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Ad hoc and sensor networks are an important, emerging niche that is poorly supported by existing 
operating systems. In this paper, we argue that network-wide energy management is a primary concern in 
ad hoc networks, and that this functionality is best provided by a systems layer. We are currently designing 
and implementing a distributed, power-aware, adaptive operating system, called MagnetOS, specifically 
targeting ad hoc and sensor networks. MagnetOS provides a single system image of a unified Java virtual 
machine across the nodes that comprise an ad hoc network. By automatically and transparently partitioning 
applications into components and dynamically placing these components on nodes within the ad hoc 
network, our system reduces energy consumption, avoids hotspots and increases system longevity. We 
show that a systems approach to automatic object placement in an ad hoc network can increase system 
longevity by a factor of four to five. 
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1. Motivation 
With the recent proliferation of cheap and 

increasingly powerful mobile devices and sensors, 
ad hoc networking has emerged as a significant 
application domain. Ad hoc applications appear 
naturally in mobile environments and when fixed 
networking infrastructure is either unavailable or 
impractical. Examples of such ad hoc applications 
include large-scale environmental data-collection using 
sensor networks, coordinated battlefield or disaster-
relief operations involving mobile computers, and 
ubiquitous computing in interactive, smart 
environments. Despite the importance of these emerging 
application domains, developing applications for ad hoc 
and sensor networks remains difficult and poorly 
supported by existing operating systems. 

Two inherent characteristics of the ad hoc 
computing environment make developing applications 
for ad hoc networks particularly difficult: ad hoc 
networks are limited in resources such as battery 
capacity, and they exhibit frequent and drastic variation 
in key system metrics, such as bandwidth and 
connectivity. Form factor limitations in miniaturized 
devices place tight constraints on the available energy 
per node [Hill et al. 00]. In addition, the network 
topology, available power and bandwidth can vary 

rapidly and through several orders of magnitude 
[Satyanarayanan 96]. Applications need to adapt, not 
only to external changes in the resource constrained, 
frequently varying ad hoc environment, but also to 
internal changes initiated by the applications 
themselves. For instance, a sensor application tracking 
an object that moves over time may need to relocate its 
event-filtering component closer to the object to reduce 
network communication. In addition, an application 
may change its behavior, as in the transition from 
defensive to offensive mode in a battlefront application, 
which may modify its communication pattern and 
necessitate a reorganization of components deployed 
within the network for optimal performance. 

In this paper, we argue that network-wide energy 
management is best provided by a distributed, power-
aware operating system. We describe MagnetOS, an 
operating system designed specifically to support the 
adaptation needs of ad hoc applications. The motivation 
for a new system stems from the lack of support for 
ad hoc networking applications. Specifically, current 
state-of-the-art operating systems do not provide the 
network-wide adaptation mechanisms or policies that 
applications need in order to address these resource 
limitations and variations. They force ad hoc 
applications to treat the network as a “system of 
systems;” that is, a collection of disparate, autonomous 



computers, because they do not provide a unifying 
system abstraction. In the absence of a unifying system, 
applications need to provide their own mechanisms and 
policies for adaptation separately and independently. 
Consequently, existing applications rely either on a 
static assignment of components to nodes or use manual 
techniques to migrate objects in response to change. 
Both of these approaches ultimately lead to inefficient 
energy usage, or premature system failure, or both. 
Statically assigning node functionality results in non-
adaptive, fragile and energy-inefficient systems. The 
overall application will fail as soon as critical nodes on 
the dataflow path stall, run out of power or move out of 
communication range. In turn, locally optimal, manual 
policies for object mobility pursued by individual 
applications can lead to globally energy-inefficient 
behavior when multiple applications interact on the 
same ad hoc network. For example, local misuse of the 
battery on a central hub node that is relaying messages 
may disconnect large parts of the network with adverse 
global effects. 

2. Operating System Support for Ad hoc 
Networks 
We are currently designing and implementing 

MagnetOS, a distributed, adaptive, power-aware 
operating system for ad hoc networks. Our goal is to 
provide a unifying, stand-alone system for ad hoc 
networks with the following properties: 
• Adaptive: The system should adapt to the resource 

constraints and changes in the underlying network 
in a rapid, yet temporally stable manner. In 
particular, it should adapt to changes in the network 
topology, application behavior, and available 
resources such as power on each node. 

• Efficient: Policies and mechanisms used for 
adaptation in the systems layer should yield good 
power utilization and increase system longevity, 
without excessive communication or power 
consumption.  

