demonstrates that this modular combination approach, whether it
uses AOLServer, PostgreSQL, and Tcl, or Apache, Oracle and PHP,
or IIS, SQL Server and .NET, or any of the myriad other
combinations of application servers and site-specific code, is
immensely successful.

Yet, this modular component approach fails to address security, a
critical, cross-cutting concern in networked service design.
Typically, it is entirely up to the web programmer to define and
enforce security policies by implementing the appropriate security
checks in site-specific code. This is highly error-prone for three
reasons. First, a typical web server maps all requests from all clients
into a single privileged entity, rendering standard operating system
and database access control mechanisms useless. For example,
requests from privileged users and unprivileged users alike get
handled by threads belonging to a server process; consequently,
user-based file access authentication and access checks to database
tuples, performed by the operating system and the database server
respectively, become ineffective. The programmer must explicitly
insert the right checks into the web service code to authenticate
every file and database access request from every client. In essence,
every web programmer must be as diligent as the writer of
privileged system programs that operate with the setuid bit set [27,
8, 6]. Second, the HTTP protocol is mostly stateless, making it
difficult to check, for instance, the order in which certain actions
need to occur, or to check and validate input parameters to POST
methods. For example, a web-based auction site, which typically
supports dozens of different kinds of actions, needs to check before
each operation that the user performing the action has properly
visited the login page and has been properly authenticated and that
the input parameters are of the right type. Finally, the security
policies, as well as site implementations, change frequently.
Keeping the two up to date and matched with each other is an
operationally difficult task, where the omission of a check can result
in a security breach. As a consequence of these three properties,
even highly visible and commercially backed web sites have had
difficulty ensuring the security of the interfaces they expose on the
web [9].

In this paper, we present an approach for automatically enforcing
security policies on web sites. The main goal of our work is to
automate and componentize security and access control services for
web services; that is, to take security out of the domain of the web

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SACMAT ’02, June 3-4, 2002, Monterey, CA, USA.
Copyright 2002 ACM 1-58113-496-7/02/0006…$5.00.

programmer, where it is error-prone, costly and difficult, and into
the domain of automatic tools guided by a security administrator.
Just as web programmers pick, choose and compose modular service
implementations, so should they be able to specify, compose and
modify security policies without having to rewrite site-specific code.
Our goals for an automated scheme for security enforcement on web
services include the following properties:

• Secure: The reference monitor implemented by the automatic
enforcement engine must correctly implement a given policy,
and be insurmountable by clients. It should be suitable for
mandatory access control over untrusted clients.

• Automatic: Security enforcement should not depend on manual
intervention and discretionary conformance by site
programmers. Security policies should be modular, component-
based, and aspect-oriented; they need to be imposed via
automatic means to reduce site development time.

• General purpose: The language used to express security
policies should be sufficiently general to express the common
security concerns for web applications. Further, it should be
concise to make the expression and modification of the security
policy cheap and easy.

• Portable: The security enforcement mechanism should support
the various different web server platforms. Changing the
underlying platform should require no user intervention or
changes to the security policy or the site-specific code.

• Backwards compatible: Existing site implementations should
not need to be modified to use new automatic tools. No changes
to the browsers should be necessary.

• Performance: The latency overhead of automatic security
policy enforcement should be comparable to manually secured
code.

We have designed and implemented a technique for security
enforcement on web sites that exhibits these properties. Specifically,
in this paper, we present and evaluate a scheme for enforcing
security policies on networked services via code generation and
interposition. This general-purpose, portable, low overhead
mechanism enables the enforcement of security policies on a web
site by automatically generating the requisite access control checks
from a policy specification written in a policy-specification
language, and transparently interjects these checks across a web site.
Typically the automatically generated enforcement code will be
placed at the prologues and epilogues for each function, or script,
exposed through a URL. The security enforcement code executes
within the trusted context of the server host, protected from client
tampering. Automatic generation of the reference monitor means
that security specifications can be decoupled from the site
implementation, developed and tested separately, and combined
automatically. We show that our system achieves overheads within 1
to 2% of handcrafted, manually secured web services.

Our approach makes three contributions by automating the costly
and error-prone task of manually inserting security checks in web
services: (1) it provides a separation of the web site implementation
from the high-level security policy, (2) it provides a general and
versatile access control model for web services according to security
policies specified in a domain-specific language, and (3) it
demonstrates, through an implementation, that the requisite

overhead for automatically generated security enforcement code can
be less than a few percent of the overall transaction time.

