
Client Behavior and Feed Characteristics of RSS, a Publish-Subscribe
System for Web Micronews

Hongzhou Liu Venugopalan Ramasubramanian Emin Gün Sirer
Department of Computer Science, Cornell University, Ithaca, NY 14853�

liuhz, ramasv, egs � @cs.cornell.edu

Abstract
While publish-subscribe systems have attracted much re-
search interest since the last decade, few established bench-
marks have emerged, and there has been little characteri-
zation of how publish-subscribe systems are used in prac-
tice. This paper examines RSS, a newly emerging, widely
used publish-subscribe system for Web micronews. Based
on a trace study spanning 45 days at a medium-size aca-
demic department and periodic polling of approximately
100,000 RSS feeds, we extract characteristics of RSS con-
tent and usage. We find that RSS workload resembles the
Web in content size and popularity; feeds are typically
small (less than 10KB), albeit with a heavy tail, and feed
popularity follows a power law distribution. The update
rate of RSS feeds is widely distributed; 55% of RSS feeds
are updated hourly, while 25% show no updates for sev-
eral days. And, only small portions of RSS content typ-
ically change during an update; 64% of updates involve
less than three lines of the RSS content. Overall, this pa-
per presents an analysis of RSS, the first widely deployed
publish-subscribe system, and provides insights for the de-
sign of next generation publish-subscribe systems.

1 Introduction
Publish-subscribe or pub-sub systems [1, 5, 6, 8, 9, 12, 13,
15] are gaining wide acceptance with applications spanning
information delivery, sensor monitoring, auction systems,
and air traffic control. Previous research in this area has
focused on aspects, such as system architecture, event no-
tification, and content filtering algorithms, but has left a
fundamental issue untackled, namely what does the work-
load of a pub-sub system look like and how do clients use
pub-sub systems in practice?

This paper answers these questions by examining RSS,
the first widely deployed pub-sub system, which is used for
disseminating Web micronews. The architecture of RSS
is quite simple: clients subscribe to a feed that they are
interested in and poll the feed periodically to receive up-
dates. RSS content is encoded in XML and displayed by a
feed-reader or an RSS-integrated Web browser on the client
host. Most news media support RSS feeds, and information
such as announcements on Web sites and updates to we-

blogs, is typically disseminated through RSS. Integration
into Web browsers has recently made RSS accessible to In-
ternet users and greatly increased the popularity of RSS.

In this paper, we study the feed characteristics and client
behavior in the RSS system using data collected through a
combination of passive logging and active polling. First,
we recorded a 45-day trace from the Department of Com-
puter Science at Cornell University. The trace consists of
158 different RSS users, who subscribe to 667 feeds in to-
tal. We use this trace to examine the characteristics of RSS
workload, such as the popularity of RSS feeds, and user
behavior, including polling rate and subscription patterns.
Second, we collected snapshots of RSS content by actively
polling every hour 99,714 feeds listed in the feed directory
syndic8.com. We use the feed snapshots to distill content
properties, such as feed size and format, and to analyze up-
dates in terms of update rate and amount of change.

Our study provides several insights, some expected and
a few surprising, into the characteristics of the RSS system.
First, we find that the RSS workload bears resemblance to
the Web workload. The popularity of RSS feeds is heavy-
tailed and follows a Zipf distribution similar to Web ob-
jects [3]. The typical sizes of RSS feeds are comparable
to Web objects, although extremely large RSS documents
are rare; most RSS feeds range from 1KB to 10KB, with
a median of 5.8 KB, compared to a median of about 4 KB
for the Web [7].

Second, RSS content changes more often than Web ob-
jects, albeit with a wide distribution of update rates. Our
periodic snapshots show that 55% of RSS feeds update
within an hour, while 25% do not change at all during 84
hours of polling. Even though RSS content may change
rapidly, the update, surprisingly, affects only a tiny fraction
of the content; 64% of updates involve no more than three
lines of the XML. RSS clients can save a tremendous 93%
of bandwidth by fetching the “delta”s instead of the entire
feed during polling.

