
Static Analyses for Eliminating Unnecessary
Synchronization from Java Programs

Jonathan Aldrich, Craig Chambers, Emin Gun Sirer, and Susan Eggers

Department of Computer Science and Engineering
University of Washington

Box 352350
Seattle, WA 98195 USA

{jonal, chambers, egs, eggers}@cs.washington.edu

Abstract. This paper presents and evaluates a set of analyses designed to
reduce synchronization overhead in Java programs. Monitor-based
synchronization in Java often causes significant overhead, accounting for
5-10% of total execution time in our benchmark applications. To reduce this
overhead, programmers often try to eliminate unnecessary lock operations by
hand. Such manual optimizations are tedious, error-prone, and often result in
poorly structured and less reusable programs. Our approach replaces manual
optimizations with static analyses that automatically find and remove
unnecessary synchronization from Java programs. These analyses optimize
cases where a monitor is entered multiple times by a single thread, where one
monitor is nested within another, and where a monitor is accessible by only one
thread. A partial implementation of our analyses eliminates up to 70% of
synchronization overhead and improves running time by up to 5% for several
already hand-optimized benchmarks. Thus, our automated analyses have the
potential to significantly improve the performance of Java applications while
enabling programmers to design simpler and more reusable multithreaded code.

1. Introduction

Monitors [LR80] are appealing constructs for synchronization because they promote
reusable code and present a simple model to the programmer. Many modern programming
languages, such as Java [GJS96] and Modula-3, directly support monitors. While these
constructs enable programmers to easily write multithreaded programs and reusable
components, they can incur significant run time overhead. Reusable code modules may contain
synchronization for the most general case of concurrent access, even though particular
programs often use these modules in a context that is already protected from concurrency. For
instance, a synchronized data structure may be accessed by only one thread at run time, or
access to a synchronized data structure may be protected by another monitor in the program. In
both cases, unnecessary synchronization increases execution overhead. As described in section
2, even singlethreaded Java programs typically spend 5-10% of their execution time on
unnecessary synchronization operations.

Synchronization overhead can be reduced by manually restructuring programs [SNR+97],
but this typically involves trading off program performance against simplicity, maintainability,
and reusability. To improve performance, synchronization annotations can be omitted where

they are not needed for correctness in the current version of the program, or synchronized
methods can be modified to provide specialized, fast entry points for threads that already hold a
monitor lock. Such specialized functions make the program more complex, and using them
safely may require careful reasoning about object-oriented dispatch to ensure that the protecting
lock is acquired on all paths to the function call. The assumption that a lock is held at a
particular program point may be unintentionally violated by a change in some other part of the
program, making program evolution and maintenance error-prone. Hand optimizations make
code less reusable, because they make assumptions about synchronization that may not be valid
when a component is reused in another setting. In general, complex manual optimizations
make programs harder to understand, make program evolution more difficult, reduce the
reusability of components, and create an opportunity for subtle concurrency bugs to arise.

In this paper, we present and evaluate static analyses that reduce synchronization overhead
by automatically detecting and removing unnecessary synchronization. A synchronization
operation is unnecessary if there can be no contention between threads for the synchronization
operation. For example, if a monitor is only accessible by a single thread throughout the
lifetime of the program, there can be no contention for the monitor, and thus all operations on
that monitor can safely be eliminated. Similarly, if threads always acquire one monitor and
hold it while acquiring another monitor, there can be no contention for the second monitor, and
this unnecessary synchronization can safely be removed. Finally, when a monitor is acquired
by the same thread multiple times in a nested fashion, the first monitor acquisition protects the
others from contention and therefore all nested synchronization operations may be optimized
away. In order to reason statically about synchronization, we assume the compiler has
knowledge of the whole program at analysis time; future work may extend our techniques to
handle Java’s dynamic code loading and reflection features.

There are three main contributions of this paper. First, we describe several synchronization
optimization opportunities and measure their frequency of occurrence in several Java programs.
Second, we provide precise definitions for a family of analyses designed to detect unnecessary
synchronization. Finally, we present a preliminary empirical evaluation of these analyses on a
suite of benchmarks. Our partial implementation eliminates up to 70% of synchronization
overhead and improves running time by up to 5% for typical Java benchmarks on a highly
optimized platform.

The rest of the paper is structured as follows. The next section describes the Java
synchronization model, and provides measurements of synchronization overhead for typical
benchmarks. Section 3 identifies opportunities for optimizations. Section 4 provides a precise
description for a set of analyses that detect and eliminate unnecessary synchronization
operations. Section 5 summarizes the performance impact of these analyses on a set of
benchmarks, section 6 discusses related work, and section 7 concludes.

2. Java Synchronization

Java provides a monitor construct to protect access to shared data structures in a multithreaded
environment.

2.1 Semantics

The semantics of monitors in Java are derived from Mesa [GMS77]. Each object is implicitly
associated with a monitor, and any method can be marked synchronized. When executing

a synchronized method, a thread acquires the monitor associated with the receiver object,1

runs the method’s code, and then releases the monitor. An explicit synchronization statement
provides a way to manipulate monitors at program points other than method invocations. Java’s
monitors are reentrant, meaning that a single thread can acquire a monitor multiple times in a
nested fashion. A reentrant monitor is only released when the thread exits the outermost
method or statement that synchronizes on that monitor.

2.2 Cost

Synchronization represents a significant performance bottleneck for a set of Java benchmarks.
To quantify the cost of synchronization operations, we compared singlethreaded Java programs
to versions of the same programs where synchronization has been removed from both the
application and the standard Java library. Since the correctness of multithreaded benchmarks
depends on the presence of synchronization, we did not perform these measurements on
multithreaded benchmarks. However, the unnecessary synchronization present in
singlethreaded programs suggests that a significant amount of the synchronization in
multithreaded programs is also unnecessary.

We used a binary rewriter [SGA+98] to eliminate all synchronization operations from the
application binaries. This strategy allowed us to perform measurements on commercial Java
virtual machines without having to instrument and recompile them at the source level.