The next section describes related work. Section 3 presents the
overall architecture of our system and outlines our implementation
WebGuard of the enforcement mechanism. Section 4 presents
measurements that demonstrate that the enforcement mechanism is
efficient, effective at reducing the task of the web programmer, and
scales well under load. Section 5 summarizes our contributions and
concludes.

2. RELATED WORK
Web systems are particular instances of networked systems, for
which a wealth of access control models exist. Early work [3, 5, 15,
16, 20] has examined rigid, hierarchical models for securing the
interface exposed by stand-alone operating systems against
untrusted applications. Lattice-based access control models
generalize the notion of security hierarchies [25]. We share with
more recent work on access control models the insight that security
policies need to be flexible and accommodating. Specifically, the
domain and type enforcement model [1, 7] has been proposed as a
practical mandatory access control system based on a partially
ordered, non-hierarchical labelling system and an access mapping
from correspondingly labelled execution domains. In a similar vein,
role-based access control [14, 24] introduces the concept of roles for
different subjects and grants access rights to subjects based on their
roles. The role-based access control model has been applied to web
services [2], where incoming requests are classified by the current
active role of the originator. We note that this work is
complementary to ours, in that these models can be expressed in our
policy specification language. In this respect, our work is similar to
logic-based access control frameworks [18], which describe an
access control model capable of supporting different security
requirements and multiple policies. We differ from previous
approaches, however, in that the specification language we use
naturally captures the notion of time, whereas indirect or external
means are necessary to encode time-dependent behaviour and
enforce sequencing constraints under non-temporal models and
languages.

Related work on access control and system specification has
examined how to fold temporal properties into system or security
policy specifications. In [4], the researchers extend the role-based
access control model with time-dependent functionality to yield
Temporal RBAC (TRBAC). TRBAC supports periodic activations
and deactivations of roles, and temporal dependencies among those
activation and deactivations. Lamport’s temporal logic of actions
[21] provides a framework to reason about the time-dependent
behaviour of complex software components. Finally, the guarded
commands of Dijkstra [12] provide a technique for program
verification. Our system shares some similarities with these
approaches, in that temporal dependencies and inter-action
dependencies are expressly modelled in our security policy using
explicit predicates. We differ from these systems in our application
domain of web services, our focus on automatically generating
enforcement code, and our focus on portability, backwards-
compatibility and performance.

Many others have examined the construction of efficient reference
monitors for security enforcement. EM [26] provides a formal,
automata-based definition of enforcement monitors that rely on
execution prefixes, and SASI [13] provides an EM-based approach

for performing security enforcement on a virtual machine interface.
WebGuard builds on the prefix-based enforcement mechanism
formalized in EM. It targets web services instead of a virtual
machine and our implementation encodes security predicates as
free-form predicates instead of as automata.

Some researchers have examined access control for web services. In
particular, recent work [10, 11] has examined how to protect loosely
structured XML data. Typically, however, web programmers are
trusted not to write code that contains vulnerabilities by embedding
the right checks into the site-specification. Guidelines offer tips on
how to write secure web applications [28]. We guard against such
attacks without cooperation from the web programmers and without
modifying the site implementation.

3. SYSTEM ARCHITECTURE
The general-purpose mechanism we propose for enforcing security
on web sites has three major components: a security policy, an
enforcement engine, and the resulting, automatically generated
enforcement code. First, web developers express a suitable security
policy for a web site in the WebGuard security language, which is
loosely based on temporal logic. This policy serves as an input to
the enforcement engine, which also reads in a platform specification
for the targeted web server platform. The enforcement engine
generates site- and platform-specific security enforcement code from
these two inputs. The generated code is then integrated into the web
server. Figure 1 provides a brief outline of the end-to-end operation
of our system. Because all the session related information is stored
in a backend database, accessible to all servers, our security
enforcement architecture works correctly across a web server
cluster, found in a typical three-tiered web server. Note that our
mechanism involves modifications only on the server side and
places no requirements on client browsers. The security policy is
independent of the site implementation as well as the platform, and
thereby provides isolation from the platform and implementation, as
well as portability to different platforms.

Below, we describe each of the steps involved in enforcing security
on web services using this approach.

