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Abstract
The Java Virtual Machine (JVM) has emerged as a ubiquitous platform for

network computing. JVMs have been incorporated into browsers, web servers, database
engines, and personal digital assistants, and there are plans under way to use them on
embedded devices and smartcards. The adoption of JVMs into such diverse and security
critical domains requires that their safety and security be tested rigorously. Unfortunately,
Java virtual machines are large, complex, and have many subtleties, and consequently
testing them is a difficult task. Commercial virtual machines deployed so far have had to
rely on manual and ad hoc techniques for testing, and have subsequently exhibited
substantial weaknesses that could lead to information theft or destruction.

In this paper, we describe our experience with automatically testing Java virtual
machines. We outline two effective automatic testing techniques for JVMs. The first
technique is comparative evaluation with mutations, where randomly perturbed test
inputs are used to identify discrepancies between different versions of JVMs. We show
that this fast and effective technique achieves broad code coverage, and discuss its
shortcomings. Second, we present a well-structured technique for generating complex test
cases from cogent grammar descriptions. We describe lava, a special purpose language
we developed to specify production grammars for testing, and show that grammar-based
test generation can produce very complex test cases from compact specifications. The
testing process is easy to steer, and can generate targeted test cases. Most importantly,
grammars enable the tester to reason about the expected system behavior on the test
inputs. We show how grammars can be used in conjunction with inductive proofs to
solve the oracle problem, and describe various application areas for grammar based
testing. Finally, we report the results of applying these techniques to commercial Java
virtual machine implementations.

1. Introduction

The Java virtual machine [Lindholm&Yellin 96] has emerged as a ubiquitous platform
for network computing. The adoption of the Java virtual machine across the Internet,
where 91% of all browsers now in use support a JVM1 and where over 1.5 million web
pages embody Java applets2, shows that modern virtual machines fulfill an important role
in heterogeneous networked environments. Indeed, Java virtual machines can now be
found not only in browsers, but also in web servers, database engines, office applications,
and personal digital assistants. In addition to the popularity of JVMs in such desktop and
server environments, there are numerous plans underway to place JVMs in embedded
                                               
1 Data is based on access logs from our web server over the April–December 1997 period.
2 Measurement is based on a March 1998 Alta-Vista query.



devices, mobile telephones and even smartcards [Sun]. The adoption of JVMs in such
security-critical domains, where flaws in JVM implementations could mean service
disruption and even potential financial loss, requires that JVM functionality be tested
rigorously. Unfortunately, the large size, complex functionality and subtle features of the
Java virtual machine make testing it a difficult task. Consequently, commercial Java
virtual machines deployed so far have had to rely on manual techniques for testing, and
have suffered as a result. Manual testing techniques, such as ad hoc test construction and
code auditing, are often slow, expensive, hard to manage and only effective against a
limited class of flaws. Subsequently, commercial virtual machines released to date have
exhibited substantial weaknesses that could lead to information theft or destruction.

Checking the correctness of a JVM is not a simple task. The most promising technique in
checking program correctness is formal program verification, as it can provide
theoretically strong guarantees that the code is true to a specification. However, the
current state of the art in formal program verification does not sufficiently address the
needs of virtual machines. Essentially, verifiers, compilers and runtimes are too complex,
and their implementation often too ad hoc, to be served well by the current state of the art
in program verification. While the theory community has made substantial progress on
provably correct bytecode verifiers [Stata&Abadi 98,Freund&Mitchell 98], current
formal verification techniques exhibit four serious shortcomings. Namely, they operate
on abstract models of the code instead of the implementation, cover only a small subset
of the constructs found in a JVM, apply only to verifiers and not to compilers,
interpreters or runtimes, and require extensive human involvement to map the abstract
proof onto the actual code. Subsequently, virtual machine developers have had to rely on
manual verification and testing techniques to gain assurance in their implementations.
Techniques such as independent auditing [Dean et al. 97] and directed test case
generation have been used extensively by various commercial virtual machine vendors.
However, manual testing techniques are expensive and slow due to the amount of human
effort involved. Further, independent auditing requires access to source code and lacks a
good coverage metric, and manual test case generation often requires massive amounts of
human effort. Consequently, commercial virtual machine implementations have suffered
from a steady stream of security flaws at a rate of one major flaw every two months
[Kimera], which points to a need for more effective testing techniques.