We examine the benchmarks using two different Java implementations that are
representative of different Java virtual machine implementations. The JDK 1.2.0 embodies a
hybrid JIT compilation and interpretation scheme, and features an efficient implementation of
lock operations. Consequently, it represents the state of the art in commercially available Java
virtual machines. Vortex, an aggressively optimizing research compiler [DDG+96], produces
natively compiled stand-alone executables and uses efficient synchronization primitives
[BKM+98]. For these figures, we use the base Vortex system, which does not contain the
analyses described in this paper.

Figure 1 shows the percentage of total execution time spent on synchronization in five
singlethreaded benchmarks for each platform. Synchronization overhead averages 5-10% of

1static synchronized methods acquire the monitor associated with the Class object for

the enclosing class.

Fig. 1. Overhead of Synchronization

-5%

0%

5%

10%

15%
20%

25%

30%

35%

40%

jlex javacup javac pizza cassowary

%
 o

f
T

ot
al

 E
xe

cu
ti

on
 T

im
e

JDK1.2.0

Vortex

execution time, depending on the platform, and can be as high as 35%. The relative cost of
synchronization varies between the platforms because of the varying amounts of optimization
they perform in the compilation process, and their different synchronization implementations.
For example, if Vortex is able to optimize the non-synchronization-related parts of a
benchmark like jlex more effectively than the JDK 1.2.0, its synchronization overhead will be
relatively more significant. In contrast, the benchmarks javac and cassowary may use
synchronization in a way that is more expensive on the JDK platform than on Vortex. Despite
the variations between platforms, synchronization overhead represents a significant portion of
the execution time for these Java benchmarks, demonstrating that there is considerable room
for performance improvement over current synchronization technology.

3. Optimization Opportunities

In this section, we describe three different opportunities for optimizing synchronization
operations.

3.1 Reentrant Monitors

Reentrant monitors present the simplest form of unnecessary synchronization. As illustrated in
Figure 2, a monitor is reentrant when one synchronized method calls another with the same
receiver object. It is safe to remove synchronization from bar if all calls to bar reachable
during program execution are within procedures that synchronize on the same receiver object.
Our optimization generalizes this example to arbitrary call paths: synchronization on the
receiver object O of method bar may be removed if along every reachable path in the call
graph to bar there is a method or statement synchronized on the same object O.

If the receiver object’s monitor has been entered along some, but not all, call paths to
method bar, specialization can be used to create two versions of bar: an unsynchronized
version for the call paths where the receiver is already synchronized, and a synchronized
version for the other call paths. The synchronized version acquires the lock and then simply
calls the unsynchronized version. For example, if bar is also called from the function main,
where the receiver object is not synchronized, bar could be specialized so that main calls a
synchronized version that acquires a monitor. Methods like foo that have already locked the
receiver object can still call the more efficient, unsynchronized version of bar.

Fig. 2. Reentrant Monitors

class Reentrant {
 synchronized foo() {
 this.bar()
 }
 synchronized bar()
 { ... }
}

class Enclosing {
 Enclosed member;
 synchronized foo() {
 member.bar();
 }
}
class Enclosed {
 synchronized bar()
 { ... }
}

Fig. 3. Enclosed Monitors

3.2 Enclosed Monitors

An enclosed monitor is a monitor that is already protected from concurrent access by another
monitor. The enclosing monitor is always entered first, and while it is held the enclosed
monitor is acquired. Later, the enclosed monitor and then the enclosing monitor will be
released. Because the enclosed monitor is only entered when the enclosing monitor is held, it is
protected from concurrent access and is unnecessary. For example, in Figure 3 the monitor on
the member object is enclosed by the monitor on the Enclosing object. Thus the
synchronization on the bar function is unnecessary and may be removed.

In order to remove synchronization safely from a monitor M during static analysis, we must
prove there is a unique, unchanging enclosing monitor that protects M, not one of several
enclosing monitors. If there were several Enclosing objects in Figure 3, for example,
different threads could access the Enclosed object concurrently by going through different
Enclosing objects, and it would be unsafe to remove synchronization from bar. There are
four ways we can ensure this is the case:

First, the enclosing monitor may store the enclosed monitor in an unshared field—a field
that holds the only reference to the enclosed object. Since the unshared field holds the only
reference to the enclosed object, the only way to enter the enclosed object's monitor is to go
through the (unique) enclosing object. We can relax the "only reference" condition in the
definition of an unshared field if we use the name of the field to identify the enclosing lock. As
long each enclosed object is only stored in one instance (i.e., run-time occurrence) of that field,
it is permissible for other fields and local variables to refer to the enclosed object, because the
field name uniquely identifies the enclosing object.

Second, the enclosing monitor may be stored in an immutable static field, i.e. a global
variable that does not change value. Because the enclosing monitor is identified by the static
field, and only one object is ever stored in that static field, the field name uniquely identifies a
monitor. The static field's monitor M encloses another monitor M’ if all synchronization
operations on M’ execute from within monitor M.

Third, the enclosing monitor may be stored in an immutable field of the enclosed monitor.
Since an immutable field cannot change, the same enclosing monitor is always entered before
the enclosed monitor. This case occurs when a method first synchronizes on a field of the
receiver object, then on the receiver object itself.

Fig. 4. Immutable Paths

class PrintWriter {
 Object lock;
 Writer out;
 void write(int c) {
 synchronized(lock) {
 out.write(c);
 }
 }
}
class StringWriter {
 synchronized write(int c)
 { ... }
}

PrintWriter

lock out

unique
path

immutable
field

unshared
field

Fourth, the cases above can be combined. For example, Figure 4 illustrates an example
similar to cases in the JDK 1.2.0 I/O library when an stream object first synchronizes on an
object in one of its fields, then calls a synchronized method on the object in another field. In
the example, it is safe to remove the synchronization on StringWriter.write because the
lock object of an enclosing stream is always locked before calling write. Since lock is an
immutable field of PrintWriter and out is an unshared field of PrintWriter, we can
use transitivity to determine that there is a unique enclosing object (lock) for each enclosed
object (out). Using transitivity, we can combine a sequence of immutable and unshared fields
into a unique path from the enclosed monitor to the enclosing monitor. A unique path
identifies a unique enclosing object relative to a particular enclosed object.