3.1 Security Policies
We use a domain-specific, special-purpose language to express
security polices. Our language is draws upon features from temporal
logic, a well-developed branch of modal logic. Temporal logic has
been applied both to the specification and verification of program
behavior [22], and to the specification of system behavior [21]. We

borrow features from temporal logic to concisely capture time and
sequence dependencies, which are common in web applications, in
our policy specification language. For instance, users have to log in
before reading their email, or users have to fill in form A before
moving on to fill in form B. The WebGuard language can easily
express such security requirements. Table 1 provides the simplified
grammar for our policy specification language in Backus-Naur form.

The types of access control specifications most commonly used by
web applications consist of predicate rules, sequencing rules and
implication rules. Predicate rules resemble guarded commands, as
they specify that the action can only proceed if the condition is
satisfied. Sequencing rules are used to express temporal
dependencies on a user’s actions in the past. Implication rules are
used to specify dependencies on, or requirements from, future
behaviour. For instance, implications can be used to specify that,
following a user’s visit to a page to initiate a transaction, either the
user must visit another URL to complete the transaction, or the
system ought to abort the transaction and clean up system state.

An action in our system corresponds either to a URL invocation
initiated by a client, or to the execution of a server-side script
initiated by the security module. We use familiar procedure call
syntax for expressing both kinds of actions. Client-initiated URL
invocations are distinguished by the prefix “http://”, whereas server-
side function calls are identified simply by the name of the library
procedure. These server-side security enforcement libraries are
provided by the platform-specific module, and implement
commonly used functions, such as those for validating inputs,
parsing cookies, and checking the cryptographic integrity of data
stored in cookies or form variables.

In the discussion below, we provide a simplified running example
from an e-publishing system. To authenticate a user, a web server
typically will check a submitted password and issue a
cryptographically encrypted authentication token. This operation

Security
Policies

Platform
specification

Enforcement
Engine

Inserted
Prologue

Original
Page

Inserted
Epilogue

 Step 1: Step 2: Step 3:
Policy Definition Policy Translation Policy Enforcement

Figure 1. System Architecture

Security-rule -> predicate-rule |
 sequence-rule |
 implication-rule
predicate-rule -> condition PREDICATES action
sequence-rule -> condition BEFORE action
implication-rule -> action [AND condition] IMPLIES
 [EVENTUALLY (time)] (action| id=id)
condition -> term (OR term)*
term -> factor (AND factor)*
factor -> NOT word | word
word -> simple| (condition)
simple -> id op id | id ELEMENTOF setid |
 NOTNULL id | id | action
action -> http://sitename/path [([COOKIE | CONN] (id id)*)]
 | function | set-op
op -> =|<|>|>=|<=|!=
set-op -> ADD(id, setid)| REMOVE(id, setid) |
CREATE(setid)| DROP(setid)

Table 1. Grammar for the WebGuard Security Policy
Specification Language

can be specified in our policy language with the following
implication clause:

This implication is an imperative, performed immediately when a
user submits a valid password. The policy language also enables
actions to be deferred for any amount of time. The EVENTUALLY
clause will schedule a routine for future execution; this is typically
used for cleaning up server-side state. In this example, once the
policy issues an authorization token, predicate clauses can be used
to enforce that only authenticated users can perform certain actions.
This would be expressed in our policy specification language as
simply:

Sequence clauses can be used to specify linear dependencies
between user actions. For instance, suppose that, for a user to
publish a submitted article, she needs to have read the article in the
past and be a member of the site editors group. This can be naturally
expressed in our security language with the following policy (for
simplicity, we leave out the predicates that validate the authenticity
of the submitted cookie, and concentrate on the sequence clause):

This clause also demonstrates variable scoping and argument
passing, two of the more subtle aspects of our policy specification
language.

Variable scoping and value binding occurs at each URL invocation.
The enforcement engine identifies the user-initiated actions and
generates code to record those parameters, such as ArticleID1
above, that will later be used in logic predicates (Our current
implementation records all arguments, but a two-pass optimization
or the construction of def-use chains can be used to record only the
minimal set that is later used). The requirement that the published
article match a previously read article is expressed by the predicate
ArticleID1= ArticleID2, which relates the fetch_msg action in the
past to the publish_article invocation. Note that the sequence clause
is evaluated after all variable bindings have taken place; that is,
ArticleID2 is bound first to the parameters passed to the
publish_article method, before the article equality predicate is
evaluated. While this appears counter-intuitive, it results in concise
specifications without auxiliary, temporary variables, and correct
semantics.

