
On the Need for System-Level Support
for Ad hoc and Sensor Networks

Rimon Barr John C. Bicket Daniel S. Dantas

Bowei Du T.W. Danny Kim Bing Zhou Emin Gün Sirer
Department of Computer Science*

Cornell University, Ithaca, NY 14853
magnetos@cs.cornell.edu

Ad hoc and sensor networks are an important, emerging niche that is poorly supported by existing
operating systems. In this paper, we argue that network-wide energy management is a primary concern in
ad hoc networks, and that this functionality is best provided by a systems layer. We are currently designing
and implementing a distributed, power-aware, adaptive operating system, called MagnetOS, specifically
targeting ad hoc and sensor networks. MagnetOS provides a single system image of a unified Java virtual
machine across the nodes that comprise an ad hoc network. By automatically and transparently partitioning
applications into components and dynamically placing these components on nodes within the ad hoc
network, our system reduces energy consumption, avoids hotspots and increases system longevity. We
show that a systems approach to automatic object placement in an ad hoc network can increase system
longevity by a factor of four to five.

* Supported in part by ONR Grant N00014-01-1-0968. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of these
organizations or the U.S. Government.

1. Motivation
With the recent proliferation of cheap and

increasingly powerful mobile devices and sensors,
ad hoc networking has emerged as a significant
application domain. Ad hoc applications appear
naturally in mobile environments and when fixed
networking infrastructure is either unavailable or
impractical. Examples of such ad hoc applications
include large-scale environmental data-collection using
sensor networks, coordinated battlefield or disaster-
relief operations involving mobile computers, and
ubiquitous computing in interactive, smart
environments. Despite the importance of these emerging
application domains, developing applications for ad hoc
and sensor networks remains difficult and poorly
supported by existing operating systems.

Two inherent characteristics of the ad hoc
computing environment make developing applications
for ad hoc networks particularly difficult: ad hoc
networks are limited in resources such as battery
capacity, and they exhibit frequent and drastic variation
in key system metrics, such as bandwidth and
connectivity. Form factor limitations in miniaturized
devices place tight constraints on the available energy
per node [Hill et al. 00]. In addition, the network
topology, available power and bandwidth can vary

rapidly and through several orders of magnitude
[Satyanarayanan 96]. Applications need to adapt, not
only to external changes in the resource constrained,
frequently varying ad hoc environment, but also to
internal changes initiated by the applications
themselves. For instance, a sensor application tracking
an object that moves over time may need to relocate its
event-filtering component closer to the object to reduce
network communication. In addition, an application
may change its behavior, as in the transition from
defensive to offensive mode in a battlefront application,
which may modify its communication pattern and
necessitate a reorganization of components deployed
within the network for optimal performance.

In this paper, we argue that network-wide energy
management is best provided by a distributed, power-
aware operating system. We describe MagnetOS, an
operating system designed specifically to support the
adaptation needs of ad hoc applications. The motivation
for a new system stems from the lack of support for
ad hoc networking applications. Specifically, current
state-of-the-art operating systems do not provide the
network-wide adaptation mechanisms or policies that
applications need in order to address these resource
limitations and variations. They force ad hoc
applications to treat the network as a “system of
systems;” that is, a collection of disparate, autonomous

computers, because they do not provide a unifying
system abstraction. In the absence of a unifying system,
applications need to provide their own mechanisms and
policies for adaptation separately and independently.
Consequently, existing applications rely either on a
static assignment of components to nodes or use manual
techniques to migrate objects in response to change.
Both of these approaches ultimately lead to inefficient
energy usage, or premature system failure, or both.
Statically assigning node functionality results in non-
adaptive, fragile and energy-inefficient systems. The
overall application will fail as soon as critical nodes on
the dataflow path stall, run out of power or move out of
communication range. In turn, locally optimal, manual
policies for object mobility pursued by individual
applications can lead to globally energy-inefficient
behavior when multiple applications interact on the
same ad hoc network. For example, local misuse of the
battery on a central hub node that is relaying messages
may disconnect large parts of the network with adverse
global effects.