The general rule we have developed can be stated as follows:

A synchronization statement S may be removed if, for every other synchronization
statement S’ that could synchronize on the same object as S, there exists an unique path
of links such that:

1. The first link represents the object synchronized on by S and S’
2. Each subsequent link is either an unshared field of an object that encloses the

link before or an immutable field that is enclosed by the link before
3. The last link represents an object that is synchronized on all call paths that

reach S and is also synchronized on all call paths that reach S’

As in the case of reentrant monitors, synchronization statements on enclosed objects may be
specialized if it is legal to remove synchronization on some instances of a class but not others.
For example, the root node in a binary tree encloses all of the inner nodes, so specialization
could create two kinds of nodes: one that is synchronized for creating the root of a binary tree,
and one that is unsynchronized for creating the inner nodes of the tree.

3.3 Thread-Local Monitors

Figure 5 shows an example of a thread-local monitor. Instances of the Local class are only
accessible by the thread that created them, because they are created on the stack and are not

Fig. 5. Thread-Local Monitors Fig. 6. Optimization Potential

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

jlex javacup javac pizza cassowary

% Reentrant % Enclosed % Thread-localclass Local {
 synchronized foo()
 { ... }
}
main() {
 new Local().foo();
}

accessible via any static field. Since static fields are the only base case for sharing data
between threads in Java’s memory model, it is safe to remove synchronization on methods of
any class that is unreachable from static fields. In our model, Thread and its subclasses are
stored in a global list, so that passing references from one thread to another during thread
creation is handled correctly. Specialization can eliminate synchronization when some
instances of a class are thread-local and other instances are not.

3.4 Optimization Potential

Figure 6 shows an estimate of the opportunities for optimization in our benchmark suite,
demonstrating that different programs present different optimization opportunities. This data
was collected from dynamic traces of the five Java programs running on the JDK 1.1.6. For
each benchmark, it shows the percentages of dynamic monitor operations that were reentrant,
enclosed (by a different monitor), and thread-local, representing an upper bound for how well
our analyses could perform. The bars may add up to more than 100% because some
synchronization operations may fall into several different categories. All the benchmarks do
100% of their synchronization on thread-local monitors because they are singlethreaded, and so
no monitor is ever locked by more than one thread. Multithreaded benchmarks would have
some synchronization that is not thread-local, but we believe that thread-local monitors would
still represent a significant opportunity in these benchmarks.

The benchmarks differ significantly in the optimization opportunities they present. For
example, 41% of the synchronization in jlex is reentrant but less than 1% is enclosed. In
contrast, 97% of the synchronization in javac is enclosed and virtually none is reentrant. For
these singlethreaded benchmarks, thread-local monitors present the greatest opportunity for
optimization, with two programs gaining significant benefit from enclosing or reentrant
monitors. This data demonstrates that each kind of optimization is important for some Java
programs.

4. Analyses

We define a simplified analysis language and describe three analyses necessary to optimize the
synchronization opportunities discussed above: lock analysis, unshared field analysis, and
multithreaded object analysis. Lock analysis computes a description of the monitors held at
each synchronization point so that reentrant locks and enclosed locks can be eliminated.
Unshared field analysis identifies unshared fields so that lock analysis can safely identify
enclosed locks. Finally, multithreaded object analysis identifies which objects may be
accessible by more than one thread. This enables the elimination of all synchronization on
objects that are not multithreaded. Our analyses can rely on Java’s final annotation to detect
immutable fields; an important area of future work is to detect immutable fields that are not
explicitly annotated as final.

4.1 Analysis Language

We describe our analyses in terms of a simple expression-based core language, incorporating
the essential synchronization-related aspects of Java. This allows us to focus on the details
relevant to specifying the analyses while avoiding some of the complexity of a real language. It
is straightforward to handle the missing features of Java—our prototype implementation

handles all of the Java language except reflection and dynamic code loading, which are omitted
to enable static reasoning.

Figure 7 presents our analysis language. It is a simple, first-order language, incorporating
object creation, field access and assignment, let-bound identifiers, synchronization expressions,
and simple control flow. Each object creation point is labeled with a class key [GDD+97],
which identifies the group of objects created at that point. In our implementation, there is a
unique key for each new statement in the program; in other implementations a key could
represent a class, or could represent another form of context sensitivity. We assume that all let-
bound identifiers are given unique names. Static field references are modeled as references to a
field of the special object global, which is implicitly passed to every procedure. We assume
all procedures are put into an implicit global table before evaluating the main expression. The
lookup function returns the λ-expression associated with a particular procedure.

We model ordinary binary operators like + and ; (which evaluates and discards its first
argument before returning the second) with the E1 op E2 syntax. Control flow operations
include simple function calls and a functional if expression—facilities that can be combined
to form other structures like loops and object-oriented dispatch. Finally, Java’s synchronization
construct is modeled by a synchronized statement, which locks the object referred to by E1
and then evaluates E2 before releasing the lock. Each synchronized statement in the
program text is associated with a unique label ∈ LABEL that is used in our analyses.