Variable bindings are specified in terms of (InputParameter
VariableName) pairs. In the example above, Article is the input
parameter from the web page. Typically, it specifies a field name in
a web form submitted by the HTTP POST command, or a parameter

specified as part of the URL in an HTTP GET command. For
instance, q is an input parameter to the invocation
“http://www.google.com/search?q=sacmat.” The variable binding
http://www.google.com/search(q QueryString) creates a new
variable called QueryString and sets its value to “sacmat” when
invoked as shown. While the InputParameter looks like a type
specification, it is not a type but a parameter name. It relates
variables used in the security policy to the web implementation and
serves as the mapping function between information used in the
policy and the concrete format in which it is passed from clients to
the web server by the site implementation.

Web servers can get information from client side through three
sources; consequently, there are three different kinds of variable
definitions. The first deals with explicit parameters. Arguments that
appear after a question mark in a GET URL, or those sent as query
content in POST method are explicit parameters. Since they are so
common, they require no special annotation in the policy. Clients
can also pass information to the web server via browser cookies
[19]. Such parameters are identified by a special COOKIE keyword.
The information in cookies is assumed to be in a standard URL-
encoded format, so the policy engine can easily retrieve and parse
them – all cookies attached by the policy conform to this format.
Finally, there is implicit information embedded in the connection,
for example, the IP address of the client. The CONN keyword can
be used to extract and bind variables to such information.

Overall, there are three main advantages to using a special-purpose
language to express security policies, and to generate enforcement
code automatically from security policies. First, this approach
separates the policy expression from the particular web
implementation. The security policies are the same no matter what
web platform is used. Changes to the policy do not require
modification of the site-specific code, a costly and error-prone
undertaking. Second, it’s natural to express web security policies in
temporal logic. The interaction between a client and web services is
typically sequential; the WebGuard language can naturally capture
this key characteristic. Finally, the mapping between the security
policy and the corresponding site is straightforward. Each exposed
URL has a well-defined name, and three straightforward techniques
for extracting and binding variables to all data passed to that URL.

3.2 Enforcement Engine
Our enforcement engine automates the task of converting security
policies into access control code specific to a particular platform and
web site. This translation process works much like a compiler. First,
the enforcement engine parses the policy into an abstract syntax tree
(AST), and then translates this AST into security checking code
specific to a chosen platform and site implementation. To factor out
dependencies on web platforms, we parameterize the enforcement
engine with a translator from an abstract code generation interface to
concrete web server code. This platform-specific translator converts
the AST into a sequence of code in a language, such as Tcl, PHP or
.NET, that is appropriate for the chosen server platform. Our
implementation supports three diverse server platforms:
.NET+IIS+SQL Server, AOLServer+PostgerSQL, and
Apache+MySQL. The abstract interface to the translator isolates
such platform dependencies from the core policy enforcement
engine, and enables WebGuard to support a diverse selection of web
server platforms

http://sitename/login(user userid, passwd
passwordid) AND
MD5Hash(passwordid) = Extract(user, “password”,
user_col=userid) IMPLIES
CreateAuthToken(token_name, userid, passwordid)

ValidityCheck(authtoken) PREDICATES

http://sitename/rankarticle(Article ArticleID3)

http://sitename/fetch_msg(Article
ArticleID1, COOKIE cookiename cookievalue)
AND (Extract(cookievalue, “userid”, user)
ELEMENTOF editors)
AND ArticleID1 = ArticleID2
BEFORE
http://sitename/publish_article(Article
ArticleID2)

The code generated by the Enforcement Engine requires some run
time support to carry out its tasks. For instance, user authentication
and secure communication requires some common cryptographic
functions for their operation. A run-time component, specific to the
server platform, provides this functionality. Wherever possible, we
simply redirect our runtime library calls to use the native
implementation of such functions for maximum efficiency. Our
runtime library needs to be loaded into the web server at start-up,
but does not require any binary modifications to the server binary
itself. Our work with policy translation has shown that this
mechanism for automatic security enforcement is portable across
multiple platforms.

3.3 Enforcement Code
The enforcement code generated by our enforcement engine is
driven entirely by the security policy specification, and is thus
entirely application-specific. However, there are two major axis of
freedom for the implementation of this code that has a strong impact
on its performance. Namely, the integration of the enforcement code
with the site implementation, and the techniques it uses to represent
server-side state determine the efficiency of the overall access
control mechanism. In this section, we describe our implementation
choices in these two areas.

