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ABSTRACT

Determining the physical location of Internet hosts is a

critical enabler for many new location-aware services.

In this paper, we present Octant, a novel, comprehen-

sive framework for determining the location of Internet

hosts in the real world based solely on network mea-

surements. The key insight behind this framework is

to pose the geolocalization problem formally as one of

error-minimizing constraint satisfaction, to create a sys-

tem of constraints by deriving them aggressively from

network measurements, and to solve the system geomet-

rically to yield the estimated region in which the target

resides. This approach gains its accuracy and precision

by taking advantage of both positive and negative con-

straints, that is, constraints on where the node can and

cannot be, respectively. The constraints are represented

using regions bounded by Bézier curves, allowing pre-

cise constraint representation and low-cost geometric op-

erations. The framework can reason in the presence of

uncertainty, enabling it to gracefully cope with aggres-

sively derived constraints that may contain errors. An

evaluation of Octant using PlanetLab nodes and public

traceroute servers shows that Octant can localize the me-

dian node to within 22 mi., a factor of three better than

other evaluated approaches.

1 INTRODUCTION

Determining the physical location of an Internet host is

a key enabler for a wide range of network services. For

example, mapping nodes to locations on the globe en-

ables customized content on the web, simplifies network

management in large installations, and aids network di-

agnosis. Accurately determining the position of a node

in the real world based solely on network measurements,

however, poses many challenges. The key obstacles to

accurate and precise geolocalization are threefold: how

to represent network locations for nodes, how to extract

constraints on where nodes may or may not be located,

and how to combine these constraints to yield good esti-

mates of node position 1.

In this paper, we present a novel, comprehensive

framework for geolocating Internet hosts called Oc-

tant 2. Octant provides an intuitive and generic frame-

work which represents node positions precisely using

regions, expresses constraints succinctly as areas, and

computes positions accurately by solving a system of

geometric constraints. A small number of landmarks

whose positions are approximately known anchors the

constraint system to the physical globe. The Octant ap-

proach is comprehensive and general; it enables almost

all past work on geolocalization to be expressed within

the framework, as a (limited) subset of the techniques

described in this paper.

Past approaches to geolocalization on the Internet rely

solely on positive information, that is, information on

where a node may be located. For instance, a landmark

that pings the target may conclude that the target must lie

within a disk centered around the landmark whose radius

is bounded by the speed of light times the one-way ping

latency. In addition to such positive information, Octant

can take advantage of negative information, that is, in-

formation on where the node may not be located. For

instance, momentarily assuming an ideal network with

no queuing delays, Octant enables a landmark that mea-

sures a high ping latency to express the fact that the node

is at least a minimum distance away from the landmark.

Octant represents the potential area where a node may

be located explicitly as a surface bounded by Bézier

curves. In contrast with past work that keeps track of

and computes a single position estimate, Octant’s geolo-

calization yields a set of points expressed as an enclosed,

potentially non-convex and disconnected area where the

node might lie. The Bézier curve representation enables

these areas to be expressed precisely in a compact man-

ner, and boolean operations on areas such as union, in-

tersection, and subtraction are computed efficiently. We

outline a Monte Carlo technique for selecting a single,

representative point estimate from such sets to facilitate

comparisons with past work and to support legacy appli-

cations which expect a location estimate consisting of a



single point. In practice, Octant’s location estimates are

accurate, that is, they almost always contain the actual

physical location of the target in the estimated area, as

well as precise, that is, the size of the estimated area is

small.

Since networks rarely follow idealized models of

transmission, the fidelity of geolocation schemes are fun-

damentally limited by how aggressively they mine the

network for constraints. Given the relatively high vari-

ance in the correlation between network latency and ge-

ographical distance due to congestion and indirect rout-

ing, extracting useful positive and negative information

is a challenge. Octant uses various principled methods

to extract precise constraints from noisy Internet mea-

surements. It compensates for dilation stemming from

inelastic delays incurred on the last hop by computing

an extra “height” dimension, that captures the effects. It

minimizes the impact of indirect routes through piece-

wise localization of routers on the network path, where it

localizes ordinary routers on the path and uses their ap-

proximate location to further refine the position estimate

of the target node. Finally, Octant uses a weighted solu-

tion technique where weights correspond to confidence

in a derived constraint to enable the use of aggressive

constraints in addition to conservative ones without cre-

ating a non-solvable constraint system.

The Octant framework is general and comprehensive.

Where available, data from the WHOIS database, the

DNS names of routers, and the known locations of un-

inhabited regions can be naturally integrated into the so-

lution to refine it further. Interestingly, this optimiza-

tion has enabled Octant to identify “misnamed” routers

whose DNS names, based on their ISP’s naming con-

vention, would indicate that they are in a particular state

when in reality they are several hundred miles away (and

are named after a node with which they peer).

Overall, this paper presents a geolocalization system

for determining the physical location of hosts on the In-

ternet, and makes three contributions. First, this paper

provides a novel and general framework for expressing

location constraints and solving them geometrically to

yield location estimates. The solution technique, based

on Bézier-regions, provides a general-purpose founda-

tion that accommodates any geographic constraint. Sec-

ond, the paper shows how to aggressively extract con-

straints from network latency data to yield highly ac-

curate and precise location estimates. Finally, the pa-

per describes a full implementation of the Octant frame-

work, evaluates it using measurements from PlanetLab

hosts as well as public traceroute servers, and com-

pares directly to past approaches to geolocalization. We

show that the system achieves a median accuracy of 22

miles for its position estimates. In contrast, the best

accuracy achieved by GeoLim [11], GeoPing [15], and

GeoTrack [15] achieves a median accuracy of 70 miles.

Overall, the system is practical, provides a location esti-

mate in under a few seconds per target and achieves high

accuracy and precision.

2 RELATED WORK
Past work on geolocalization can be broken down into

approaches that determine a single point estimate for a

target, and those that, like Octant, provides a region en-

compassing the set of points where the target may lie.

2.1 SINGLE-POINT LOCALIZATION

IP2Geo [15] proposes three different techniques for ge-

olocalization, called GeoPing, GeoTrack and GeoClus-

ter. GeoPing maps the target node to the landmark node

that exhibits the closest latency characteristics, based on

a metric for similarity of network signatures [6]. The

granularity of GeoPing’s geolocalization depends on the

number and location of the landmarks, requiring a land-

mark to be close to each target to produce low-error ge-

olocation.