4.2 Analysis Context

Our analyses are parameterized by other alias and class analyses, a feature of our approach that
allows a tradeoff between analysis time and the precision of our analysis results. Our analyses
also benefit from earlier copy propagation and must-alias analysis passes, which merge
identifiers that point to the same object. We assume the following functions are defined from
earlier analysis passes:

id_aliases(e) – the set of identifiers that may point to the same value as
expression e

field_aliases(field) – the set of fields declarations whose instances may
point to the same object as field. This information can be
easily computed from a class analysis.

id, field, fn ∈ ID
label ∈ LABEL
key ∈ KEY
e, program ∈ E
 E ::= newKEY

 | ID
 | let ID := E1 in E2
 | E.ID
 | E1.ID := E2
 | E1 op E2
 | synchronizedLABEL (E1) { E2 }
 | if E1 then E2 else E3
 | ID(E1,...,En)

Fig. 7. Core Analysis Language

is_immutable(field) – true if field is immutable (i.e., write-once).
This may be deduced from final annotations and constructor
code.

label_aliases(label) – the set of labels of synchronization statements
that may lock the same object as the synchronization statement
associated with label

Some of our analyses deal with groups of objects, represented by class keys. We assume
that an earlier class pass has found a conservative approximation to the set of objects that can
be in each variable or field in the program. Our implementation uses the 1-1-CFA algorithm
[S88][GDD+97], which considers each procedure in one level of calling context and analyzes
objects from different creation points separately, and the 0-CFA algorithm, which lacks this
context-sensitivity. We use the following functions to access this information:

field_keys(field, key) – the set of class keys to which field field may
refer when accessed through a particular class key key

static_field_keys(field) – the set of class keys to which static field
field may refer

label_keys(label) – the set of class keys that the synchronization
expression associated with label may lock.

4.3 Analyses

Our analyses compute the following functions:

get_locks(label) – the set of locks held at a particular synchronization
point denoted by label. A lock is represented by a path of two
kinds of field links, as described below.

is_unshared(field) – true if field is unshared
is_multithreaded(key) – true if objects described by key may be

accessible through static variables

We describe our first two analyses in syntax-directed form, where a semantic function maps
an expression and a set of inherited attributes to a set of synthesized attributes. The third
analysis uses only data from previous analyses and does not work directly over the program
text.

Lock Analysis. Figure 8 defines the domains and helper functions that are used by our lock
analysis flow functions. Our lock analysis, shown in Figure 9, describes locks in terms of paths
and bipaths. A path names a particular object relative to an identifier, and consists of the
identifier name and a series of field accesses. Thus, the path id → field1 → field2
represents the expression id.field1.field2. A bipath represents a bi-directional path.
The forward links represent field dereferences, as in paths, while the backward links mean “is
enclosed by”—that is, in a bipath of the form bipathsub ← field, the expression denoted by
bipathsub is referenced by the field field of some unspecified object. In our descriptions, we
use the notation m[x → y] to denote that we compute a new mapping ∈ X → Y that is identical
to mapping m except that element x ∈ X is mapped to y ∈ Y.

The lock analysis function L accepts four arguments in curried style. The first argument is
an expression from the text of the program. The second argument, a lockset, is the set of
bipaths representing locks held at this program point. The third argument, a lockmap, is the
current mapping from synchronization labels to sets of bipaths representing locks held at each
labeled synchronization statement. The final argument, an idmap, is a mapping from identifiers
to paths that describe the different field expressions that the identifier aliases. The result of
lock analysis is a lockmap that summarizes the locks held at every reachable synchronization
label in the program. We analyze the expression representing the program in the context of an
empty lockset (no lock encloses the entire program expression), an optimistic lockmap (no
synchronization points have been analyzed yet), and an empty idmap (no identifiers are in
scope).

Many of the analysis flow functions in Figure 9 are relatively straightforward; we discuss
only the more subtle ones below. The rules for let and id expressions update the idmap for
identifiers and return the pathset represented by an identifier. A field expression simply
extends all paths in e’s pathset with field.

path ∈ PATH = ID + PATH → ID
dir ∈ DIR = { →, ← }
bipath ∈ BIPATH = ID + BIPATH × DIR × ID
lockset ∈ LOCKSET = 2BIPATH

lockmap ∈ LOCKMAP = LABEL →fin LOCKSET
idmap ∈ IDMAP = ID →fin 2

PATH

is_immutable_path(path) : bool
switch (path)

case id : true
case path’ → field : is_immutable(field) ∧ is_immutable_path(path’)

is_prefix(bipath1, bipath2) : bool
if (bipath1 = bipath2) then true
else if (bipath2 = id) then false
else if (bipath2 = bipath’ dir field) then is_prefix(bipath1, bipath’)

substitute(bipath1, path, bipath2) : BIPATH
if (bipath1 = path) then bipath2

else if (bipath1 = bipath’ dir field)
then substitute(bipath’, path, bipath2) dir field

else error

map_lock(bipath1, path, bipath2) : BIPATH ∪ { not_defined }
if (is_prefix(path, bipath1)) then substitute(bipath1, path, bipath2)
else if (path = path’ → field ∧ is_unshared(field))

then map_lock(bipath1, path’, bipath2 ← field)
else not_defined

map_lockset(lockset, path1, path2) : LOCKSET
{ map_lock(bipath, path1, path2) | bipath ∈ lockset } - { not_defined }

Fig. 8. Domains and Helper Functions for Lock Analysis

L : E → LOCKSET → LOCKMAP → IDMAP → 2PATH × LOCKMAP

get_locks(label) : LOCKSET =
let (pathset’, lockmap’) = L[[program]] Ø Ø Ø in lockmap'(label)

L[[newkey]] lockset lockmap idmap = (Ø, lockmap)

L[[id]] lockset lockmap idmap = ({ id } ∪ idmap(id), lockmap)

L[[let id := e1 in e2]] lockset lockmap idmap =
let (pathset', lockmap') = L[[e1]] lockset lockmap idmap in

L[[e2]] lockset lockmap' idmap[id → pathset']

L[[e.field]] lockset lockmap idmap =
let (pathset', lockmap') = L[[e]] lockset lockmap idmap in

({ path → field | path ∈ pathset' }, lockmap')

L[[e1.field := e2]] lockset lockmap idmap =
let (pathset', lockmap') = L[[e2]] lockset lockmap idmap in
let (pathset'', lockmap'') = L[[e1]] lockset lockmap' idmap in