Finally, our study reveals interesting behaviors of RSS
users. We find that over a third of the clients fetch feeds
manually and do not use automated RSS tools that poll and
check for updates periodically. Among the rest, over a half
of clients poll feeds hourly, which is the default setting of

Trace length 45 days
Number of clients 158
Number of feeds 667

Number of requests 61935

Table 1: Summary of User Traces: Clients are identified by a secure
cryptographic hash of their IPs.

most RSS readers. These behaviors indicate that enabling
RSS content servers to provide feed specific polling rates
to RSS readers is a more efficient way to customize RSS
polling than expecting clients to configure their readers.

The rest of this paper is organized as follows: The next
section provides some background on pub-sub systems and
RSS. Section 3 describes our methods for studying the RSS
system, and Section 4 details the results of our study. Fi-
nally, we discuss the implications of our study and con-
clude in Section 5.

2 Background and Related Work
Publish-subscribe systems have raised considerable interest
in the research community over the years. In this section,
we provide some background on pub-sub systems, a brief
overview of RSS, and then summarize related research in
this area.

Publish-Subscribe Systems
Publish-subscribe is a distributed computing paradigm that
consists of three principal components: subscribers, pub-
lishers, and an infrastructure for event delivery. Subscribers
express their interest in an event or a pattern of events. Pub-
lishers generate events. The infrastructure is responsible
for matching events with the interests and sending them
to the subscribers that registered the interests. Based on
the way the subscribers specify their interest, pub-sub sys-
tems can be classified into two categories: topic-based and
content-based. In topic-based pub-sub systems, subscribers
specify their interest by subscribing to a feed, also known
as topic, channel, subject, or group. Each event produced
by the publisher is labeled with a topic and sent to all the
subscribers that subscribed to this topic. In other words,
publishers and subscribers are connected together by a pre-
defined topic. The major disadvantage of topic-based sys-
tems is their expressiveness: all the topics are defined by
the publisher and subscribers cannot further distinguish be-
tween events on a given topic. Content-based systems fix
this problem. In such systems, subscribers specify their
interest through event filters, which are functions of event
contents. Published events are matched against the filters
and sent to the subscribers if they match the specified fil-
ters.

2.1 RSS
RSS is a Web content syndication system [14] concerned
with the propagation of XML documents containing short
descriptions of Web news. The XML documents are ac-
cessed via HTTP through URLs, and the URL for a partic-

Polling period 84 hours
Number of feeds 99714

Number of snapshots 3682043
Bytes received 57GB

Table 2: Summary of Active Polling: Feeds were polled in hourly
intervals.

ular XML document identifies the RSS feed. Client appli-
cations called RSS readers check the contents of RSS feeds
periodically and automatically on the user’s behalf and dis-
play the returned results. Most feed readers poll RSS feeds
once per hour by default. Newer versions of RSS support
features such as TTL, SkipDay, and SkipHour, which help
RSS readers to decide when and how often to poll the feeds.
Nevertheless, most RSS providers post a rate limit to pre-
vent aggressive readers from overloading their servers.

The RSS system is a simple topic-based pub-sub system.
Publishers publish their news by putting it into an RSS feed
and providing the URL for the feed on their website. RSS
users subscribe to a RSS feed by specifying its URL to their
RSS readers. Thereafter, the RSS readers will poll the feed
periodically and display the updates to the users.

2.2 Related work
Previous work on pub-sub systems has focused on the de-
sign and implementation of efficient event delivery mecha-
nisms. Isis [8], Linda spaces [5], T-space [9], SIENA [6],
Gryphon [12], TIBCO [13], Astrolabe [15], and Herald [4]
are examples of pub-sub systems proposed in the past. The
Joint Battlespace Infosphere project [1] is a similar effort
by the Air Force to provide a pub-sub based event notifi-
cation and data repository system for very large scale de-
ployment. FeedTree [11] and CorONA [10] are recently
proposed systems designed to alleviate the load on RSS
feed providers by cooperative polling using a distributed
hash table for coordination. While a vast amount research
material on pub-sub systems are available, this is the first
measurement study of a widely-deployed pub-sub system.