• General-purpose: The system should execute 
applications over networks of nodes with 
heterogeneous resources and capabilities, as well as 
over both ad hoc and fixed nodes. Changes in 
underlying hardware or software choices; network 
infrastructure, protocols or topology and physical 
environmental characteristics should not require 
programmer involvement. 

• Scalable: The system and its underlying algorithms 
for optimization and adaptation should work both 
on a single node and across a large ad hoc network. 

MagnetOS achieves these goals by providing a 
single system image (SSI). The abstraction we provide 

to applications is that the entire network is a single 
unified Java virtual machine1. The system is comprised 
of a static and a dynamic component, following the 
Distributed Virtual Machine architecture [Sirer et al. 
99]. A static partitioning service partitions regular Java 
applications, intended for a single JVM, into objects that 
can be distributed across the network. It rewrites the 
application at the byte-code level and injects the 
necessary instructions to retain original application 
semantics, even though the rewritten applications are 
distributed across many nodes. A dynamic runtime 
component on each node then provides services for 
application monitoring and object creation, invocation 
and migration. 

The single-system image abstraction is well suited 
for ad hoc networks because it provides two advantages. 
First, it presents the operating system with great 
freedom in object placement, which is essential for 
efficient, adaptive and scalable execution of 
applications. The high-level SSI interface separates 
object location from program execution semantics and 
enables MagnetOS to move objects to the best-suited 
nodes within the network. For example, MagnetOS can 
transparently migrate a filter component to the node 
closest to its data sources to reduce network 
communication. Second, a single system image 
operating system greatly simplifies application 
development. Manual techniques for adapting 
applications to changes in their environment are hard to 
develop, error-prone and platform-specific. Each 
application needs to re-implement the same migration, 
monitoring and communication mechanisms, correctly, 
on every hardware platform. In contrast, MagnetOS 
enables the distributed execution of ordinary monolithic 
Java applications. In order to ensure that MagnetOS 
achieves performance that is as good as or better than 
handwritten code, an auxiliary interface provided by the 
MagnetOS runtime allows programmers to explicitly 
direct object placement, overriding the automatic object 
placement decisions.  

3. Automatic Object Migration and System 
Longevity 
The core of a transparent network-wide operating 

system consists of algorithms for deciding when and 
where to move application components. MagnetOS uses 
two practical, online, power-aware algorithms, called 
NetPull and NetCenter, to reduce application energy 
consumption and increase system longevity. These 
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algorithms share the same basic approach: they shorten 
the mean path length of data packets sent between 
components of an application by automatically moving 
communicating objects onto nodes that are topologically 
closer together (Figure 1). The process works by 
profiling the communication pattern of applications in 
discrete, asynchronous epochs. Each node decides 
locally and independently where to move the 
application components at the end of every epoch. 
NetPull profiles communication at the physical link 
level, and migrates components over physical links one 
hop at a time in the direction of greatest communication. 
NetCenter operates at the network level, and migrates 
components multiple hops at a time directly to the host 
with which a given object communicates most. NetPull 
and NetCenter require knowledge regarding the last hop 
and sender of each packet, respectively. 

Figure 2 shows that automatic and transparent 
object placement techniques improve system longevity 
by reducing energy utilization. In this simulation, we 
examine the behavior of NetPull and NetCenter in an 
ad hoc network consisting of 3600 sensors randomly 
scattered over a 300-by-300 m2 field, using a fast, 
packet-level, large-scale ad hoc network simulator we 
developed. The graph shows the number of nodes that 
run out of power as a function of time, under four 
different migration policies. Static corresponds to a 
static assignment of objects to nodes, characteristic of 
non-adaptive applications. Random is an adaptive 
algorithm that balances the load on the network and 
avoids early failures due to communication hotspots by 
moving components to randomly chosen nodes at each 
epoch. NetPull and NetCenter perform the automatic 
object migration scheme outlined above. Figure 2 shows 
that NetPull and NetCenter improve system longevity 
four-fold compared Random and five-fold compared to 
Static. The last data points on the curves indicate when 
the ad hoc sensor network application fails under each 
migration policy. Failure is defined to occur when more 
than 50% of the area on the field can no longer be 
sensed due to lost network connectivity. Under the 
Static placement strategy, the failure of a few critical 
nodes results in system failure, as Static does not 
migrate components in response to loss. Random fares 
better, because it avoids hotspots and effectively 
distributes the network load. NetPull and NetCenter 
significantly outperform both, because they take 
application communication behavior and network 
resource constraints into account [Sirer at al. 01]. 
Power-aware adaptation through automatic, transparent 
object placement can lead to significant gains in system 
longevity. 