GeoTrack performs a traceroute to a given target, ex-

tracts geographical information from the DNS names of

routers on the path, and localizes the node to the last

router on the path whose position is known. The accu-

racy of GeoTrack is thus highly dependent on the dis-

tance between last recognizable router to the landmark,

as well as the accuracy of the positions extracted from

router names.

GeoCluster is a database based technique that first

breaks the IP address space into clusters that are likely

to be geographically co-located, and then assigns a geo-

graphical location to each cluster based on IP-to-location

mappings from third party databases. These databases

include the user registration records from a large web-

based e-mail service, a business web-hosting company,

as well as the zip-codes of users of an online TV pro-

gram guide. This technique requires a large, fine-grain

and fresh database. Such databases are not readily avail-

able to the public due to potential privacy concerns, the

clustering may not sufficiently capture locality, the ac-

curacy of such databases must be perpetually refreshed,

and, most importantly, the overall scheme is at the mercy

of the geographic clustering performed by ISPs when as-

signing IP address ranges.

Services such as NetGeo [14] and IP2LL [1] geolo-

calize an IP address using the locations recorded in the

WHOIS database for the corresponding IP address block.

The granularity of such a scheme is very coarse for large

IP address blocks that may contain geographically di-

verse nodes. The information in the WHOIS database is

also not closely regulated and the address information of-

ten indicates the location of the head office of the owner

which need not be geographically close to the actual tar-

get. Quova [3] is a commercial service that provides IP



geolocalization based on its own proprietary technique.

Neither the details of the technique nor a sample dataset

are publicly available.

There are several graphical traceroute tools that of-

fer the geographical location of each intermediate router.

GTrace [16] successively uses DNS LOC entries, a pro-

prietary database of domain name to geographical lo-

cation mappings, NetGeo, and domain name country

codes, as available, to localize a given node. Visual-

Route [4] is a commercial traceroute tools that also offer

geographic localization of the nodes along the path.

2.2 REGION LOCALIZATION

GeoLim [11] derives the estimated position of a node by

measuring the network latency to the target from a set

of landmarks, extracts upper bounds on position based

on inter-landmark distance to latency ratios, and locates

the node in the region formed by the intersection of these

fixes to established landmarks. Since it does not use neg-

ative information, permit non-convex regions or handle

uncertainty, this approach breaks down as inter-landmark

distances increase.

In contrast, Octant provides a general framework for

combining both positive and negative constraints to yield

a small, bounded region in which a node is located. It dif-

fers from past work in that it enables negative informa-

tion to be used for localization, separates the selection

of a representative point estimate from the computation

of the feasible set of points in which a node might be

located, permits non-convex solution areas, and aggres-

sively harvests constraints from network latency mea-

surements.

Topology-based Geolocation (TBG) [13] uses the

maximum transmission speed of packets in fiber to con-

servatively determine the convex region where the target

lies from network latencies between the landmarks and

the target. It additionally uses inter-router latencies on

the landmarks to target network paths to find a physi-

cal placement of the routers and target that minimizes

inconsistencies with the network latencies. TBG relies

on a global optimization that minimizes average posi-

tion error for the routers and target. This process can

introduce error in the target position in an effort to re-

duce errors on the location of the intermediate routers.

Octant differs from TBG by providing a geometric solu-

tion technique rather than one based on global optimiza-

tion. This enables Octant to perform geolocalization in

near real-time, where TBG requires significantly more

computational time and resources. A geometric solution

technique also allows Octant to seamlessly incorporate

exogenous geometric constraints stemming from, for ex-

ample, geography and demographics. This provides Oc-

tant with more sources of information for its geolocaliza-

tion compared to TBG.

Figure 1: Location representation in Octant. Octant rep-

resents the estimated target location as a region bounded

by a set of Bézier curves. Each curve a, b, c consists of
four control points P0, ..., P3 with P0 and P3 as the start

and end points respectively and P1 and P2 as control

points that help direct the curve. This figure requires a to-

tal of only nine control points to precisely define. Bézier

curves provide a compact way to represent large, com-

plex areas precisely. They also admit efficient intersec-

tion, union, and subtraction operations.

Localization has been studied extensively in wireless

systems. The wireless localization problem, however,

is significantly different from, and easier than, localiza-

tion on the Internet, as air is close to a perfect medium

with well-understood transmission characteristics. The

most comprehensive work on localization in wireless

networks is Sextant [12]. We share with Sextant the ba-

sic insight for accommodating both positive and nega-

tive constraints and enabling constraints to be used by

landmarks whose positions are not known definitively.

Octant differs substantially from Sextant in the various

mechanisms it uses to translate Internet measurements

to constraints, including its mapping of latencies to con-

straints, isolating last hop delays, and compensating for

indirect routes, among others.

3 FRAMEWORK

The goal of the Octant framework is to compute a re-

gion βi that comprises the set of points on the surface

of the globe where node i might be located. This es-
timated location region βi is computed based on con-

straints γ0 . . . γn provided to Octant.

A constraint γ is a region on the globe in which the
target node is believed to reside, along with an asso-

ciated weight that captures the strength of that belief.

The constraint region can have an arbitrary boundary,

as in the case of zipcode information extracted from

the WHOIS database or coastline information from a

geographic database. Octant represents such areas us-

ing Bézier-regions, which consist of adjoining piecewise



Figure 2: Octant computes an estimated location region

for a target node by combining positive and negative in-

formation available through latency measurements. The

resulting location estimate comprises non-convex, poten-

tially disjoint regions separated by weight.

Bézier curves as illustrated in Figure 1. Bézier curves are

polynomial parametric curves with n + 1 control points
P0, ..., Pn where n is the order of the polynomial, with
n = 3 for most implementations. Intuitively, the points
P0 and Pn are the start and end points with the remain-

ing points providing the directional information. Bézier

regions provide both precise and compact representation

of complex shapes. For example, a circle can be repre-

sented exactly using four adjoining Bézier curves and a

total of twelve control points.