3 Measurement Methodology
We investigate the characteristics of the RSS system from
data collected through two techniques: passively logging
a 45-day user activity at the Department of Computer
Science, Cornell University and actively polling nearly
100,000 feeds every hour for 84 hours. The rest of this
section describes how we gathered the RSS data.

Passive Logging
We built a software tool for tracing RSS traffic and installed
it at the network border of our department. Our depart-
ment is a medium-size academic organization with about
600 graduate students, faculty, and staff. The network is
topologically separated from transient users, such as un-
dergraduates in computer labs, who do not have dedicated
computers for long-running programs. We traced user ac-
tivity over a 45 day period, spanning from 22 March to 3

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

N
u

m
b

e
r

o
f

R
e

q
u

e
st

s

Channel Rank

α=1.37

Figure 1: Feeds Ranked by the Number of Requests: RSS popular-
ity follows a Zipf distribution.

May 2005, and recorded all RSS related traffic. Table 1
provides a summary of the trace.

Our tracer software operates by capturing every TCP
packet, reassembling full TCP flows, and logging the flows
that contain an RSS request or response. For anonymity, we
obfuscate client IP addresses using a one-way hash salted
with a secret; this enables us to identify unique IP addresses
without being able to map them back onto hosts. Although
DHCP is used in our department, the assignment of IP ad-
dresses is decided by the physical network port used, and
is therefore quite static. Laptop users that connect to pub-
lic network ports may have different IPs over time, but we
estimate the number of laptop users to be low compared to
users with fixed IPs. The tracer tool ran on a Dell dual pro-
cessor 4650 workstation, which was able to keep up with
packet capture at Gigabit line speed on the link from our
department to the campus backbone. We made flow assem-
bly non-performance critical by performing it offline on the
captured packet stream and observed no packet drops dur-
ing the whole trace period.

Active Polling
We obtained a list of 99,714 RSS feeds from syndic8.com,
a directory that acts as a vast repository of RSS feeds. We
actively polled these feeds every hour for 84 hours and
recorded the results. While fetching the feeds, download
timeout was set to 20 seconds and a request was retried 4
times if the response was not received within the timeout
period. A successful download of the RSS content gives
a snapshot of the RSS feed at that time. A download may
fail due to high instantaneous load on the server, network
congestion, or stringent polling limits imposed by servers.
We fetched 3,682,043 snapshots in total; that is, about 36.9
snapshots per feed on average. The results of active polling
are summarized in Table 2.

4 Survey Results
We report on three broad aspects of the RSS system us-
ing the trace data and periodic snapshots. First, we ana-
lyze the characteristics of RSS feeds, such as the popular-
ity distribution, content size, format, and version of RSS

 1

 10

 100

 1000

 1 10 100 1000

N
u

m
b

e
r

o
f

C
lie

n
ts

Channel Rank

α=0.50

Figure 2: Feeds Ranked by the Number of Subscribers: RSS popu-
larity based on subscriptions also follows a Zipf distribution.

used. Second, we investigate how RSS feeds are updated;
in particular, we focus on the update intervals of RSS feeds,
the amount of change involved in updates, and correlations
between updates and feed size. Finally, we examine how
clients use RSS by studying their polling behavior and sub-
scription patterns. This section describes our findings in
detail.

4.1 Feed Characteristics
We first present statistics on RSS workload and content.
We compute the popularity of RSS feeds based on the user
activity traces and derive content characteristics from the
snapshots of RSS feeds. We measure popularity in two
ways: based on the number of requests received for each
RSS feed and based on the number of clients who sub-
scribed to each RSS feed.

Feed Popularity
Figure 1 shows the popularity of RSS feeds ranked by
the number of requests received. The popularity follows
roughly a Zipf (power law) distribution with � parameter
1.37. The most popular feed (BBC news) receives 12,203
requests, while there is a long tail of many feeds that re-
ceive only a single request. Figure 2 plots the popularity of
RSS feeds based on number of subscribers observed in the
trace. The distribution of subscribers also follows a Zipf
distribution (� = 0.5). The small number of clients in our
trace makes the log-log plot diverge a little from the Zipf
line. Overall, RSS workload has characteristics similar to
Web workload, which is also known to follow heavy-tailed
power-law distributions [3].