In this paper, we describe our experience with testing Java virtual machines using
automatic techniques. We faced the testing problem when we developed our own Java
virtual machine. Lacking the resources to perform manual tests, we examined ways to
increase our assurance in our implementation cheaply and effectively. This paper presents
the two automatic testing techniques for JVMs that came out of this effort; namely,
comparative evaluation, and grammar-based test generation. The rest of the paper defines
these techniques and qualitatively illustrates the types of errors they uncovered in
commercial Java systems. Our findings can be summarized as follows:

• Comparative evaluation, where multiple JVMs are tested on the same
randomly mutated inputs, is both fast and effective at locating flaws. It
achieves broad code coverage, even with a simple mutation scheme such as
one-byte random perturbations. The drawbacks of comparative evaluation are
that it requires another, preferably strong implementation of the same



functionality for comparison, and that the testing effort is limited in its
coverage by the amount of complexity in the original input. Our second
technique addresses both of these problems.

• Grammar-based test generation, where a production grammar is used to
generate test cases from cogent grammar descriptions, can effectively and
easily produce complex test cases. The testing process is easy to steer, well
structured, and portable. Most importantly, grammars enable the tester to
formally reason about the expected behavior of the system on the test inputs,
thereby addressing the oracle problem.

In the next section, we provide some background on the Java virtual machine, and
enumerate the desired properties of automatic testing techniques. Section 3 describes
comparison testing with mutations, illustrates the types of errors it uncovered, and
examines why it was so effective. Section 4 provides the basics of grammar-based test
generation, describes the lava language which enables probabilistic grammar
specifications, and shows various different application areas for grammar-generated test
cases. Section 4 concludes our experience with automatic testing techniques for JVMs. A
performance analysis and detailed description of the lava language are beyond he scope
of this paper. Interested readers are encouraged to look at [] for further deails.

2. Background

The Java virtual machine consists of three fundamental components; namely, the verifier,
the compiler and/or interpreter, and the runtime. Since these components together form
part of the trusted computing base, comprise the functionality to be tested and define the
domain for our work, it is worth examining them in detail.

The verifier forms the main line of defense against malicious applications. It statically
checks untrusted applications against a set of system safety axioms to ensure that the
applications will not misbehave and cause faults at run time. The safety axioms range
from simple structural rules about the class file format, e.g “references to constants shall
occur through valid indices into a table of constants,” to structural rules about the code,
e.g. “code shall not jump outside of code bounds,” to typesafety, e.g. “all pointer
operations shall be type-safe,” to link checks, e.g. “an imported field signature must
match the expected type.” A typical Java virtual machine will embody several hundred
fine-grain, subtle and diverse security axioms for protection. While the safety of these
axioms have not yet been formally proven, we believe that they are sufficient to ensure
typesafety and to protect the assumptions made in the virtual machine from being
violated at runtime [Drossopoulou et al. 97,Syme 97]. A failure of the system verifier to
enforce these safety axioms would enable applications to violate system integrity, and
may result in data theft or corruption.

An interpreter or just in time (JIT) compiler is responsible for the correct execution of
JVM applications. The compiler or the interpreter has to correctly translate Java
bytecodes into a sequence of native instructions that match the expected semantics of the
application. Both a JIT compiler and an interpreter may, in turn, perform optimizations
and code transformations to speed up execution, such as replacing sequences of generic
and slow instructions with specialized, fast equivalents. These optimizations also need to
preserve the intended semantics of the application.



Finally, the system libraries are responsible for providing run time services to
applications during their execution. In this paper, we will concern ourselves primarily
with the verifier and compiler/interpreter components of the JVM. The runtime forms a
smaller part of the JVM in comparison, and since most of it is written in Java in
commercial systems, it benefits directly from increased assurance in the other two
components.

The task of the system tester, then, is to ensure that the bytecode verifier correctly accepts
safe code and rejects unsafe code, and that the compiler/interpreter properly executes
JVM applications. We faced this task when we implemented our own JVM, and turned to
automatic testing techniques to help simplify the assurance process. We wanted our
testing techniques to possess the following properties:

• Automatic: Verification should proceed without human involvement, and
therefore be relatively cheap. The technique should be easy to incorporate into
nightly regression testing.

• Complete: Verification should cover as much of the functionality of a JVM as
possible. It should also admit a metric of progress that correlates with the
amount of assurance in the virtual machine being tested.

• Well structured: Examining, directing, checkpointing and resuming testing
efforts should be simple.

• Efficient: Testing should result in high assurance in a JVM within a reasonable
amount of time.

We started our testing effort with a very simple automated technique that fulfills most,
but not all of these properties, which we adopted from the hardware testing community.
We describe this baseline technique in the next section, and address its weaknesses in
Section 4.