Typically constraints are obtained via network mea-

surements from a set of nodes, called landmarks, whose

physical locations are at least partially known. Every

landmark node Lj has an associated estimated location

region βLj
, whose size captures the amount of error in

the position estimate for the landmark. We call a node a

primary landmark if its position estimate was created via

some exogenous mechanism, such as a GPS measure-

ment or by mapping a street address to global coordi-

nates. Typically, primary landmarks have very low error

associated with their position estimates. We call a node

a secondary landmark if its position estimate was com-

puted by Octant itself. In such cases, βLj
is the result of

executing Octant with the secondary landmark Lj as the

target node.

Octant enables landmarks to introduce constraints

about the location of a target node based either on posi-

tive or negative information. A positive constraint is of

the form “node A is within x miles of Landmark L1,”

whereas a negative constraint is a statement of the form

“node A is further than y miles from Landmark L1.” On

a finite surface, such as the globe, these two statements

both lead to a finite region in which the node is believed

to lie. However, the nature of the constraint, either pos-

itive or negative, makes a big difference in how these

regions are computed.

In the simple case where the location of a primary

landmark is known with pinpoint accuracy, a positive

constraint with distance d defines a disk with radius d
centered around the landmark in which the node must

reside. A negative constraint with distance d′ defines the
complement, namely, all points on the globe that are not

within the disk with radius d′. In typical Octant opera-
tion, each landmark Lj contributes both a positive and

a negative constraint. When the source landmark is a

primary whose position is known accurately, such con-

straints define an annulus.

Octant enables meaningful extraction of constraint re-

gions even when the position of the landmark is approxi-

mate and consists of an irregular region. For a secondary

landmark k whose position estimate is βk, a positive con-

straint with distance d defines a region that consists of the
union of all circles of radius d at all points inside βk (for-

mally, γ =
⋃

(x.y)∈βk
c(x, y, d) where c(x, y, d) is the

disk with radius d centered at (x, y)). In contrast, a neg-
ative constraint rules out the possibility that the target is

located at those points that are within distance d regard-
less of where the landmark might be within βk (formally,

γ =
⋂

(x,y)∈βk
c(x, y, d)).

Given the description above, it may seem that comput-

ing these intersection and union regions might take time

proportional to the area of βk, and thus be infeasible. Oc-

tant’s representation of regions using Bézier curves en-

ables these operations to be performed very efficiently

via transformations only on the endpoints of Bézier seg-

ments. Since Bézier curves are used heavily in computer

graphics, efficient implementations of Bézier clipping

and union operations are available. However, the number

of Bézier segments in a region increases with each in-

tersection and union operation, which gradually expands

the number of curves to track and manipulate, which in

turn poses a limit to the scalability of the framework. So

a scalable Octant implementation may decide to approx-

imate certain complex βk with a simple bounding circle

in order to keep the number of curves per region in check

and thus gain scalability at the cost of modest error. Fig-

ure 3 illustrates the derivation of positive and negative

constraints from primary and secondary landmarks.

Given a set Ω of positive constraints and a set Φ of
negative constraints on the position of a target node i,
the estimated location region for the target is given by:

βi =
⋂

Xi∈Ω

Xi \
⋃

Xi∈Φ

Xi.

This equation is precise and lends itself to an efficient

and elegant geometric solution. Figure 2 illustrates how



Figure 3: Comprehensive use of positive and negative constraints in Octant. (a) A primary landmark, with a precise

position estimate, and its associated constraints. (b) Positive constraints are calculated by taking the union of all

circles in the estimated area. A node within distance d must reside in the region marked with the dark outer line.
Only a subsample of the circles are shown for clarity. (c) Negative constraints are computed by taking the intersection

of all circles in the estimated area. A node outside of distance d can not be in the region marked with the dotted
line. (d) A secondary landmark, whose position is not known precisely. Note that the associated constraints lead to a

larger annulus, due to the conservative, sound way in which Octant combines them. An implementation may replace

complex Bézier regions with a bounding circle for efficiency.

Octant combines constraints to yield an accurate esti-

mated location region for a target.

There are, however, many issues to solve before this

approach can be used for practical geolocalization on the

Internet. In the general formulation above, all constraints

are weighted equally and the solution is discrete; a point

is either part of the solution space or it is not. A dis-

crete solution strategy leads to a brittle system, as a sin-

gle erroneous constraint will collapse the estimated lo-

cation region down to the empty set. One strategy is to

use only highly conservative positive constraints derived

from the speed of light and avoid all negative constraints.

We show later that such a conservative strategy does not

achieve good precision. In the next set of sections, we de-

tail optimizations that enable the basic Octant framework

to be applied to noisy and conflicting measurements on

the Internet.

If latencies on the Internet were directly proportional

to distances in the real world, the geolocalization prob-

lem would be greatly simplified. Three factors compli-

cate Internet latency measurements. First, the Internet

consists of heterogeneous links, hosts and routers whose

transmission and processing speeds vary widely. Second,

inelastic delays incurred on the last hop can introduce ad-

ditional latencies that break the correspondence between

round trip timings and physical distances. Finally, pack-

ets often follow indirect, circuitous paths from a source

to a destination, rendering great-circle approximations

inaccurate. In the next three sections, we address each

of these problems in turn.

3.1 MAPPING LATENCIES TO DISTANCES

The network latency between a target and a landmark

physically bounds their maximum geographical distance.

A round-trip latency measurement of d milliseconds be-
tween a landmark and a target can be translated into a

distance constraint using the propagation delay of light

in fiber, approximately 2
3 the speed of light. This yields

a conservative positive constraint on node locations that

can then be solved using the Octant framework to yield a

sound estimated position for the target; such an estimate

will never yield an infeasible (∅) solution. In practice,
however, such constraints are so loose that they lead to

very low precision.

Yet the correlation between latency measurements and

real-world distances is typically better and tighter than

constraints based on the speed of light. Figure 4 plots

the network latency against physical distance from a pri-

mary landmark (planetlab1.cs.rochester.edu) to all other

primary landmarks in our study. The figure makes clear

the loose correlation between physical distance and illus-

trates how overly conservative the speed of light bounds

can be. In addition, the empty region to the lower right

suggests that few links are significantly congested; nodes

that are physically close are typically reachable in a short

amount of time. This presents an opportunity for a sys-

tem wishing to aggressively extract constraints at the risk

of occasionally making overly aggressive claims, to both

tighten the bounds on positive constraints and to intro-

duce negative constraints.