Feed Format and Version
We find that RSS is the widely-used format with more
than 98% (97720 feeds) of the feeds in RSS; a small 2%
(1994) of the feeds, however, use Atom [2], another XML
based format for disseminating Web micronews. We fur-
ther breakdown the RSS feeds according to their versions
and show the results in Figure 3. Version 2.0 is the most
popular format; more than 60% of RSS feeds published on
syndic8.com are in this format. Version 0.91 and 1.0 count
for about 17% each. Other versions(0.90, 0.93 and 0.94)

 0

 10

 20

 30

 40

 50

 60

2.0 0.91 1.0 0.92

P
e

rc
e

n
t

(%
)

RSS Version

Figure 3: Distribution of RSS Version. Version 2.0 is the most pop-
ular version of RSS.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
)

Feed Size (KBs)

Figure 4: CDF of Feed Size: RSS feeds are typically small (less than
10 KB) with a median of about 5.8 KB.

are rare; they count for only 0.2% in total, and therefore
are not shown in the figure.

Feed Size

RSS feeds typically consist of Web content encapsulated in
XML format. Therefore, we expect the majority of RSS
feeds to have size close to most Web objects. This is con-
firmed by Figure 4, which plots the distribution of feed
size. The feed size is calculated as the average of all the
snapshots of the feed; the variance is very small for the
feed snapshots. More than 80% of the RSS feeds are rel-
atively small at less than 10KB. The minimum observed
feed size is 356 bytes, median is 5.8KB, and the average is
10KB. While, 99.9% of feeds are smaller than 100KB, the
feed size distribution is heavy tailed with the largest feed at
876,836 bytes (not shown in the graph).

Extremely large RSS feeds, however, are rare, unlike
some Web objects that can be of several megabytes or
more. The concise nature of RSS feeds is expected because
RSS is meant for the quick dissemination of news updates,
often only carrying links to the more elaborate news ar-
ticles. Moreover, the current architecture of RSS, where
clients need to fetch the whole feed for checking updates,
poses a high bandwidth load on content servers. This dis-
courages content providers from supporting large feeds and
biases towards small feed sizes.

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70 80

P
e

rc
e

n
t

(%
)

Update Interval (Hours)

Figure 5: Distribution of First Update Intervals: 55% of feeds get
updated in an hour.

4.2 Update Characteristics
Updates are the main driving force of the RSS pub-sub sys-
tem. We examine the nature of RSS updates using the series
of hourly snapshots gathered through active polling. We
ensure that missing snapshots do not affect the calculations
of update interval by only counting the intervals between
valid updates; an update is valid only if there is a valid
snapshot preceding the update, and that preceding snap-
shot matches the last recorded update. In order to calcu-
late the update characteristics accurately, we filtered out all
the feeds that have less than thirty snapshots leaving 68,266
feeds.

Update Rate
Figure 5 shows the distribution of update intervals of the
first valid update. We see that feed update rates fall in
two extremes: they either update very frequently or very
rarely. More than 55% of feeds are updated in the first
hour, while 25% of feeds did not see any updates during the
entire polling period. This result suggests that RSS read-
ers should use different polling periods for different feeds.
However, some RSS readers, e.g., Thunderbird 1.0, do not
support this feature currently.

Figure 6 shows the average update interval of RSS feeds,
calculated by averaging the valid update intervals measured
for each feed. We see that over 57% of the RSS feeds have
an average update interval under two hours. Since we gath-
ered snapshots by the hour, our data do not show updates
that happen within an hour. Nevertheless, we find that RSS
feeds often change at a rapid rate and RSS readers need to
poll aggressively in order to detect updates quickly.

Update Size
We quantify update sizes using the minimum edit dis-
tance (“diff”) between two consecutive snapshots. Figure 7
shows the cumulative distribution of update sizes. 64% of
all updates involve no more than two lines of changes. The
average change in the number of lines is 16.7 (6.8% of feed
size) and the maximum is 16,542. The feed that changes
most is hosted by a weather service website that provides
weather forecast for many areas.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

C
D

F
 (

%
)

Average Update Time (Hours)

Figure 6: Average Update Time: 57% of feeds have average update
interval of less than two hours, while 25% of feeds do not change for
more than three days.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

C
D

F
 (

%
)

Update Size (Lines)

Figure 7: Number of Changed Lines in Updates: 64% of updates
involve no more than two lines of change.