2. Operating System Support for Ad hoc
Networks
We are currently designing and implementing

MagnetOS, a distributed, adaptive, power-aware
operating system for ad hoc networks. Our goal is to
provide a unifying, stand-alone system for ad hoc
networks with the following properties:
• Adaptive: The system should adapt to the resource

constraints and changes in the underlying network
in a rapid, yet temporally stable manner. In
particular, it should adapt to changes in the network
topology, application behavior, and available
resources such as power on each node.

• Efficient: Policies and mechanisms used for
adaptation in the systems layer should yield good
power utilization and increase system longevity,
without excessive communication or power
consumption.

• General-purpose: The system should execute
applications over networks of nodes with
heterogeneous resources and capabilities, as well as
over both ad hoc and fixed nodes. Changes in
underlying hardware or software choices; network
infrastructure, protocols or topology and physical
environmental characteristics should not require
programmer involvement.

• Scalable: The system and its underlying algorithms
for optimization and adaptation should work both
on a single node and across a large ad hoc network.

MagnetOS achieves these goals by providing a
single system image (SSI). The abstraction we provide

to applications is that the entire network is a single
unified Java virtual machine1. The system is comprised
of a static and a dynamic component, following the
Distributed Virtual Machine architecture [Sirer et al.
99]. A static partitioning service partitions regular Java
applications, intended for a single JVM, into objects that
can be distributed across the network. It rewrites the
application at the byte-code level and injects the
necessary instructions to retain original application
semantics, even though the rewritten applications are
distributed across many nodes. A dynamic runtime
component on each node then provides services for
application monitoring and object creation, invocation
and migration.

The single-system image abstraction is well suited
for ad hoc networks because it provides two advantages.
First, it presents the operating system with great
freedom in object placement, which is essential for
efficient, adaptive and scalable execution of
applications. The high-level SSI interface separates
object location from program execution semantics and
enables MagnetOS to move objects to the best-suited
nodes within the network. For example, MagnetOS can
transparently migrate a filter component to the node
closest to its data sources to reduce network
communication. Second, a single system image
operating system greatly simplifies application
development. Manual techniques for adapting
applications to changes in their environment are hard to
develop, error-prone and platform-specific. Each
application needs to re-implement the same migration,
monitoring and communication mechanisms, correctly,
on every hardware platform. In contrast, MagnetOS
enables the distributed execution of ordinary monolithic
Java applications. In order to ensure that MagnetOS
achieves performance that is as good as or better than
handwritten code, an auxiliary interface provided by the
MagnetOS runtime allows programmers to explicitly
direct object placement, overriding the automatic object
placement decisions.

3. Automatic Object Migration and System
Longevity
The core of a transparent network-wide operating

system consists of algorithms for deciding when and
where to move application components. MagnetOS uses
two practical, online, power-aware algorithms, called
NetPull and NetCenter, to reduce application energy
consumption and increase system longevity. These

1 Consequently, application components correspond to Java
objects in our system, and we use the two terms
interchangeably throughout this paper.

algorithms share the same basic approach: they shorten
the mean path length of data packets sent between
components of an application by automatically moving
communicating objects onto nodes that are topologically
closer together (Figure 1). The process works by
profiling the communication pattern of applications in
discrete, asynchronous epochs. Each node decides
locally and independently where to move the
application components at the end of every epoch.
NetPull profiles communication at the physical link
level, and migrates components over physical links one
hop at a time in the direction of greatest communication.
NetCenter operates at the network level, and migrates
components multiple hops at a time directly to the host
with which a given object communicates most. NetPull
and NetCenter require knowledge regarding the last hop
and sender of each packet, respectively.