All enforcement code generated by our enforcement engine operates
in the prologue and epilogue code for web services. We structure
our security enforcement mechanisms such that all security checks
and state management operations occur at the entry and exit of web
service invocations. The advantage of this approach is that it greatly
simplifies the platform-specific component. Most web servers are
typically structured as event-processing systems, and support
interposition of event filters. Consequently, the platform specific
code can register generated code snippets with the web server as
event filters, and thus integrate them with the site implementation
without having to parse the site-specific code and merge it with the
implementation. The disadvantage of this approach is that the code
we generate may recalculate or re-extract values that the site-specific
code calculates or extracts anyway. We show in the evaluation
section that this duplication is minimal and does not adversely affect
the performance of our approach.

Typical security policies need to keep track of some, possibly
extensive, state in order to make informed access control decisions.
There are two major alternatives for state management in web
services. A server-side approach stores all information, in particular,
the variable bindings introduced by the security policy, in a
permanent database on the server. This approach has the advantage
that the state is easy to manipulate, secure from client tampering,
and centralized such that a user accessing the same service via
multiple devices perceives a single, consistent view. It has the
disadvantage that it may pose a bottleneck on the server, and may
not scale well. An alternative is to push and distribute the security-
relevant state onto the clients. For instance, cookies could be used to
store per-user histories and variable bindings. Naturally, any
information kept by the clients needs to be made tamperproof and
resilient against replay attacks, through the judicious use of
encryption and digital signatures. The advantage of this approach is
that it scales well under load. The disadvantage, however, is that a
user who accesses the same service via two different browsers may
see two different behaviours, depending on the security state stored
in that browser. Worse, this approach enables users to destroy
security-critical information, and possibly mount denial-of-service

attacks. Finally, some users reject cookies, reducing the applicability
of this technique. We chose the server-side approach for the security
code we generate automatically. All information is kept securely in a
database on the server side. For every valid session, the database
keeps track of the recent, relevant security state that may be required
when the user visits certain web pages in the future that use past
variable bindings in their predicates. Outdated sessions are deleted
periodically, so this state table can be kept to a reasonable size. In
the next section, we evaluate the efficiency of our implementation
mechanisms.

4. EVALUATION
This section evaluates the effectiveness, performance and scalability
of our automatic security enforcement mechanism. These
experiments are performed on OpenACS and .NET platforms. For
OpenACS, we first examine the amount of security checking code in
a popular web portal, and show that security checking poses a
substantial burden for typical web programmers, and that our
security policy specification mechanism can improve this
significantly. Next, we give the average access time of a web page
with and without our security enforcement, and show that the
absolute overhead of our services is small. Finally, we compare the
average access time of web services using handcrafted security
checks versus access controls automatically generated by our
mechanism. For the .NET platform, we first examine the average
access time of a web page with and without security enforcement
when the web server is under load. Then we also compare the
overhead of automatically generated code with the hand-written one.
These experiments results show that our approach is an effective and
efficient way to enforce security on web services.

The first four experiments are performed on OpenACS-
3.2.5+AOLserver-3.4+ PostgreSQL-7.1.2 on Linux 2.4.3-20mdk
[23]. OpenACS is an open source portal and toolkit for scalable
community-oriented web applications that has a large, active user
community and is in use at many commercial sites. It is based on the
highly optimized web server AOLserver, which is in production use
at AOL. The hardware configuration consists of a 1.7 GHz Pentium
server, with 1GB memory, 256Mbyte cache, 40GB hard disk, with
two network interfaces that support a 100Mbit/sec LAN and 56K
modem, respectively. Clients are similarly configured. All
experiments indicate the mean of 10 measurements.

The first experiment shows that code for security checking accounts
for a substantial fraction of a web site implementation. Table 2
provides a breakdown of the number of non-blank, non-comment

Table 2. Manually written security enforcement code accounts
for a substantial fraction of programmer effort with current state
of the art. The table shows a breakdown of total number of non-
blank lines for site functionality and the percentage dedicated to

security checking and enforcement.

Module Name Security lines Total lines Percentage

Bulletin Board 1345 9372 14.35%

Chat 183 842 21.7%

User Groups 178 2708 6.57%

Total 1706 12922 13.20%

lines dedicated to security checking for three central modules in the
OpenACS toolkit. Roughly 7 to 22% of the code in a web site exists
solely for security enforcement. In the case of the OpenACS toolkit,
all of these lines were written manually. While there is some
structure to this code, it is neither uniform nor simple, thereby
rendering a security audit of the toolkit difficult.