3. Comparative Evaluation with Mutations

Comparison evaluation with mutations is a commonly used testing technique in hardware
manufacturing to make sure that two chip implementations are identical, and to ensure
that implementations are robust even in the face of malformed inputs. The core idea,
illustrated specifically with respect to bytecode verification in Figure 1, is to direct the
same mechanically produced test cases to two or more versions of a bytecode verifier,
and to compare their outputs. A discrepancy indicates that at least one of the verifiers
differs from the others, and typically requires human involvement to determine the cause
of the discrepancy and its severity.



In our case, we compared our bytecode verifier implementation to that of Sun JDK 1.0.2,
Netscape 4.0 and the Microsoft Java virtual machine as found in Internet Explorer 4.0.
We formed the test inputs by creating five valid test bases and introducing one-byte
pseudo-random mutations. The bases were generated by hand using a bytecode assembler
to exercise as many of the different features of Java bytecode as possible. We
experimented with introducing multiple mutations into a single test base, but found that
multiple mutations made post-mortem investigation of discrepancies more difficult, as
benign mutations in strings made the program difficult to read. Therefore, each test case
was generated by introducing only a single one-byte value change at a random offset in a
base class file.

In most cases, all consulted bytecode verifiers agreed that the mutated test inputs were
safe or unsafe, yielding no information about their relative integrity. In some cases,
however, one of the bytecode verifiers would disagree from the rest. Cases where the
class file was accepted by our bytecode verifier but rejected by a commercial one usually
pointed to an error in our implementation. We would fix the bug and continue.
Conversely, cases where the class file was rejected by our bytecode verifier but accepted
by a commercial bytecode verifier usually indicated an error in the commercial
implementation. Occasionally, the differences were attributable to ambiguities in the
specification or to benign diversions from the specification.

Random mutations are quite effective at achieving broad coverage. At a throughput of
250K bytes per second on a 300 MHz Alpha workstation with 128K of memory,
comparative evaluation with mutations exercised 75% of the checks in the bytecode
verifier within an hour and 81% within a day. Since our test bases consisted of single
classes, we did not expect to trigger any link-time checks, which accounted for 10% of
the missing checks in the bytecode verifier. Further inspection revealed that another 7%
were due to redundant checks in the bytecode verifier implementation.

We attribute the high rate of check coverage achieved by comparative testing to two
factors. First, Java bytecode representation is very compact, such that small changes often
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        Verifier

     Comparison
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Figure 1. Comparative Evaluation with Mutations. A mutation engine injects errors
into a set of test bases, which are fed to two different bytecode verifiers. A
discrepancy indicates an error, a diversion from the specification, or an ambiguity.



drastically alter the semantics of a program. In particular, constant values, types, field,
method and class names are specified through a single index into a constant pool.
Consequently, a small change in the index can alter the meaning of the program in
interesting ways, for instance, by substituting different types or values into an expression.
For example, one of the first major security flaws we discovered in commercial JVM
implementations stemmed from lack of type-checking on constant field initializers. A
field of type String could be initialized to contain a long value, which was then taken to
be the address of the string object. Consequently, a malicious program could read any
part of the memory address space. A single mutation in an index field, within the first
10000 iterations (15 minutes) of testing, uncovered this loophole by which integers could
be turned into object references.

A second reason that one-byte mutations achieve broad coverage is that the mutation
granularity matches the granularity of fields in the class file format. Consequently, a
single mutation affects only a single data structure at a time, and thereby avoids violating
the internal consistency of a class file. For example, one mutation uncovered a case in
commercial bytecode verifiers where the number of actual arguments in a method
invocation could exceed the declared maximum. Had this field been packed, the chances
of a mutation creating an interesting case would have been reduced. Similarly, a mutation
in a jump offset uncovered a case where the MS JVM would incorrectly sign extend jump
destinations of certain instructions, and thereby allow programs to jump to arbitrary
memory locations. Packing of the offset would have made it difficult for one-byte
mutations to uncover this flaw.

Although comparative evaluation with mutations achieves extensive breadth of coverage,
it has some serious drawbacks. While the test cases cover a broad range of security
axioms, they do not cover any deeply. For instance, while a chance mutation may affect
control flow, it will not introduce excessively complicated control flow that may stretch
the limits of the verifier implementation. The total complexity of the test cases is limited,
therefore, by the original complexity of the test bases and the simplistic mutation strategy
chosen to simplify debugging. In the next section we address this shortcoming by
automatically generating complex test cases via a production grammar.