(Ø, lockmap'')

L[[e1 op e2]] lockset lockmap idmap =
let (pathset', lockmap') = L[[e1]] lockset lockmap idmap in
let (pathset'', lockmap'') = L[[e2]] lockset lockmap' idmap in

(Ø, lockmap'')

L[[synchronizedlabel (e1) { e2 }]] lockset lockmap idmap =
let (pathset', lockmap') = L[[e1]] lockset lockmap idmap in

let lockmap'' = lockmap'[label → U
’pathsetpath∈

map_lockset(lockset, path, SYNCH)] in

L[[e2]] (lockset ∪ { path | path ∈ pathset' ∧ is_immutable_path(path) }) lockmap'' idmap

L[[if e1 then e2 else e3]] lockset lockmap idmap =
let (pathset', lockmap') = L[[e1]] lockset lockmap idmap in
let (pathset'', lockmap'') = L[[e2]] lockset lockmap' idmap in
let (pathset''', lockmap''') = L[[e3]] lockset lockmap'' idmap in

(pathset'' ∩ pathset''', lockmap''')

L[[fn(e1,...,en)]] lockset lockmap0 idmap =
let [[λ(formal1,...,formaln) e]] = lookup(fn) in
∀i ∈ 1..n let (pathseti, lockmapi) = L[[ei]] lockset lockmapi-1 idmap in

let lockset' = U
ipathsetpath

ni
∈
∈ ..1

map_lockset(lockset, path, formali) in

let (pathset', lockmap') = context_strategy(L[[e]] lockset' lockmapn Ø) in
({ substitute(path, formali, path')

| path ∈ pathset' ∧ ∃i ∈ 1..n s.t. is_prefix(formali, path) ∧ path' ∈ pathseti },
lockmap')

Fig. 9. Lock Analysis Flow Functions

When a synchronization statement is encountered, the lockmap is updated with all of the
bipaths in the lockset. Before being added to the lockset, however, these bipaths are converted
to a normal form in terms of e1, the expression on which the statement synchronizes. This
normal form allows us to compare the bipath descriptions of the locks held at different
synchronization points in the program in the lock elimination optimization described below.

The normal form expresses a lock in terms of the special identifier SYNCH representing e1,
the object being locked. The map_lockset function considers each bipath in the lockset in turn
and uses map_lock to compute a new bipath in terms of a mapping from the pathset of e1 to
SYNCH. For each bipath b in the lockset, map_lock will substitute SYNCH into the lock
expression bipath if the bipath is a prefix of b. For example, if the path corresponding to e1 is
id → field1 and the lockset is { id → field1 → field2 }, then map_lock(id →
field1 → field2, id → field1, SYNCH) = SYNCH → field2, signifying that the field
field2 of the object referred to by e1 is already locked at this point.

If the prefix rule does not apply and the last field field in the synchronization expression
path is unshared, then map_lock will try to match against a shorter prefix with SYNCH ←
field as the expression to be substituted. In Figure 5, the synchronization expression
PrintWriter → out is not a prefix of the currently locked object PrintWriter →
lock, so since out is an unshared field map_lock will attempt to substitute SYNCH ← out
for PrintWriter instead. Thus the result we get is map_lock(PrintWriter → lock,
PrintWriter → out, SYNCH) = SYNCH ← out → lock. That is, at the current
synchronization point the program holds a lock on the lock field of the object whose out
field points to the object currently being synchronized. This is a correct description of the case
in Figure 5.

Next, the expression inside the synchronization block is evaluated in the context of the
current lockset combined with all paths in the synchronization expression’s pathset that are
unique. The is_immutable_path function, which checks that each field in a path is
immutable, ensures that no lock description is added to the lockset unless it uniquely identifies
the locked object in terms of the base identifier.

At function calls, we look up the definition of the called function and evaluate the actual
parameters to produce a set of paths for each parameter and an updated lockmap. The
map_lockset function is used to map actual paths to formal variables in each lock in the
lockset. Information about locks that are not related to formal parameters (including the
implicit formal parameter global mentioned subsection 4.2) cannot be used by the callee,
since there would be no way to ensure that the locked object protects any synchronization
statements there. The callee is analyzed in the context of the new lockset and lockmap, and the
result is memoized to avoid needless recomputation.

Our analysis may be parameterized by a context_strategy function that allows a varying
level of context sensitivity. The current implementation is context-insensitive—it simply
computes the intersections of the incoming lockset with all other locksets and re-evaluates the
callee in the context of the new lockset if the input information has changed since the last
analysis. We avoid infinite recursion in our analysis by returning an empty pathset and the
existing lockmap when a lock analysis flow function is called recursively with identical input
analysis information; the analysis will automatically iterate until a sound fixpoint is reached.
Since the lockset must decrease in size each time a function is reanalyzed, termination of our
analysis is assured. Finally, the set of paths is returned from the function call by mapping back
from formals to actuals.

fset, shared ∈ FSET = 2ID

idstate ∈ IDSTATE = ID →fin FSET

U : E → IDSTATE → FSET → FSET × IDSTATE × FSET

is_unshared(field) = let (idstate, shared) = U[[program]] Ø Ø in (field ∉ shared)

U[[newkey]] idstate shared = (Ø, idstate, shared)

U[[id]] idstate shared = (idstate(id), idstate, shared)

U[[let id := e1 in e2]] idstate shared =
let (fset', idstate', shared') = U[[e1]] idstate shared in

U[[e2]] idstate'[id → fset'] shared'

U[[e.field]] idstate shared =
let (fset', idstate', shared') = U[[e]] idstate shared in

(field_aliases(field), idstate', shared')

U[[e1.field := e2]] idstate shared =
let (fset', idstate', shared') = U[[e1]] idstate shared in
let (fset'', idstate'', shared'') = U[[e2]] idstate' shared' in
let fset''' = field ∪ fset'' in