Figure 2 shows that automatic and transparent
object placement techniques improve system longevity
by reducing energy utilization. In this simulation, we
examine the behavior of NetPull and NetCenter in an
ad hoc network consisting of 3600 sensors randomly
scattered over a 300-by-300 m2 field, using a fast,
packet-level, large-scale ad hoc network simulator we
developed. The graph shows the number of nodes that
run out of power as a function of time, under four
different migration policies. Static corresponds to a
static assignment of objects to nodes, characteristic of
non-adaptive applications. Random is an adaptive
algorithm that balances the load on the network and
avoids early failures due to communication hotspots by
moving components to randomly chosen nodes at each
epoch. NetPull and NetCenter perform the automatic
object migration scheme outlined above. Figure 2 shows
that NetPull and NetCenter improve system longevity
four-fold compared Random and five-fold compared to
Static. The last data points on the curves indicate when
the ad hoc sensor network application fails under each
migration policy. Failure is defined to occur when more
than 50% of the area on the field can no longer be
sensed due to lost network connectivity. Under the
Static placement strategy, the failure of a few critical
nodes results in system failure, as Static does not
migrate components in response to loss. Random fares
better, because it avoids hotspots and effectively
distributes the network load. NetPull and NetCenter
significantly outperform both, because they take
application communication behavior and network
resource constraints into account [Sirer at al. 01].
Power-aware adaptation through automatic, transparent
object placement can lead to significant gains in system
longevity.

4. Status
The current MagnetOS system provides the image

of a Java 1.3 virtual machine. An application
partitioning service, implemented using the Kimera
rewriter [Sirer et al. 99], modifies object creation,
invocation and field access instructions to operate over
an ad hoc network. We rely on Java RMI mechanisms
for invocation, while an in-kernel AODV protocol
[Perkins 97] provides packet forwarding in Linux, a
user-level protocol implementation provides the same
functionality on Windows. In addition, we are
developing our own native JVM for resource-limited
devices.

node sensing data

node

network packet

node running event-
processing component

1 - NetPull
2 - NetCenter

1 2

Figure 1: Automatically migrating components closer
to their data sources in a sensor network increases
system longevity and decreases power consumption
by reducing total network communication cost. NetPull
(1) moves one hop in the direction of greatest
communication, whereas NetCenter (2) moves directly
to the host sending the most packets.

0 200 400 600 800 1000 1200 1400 1600 1800
0

100

200

300

400

500

600

epoch

n
u

m
b

er
 o

f
se

n
so

rs
 d

ra
in

ed

static
random
netpull
netcenter

Figure 2: NetCenter and NetPull migration policies
improve system longevity, energy utilization, network
connectivity and scalability.

5. Related work
MagnetOS builds on recent research on ad hoc

routing protocols, node-based power conservation,
distributed object systems and mobile computing.

Prior research on ad hoc networks has focused on
multi-hop routing algorithms, such as DSDV, DSR,
AODV, ZRP, TORA, CEDAR and many others
([Perkins & Bhagwat 94, Broch et al. 96, Perkins 97,
Haas & Pearlman 98, Park & Corson 98, Sivakumar
et al. 99], see [Royer & Toh 99] for a survey). These
algorithms move data from a source to given
destinations as efficiently as possible in the presence of
underlying network topology changes. They focus on
optimizing the route for metrics such as latency, hop
count or power, while leaving the source and destination
endpoints fixed. MagnetOS complements this work, and
extracts additional and significant power gains by
moving the communication endpoints.

Prior work has also examined how to minimize
power consumption within an independent host through
various mechanisms [Grunwald et al. 00, Weiser et al.
94, Farkas et al. 00, Douglis et al. 95, Helmbold et al.
96, Stemm & Katz 96], including low-power processor
modes, disk spin-down policies, adapting wireless
transmission strength and selectively turning off unused
devices. These mechanisms for saving node power are
complementary to our network-wide adaptation. Like
[Vahdat et al. 00], we treat energy as a first-class system
resource, and extend its management across an entire
ad hoc network.

Mobile computing projects have examined mobility
toolkits, frameworks and code libraries that facilitate
construction of mobile applications. They provide
services for disconnected and mobile operation [Joseph
et al. 95], quality of service tradeoffs [Campbell 98],
synchronization and data management [Mascolo 01].
MagnetOS shares the goals of these projects, but differs
from them by offering a complete operating system with
a unifying system abstraction. Systems such as Emerald
[Jul et al. 88], Thor [Liskov et al. 96] and Globe [van
Steen et al. 99], among others, have pioneered efficient
and practical mechanisms for object distribution. Our
work on object distribution extends this work with
mechanisms and policies for power-aware adaptation,
targeted for the ad hoc network model.