4. Grammar-based Test Production

In order to automatically generate test bases of high complexity that are targeted at
interesting bytecode constructs, we rely on a production grammar. A production grammar
is just like a regular parsing grammar (i.e. yacc), except it works the other way around.
Starting from a non-terminal, it produces a valid program (all terminals). We use a
generic code-generator-generator to parse a Java bytecode grammar and emit a
specialized code-generator. The code generator in turn takes a seed as input and applies
the grammar to it. Running the code-generator on a seed produces test cases in Java
bytecode that can then be assembled and used for testing (see Figure 2).



Our code-generator-generator reads in a conventional grammar description that resembles
that of YACC. This grammar description is specified in a special-purpose language,
called lava, designed specifically for test generation [Sirer&Bershad 99]. This context-
free grammar consists of productions with a left-hand side containing a single non-
terminal (LHS) that is matched against the seed input, and a right-hand side (RHS) that
replaces the LHS if a match is found. An optional code fragment associated with the
production is executed when the production is selected, thereby enabling the generation
of context-sensitive programs. This feature is frequently used, for example, to generate
unique labels, and also to keep track of auxiliary data structures related to the test case
under production. Finally, lava also enables the test administrator specify the maximum
number of times that a production can be used. This feature is useful for ensuring that the
produced code does not violate restrictions in the Java class file format. For example,
Java restricts method code bodies to 64K instructions. Specifying this limit in the
grammar forces the test production to terminate when 64K instructions have been
generated.

The code-generator-generator parses the lava grammar specification, and generates a
code-generator. The code-generator in turn takes a seed input and a set of weights, and
applies the grammar to it. The production process is probabilistic, and the weights help
guide the relative use of different productions. That is, when it is possible to use more
than one production specified in the grammar, the code generator picks a production
randomly based on relative weights. This enables lava to generate many different
instruction mixes using the same grammar without having to rewrite or rearrange the
grammar. Each different random number seed will generate a different test case.

    Test 1     Test 2      Test N

   Verifier

    Test N-1

   Code Generator

       Generator

                   =>

                   =>

                   =>
           Grammar

          Seed

  Code Generator

Figure 2. Grammar testing takes a production grammar and applies it to a given seed to
automatically generate test cases of high complexity.



We have applied the grammar-based test cases generated by lava to testing JVMs in three
separate ways. First, we used the complex test cases to look for gross errors and
violations of the JVM specification. Since Java is meant to be a type-safe system, it
should not, under any conditions, perform an illegal memory access or result in a system
crash (even non type-safe systems should avoid illegal memory accesses, but typically
the consequences are not as dire for closed, non-extensible systems. Since Java systems
can run untrusted applications, they cannot make any assumptions that illegal memory
accesses will not be exploited, for example, to probe memory and leak information). The
very first test case that we generated using a production grammar exposed that Sun
JDK1.0.2 on the Alpha platform will perform all kinds of illegal accesses when loading a
class file with deep levels of subroutine nesting. A class file, generated by only three
productions, but consisting of a few thousand Java instructions, uncovered this flaw
within seconds.

The second application of complex, grammar generated test cases was in performance
measurement. Since the grammar is parameterizable, it is quite straightforward to
produce several different test cases, each containing roughly the same mix of instructions,
and of similar complexity, only differing in length. These test cases uncovered that the
performance of our verifier implementation was O(N2log N) in the number of basic
blocks. This motivated us to find and fix the unnecessary use of ordered lists where
unordered ones would have sufficed.

The third and final application of grammar generated test cases was in the testing of code
transformation tools. Components such as Java compilers and binary rewriting engines
[Sirer et al. 98] must retain program semantics through bytecode to native code or
bytecode to bytecode transformations. Such components can be tested by submitting
complex test cases to the transformations, and comparing the behavior of the
transformed, e.g. compiled, program to the original. In our case, we wanted to ensure that
our binary rewriter preserved the original program semantics whilst it reordered basic
blocks. To test the rewriter, we created 17 test cases which averaged 1900 instructions in
length and exercised every control flow instruction in Java. The grammar was
constructed to create test cases with both forward and backward branches for each type of
jump instruction, and instrumented to print a unique number in each basic block. We then
simply executed the original test cases, captured their output and compared it to the
output of the test cases after they had been transformed through the binary rewriter. This
testing technique caught a sign extension error that incorrectly calculated backward
jumps in tableswitch and lookupswitch statements, and took a total of two days from
start to finish.

We found the overall process of generating test cases using a production grammar to be
simple, easy to steer and easy to manage. Unlike traditional general-purpose scripting
languages, which provide little more than string manipulation operations, lava provides
detailed support for test generation and organization. The structure provided by
productions resulted in modular specifications, which enabled easy mixing and matching
of different test grammars. The compact representation also simplified code management.