(fset''',
idstate''[id → idstate''(id) ∪ fset''' | id ∈ id_aliases(e2)],
if (fset'' ∉ field) then shared'' else shared'' ∪ field)

U[[e1 op e2]] idstate shared =
let (fset', idstate', shared') = U[[e1]] idstate shared in
let (fset'', idstate'', shared'') = U[[e2]] idstate' shared' in

(fset' mergeop fset'', idstate'', shared'')

U[[synchronizedlabel (e1) { e2 }]] idstate shared =
let (fset', idstate', shared') = U[[e1]] idstate shared in

U[[e2]] idstate' shared'

U[[if e1 then e2 else e3]] idstate shared =
let (fset', idstate', shared') = U[[e1]] idstate shared in
let (fset'', idstate'', shared'') = U[[e2]] idstate' shared' in
let (fset''', idstate''', shared''') = U[[e2]] idstate' shared' in

(fset'' ∪ fset''', idstate'' ∪ idstate''', shared'' ∪ shared''')

U[[fn(e1,...,en)]] idstate0 shared0 =
let [[λ(formal1,...,formaln) e]] = lookup (fn) in
∀i ∈ 1..n let (fseti, idstatei, sharedi) = U[[ei]] idstatei-1 sharedi-1 in
let idstate' = { formali → fseti | i ∈ 1..n } in
let (fset'', idstate'', shared'') = context_strategy(U[[e]] idstate' sharedn) in

(fset'',
idstaten[id → idstaten(id) ∪ idstate''(formali) | i ∈ 1..n and id ∈ id_aliases(ei)],
shared'')

Fig. 10. Unshared Field Analysis

Unshared Field Analysis. The unshared field analysis described in Figure 10 computes the set
of fields that are shared, i.e. may refer to objects that are also stored in other instances (that is,
run-time occurrences) of the same field. Unshared fields are in the complement of this shared
field set. The result of this analysis is used in the map_lock function of the previous analysis
to detect enclosing locks.

The information computed by unshared field analysis differs from the result of the
field_aliases function in two essential ways. First, the field_aliases function cannot tell
whether two instances of a given field declaration may point to the same object, which
determines whether a given field is shared. Second, our unshared field analysis is flow-
sensitive, enabling increased precision over non-flow-sensitive techniques.

The analysis works by keeping track of which fields each identifier and expression could
alias. When a field is assigned a value that may have originated in another instance of the same
field, the analysis marks the field shared. U, the analysis function for unshared field analysis,
accepts as curried parameters a program expression, the set of currently shared fields, and a
mapping from identifiers to the sets of fields whose contents they may point to. It then
computes the set of fields the expression may alias and an updated set of shared fields. Our
analysis is run on the program’s top-level expression, using an initially empty identifier
mapping (since no identifiers are initially in scope) and initially optimistically assuming that all
fields are unshared. The rules for field references, field assignment, and function calls are the
most interesting.

When a field field is dereferenced, the resulting expression may alias any field in
field_aliases(field). At assignments to a field field, we must update the identifier
mapping for any identifier that could alias the expression being assigned to field, since the
values these identifiers point to could also be referenced by field due to the assignment. In
fact, due to the actions of other threads, these identifiers could alias any field in
field_aliases(field). For the purposes identifying unshared fields, however, we can
optimistically assume that such aliasing does not occur when writing to a field. This enables
our analysis to detect unshared fields even when the same object is written to two fields with
different names. If this object is later copied from one field to another, the field written to will
be correctly identified as shared because aliasing is accounted for when reading fields. If the
expression being assigned may not alias the field being assigned, then the field being assigned
may remain unshared; otherwise, it is added to the shared set. In expressions of the form e1
op e2, the correct merge function for the expression’s field set depends on the operator. For
example, the merge function for the ; operand simply returns the field set of its second
argument.

At a function call, we lookup the callee and evaluate all the argument expressions to get a
set of fields for each of them as well as an updated identifier map and shared field set. The
idstate for the callee consists of a mapping from its formal parameters to the field sets of each
actual parameter expression. We then evaluate the callee in the context of the new idstate and
the current shared set, and return the resulting field set and shared set. After evaluating the
callee, it is also necessary to update the identifier state of the caller. Every id that may alias an
actual expression could now reference any field that the formal parameter of the callee could
reference after evaluating the callee. This update is necessary because some callee (possibly
several levels down the call graph) may have assigned the parameter’s value to a field.

Our context_strategy for this analysis is context sensitive, as we re-evaluate the callee for
each different identifier mapping. In practice, context sensitivity enables results that are much
more precise. For example, when a callee is called with a formal parameter aliased to field
at one call site, we don’t want all other call sites to see that the formal may alias field after
the call and thus conservatively assume that the callee assigned that formal to field.
Termination is assured because the results of each analysis are memoized, and the size of the
field sets is bounded by the number of fields in the program. Recursive functions are handled

by optimistically returning the empty set of fields at recursive calls, and the analyses
subsequently iterate until a sound fixpoint is reached.

Multithreaded Object Analysis. We define multi, a set of class keys, as the smallest set
satisfying the recursive equation shown in Figure 11. Then we define is_multithreaded as
follows:

is_multithreaded(key) = key ∈ multi

Our implementation simply starts with class keys referenced by static fields, and for each
class key it considers each field of that key and adds the keys that field may reference to the set
multi. When the set reaches the least fixed point, the analysis is complete. The analysis must
terminate because there is a finite number of class keys to consider.