We provide a more detailed breakdown of the security related
code for one of the modules, and quantify the impact of
automatically generating security enforcement code. Table 3
shows the number of security-related lines in the chat module. In
this classification, we manually categorized the security code into
“temporal” and “non-temporal” categories. The former refers to
security checking code that relies on or enforces a certain
sequence between service invocations, while the latter captures
the amount of code dedicated to input validation and
authentication. First, this table shows that web programmers
spend roughly half their security enforcement effort on ensuring a
desired temporal sequence on top of the stateless HTTP protocol.
Our security policy specification language can, trivially and
cogently, express such dependencies, as well as the more ad hoc,
site specific security code in the non-temporal category. Overall,
our automatic code generation can eliminate 56% of the code
dedicated to security checking. This code is instead replaced by a
specification of 29 lines.

Table 3. Breakdown of security-related code in the Chat module.
Our approach can eliminate more than half of the manual effort
required to secure a site.

Total lines 842

Total lines for security checks 183

Total lines for temporal checks 97

Original
System

Total lines for non-temporal checks 86

Total lines of security enforcement code
in our policy 29

WebGuard Total lines written manually using
automatic check generation 80

 Percent improvement in manual effort 56.3%

Interestingly, this classification effort revealed some instances of
both redundant and missing checks in the OpenACS toolkit. As the
toolkit evolved over time and was edited by multiple authors, some
security checks were performed redundantly using alternative
mechanisms, while others were dropped. Automatic enforcement of
policies across a web site reduces the possibility for such incidents
by decoupling the security policy from the implementation.

The next experiment examines the access latency with and without
our automatic enforcement mechanism using a microbenchmark,
and shows that our enforcement strategy does not imply a large
overhead. The microbenchmark consists of a policy based on a

sequence clause, which gets compiled down to two code snippets, to
be executed from within the function prologue and epilogue,
respectively. The web service being invoked is a null service that
does not access the database; consequently, there are no operations
that would mask the latency that code our enforcement engine
generates. The prologue code performs a database lookup and a
corresponding security check, while the epilogue performs a
database insertion. Figure 2 shows the overhead of the overall
benchmark, as well as the overhead of the prologue and epilogue in
isolation. The measurements were performed under two separate
network conditions. The LAN measurements refer to a 100 Mbit/sec
Ethernet, while the Modem measurements were collected using a
56K serial modem. We report the observed client latency for 500
consecutive operations, normalized to the case where no security is
performed on the server. Overall, the overhead associated with a
security constraint is 2% for the modem case, where the latency of
our security mechanism is negligible compared to network latencies.
The LAN case represents a worst-case scenario for our scheme, yet
the overhead we observe is less than 12% over an insecure, null call.
Given that the standard deviation in these network measurements is
around 5%, the latency of our approach is low, compared to an
insecure web access.

Access Time on OpenACS

1 1

1.065

1.011

1.089

1.009

1.111

1.022

0.9

0.95

1

1.05

1.1

1.15

LAN 56K_ModemN
or

m
al

iz
ed

 A
cc

es
s

Ti
m

e
insecure
prologue
epilogue
both

Figure 2. Access time for a single page access with and without
security enforcement. The overhead of the automatically
generated security checks is low: less than 12% for a 100 Mbit
LAN, and negligible for modem users.

Next we examine the performance of our system under load to
determine its scalability. Figure 3 shows the result of experiments
that perform concurrent accesses on a web service from multiple
users. We use five machines in the same lab with the web server
connected by a 100Mbit/sec LAN to generate a continuous synthetic
load on the web servers simultaneously. We simulate 5, 15, 25, and
50 concurrent clients, while all other experiment parameters are kept
the same as the previous experiment. The access time for the
original, insecure, null web service has been normalized to 1.
Overall, the overhead introduced by automated security enforcement
is within 18%. The sustained clickthrough rate for the server in the
experimental set-up with 50 concurrent hosts corresponds to roughly
5.7 million hits/day.

Access Time under Load on OpenACS

0.9
0.95

1
1.05
1.1

1.15
1.2

5 15 25 50
Concurrent Clients

N
or

m
al

iz
ed

 A
cc

es
s

Ti
m

e

insecure
prologue
epilogue
both

Figure 3. Average access time for multiple concurrent clients
from LAN, with and without security enforcement. The
overhead of automatically generated security checks is low, less
than 18%, even under load.
Finally, we compare the overhead of the security checking code
generated by our enforcement engine to the overhead of handcrafted
security enforcement code in the OpenACS toolkit. We examine an
authentication benchmark, where a user’s request to enter a chat
room is checked for proper authentication and the request
parameters are validated. The page is repeatedly accessed 200 times
from the client. Figure 4 shows that the overhead of our automatic
approach is negligible.