The major criticism against RSS has centered around its
scalability. The constant polling by clients poses a signifi-
cant bandwidth challenge on RSS servers. There have been
many proposals for reducing the bandwidth consumption.
For instance, RSS 2.0 supports the TTL, SkipDays, and
SkipHours tags to advise the clients to choose an optimal
polling rate and to skip periods when no updates are avail-
able, such as weekends. But a better solution is to send
clients only the “delta,” that is, the portion of data that ac-
tually changes. Our measurement shows that the feed up-
dates only 6.8% of its content on average, which suggests
that this optimization can reduce bandwidth consumption
by as much as 93.2%.

Correlations between Feed Size and Updates
We explore the correlation between feed size and update
rates and sizes. Figure 8 shows the average number of up-
dates as a function of feed size. Though the data indicates
some peaks, there is no strong correlation between size and
update rate. We suspect that the peaks are due to commonly
used, frequently changing XML objects clustered around
certain sizes. However, there is a correlation between feed
size and update size, as can be seen in Figure 9. For most
feeds, the average update size grows as feed size increases.
For feeds smaller than 68KB (about 99% of the total), the
correlation coefficient is 0.89. The curve becomes irregular

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 20 40 60 80 100

U
p

d
a

te
 R

a
te

 (
U

p
d

a
te

/H
r)

Feed Size (KBs)

Figure 8: Correlation Between Feed Size and Update Rate: There
is no noticeable correlation between feed size and update rate.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

U
p

d
a

te
 S

iz
e

 (
L

in
e

s)

Feed Size (KBs)

Figure 9: Correlation between Feed Size and Update Size: The
amount of change during an update increases with the feed size.

after feed size increases more than 68KB due to the small
number of samples available.

4.3 Client Behavior
Finally, we analyze how clients use the RSS system from
the user activity trace we collected.

Polling Frequency
We divide the clients into two categories, namely auto and
manual, according to their polling behavior. Auto clients
poll feeds at a fixed rate, usually by running RSS readers in
the background, while manual clients use RSS in the same
way as they browse the Web, that is, launch RSS readers
when they really want to read the news, and close the pro-
gram after reading it. We consider clients who poll a feed
for less than 3 times a day or with irregular polling inter-
vals as manual clients. We find that 36% of clients in our
department fall in this category. For auto clients, who poll
at periodic intervals, we show the polling rate in Figure 10.
58% of them poll feeds hourly, suggesting that most users
are “lazy”, and do not change the default setting of their
RSS readers. A small number of aggressive clients poll as
often as every ten minutes.

Number of Subscriptions
Figure 11 shows the number of feeds subscribed by each
client in sorted order. This distribution also follows a Zipf
distribution with � parameter around 1.13. While most

 0

 10

 20

 30

 40

 50

 60

10 30 40 50 60 70 100 180

P
e

rc
e

n
t

(%
)

Poll Interval (min)

Figure 10: Polling Rate of Clients: About 58% of clients use the
default setting of one hour as the polling period.

 1

 10

 100

 1000

 1 10 100 1000

N
u

m
b

e
r

o
f

S
u

b
sc

ri
p

tio
n

s

Client Rank

α=1.13

Figure 11: Number of Subscriptions made by Clients: The number
of channels subscribed by clients follows a Zipf distribution.

clients subscribe to less than five feeds, there are several
clients that subscribe to more than 100 feeds.

5 Discussions and Conclusions
This paper presents a measurement study of RSS, a pub-
sub system for disseminating Web micronews. It provides
insights about how a pub-sub system is utilized in practice
and what issues need to be addressed while designing pub-
sub systems.