Octant calibrates each landmark when the landmark is

initialized as well as periodically to determine the cor-

relation between network measurements performed from

that landmark and real-world distances. The goal of the

calibration step is to compute two bounds RL(d) and
rL(d) for each landmark L and latency measurement d
such that a node i whose ping time is d will be between
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Figure 4: The latency-to-distance plot of peer

landmarks for a representative landmark (planet-

lab1.cs.rochester.edu). The shaded region denotes the

valid point locations as bounded by the propagation de-

lay time of light in fiber. The convex hull around the

data-points serves as the positive and negative constraints

for the node. For a given latency, the top and bottom

of the hull represent the outer and inner radius respec-

tively of the constraint annulus. As distances increase,

fewer representative nodes remain, rendering the con-

vex hull overly aggressive. Vertical lines indicate the

50 and 75th percentile cutoffs, where the convex hull

is cut and replaced with conservative positive and neg-

ative constraints when insufficient representative nodes

remain.

rL(d) ≤ ||loc(L) − loc(i)|| ≤ RL(d). This permits
Octant to extract a positive and a negative constraint for

each measurement made from each landmark. Note that

when rL(d) = 0, the negative constraint is defunct and
does not play a role in localization; for nodes that are so

close that ping times are dominated by queuing delays,

rL should be zero.

A principled approach is used to conservatively pick

RL and rL. Each landmark periodically pings all other

landmarks in the system, creating a correlation table

much like Figure 4. It then determines the convex hull

around the points on the graph. Functions RL and rL

correspond to the upper and lower facets of the convex

hull. This approach for extracting constraints is both

tight and conservative. The RL and rL bounds do not

contradict any empirical results, as the convex hull en-

velopes all data points measured at the landmark. The

bounds are significantly tighter than bounds derived from

linear functions used in previous techniques [11]. And

the convex hull facets are smooth, positively sloped, and

closely track the average latency to distance correlation.

In practice, this approach yields good results when

there are sufficient landmarks that inter-landmark mea-

surements approximate landmark-to-target measure-

ments. In cases where the target has a direct and

congestion-free path to the landmark, it may lie beyond

RL(d), and vice versa for rL(d). While extensions to
Octant we discuss later can compensate for occasional

errors, the r and R estimates may be systematically
wrong when there are just insufficient landmarks to draw

statistically valid conclusions. Consequently, Octant in-

troduces a cutoff at latency ρ, such that a tunable per-
centile of landmarks lie to the left of ρ, and discards the
part of the convex hull that lies to the right of ρ. That
is, only the part of the convex hull for which sufficient

data points are available is taken into consideration. Oc-

tant then uses rL(x) = rL(ρ), ∀x ≥ ρ, and RL(x) =
m(x− ρ)+RL(ρ), m = (yz −RL(ρ))/(xz − ρ), where
a fictitious sentinel datapoint z, placed far away, provides
a smooth transition from the aggressive estimates on the

convex hull towards the conservative constraints based

on the limits imposed by the speed of light.

3.2 LAST HOP DELAYS

Mapping latencies to distances is further complicated by

additional queuing, processing, and transmission delays

associated with the last hop. For home users, these last

hop delays can be attributed to cable and DSL connec-

tions that are often under-provisioned. Even in the wide

area, the processing overhead on servers adds additional

time to latency measurements that can overshadow the

transmission delays. For instance, on overloaded Plan-

etlab nodes, measured latencies can be significantly in-

flated even with careful use of kernel timestamps. Conse-

quently, achieving more accurate and robust localization

results requires that we isolate the inelastic delay compo-

nents which artificially inflate latency measurements and

confound the latency to distance correlation.

Ideally, a geolocalization system would query all

routers on all inter-node paths, isolate routers that are

present on every path from each node, and associate the

queuing and transmission delays of these routers along

with the node’s average processing delay as the inelastic

component of the node. Since this approach is impracti-

cal, we need a feasible way to approximate the last hop

delay from latency measurements.

Three properties of the problem domain motivate an

end-to-end approach to the measurement and representa-

tion of last hop delay in Octant. First, localization needs

to be performed quickly without the cooperation of the

target host. This rules out the use of precise timing hard-

ware for packet dilation, as well as software approaches

that require pre-installed processing code on the target.

Second, creating detailed maps of the underlying phys-

ical network, as in network tomography [19, 8], entails

significant overhead and does not yet provide answers



on the timescales necessary for on-the-fly localization.

Third, Octant has mechanisms in place to accommodate

uncertainty in constraints (section 3.4) and can thus af-

ford imprecision in its last hop delay estimates. These

properties led us to use a fast, low-overhead, end-to-end

approach for capturing the last hop delay seen on mea-

surements from a given host in a single, simple metric

which we call height.

Octant derives height estimates from pair-wise latency

measurements between landmarks. Primary landmarks,

say a, b, c, measure their latencies, denoted [a, b], [a, c],
[b, c]. The measure for latency is the round-trip time,
which captures the last hop delays in both link directions.

Since the positions of primary landmarks are known, the

great circle distances between the landmarks can be com-

puted, which yield corresponding estimates of transmis-

sion delay, denoted (a, b), (a, c), (b, c). This provides
an estimate of the last hop delay between any two land-

marks 3; for instance, the last hop delay between land-

marks a and b is [a, b] − (a, b). Octant determines how
much of the delays can be attributed to each landmark,

denoted a′, b′, c′, by solving the following set of equa-
tions:

2
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[b, c] − (b, c)

3

5

Similarly, for a target t, Octant can compute t′,as well
as an estimate of the longitude and latitude, tlong and

tlat, by solving the following system of equations:

a′ + t′ + (a, t) = [a, t]

b′ + t′ + (b, t) = [b, t]

c′ + t′ + (c, t) = [c, t]

where (a, t) can be computed in terms of along , alat,

tlong , tlat. We can then solve for the t′, tlong, tlat that

minimizes the residue. The computed tlong and tlat re-

sult, similar to the synthetic coordinates assigned by [9],

has relatively high error and is not used in the later stages.

The target node itself need not participate in the solution

for its height, except by responding to pings from land-

marks. Figure 5 shows the heights of the landmarks in

our PlanetLab dataset.