4.4 Applying the Results

To apply the results of our analyses, we perform an optimization pass during code generation.
At each statement of the form

synchronizedlabel (e1) { e2 }

we replace it with the statement e1; e2 if any of the following conditions holds:

1. SYNCH ∈ get_locks(label), or
2. ∀ label’ ∈ label_aliases(label) .

 get_locks(label) ∩ get_locks(label’) ≠ Ø, or
3. ∀ key ∈ label_keys(label) . ¬is_multithreaded(key)

The first condition represents a reentrant monitor—if the monitor associated with expression e1
is already locked, then SYNCH ∈ get_locks(label). Here get_locks(label) is defined (in
Figure 9) to be the result of lock analysis at the program point identified by label. We can
safely replace the synchronized expression with a sequence that evaluates the lock expression
(for potential side effects) and then evaluates and returns the expression protected within the
synchronization statement. The second condition represents the generalization to enclosed
locks: a synchronization statement S may be eliminated if, for every other synchronization
statement S’ that may lock the same object, some common lock is already held at both S and S’.
The third condition removes synchronization statements that synchronize on an expression that
refers only to non-multithreaded class keys.

Due to the complicated semantics of monitors in Java, our optimizations may not conform to
the Java specification on some multiprocessor systems. According to the Java language
specification, “locking any lock conceptually flushes all variables from a thread's working
memory, and unlocking any lock forces the writing out to main memory of all variables that the
thread has assigned.” [GJS96] This implies, for example, that a legal Java program may pass
data (in a timing-dependent manner) from one thread to another by having each thread

Fig. 11. Multithreaded Object Analysis

=

∈
∈∈
UU U

)(

),()(

kfieldsf
multikdsstaticFielf

kffield_keysfld_keysstatic_fiemulti

synchronize on a thread-local object. This kind of “covert channel” communication could be
broken by our optimizations. An implementation that synchronizes the caches of a
multiprocessor even when other parts of a synchronization operation have been removed would
comply with the Java specification, for example. Our optimizations are always safe, however,
in a Java-like language with a somewhat looser synchronization guarantee which could be
informally stated as follows: if thread T1 writes to a variable V and then unlocks a lock and
thread T2 locks the same lock and reads variable V, then thread T2 will read the value that T1
wrote. We believe that most well written multithreaded programs in Java use this model of
synchronization.

5. Results

A preliminary performance evaluation shows that a subset of our analysis is able to eliminate
30-70% of the synchronization overhead in several of our benchmarks. We have implemented
prototype versions of reentrant lock analysis and multithreaded object analysis, and
transformations that use the results of these analyses. Our implementation does not yet apply
specialization to optimize different instances of an object or method separately. Although our
results are preliminary, they demonstrate the promise of our approach. We plan to complete
and evaluate a more robust and detailed implementation in the future, which will include
unshared field analysis and enclosed lock analysis.

We demonstrate the performance benefit of our analyses on the five singlethreaded
benchmarks presented earlier. While these benchmarks could be optimized trivially by
removing all synchronization, they are real programs and may be partly representative of how
synchronization is used in multithreaded programs as well. Javac, javacup, jlex, and pizza are
all compiler tools; cassowary is a constraint solver. We hope to evaluate our techniques on
multithreaded programs in the future.

Our prototype implementation is built on the Vortex compiler infrastructure [DDG+96]
augmented with a simple, portable, non-preemptive, user-level threading package based on
QuickThreads [K93]. We compiled all programs with a full suite of conventional
optimizations, as well as interprocedural class analysis. For our small benchmarks, we used a
1-1-CFA call graph construction algorithm [GDD+97]; this did not scale well to pizza, javac,
and javacup, so we used a simpler 0-CFA analysis for these programs, possibly missing some
optimization opportunities due to more conservative alias information. Our lock
implementation is already highly optimized, using an efficient lock implementation [BKM+98].
We compiled two versions—one with and one without our synchronization optimizations.
Both versions included all other Vortex optimizations. All our runtime overhead measurements
come from the average of five runs on a SPARC ULTRA 2 machine with 512 MB of memory.
We ran the benchmarked program once before the data were collected to eliminate cold cache
startup effects.

Table 1 shows statistics about how our analyses performed. The first two columns show the
total number of classes in the program and the number identified as thread-local. Multithreaded
object analysis identified a large fraction of classes as singlethreaded for the jlex, javacup, and
cassowary benchmarks, but was less successful for javac or pizza. Since these benchmarks are
singlethreaded, all their classes are thread-local. However, because our analysis assumes static
field references make a class reachable by other threads, our analysis is only able to determine
this for a subset of the classes in each program.

Table 1. Synchronization Analysis Statistics

The next four columns of Table 1 show the total (static) number of synchronization
operations, the number removed by reentrant lock analysis, the number of thread-local
operations removed, and the total number of operations removed. The total is less than the sum
from the two analyses because some synchronization operations were removed by both
analyses. As suggested by the class figures in the first two columns, multithreaded object
analysis was more effective than reentrant lock analysis for jlex, javacup, and cassowary, while
pizza and javac only benefited from reentrant lock analysis. In general, our analyses removed
20-40% of the static synchronization operations in the program.

The last column summarizes our runtime performance results. We present the speedup
achieved by our optimizations as a percentage of the overhead of synchronization for Vortex.
For jlex, javacup, and cassowary, we eliminated a significant percentage of the synchronization
overhead, approaching 70% in the case of jlex. The absolute speedups ranged up to 5% in the
case of jlex. Pizza did not have a significant overhead from synchronization, so no speedup
was achievable. We also got no measurable speedup on javac.

The speedup in the case of jlex is due the large number of stack operations performed by this
benchmark, which our analysis optimized effectively. Multithreaded analysis discovered that
all of the Stack objects were thread-local, and lock analysis was successful in removing some
reentrant locks in the Stack code. Most of the remaining synchronization is on
DataOutputStream and BufferedOutputStream objects. Multithreaded object
analysis determined that DataOutputStream was thread-local and that the most important
instances of BufferedOutputStream were thread-local, but because our implementation
does not yet produce specialized code for instances of BufferedOutputStream that are
thread-local we were unable to take advantage of this knowledge. Implementing specialization
would improve our optimization performance here.

Over 99% of Javacup’s synchronization comes from manipulation of strings, bitsets, stacks,
hashtables, and I/O streams. Multithreaded analysis was able to remove synchronization from
every method of StringBuffer, but was did not eliminate synchronization from other
objects. Each of the other classes was reachable from a static variable, either in the Java library
or in the javacup application code.