The main focus of our study is to analyze how feeds are
updated, a fundamental aspect of pub-sub systems. This
study shows that update rates of RSS feeds are distributed
in extremes; a majority of feeds (55%) update every hour,
while many feeds (25%) do not change for days together.
Hence, significant bandwidth savings can be obtained by
using the optimal polling period for each feed instead of
a single common polling rate for all feeds. End users of
RSS, however, cannot be relied on to set the optimal polling
rate, as this study shows that clients predominantly do not
change the default settings of RSS readers. A better solu-
tion is for content providers to indicate when and at what
rate to poll a particular feed. The version 2.0 of RSS al-
ready provides support for customized polling, although
many readers are yet to support this feature.

Much of the bandwidth in RSS goes towards refetching
feeds in order to check for updates because the current RSS

architecture does not employ asynchronous notifications.
This study indicates that delta encoding is a major opportu-
nity for improving bandwidth usage in RSS, as updates are
often made only to a tiny portion of the content (about 7%
of the feed on average). Moreover, clients subscribed to
the same feed poll the content servers independently, im-
posing a high load on the servers of popular feeds. Re-
cently proposed systems [11, 10] use peer-to-peer overlays
for cooperative polling to alleviate load on the servers and
to provide faster updates. Such systems capable of asyn-
chronous update notifications seem to be a step in the right
direction.

Overall, this is the first study of a widely deployed pub-
sub system performed during the early days of RSS. We
hope this study will help to understand, design, and evalu-
ate future pub-sub systems, and more studies with greater
depth will emerge as the popularity of RSS increases.

References
[1] Air Force Research Laboratory (AFRL/IF) JBI Team. Joint Bat-

tlespace Infosphere. http://www.rl.af.mil/programs/jbi/, 2005.
[2] Atom Enabled. Atom Syndication Format.

http://www.atomenabled.org/developers/syndication.
[3] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web Caching

and Zipf-like Distributions: Evidence and Implications. In Proc. of
IEEE International Conference on Computer Communications, New
York, NY, Mar. 1999.

[4] L. F. Cabrera, M. B. Jones, and M. Theimer. Herald: Achieving a
Global Event Notification Service. In Proc. of the Workshop on Hot
Topics in Operating Systems, Elmau, Germany, May 2001.

[5] N. Carriero and D. Gelernter. Linda in Context. Communications of
the ACM, 32(4):444–458, Apr. 1989.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and Evalu-
ation of a Wide-Area Event Notification Service. ACM Transactions
on Computer Systems, 19(3):332–383, Aug. 2001.

[7] F. Douglis, A. Feldman, B. Krishnamurthy, and J. Mogul. Rate of
Change and Other Metrics: a Live Study of the World Wide Web. In
Proc. of USENIX Symposium on Internet Technologies and Systems,
Monterey, CA, Dec. 1997.

[8] B. Glade, R. Cooper, R. van Renesse, and K. Birman. Light-Weight
Process Groups in the ISIS System. Distributed Systems Engineer-
ing, 1(1):29–36, Sept. 1993.

[9] IBM. TSpaces - Computer Science Research at Almaden.
http://www.almaden.ibm.com/cs/TSpaces/.

[10] V. Ramasubramanian, R. N. Murthy, and E. G. Sirer. Corona: A
High Performance Publish-Subscribe System for Web Micronews.
http://www.cs.cornell.edu/people/egs/beehive/corona.

[11] D. Sandler, A. Mislove, A. Post, and P. Druschel. FeedTree: Sharing
Web Micronews with Peer-to-Peer Event Notification. In Proc. of
International Workshop on Peer-to-Peer Systems, Ithaca, NY, Mar.
2005.

[12] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, B. Mukher-
jee, D. Sturman, and M. Ward. Gryphon: An Information Flow
Based Approach to Message Brokering. In Proc. of International
Symposium on Software Reliability Engineering, Paderborn, Ger-
many, Nov. 1998.

[13] TIBCO. TIBCO Publish-Subscribe.
http://www.tibco.com/software/.

[14] UserLand. RSS 2.0 Specifications.
http://blogs.law.harvard.edu/tech/rss.

[15] R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A Robust and
Scalable Technology for Distributed System Monitoring, Manage-
ment, and Data Mining. ACM Transactions on Computer Systems,
21(2):164–206, May 2003.