Given the target and landmarks’ heights, each land-

mark can shift its RL up if the target’s height is less than

the heights of the other landmarks, and similarly shift its

rL down if the target’s height is greater than the heights

of the other landmarks. This provides a principled basis

for ensuring that at least a fraction of the time packets

spend in the last hop do not skew the derived constraints.

3.3 INDIRECT ROUTES

The preceding discussion made the simplifying assump-

tion that route lengths between landmarks and the target

Figure 5: Heights computed by Octant to capture last hop

delays on network paths to geographically distributed

landmarks. Vertical bars represent landmarks, their po-

sition corresponds to their physical location, while the

length of the bars corresponds to their assigned heights.

are proportional to great circle distances. Studies [17]

have shown that this is often not the case in practice,

due to policy routing. For instance, routes between sub-

scribers in Ithaca, NY and Cornell University traverse

Syracuse, NY, Brockport, IL, and New York City before

getting routed back to Cornell, traveling approximately

800 miles to cover less than a mile of physical distance.

A geolocalization system with a built-in assumption of

proportionality would not be able to achieve good accu-

racy.

Note that the preceding section on height computation

addresses some, but not all, of the inaccuracies stemming

from indirect routes. In the example above, if all pack-

ets from this landmark get routed through Syracuse, NY,

the distance between Ithaca and Syracuse will be folded

into the landmark’s height, enabling the landmark to ac-

curately compute negative information even for nodes

that are near it (without the height, the landmark might

preclude its next door neighbors from being located in

Ithaca). The height optimization, however, does not ad-

dress inaccuracies stemming from the inconsistent, or

unexpected use of indirect routes. Specifically, nodes

with otherwise low heights might choose unexpectedly

long and circuitous routes for certain targets. This occurs

often enough in practice that accurate geolocalization re-

quires a mechanism to compensate for its effects.

Octant addresses indirect routes by performing piece-

wise localization, that is localizing routers on the net-

work path from the landmarks to the target serially, using

routers localized on previous steps as secondary land-

marks. This approach yields much better results than



Figure 6: The use of intermediate routers as secondary

landmarks can significantly increase localization accu-

racy. Octant is used first to determine the estimated lo-

cation area for a router. Where possible, Octant refines

location estimates based on the city, extracted from the

router’s DNS name with undns, in which the router is

located. This is shown for Indianapolis and Houston,

where dots represent the center of every zipcode located

in that city. For Buffalo and Kansas City, the location

of the routers is computed using Octant without undns

information. The rings around Buffalo and Ithaca are

omitted for clarity.

using just end-to-end latencies, and is illustrated in Fig-

ure 6. Since Octant can perform localization based solely

on round-trip timings, localizing routers does not require

any additional code to be deployed.

While the Octant framework can be used as is to lo-

cate routers, the structured way in which most routers

are named enables Octant to extract more precise infor-

mation about their location. Octant performs a reverse

DNS lookup on each router on the path and determines

the city in which it resides by using the undns [18] tool,

which extracts locations from ISP-specific naming pat-

terns in router names. The city names for routers with

city information are converted into geographical coordi-

nates using data from the US census zipcode database. A

given city can have multiple coordinates in the database,

with each representing the location of a zipcode region.

The location of a router of a given city is the bounding

circle encompassing the city’s coordinates with a tunable

slack to account for large zipcode regions. This approach

yields much better results than using just end-to-end la-

tencies, as routes between routers separated by a single

link is largely void of indirect routing.

3.4 HANDLING UNCERTAINTY

A mechanism to handle and filter out erroneous con-

straints is critical to maintaining high localization ac-

curacy. The core mechanism Octant uses is to assign

weights to constraints based on their inherent accuracy.

For latency-based constraints, we have observed that

the accuracy of constraints from landmarks that have

high latency to the target are less trustworthy than those

that are nearby. The simple intuition behind this is that

the increase in latency is either due to far-away nodes that

have a higher probability of traversing through indirect,

meandering routes or travel along paths that have high

congestion, which often results in constraints that are of

relatively little use compared to nearby nodes.

Octant uses a weight system that decreases exponen-

tially with increasing latency, thereby mitigating the ef-

fect of high-latency landmarks when lower latency land-

marks are present. A weight is associated with each con-

straint based on the latency between the originating land-

mark and the target node. When two regions overlap, the

weights are added together. In the absence of weights,

regions can be combined via union and intersection op-

erations, leading to a discrete solution for a location esti-

mate - the node is either within a region, or lies outside.

The introduction of weights changes the implementation.

When two regions overlap, Octant determines all pos-

sible resulting regions via intersections, and assigns the

associated weight to each. The final estimated location

region is computed by taking the union of all regions,

sorted by weight, such that they exceed a desired weight

or region size threshold.

Weights enable Octant to integrate constraints of ques-

tionable verity into the system. Recall that, when the

resulting area is the empty set, going back and finding

the minimal set of constraints that led to an infeasible

solution is an NP-complete problem. Weights allow con-

flicting information to be introduced into the system at

little risk of over-constraining the final system and re-

ducing its effectiveness; overaggressive constraints from

latency measurements, incorrect zipcode from WHOIS,

or misnamed routers in undns will not just render the so-

lution down to the empty set. Bad constraints may still

impact accuracy if there are no compensating factors, but

weights enable Octant to associate a probability measure

with regions of space in which a node might lie.

3.5 ITERATIVE REFINEMENT

Localization in the Octant framework can be broken

down into two phases. The first is to use accurate and

mostly conservative constraints to construct an estimated

location region that contains the target with high proba-

bility. A second optional phase is to use less accurate and

more aggressive constraints to obtain a better estimate of

the target location inside the initial estimated region.



In section 3.1, we introduced a scheme by which tight

bounds can be established for the negative and posi-

tive constraints. While that approach, based on com-

puting the convex hull that includes all inter-landmark

measurements, achieves high accuracy in practice, it

may sometimes return estimated location regions that are

too big and imprecise. The reader will observe that it

may be possible to use even more aggressive constraints

than those dictated by the discussion so far and achieve

smaller estimated location regions. The downside of

more aggressive constraints is that they may yield an in-

feasible system of constraints, where the estimated re-

gion collapses down to the empty set. In between these

two extremes is a setting at which constraints are set just

so that the feasible solution space is below a desired pa-

rameter. Iterative refinement is an extension to the basic

Octant framework to find this setting.