4. Status 
The current MagnetOS system provides the image 

of a Java 1.3 virtual machine. An application 
partitioning service, implemented using the Kimera 
rewriter [Sirer et al. 99], modifies object creation, 
invocation and field access instructions to operate over 
an ad hoc network. We rely on Java RMI mechanisms 
for invocation, while an in-kernel AODV protocol 
[Perkins 97] provides packet forwarding in Linux, a 
user-level protocol implementation provides the same 
functionality on Windows. In addition, we are 
developing our own native JVM for resource-limited 
devices. 
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Figure 1: Automatically migrating components closer 
to their data sources in a sensor network increases 
system longevity and decreases power consumption 
by reducing total network communication cost. NetPull 
(1) moves one hop in the direction of greatest 
communication, whereas NetCenter (2) moves directly 
to the host sending the most packets. 

0 200 400 600 800 1000 1200 1400 1600 1800
0

100

200

300

400

500

600

epoch

n
u

m
b

er
 o

f 
se

n
so

rs
 d

ra
in

ed

static
random
netpull
netcenter

 
Figure 2: NetCenter and NetPull migration policies 
improve system longevity, energy utilization, network 
connectivity and scalability. 



5. Related work 
MagnetOS builds on recent research on ad hoc 

routing protocols, node-based power conservation, 
distributed object systems and mobile computing.  

Prior research on ad hoc networks has focused on 
multi-hop routing algorithms, such as DSDV, DSR, 
AODV, ZRP, TORA, CEDAR and many others 
([Perkins & Bhagwat 94, Broch et al. 96, Perkins 97, 
Haas & Pearlman 98, Park & Corson 98, Sivakumar 
et al. 99], see [Royer & Toh 99] for a survey). These 
algorithms move data from a source to given 
destinations as efficiently as possible in the presence of 
underlying network topology changes. They focus on 
optimizing the route for metrics such as latency, hop 
count or power, while leaving the source and destination 
endpoints fixed. MagnetOS complements this work, and 
extracts additional and significant power gains by 
moving the communication endpoints. 

Prior work has also examined how to minimize 
power consumption within an independent host through 
various mechanisms [Grunwald et al. 00, Weiser et al. 
94, Farkas et al. 00, Douglis et al. 95, Helmbold et al. 
96, Stemm & Katz 96], including low-power processor 
modes, disk spin-down policies, adapting wireless 
transmission strength and selectively turning off unused 
devices. These mechanisms for saving node power are 
complementary to our network-wide adaptation. Like 
[Vahdat et al. 00], we treat energy as a first-class system 
resource, and extend its management across an entire 
ad hoc network.  

Mobile computing projects have examined mobility 
toolkits, frameworks and code libraries that facilitate 
construction of mobile applications. They provide 
services for disconnected and mobile operation [Joseph 
et al. 95], quality of service tradeoffs [Campbell 98], 
synchronization and data management [Mascolo 01]. 
MagnetOS shares the goals of these projects, but differs 
from them by offering a complete operating system with 
a unifying system abstraction. Systems such as Emerald 
[Jul et al. 88], Thor [Liskov et al. 96] and Globe [van 
Steen et al. 99], among others, have pioneered efficient 
and practical mechanisms for object distribution. Our 
work on object distribution extends this work with 
mechanisms and policies for power-aware adaptation, 
targeted for the ad hoc network model. 

Finally, directed diffusion [Heidemann et al. 01] 
proposes a framework for application-specific labeling 
of data, gradient-based routing and filtering packets in 
the network using stateless components specified in a 
constrained language. MagnetOS extends this work by 
supporting components that carry state, and enabling 

components to be written in a general-purpose language. 
Consequently, MagnetOS can perform state-requiring 
operations, such as aggregation, in the network.  

6. Summary 
In this paper we advocate for operating system 

support of ad hoc and sensor networks. We contend that 
only a network-wide, power-aware operating system 
can efficiently and fairly manage the limited and time-
varying resources inherent in ad hoc application 
environments. We describe MagnetOS, an ad hoc 
operating system that provides a single system 
abstraction of an ad hoc network to applications. 
MagnetOS works by automatically partitioning 
applications into networked components and 
transparently migrating those components to the best-
suited nodes in the network. We have shown that 
automatic object placement policies, such as NetPull 
and NetCenter, can reduce energy consumption and 
increase system longevity. Our large-scale simulation 
results demonstrate that the wins can be as much as a 
factor of four to five compared to energy-oblivious 
techniques for adaptation. Compared to the “system of 
systems” model that characterizes the current state of 
the art, a single system image provides the necessary 
unifying abstraction for adaptive, power-efficient, 
platform-independent applications. 
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