Comparison of WebGuard and Hand-written
Code on OpenACS

1 11.014 1.003

0.5

0.6

0.7

0.8

0.9

1

1.1

LAN 56K_Modem

N
or

m
al

iz
ed

 A
cc

es
s

Ti
m

e Manual
Enforcement
WebGuard

Figure 4. The overhead of automatic security enforcement
compared to manually implemented security checks for an
authentication microbenchmark under OpenACS.
We next examine the .NET platform and show that the WebGuard
performs well across different web servers. We examine the
scalability and comparing automatically generated code with hand-
written code. For the scalability experiment, we use the same five
machines as above to simulate concurrent client access from a LAN.
The web server is running on a computer with the same hardware
configuration as that running OpenACS, but with Windows 2000
Server, IIS5.0 and SQL Server 2000. Figure 5 shows the impact of
security enforcement, normalized to an insecure implementation of
the web page. The overhead introduced by automatically generated
security enforcement code on Microsoft Server 2000 + .NET
platform is less than 20% under load.

Access Time Under Load on .NET

0.9

0.95

1

1.05

1.1

1.15

1.2

5 15 25 50

Concurrent Clients Number

N
or

m
al

iz
ed

 A
cc

es
s

Ti
m

e

insecure
prelogue
epilogue
both

Figure5. Average access time for multiple con current clients
from LAN, with and without security enforcement. The
overhead of automatically generated security checks is less than
20% under load.
To compare the automatically generated code with hand-written
code, we use a BEFORE rule micro-benchmark, where a user has to
read one article before evaluate it. The experiment is performed
inside a 100Mbps LAN. As above, the result is average of 10
measurements; each of them is 100 times continuous request to the
web page. The result in figure 6 shows our mechanism also works
well on .NET platform. The manual enforcement time is normalized
to one. The overhead introduced by auto-generated code over
manually written code is less than 5%.

Comparison of WebGuard and Hand-wriiten
Code on .NET

1 11.0405 1.0171

0

0.2

0.4

0.6

0.8

1

1.2

Only Prologue Both Prologue and
Epilogue

N
or

m
al

iz
ed

 A
cc

es
s

Ti
m

e

Manual
Enforcement
WebGuard

Figure 6. The overhead of automatic security enforcement using
WebGuard compared to manually implemented security checks
on .NET platform.
Two high-level observations account for the low overhead and high
performance of our implementation. First, the temporal features in
our language match the web domain well. Consequently, the quality
of the access control code generated from policies expressed in this
language is good. Second, the platform-specification enables our
access control mechanism to take advantage of native functionality
where possible, thus allowing the automatically generated code to
use fast primitives while retaining portability.

The experiments above demonstrate that implementing security
enforcement accounts for a large fraction of web site
development. Automatic enforcement mechanisms, such as the
approach presented here, can save substantial programming effort,

reduce errors, and perform about as well as hand-optimized code.
This mechanism also enhances portability and can support
different web server platforms.

5. CONCLUSION
This paper outlines an automatic, efficient and portable scheme for
enforcing security policies on web services. We present quantitative
measurements from an open source portal implementation to show
that manual security checking code constitutes a sizeable fraction of
a web site implementation. Our automatic approach saves the web
developers from tedious and error-prone work, and improves the
security of web sites by decoupling security policies from site-
specific functionality. Our temporal logic-based policy specification
is versatile, and naturally captures and enforces the linear flow
between web pages that is a part of the web navigation model, but is
not directly expressed or enforced by any other mechanism.
Through a well-defined API, our code translation engine is portable
across multiple server, operating system and database platforms. Our
implementation shows that this mechanism can be realized
efficiently with little overhead. Overall, we hope that effective,
automated tools based on formally specified security policies can
lead to quicker, cheaper and more secure web development.

ACKNOWLEDGMENTS
We would like to thank Fred B. Schneider and the anonymous
referees for their valuable feedback on earlier drafts of this paper.

REFERENCES
[1] L. Badger and D. F. Sterne and D. L. Sherman and K. M.

Walker. Practical Domain and Type Enforcement for UNIX. In
IEEE Symposium on Security and Privacy, Oakland, California,
May 1995, 66-77.

[2] J. Barkley, A. Cincotta, D. Ferraiolo, S. Gavrila, and D.R. Kuhn.
Role Based Access Control for the World Wide Web. In
Proceedings of the 20th National Information System Security
Conference, NIST/NSA, 1997.