During the calibration phase, Octant additionally com-

putes for each landmark the interpolated spline that min-

imizes the square error to the latency-to-distance data-

points of its inter-landmark measurements, as shown

with the dashed lines in Figure 4. Opportunistic positive

constraints are then derived from the spline by multiply-

ing the spline by a constant δ, while negative constraints
are computed by dividing the spline by δ. The value of δ
is chosen such that the upper and lower bound contains a

given percent of the total number of data points.

Octant initially uses the constraints obtained from the

convex hull to compute, typically, a relatively large esti-

mated location area. It then uses this area as a clipping

region, which enables it to run through subsequent iter-

ations very quickly, as it can discard all regions that lie

outside the initial solution space. The iterative refine-

ment stage then steps through values for δ, recomput-
ing the estimated location area with successively tighter

constraints. The process can terminate when the solu-

tion space is below a targeted area, is empty, or when a

timeout is reached. This optimization enables Octant to

determine how aggressively to extract constraints from

the network automatically, without hand tuning.

3.6 GEOGRAPHICAL CONSTRAINTS

In addition to constraints extracted from latency mea-

surements, Octant enables any kind of geographical con-

straint, expressed as arbitrary Bézier-regions, to be in-

tegrated into the localization process. In particular, Oc-

tant makes it possible to introduce both positive (such as

zipcodes from the WHOIS database, zipcodes obtained

from other users in the same IP prefix [15]) and negative

constraints (such as oceans, deserts, uninhabitable areas)

stemming from geography and demographics. Clipping

estimated location regions with geographic constraints

can significantly improve localization accuracy. Since

it is highly unlikely for the system to have landmarks in

Figure 7: Using the city constraints to localize the planet-

lab2.flux.utah.edu target can significantly reduce the es-

timated region size as the gaps between the cities can be

removed.

such areas, negative information is typically not avail-

able to rule them out. As a result, estimated regions can

extend into oceans. In prior work, which does not per-

mit non-convex regions, the removal of such areas typi-

cally requires an ad hoc post-processing step. In contrast,

Octant can naturally accommodate such constraints dur-

ing its estimation process. The application of geographic

data, such as ocean boundaries, and demographic data,

such as population density maps, can vastly improve pre-

cision. Figure 7 shows the city constraints for a target

node in Utah, which is otherwise quite difficult to local-

ize precisely due to its distance to all other landmarks

and terrain features.

3.7 POINT SELECTION

The Octant approach to localization computes a final es-

timated localization region which captures the system’s

best estimate of where the target must lie. Some applica-

tions can use such area estimates directly. For instance,

web applications might generate content, such as real es-

tate listings, based on the potential zipcodes in which the

viewer may be located. Octant can provide the area as ei-

ther Bézier curve bounded surfaces or an ordered list of

coordinates to these applications. Yet many legacy appli-

cations, as well as past work, such as GeoPing and Geo-

Track, localize targets to a single point. In order to sup-

port legacy applications and provide a comparison to pre-

vious work, Octant uses a Monte-Carlo algorithm to pick

a single point that represents the best estimate of the tar-

get’s location. The system initially selects thousands of

random points that lie within the estimated region. Each

point is assigned a weight based on the sum of its dis-

tances to the other selected points. After some number

of trials, the point with the least weight is chosen as the

best estimate of the target’s location. This point is guar-

anteed to be within the estimated location area by defini-

tion, even if the area consists of disjoint regions. Ideally,

Octant’s point selection interface would only serve in a

transitional role for legacy application support. We hope
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Figure 8: Comparison of the accuracy of different lo-

calization techniques in the PlanetLab dataset. Oc-

tant achieves significantly greater accuracy than previous

work, yielding point estimates for nodes that are substan-

tially closer to the real positions of the targets.

that future applications will be made general enough to

take advantage of the extra information in Octant’s esti-

mated area.

4 IMPLEMENTATION

The Octant framework for geolocalization is practical,

entails low measurement overhead and is computation-

ally inexpensive to execute. The core operations involve

the manipulation of Bézier curves, which is a compact

representation of curves specified by four control points.

Standard libraries support common operations, such as

intersection, subtraction, and union on Bézier curves,

and implement them efficiently by manipulating only the

control points [10]. In addition, Bézier curves are robust

to slight inaccuracies in their control points [5].

Our Octant implementation does not depend on hav-

ing control of the target node, or the intermediate routers

between the landmarks and the target. Ideally, the tar-

get should respond to probes consistently and quickly.

A target behind a slow last mile link, or a slow target

that incurs high interrupt and processing latencies for all

responses will have its response latency factored into its

height, which will then compensate for the node’s slower

speed. Targets that are inconsistent can pose problems;

our current implementation performs 10 ICMP pings and

uses the minimum RTT time as the basis for extracted

constraints.

Overall, the code consists of 9800 lines of code, whose

structure enables it to operate as a third party service,

providing geolocalization results given an IP address us-

ing only about 50 nodes deployed on the Internet. When

a new landmark comes online, it goes through the cali-

bration phase, measures its latencies to other landmarks,
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Figure 9: The percentage of targets inside the Octant’s

location estimate is significantly higher than GeoLim’s

due to Octant’s mechanisms for handling uncertainty of

individual landmark’s location estimate.

and ships its results back to a centralized server. From

then on, the landmarks simply perform ping measure-

ments to target IP addresses and report their results to

the centralized server. The server performs the local-

ization by combining the constraints. On a 2GHz ma-

chine, this operation currently takes a few seconds once

the landmarks are calibrated. The system can easily be

made decentralized or optimized further, though our fo-

cus has been on improving its accuracy rather than its

speed, which we find reasonable.

5 EVALUATION

We evaluated Octant using physical latency data col-

lected from a PlanetLab dataset consisting of 51 Plan-

etLab [7] landmark nodes in North America, as well as

a public traceroute server dataset consisting of 53 tracer-

oute servers maintained by various commercial and aca-

demic institutions in North America. The latency data for

the PlanetLab dataset and the public traceroute servers

dataset were collected on Feb 1, 2006 and Sept 18, 2006,

respectively, using 10 time-dispersed ICMP ping probes

to measure round-trip times. Kernel timestamps were

used in the latency measurements to minimize timing er-

rors due to overloaded PlanetLab nodes. To evaluate the

efficacy of using secondary landmarks, we also collected

the full traceroute information between every landmark

and target pair, as well as latency data between the land-

marks and intermediate routers. Whenever appropriate,

we repeat measurements 10 times, randomizing land-

mark selection, and plot the standard deviation.