Finally, directed diffusion [Heidemann et al. 01]
proposes a framework for application-specific labeling
of data, gradient-based routing and filtering packets in
the network using stateless components specified in a
constrained language. MagnetOS extends this work by
supporting components that carry state, and enabling

components to be written in a general-purpose language.
Consequently, MagnetOS can perform state-requiring
operations, such as aggregation, in the network.

6. Summary
In this paper we advocate for operating system

support of ad hoc and sensor networks. We contend that
only a network-wide, power-aware operating system
can efficiently and fairly manage the limited and time-
varying resources inherent in ad hoc application
environments. We describe MagnetOS, an ad hoc
operating system that provides a single system
abstraction of an ad hoc network to applications.
MagnetOS works by automatically partitioning
applications into networked components and
transparently migrating those components to the best-
suited nodes in the network. We have shown that
automatic object placement policies, such as NetPull
and NetCenter, can reduce energy consumption and
increase system longevity. Our large-scale simulation
results demonstrate that the wins can be as much as a
factor of four to five compared to energy-oblivious
techniques for adaptation. Compared to the “system of
systems” model that characterizes the current state of
the art, a single system image provides the necessary
unifying abstraction for adaptive, power-efficient,
platform-independent applications.

References
[Broch et al. 96] J. Broch, D. B. Johnson, and D. A.

Maltz, The Dynamic Source Routing Protocol for
Mobile Ad hoc Networks. Mobile Computing,
1996.

[Campbell 98] O. Angin, A. T. Campbell, M. E.
Kounavis and R. R.-F. Liao. The Mobiware
Toolkit: Programmable Support for Adaptive
Mobile Networking. IEEE Personal
Commununication Magazine, 1998.

[Douglis et al. 95] Fred Douglis, P. Krishnan and Brian
Bershad. Adaptive Disk Spin-down Policies for
Mobile Computers. In 2nd USENIX Symposium on
Mobile and Location-Independent Computing,
April 1995.

[Ellis 99] Carla S. Ellis. The Case for Higher-
Level Power Management. In Proceedings of the
7th Workshop on Hot Topics in Oper-ating
Systems, Rio Rico, AZ, March 1999.

[Farkas et al. 00] Keith I. Farkas, Jason Flinn, Godmar
Back, Dirk Grunwald and Jennifer-Ann M.
Anderson. Quantifying the energy consumption of a
pocket computer and a Java virtual machine. In
Measurement and Modeling of Computer Systems,
pp 252-263, 2000.

[Grunwald et al. 00] D. Grunwald, P. Levis, K. Farkas,
C. Morrey and M. Neufeld. Policies for dynamic
clock scheduling. In Proceedings of 4th OSDI, San
Diego, CA, October 2000.

[Haas & Pearlman 98] Z. J. Haas and M. R. Pearlman,
The zone routing protocol (ZRP) for ad hoc
networks (Internet-Draft). Mobile Ad hoc Network
(MANET) Working Group, IETF, Aug. 1998.

[Heidemann et al. 01] John Heidemann, Fabio Silva,
Chalmarek Intanagonwiwat, Ramesh Govindan,
Deborah Estrin and Deepak Ganesan. Building
efficient wireless sensor networks with low-level
naming. In Proceedings of the 18th Symposium on
Operating Systems Principles, Lake Louise,
Alberta, October 2001.

[Helmbold et al. 96] D. Helmbold, D. Long and B.
Sherrod. A Dynamic Disk Spin-Down Technique
for Mobile Computing. In Proceedings of the ACM
International Conference on Mobile Computing,
130-142, Nov. 1996.

[Hill et al. 00] Jason Hill, Robert Szewczyk, Alec
Woo, Seth Hollar, David Culler, Kristofer Pister.
System architecture directions for network sensors.
In Proceedings of the Conference of Architecture
Support for Programming Languages and
Operating Systems, 2000.