The one drawback of the complex test cases generated by lava was that it was not
possible to reason about the execution time properties of the generated test cases. Quite
simply, though lava could generate very complex test cases, it was not clear, without



tedious reverse engineering, what the system output ought to be on the automatically
generated input.

Luckily, the uniform structure of grammars enable some deductive reasoning about the
test cases that are generated by a given grammar. The insight behind this work is that the
test cases reflect the fundamental properties of the grammar they were generated from.
Subsequently, it is possible to prove inductively that all tests generated by any given
grammar will have the properties that are recursively preserved at every production. For
instance, it is easy to see, and inductively prove, that the sample grammar given in Figure
3 will execute all labeled blocks it generates. Using a third production, we can instrument
every labeled basic block produced by that grammar, and check to ensure that a virtual
machine enters all of the blocks during execution. We simply print the block label when
the block is entered, and, at the end of the test run, check to make sure that all blocks
appear exactly once in the trace. Using this technique, for instance, we found that some of
the control flow instructions in an early version of our interpreter had the sense of their
comparisons reversed.

5. Related Work

There has been substantial recent work on using type-systems as a foundation for
bytecode verifier implementations. Stata and Abadi have formally analyzed Java
subroutines for type-safety and postulated a type-system that can be used as the basis of a
Java verifier [Stata&Abadi 98]. Freund and Mitchell have further extended this model to
cover object allocation, initialization and use [Freund&Mitchell 98]. While these
approaches are promising, only two dozen of the two hundred operations permitted by the
Java virtual machine have been covered by this type system-based model to date. Further,
these approaches operate on abstract models of the code instead of the implementation,
and require extensive human involvement to map the model onto a complicated body of
code, such as a bytecode verifier. The strong guarantees of formal reasoning are
enervated by the manual mapping of a model onto the actual implementation.

Figure 3. A simplified lava grammar and a corresponding seed for its use. Non-
terminals are in upper case and dollar signs indicate that the value of the variable
should be substituted at that location. Overall, the grammar specification is concise
and well-structured.

insts 5000 INSTS => INST INSTS
emptyinst  INSTS => /* empty */
ifeqstmt
INST => iconst_0; INSTS; ifeq L$1;
        jmp L$2; L$1: INSTS; L$2:
jsrstmt
INST => jsr L$1; jmp L$2;
        L$1: astore $reg; INSTS;
        ret $reg; L$2:
action{ ++reg; }

Weight jsrstmt 10
Weight ifeqstmt 10
Weight insts 1
Weight emptyinst 0

.class public testapplet$NUMBER

.method test()V
  INSTS; return
.end method



An approach to verification that is common in industry is to perform source code audits,
where a group of programmers examine the code and manually check for weaknesses.
The Secure Internet Programming group at Princeton has found a number of security
flaws in Java implementations using this technique [Dean et al. 97]. While auditing can
uncover flaws, it has a number of drawbacks. First, it is very labor intensive, and
therefore expensive. Second, it requires access to source code, and is therefore not always
applicable. Finally, it provides only a limited coverage metric, namely, number of lines
that have been examined. Consequently, it is not clear whether scarcity of flaws being
uncovered using this technique is attributable to the strength of the implementation or to
the weaknesses of the auditor.

Production grammars have been used in conjunction with comparative evaluation to
check compiler implementations for compatibility [McKeeman 98]. This approach
resembles our grammar-based technique without the inductive proofs, and suffers from
the same problem of requiring a second, preferably stronger implementation of the same
functionality. Production grammars have also been used to grow realistic looking artifacts
in computer graphics [Prusinkiewicz et al. 88]. Grammars are a special case of rewrite
systems, described in [Dershowitz+ 90,Dershowitz 93].

6. Conclusion

In this paper, we have presented three techniques for automatically testing the correctness
of virtual machines and discussed their application to commercial Java VM
implementations. We have shown that a simple technique, comparative evaluation with
mutations, can be quite effective at locating flaws. More sophisticated techniques such as
production grammars can generate complex test cases from cogent, well-structured, easy
to maintain specifications. Further, production grammars enable the test administrator to
not only generate interesting test cases but also reason about their correctness and
behavior. Overall, these techniques enable the verification of Java virtual machines
cheaply and effectively.

Systems get progressively safer over time only if there is a systematic, concerted and
well-guided testing effort to make sure that flaws are not introduced, and that existing
flaws are located and fixed. We hope that the automated testing presented here will find
themselves a nice in testing large, complex, and fragile virtual machine systems.
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