Evaluating the accuracy of a geolocalization system

is difficult, because it necessitates a reliable source of

IP to location mappings that can be used as the “ground

truth.” Such an authoritative mapping is surprisingly dif-
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Figure 10: The area of Octant’s location estimate is sig-

nificantly smaller than GeoLim’s across all tested num-

ber of landmarks.

ficult to obtain. Our evaluation relies on a total of 104 tar-

gets, chosen from the PlanetLab and the traceroute server

datasets as described below. We limit our study to North

America as the number of PlanetLab nodes on other con-

tinents is too few to yield statistically significant results.

We vary the number of landmarks inside North America

to examine the behavior of the system at lower densities.

In our PlanetLab dataset, nodes serve both as land-

marks and targets, following [15, 11]; of course, the

node’s own position information is not utilized when it is

serving as a target. No two hosts in our evaluation reside

in the same institution, which rules out simple yet unreal-

istic and unscalable solutions to geolocalization that rely

on having a nearby landmark for every target.

The traceroute servers in the public traceroute server

dataset are used only as targets, with 32 PlanetLab nodes

serving as landmarks. The individual traceroute server

owners specify the location of their traceroute servers

as part of the traceroute service. However, these self-

provided locations are often erroneous; we eliminate

nodes whose reported positions violate speed of light

constraints or disagree with a commercial IP geolocation

database [2] from consideration.

We first compare Octant with GeoLim, GeoPing, and

GeoTrack on the PlanetLab dataset. We evaluate these

approaches based on their accuracy and precision, and

examine how these two metrics vary as a function of

the number of landmarks and average inter-landmark dis-

tance. We examine accuracy in terms of two metrics: one

is the distance between the single point estimate returned

by these geolocalization techniques and the physical lo-

cation of the node, while the other is the percent of nodes

whose real-world locations reside within the estimated

location area. The former metric allows us to compare

Octant to previous systems, such as GeoPing and Geo-
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Figure 11: The average distance between a target’s phys-

ical location and the single point estimate returned for

that target. Octant achieves high accuracy with low num-

bers of landmarks.

Track, that compute only a point estimate, and evaluates

how well these systems perform for legacy applications

that rely on a single point position. The latter, applica-

ble only to recent geolocalization systems including Oc-

tant and GeoLim and proposed by GeoLim [11], evalu-

ates how well area-based approaches perform. Note that

comparisons using the latter metric need to be accompa-

nied by measurements on the size of the estimated area

(otherwise a simple solution containing the globe will al-

ways locate the node accurately), which we also provide.

Figure 8 shows the accuracy of different geolocaliza-

tion techniques by plotting the CDF of the distance be-

tween the position estimate and the physical location of

a node. Octant significantly outperforms the other three

techniques across the entire set of targets. The median

accuracy of Octant is 22 miles, compared to median ac-

curacy of 89 miles for GeoLim, 68 miles for GeoPing

and 97 miles for GeoTrack. GeoLim was not able to

localize approximately 30% of the targets, as its over-

aggressive constraint extraction leads to empty regions.

Even the worst case under Octant is significantly lower

than the worst cases encountered with other techniques.

The worst case under Octant, GeoLim, GeoPing and

GeoTrack are 173, 385, 1071, and 2709 miles, respec-

tively.

A median error of 22 miles is difficult to achieve based

solely on constraints obtained online from uncoordinated

and unsynchronized hosts, in the presence of routing

anomalies and non-great circle routes. As a point of com-

parison, if all hosts on the Internet were connected via

point-to-point fiber links that followed great-circle paths,

host clocks were synchronized, and there were no rout-

ing anomalies, achieving such error bounds using packet

timings would require timing accuracy that could accu-



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400  450  500

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f 
ta

rg
e
ts

Accuracy (miles)

Octant
Octant-no-height
Octant-no-weight

Octant-no-exponential-weight
Octant-no-intermediate-nodes

Figure 12: The contributions of individual optimizations

used in Octant to geolocalization accuracy. The use of

intermediate nodes provides the largest improvement to

system accuracy.

rately distinguish a delay of 22 ∗ 1.6/(2/3 ∗ 300000) =
170 microseconds.

In a typical deployment, the number of landmarks

used to localize a target is often constrained by physi-

cal availability, and an implementation may not be able

to use all landmarks in the localization of all targets due

to load limits, node failures, or other network manage-

ment constraints. We evaluate Octant’s performance as

a function of the number of landmarks used to localize

targets, and compare to GeoLim, the only other region-

based geolocalization system. Figure 9 shows the num-

ber of nodes that were located successfully; that is, their

physical locations were inside the estimated location re-

gion returned by Octant. Three findings emerge from the

plot. First, the percentage of nodes that are successfully

localized is quite high for Octant, averaging more than

90% when the number of landmarks exceeds 15. Sec-

ond, the accuracy of the Octant approach remains flat

or improves slightly with increasing numbers of land-

marks. Using 15 landmarks yields results that are almost

as good as using all 50, and adding more landmarks does

not hurt performance. Finally, the accuracy of the Ge-

oLim approach is high for low numbers of landmarks,

and drops as more landmarks are introduced. This sur-

prising behavior is due to overaggressive extraction of

constraints in GeoLim; as the number of landmarks in-

creases, the chances that a “bad” node, whose network

connection yields an unexpected delay, will introduce an

over-constraint grows. When there are too many con-

flicting constraints, GeoLim yields the empty set as its

location estimate, whereas the weighted combination of

constraints enables Octant to avoid these pitfalls. With

all 50 landmarks, GeoLim returns the empty set for more

than 29% of the targets.
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Figure 13: The percentage of targets located on average

within their estimated location areas for Octant, Octant

without various optimizations, and GeoLim.