[3] D. Bell and L. LaPadula. Secure Computer System: Unified
Exposition and Multics Interpretation. Technical Report MTR-
1997, MITRE, Bedford, MA, 1975.

[4] E. Bertino, P. A. Bonatti, E. Ferrari. TRBAC: A Temporal Role-
based Access Control Model. In Proceedings of the Fifth ACM
Workshop on Role-based Access Control. July 2000.

[5] K. J. Biba. Integrity Constraints for Secure Computer Systems.
Technical Report ESD-TR76-372, USAF Electronic System
Division, Bedford, Massachusetts, April 1977.

[6] M. Bishop. How to Write a Setuid Program. ;login: The
USENIX Association Newsletter, 12(1):5--11, Jan./Feb. 1987.

[7] W.E. Boebert and R.Y. Kain, A Practical Alternative to
Hierarchical Integrity Policies. In Proceedings of the 8th
National Computer Security Conf., Gaithersburg, MD, 1985.

[8] S. Bunch. The Setuid Feature in UNIX and Security. In
Proceedings of Tenth National Computer Security Conference,
September 1987, 245-253.

[9] CNet. Microsoft plugs Hotmail security hole.
http://news.cnet.com/news/0-1003-200-6941020.html, August
2001.

[10] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P.
Samarati. Securing XML Documents. In Proceedings. of the
2000 International Conference on Extending Database
Technology, Konstanz, Germany, March 27-31, 2000.

[11] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P.
Samarati. XML Access Control Systems: A Component-Based
Approach. In Proceedings of IFIP WG11.3 Working Conf. on
Database Security, Schoorl, The Netherlands, August 21-23,
2000.

[12] E.W. Dijkstra. Guarded Commands, Nondeterminacy and Formal
Derivation of Programs. Communication of the ACM, vol. 18,
num. 8, 453-457, Aug 1975.

[13] U. Erlingsson and F. B. Schneider. SASI Enforcement of
Security Policies: A Retrospective. In Proceedings of the 1999
New Security Paradigms Workshop, Caledon Hills, Sept.1999.

[14] D. Ferraiolo and R. Kuhn. Role-Based Access Control. In
Proceedings of the 15th National Computer Security Conference,
Baltimore, Maryland, 1992, 554-563.

[15] J. Goguen and J.Meseguer. Security Policies and Security
Models. In Proceedings of the 1982 IEEE Symp. on Research in
Security and Privacy, IEEE Computer Society Press, 1982.

[16] G.Graham and P.Denning. Protection: Principles and Practice. In
Proceeding of Spring Joint Computer Conf., AFIPS Press, 1972.

[17] M. Gray. Web Growth Summary.
http://www.mit.edu/people/mkgray/net/, December 1997.

[18] S. Jajodia, P. Samarati, and V.S. Subrahmanian. A Logical
Language for Expressing Authorizations. In Proceedings of the
1997 IEEE Symposium on Security and Privacy. Oakland, CA,
USA: IEEE Press, 1997. 31-42.

[19] D. Kristol, L. Montulli. HTTP State Management Mechanism.
Request for Comments RFC-2965, Internet Engineering Task
Force, October 2000.

[20] B. Lampson. Protection. In Proceedings of 5th Princeton
Symposium on Information Sciences and Systems, March 1971.
Reprinted in ACM Operating Systems Review, 8(1) 1974.

[21] L. Lamport. The Temporal Logic of Actions. ACM Transactions
on Programming Languages and Systems, 16(3), 872-923, 1994.

[22] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems. Springer-Verlag: Heidelberg, Germany,
1992.

[23] OpenACS Documentation. http://www.openacs.org/, December
2001.

[24] R. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role
Based Access Control Models. IEEE Computer, 29(2), Feb.1996.

[25] R. S. Sandhu. Lattice-based Access Control Models. IEEE
Computer, 26(11): 9--19, November 1993.

[26] F. B. Schneider. Enforceable Security Policies. TR 98-1664,
Dept. of Computer Science, Cornell Univ., Ithaca, NY, 1998.

[27] D. J. Thomsen and J. T. Haigh. A Comparison of Type
Enforcement and Unix Setuid Implementation of Well-formed
Transactions. In Proceedings of Sixth Annual Computer Security
Applications Conf., Tucson, Arizona, December 1990, 304-312.

[28] Whitehat, Inc. Secure Web Programming,
http://www.whitehatsec.com/, December 2001.