[Joseph et al. 95] Anthony D. Joseph, Alan F. De
Lespinasse, Joshua A. Tauber, David K. Gifford,
and M. Frans Kaashoek., Rover: A Toolkit for
Mobile Information Access. In Proceedings of the
Fifteenth Symposium on Operating System
Principles, December 1995.

[Jul et al. 88] Eric Jul, Henry Levy, Norman
Hutchinson, Andrew Black. Fine-Grained Mobility
in the Emerald System. ACM Transactions on
Computer Systems, 6(1), Feb. 1988, 109-133.

[Liskov et al. 96] B. Liskov, A. Adya, M. Castro, M.
Day, R. Gruber, U. Maheshwari, A. Myers, L.
Shrira. Safe and Efficient Sharing of Persistent
Objects in Thor. In Proceedings of SIGMOD,
Montreal, Canada, June 1996.

[Mascolo 01] Cecilia Mascolo, Licia Capra and
Wolfgang Emmerich. XMIDDLE - A Middleware
of Ad hoc Networks. UCL-CS Research Note
00/54, 2001.

[Park & Corson 98] Vincent D. Park and M. Scott
Corson. Temporally-Ordered Routing Algorithm
(TORA) version 1: Functional Specification.
Internet-Draft, draft-ietf-manet-tora-spec01. txt,
August 1998.

[Perkins 97] Perkins, C.E. Ad hoc On-Demand
Distance Vector (AODV) Routing. IETF Internet
Draft, Dec.1997.

[Perkins & Bhagwat 94] C. Perkins and P. Bhagwat.
Highly dynamic destination-sequenced distance-
vector routing (DSDV) for mobile computers. In
Proceedings of the ACM SIGCOMM, October
1994.

[Royer & Toh 99] Elizabeth Royer and C.-K. Toh. A
review of current routing protocols for ad-hoc
mobile wireless networks. IEEE Personal
Communications Magazine, April 1999, 46-55.

[Satyanarayanan 96] M. Satyanarayanan. Fundamental
Challenges in Mobile Computing. In Proceedings
of the ACM Symposium on Principles of Distributed
Computing. Philadelphia, PA, May 1996.

[Sivakumar et. al. 99] Raghupathy Sivakumar, Prasun
Sinha and Vaduvur Bharghavan. CEDAR: a core-
extraction distributed ad hoc routing algorithm.
IEEE Journal on Selected Areas in Communication,
17(8), August 1999.

[Sirer et al. 99] Emin Gün Sirer, Robert Grimm, Arthur
J. Gregory and Brian N. Bershad. Design and
Implementation of a Distributed Virtual Machine
for Networked Computers. In Proceedings of the
Symposium on Operating Systems Principles,
Kiawah Island, South Carolina, pp. 202-216,
December 1999.

[Sirer at al. 01] Emin Gün Sirer, Rimon Barr, T.W.
Danny Kim, Ian Yeen Yan Fung. Automatic Code
Placement Alternatives for Ad hoc and Sensor
Networks. Computer Science Technical Report
2001-1853, Cornell University, October 2001.

[van Steen et al. 99] M. van Steen, P. Homburg and
A.S. Tanenbaum. Globe: A Wide-Area Distributed
System. IEEE Concurrency, January-March 1999,
pp. 70-78.

[Stemm & Katz 96] Mark Stemm and Randy Katz.
Measuring and Reducing energy consumption of
network interfaces in hand-held devices. In
Proceedings of 3rd International Workshop on
Mobile Multimedia Communications, Sept. 1996.

[Vahdat et al. 00] Amin Vahdat, Alvin Lebeck and
Carla S. Ellis. Every Joule is Precious: The Case for
Revisiting Operating System Design for Energy
Efficiency. 9th ACM SIGOPS European Workshop,
September 2000.

[Weiser et al. 94] Mark Weiser, Brent Welch, Alan
Demers and Scott Shenker. Scheduling for Reduced
CPU Energy. In Proceedings of First Symposium
on Operating Systems Design and Implementation,
Monterey CA, Nov. 94.