The preceding evaluation, which examined the per-

centage of nodes whose physical locations lie inside their

estimated location region, needs to be coupled with an

examination of the size of the estimated location regions

to put the accuracy of the systems in context. Figure 10

shows the area of the estimated location region for Ge-

oLim and Octant. The size of the geolocalization region

is quite small for Octant at 10 landmarks, and remains

the same or slowly decreases with additional landmarks.

For small numbers of landmarks, GeoLim returns sub-

stantially larger areas that are a factor of 6 bigger than

Octant’s, which explains its ability to localize about 80%

of the nodes with 10 landmarks. Adding more landmarks

refines GeoLim’s location estimates, though even at 50

landmarks, GeoLim’s location estimates are twice the

size of Octant’s. Octant is able to keep the region small

via its careful extraction of constraints and use of nega-

tive information.

We next examine the absolute error in legacy position

estimates based on a single point. Figure 11 plots the av-

erage distance between a target’s physical location and

the single point estimate returned for that target. Oc-

tant consistently achieves high accuracy, even with land-

marks as few as 15. In contrast, GeoLim and GeoPing

exhibit performance that degrades as the number of land-

marks decreases and their distribution throughout the

space becomes more sparse. Octant’s performance as

the number of landmarks decreases mostly stems from

its ability to use routers inside the network as secondary

landmarks. Octant’s average error is significantly less

than both GeoPing and GeoLim even when Octant uses

a fifth of the landmarks as the other schemes.

To provide insight into Octant’s accuracy, we examine

its performance as we disable various optimizations. We

examine the individual contribution of each of our opti-
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Figure 14: The area of the location estimate for Octant

with demographic and geographic constraints. The use

of these exogenous constraints substantially reduce the

size of the estimated area.

mizations, namely heights, weights, exponential weights

and intermediate nodes, by turning off each one in turn

and comparing their accuracy with that of the complete

Octant system. Figure 12 shows the resulting CDFs. The

largest improvement to system accuracy is due to the use

of intermediate nodes, which significantly increases the

number of usable landmarks in the system. Undns is

useful approximately half the time, but transitive local-

ization is critical to precise localization.

Figures 13 and 14 provide further insight into the im-

pact of various optimizations on Octant’s accuracy and

precision. Figure 13 plots the percentage of nodes lo-

calized with each of the optimizations turned off. NoIn-

ter refers to Octant with localization through secondary

landmarks inside the network turned off, NoWeights uses

no weights associated with constraints, NoHeight dis-

ables the last hop delay approximation, NoExpWeights

uses weights but all constraints carry equal weights. The

distinction between NoWeights and NoExpWeights is

subtle but important. In NoWeights, the estimated loca-

tion of the target is the intersection of all available con-

straints. In contrast, NoExpWeights estimates the loca-

tion of the target as the union of all regions above a cer-

tain weight threshold. The effects of a limited number

of incorrect constraints can be mitigated by trading off

precision, as chosen by the threshold value. The largest

contribution in improving accuracy, approximately 33%,

stems from the use of weights. GeoLim is less accurate

than all the different Octant configurations, even though

its location estimates are significantly larger.

The use of geographical constraints in Octant signif-

icantly reduces the size of the location estimates. Fig-

ure 14 shows the size of the location estimates in square

miles for Octant with the population density (“cities”)
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Figure 15: The accuracy of different localization tech-

niques on the public traceroute servers dataset show very

similar results to those from the PlanetLab dataset, with

Octant yielding point estimates that are significant closer

to the real positions of the targets.

constraint which introduces clipping areas into location

estimates weighted by the density of the population in-

side that region, with the oceans constraint which clips

oceans from the solution space, and without any geo-

graphic constraints, as well as the location estimate area

for GeoLim. The use of either geographical constraint

alone makes a significant improvement in the location

estimate, improving the precision of the estimates. Com-

bined, these geographical estimates greatly improve the

fidelity of the location estimates returned by Octant.

The results from our public traceroute servers dataset

which includes a mixture of smaller commercial orga-

nizations and academic institutions are very similar to

those from our PlanetLab dataset. Figure 15 shows the

CDF of the distance between the position estimate and

the physical location of a node. Octant again outperforms

the other three techniques across the entire set of targets,

with a median localization error of 25 miles, compared

to 56 miles for GeoLim, 155 miles for GeoPing and 50

miles for GeoTrack. The significant decrease in accuracy

for GeoPing is likely due to the reduction of landmarks

from 51 in the PlanetLab dataset to 32 in the traceroute

servers dataset, as GeoPing is the most sensitive tech-

nique to the number of available landmarks.

These results show that Octant achieves high accuracy

in its point estimate for a target, high probability that its

location estimate will contain the target, and high preci-

sion as indicated by the size of its location estimate area.

Overall, Octant can locate the median node to a point

within 22 miles of its physical position, or to a tight area

(factor of two smaller than previous work) that contains

the physical location with 90% probability. Octant re-

quires very few landmarks to be effective; as few as 20



landmarks can achieve approximately the same accuracy

as from using all 50 landmarks.

6 CONCLUSIONS
Determining the geographic location of Internet hosts is

an intrinsically useful basic building block. Since there

are no existing standardized protocols for discovering the

physical location of endpoints, we must rely on tech-

niques that can extract location information from net-

work measurements.

In this paper, we have outlined Octant, a general, com-

prehensive framework for representing network locations

for nodes, extracting constraints on where nodes may or

may not be located, and combining these constraints to

compute small location estimates that bound the possi-

ble location of target nodes with high probability. Oc-

tant represents node position and regions precisely using

Bézier-bounded regions that can admit any kind of con-

straints, makes use of both positive and negative infor-

mation to aggressively reduce the estimated region size,

and can effectively reason in the presence of uncertainty

and erroneous constraints. It utilizes a number of tech-

niques to extract fine-grain information from end-to-end

latency measurements on the Internet.

We have evaluated our system using measurements

from PlanetLab hosts as well as public traceroute servers

and found that Octant is surprisingly accurate and effec-

tive. The framework can localize the median node to

within 22 miles of its actual position. The evaluation

also indicates that Octant can localize a target to a region

that is less than half the size of previous approaches and

contains the target with much higher probability than the

larger region. Octant enables network operators to deter-

mine, with high confidence, the position of nodes given

simply latency measurements, which in turn enables new

location-aware services.
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