To optimize this code effectively would require three additional elements. First, we need a
scalable analysis that distinguishes program creation points so that one multithreaded
Hashtable does not make all Hashtables multithreaded. Our current 1-1-CFA analysis
that distinguishes creation points does not scale to javacup or javac, and therefore our
performance suffers for both benchmarks. Second, we need specialization to optimize different
instances of the same class separately. Third, we need a more effective multithreaded analysis
that can determine if a static variable is only used by one thread, rather than conservatively
assuming all such variables are multithreaded.

total thread-local reentrant thread-local total

jlex 56 34 27 2 8 9 67%
pizza 184 0 38 6 0 6 N/A
javacup 66 28 30 2 6 7 47%
cassowary 57 29 32 4 12 13 27%
javac 194 0 68 5 0 5 0%

% overhead
removed

classes total lock
ops

Benchmark lock ops removed

In Cassowary, multithreaded analysis was able to remove synchronization from all the
methods of Vector. However, the primary source of synchronization overhead was
Hashtable, which was not optimized by our multithreaded analysis because it was reachable
from static fields.

Although a few operations were optimized in javac, we did not measure any speedup in this
benchmark. Since javac executes many operations on enclosed monitors, we expect these
results to improve once we have implemented our unshared field analysis and enclosed lock
analysis.

Considering that we have achieved a significant fraction of the potential speedup for several
of our benchmarks although many important elements of our analyses are not yet implemented,
we find these results promising.

6. Related Work

A large body of work (e.g., [ALL89] [KP98]) has focused on reducing the overhead of locking
or synchronization operations. Most recently, Bacon’s Thin Locks [BKM+98] reduce the
overhead of Java’s synchronization to a few instructions in the common case. Thin locks
improve the performance of real programs by up to 70% by reducing the latency of individual
synchronization operations. Our analyses complement this work by reducing the number of
synchronization operations.

Diniz and Rinard [DR98] present two techniques for lock coarsening in parallelizing
compilers: merging multiple locks into one, so that several objects are protected by one lock,
and transforming locks that are repeatedly acquired and released within a method so that they
are only acquired and released once. Their work is applicable to explicitly parallel programs;
however, they do not evaluate their optimizations in this context. They do not consider thread-
local locks, do not consider immutable fields as a potential source of lock nesting, and
apparently can only optimize nested locks in languages like C++ where objects can be statically
declared to be represented inline. Their coarsening optimizations are complementary to our
work; while we can eliminate a broader class of redundant locks, their optimizations may lead
to acquiring the non-redundant locks fewer times.

Another source of related work is the Concert project at the University of Illinois. To
reduce the overhead of lock operations, they optimize calls from one method to another on the
same receiver by eliminating the lock operation from the second method during inlining
[PZC95]. They also do a lock coarsening optimization similar to that in [DR98]. Our research
extends and generalizes their results by optimizing enclosing locks and thread-local objects.

Our concept of an unshared field is similar to idea of a unique pointer [M96] or unique
aliasing mode [H91][NVP98]. Unlike the previous work, we find unshared fields
automatically, rather than requiring annotations from the programmer. Our unshared field
analysis is similar to an analysis used by Dolby to inline object fields [D97]. In order to safely
inline a field, his system propagates tags to determine which fields could alias particular
variables. The precision of his analysis is identical to ours given a similar analysis framework,
but his work requires more strict conditions to inline a field than ours requires to identify an
unshared field.

Work from the model-checking community [C98] performs shape analyses similar to ours in
order to simplify models of concurrent systems. These analyses remove recursive locks and
locks on thread-local objects from formal models. This allows a model checker to more easily
reason about the concurrency properties of a Java program. An analysis similar to enclosing
lock analysis is also performed, not to eliminate enclosed locks, but to reason about which
objects might be subject to concurrent (unprotected) access. The analyses are intraprocedural,
and thus are only applicable to small programs where all methods are inlined. The work does

not describe the analyses precisely, nor does it consider the potential performance
improvements of removing unnecessary synchronization. Our work precisely describes a
family of interprocedural analyses for removing unnecessary synchronization and provides an
initial evaluation of their effects on set of benchmarks.

The Extended Static Checking System [DRL+98] allows a programmer to specify a locking
protocol using code annotations. The program is then checked for simple errors such as
deadlocks or race conditions. This system complements ours by focusing on the correctness of
the source code, while our analyses increase the efficiency of the generated code.

7. Conclusion

This paper presented a set of interprocedural static analyses that effectively detect and eliminate
unnecessary synchronization. These analyses identify excess synchronization operations due to
reentrant locks, enclosed locks, and thread-local locks. A partial implementation of our
analyses eliminates 30-70% of synchronization overhead on three Java benchmarks. Our
optimizations support a style of programming in which synchronization code is written for
software engineering objectives rather than hand-optimized for efficiency.

Acknowledgements

This work has been supported in part by a National Defense Science and Engineering Graduate
Fellowship from the Department of Defense, NSF grant CCR-9503741, NSF Young
Investigator Award CCR-9457767, and gifts from Sun Microsystems, IBM, Xerox PARC,
Object Technology International, Edison Design Group, and Pure Software. We appreciate
feedback and pointers to related work from David Grove, Martin Rinard, William Chan,
Satoshi Matsuoka, members of the Vortex group, and the anonymous reviewers. We also thank
the authors of our benchmarks: JavaSoft (javac), Philip Wadler (pizza), Andrew Appel (jlex and
javacup), and Greg Badros (cassowary).

References

[ALL89] T. E. Anderson, E. D. Lazowska and H. M. Levy. The Performance Implications of
Thread Management Alternatives for Shared-Memory Multiprocessors. IEEE Transactions
on Computers 38(12), December 1989, pp. 1631-1644.

[BKM+98] D. Bacon, R. Konuru, C. Murthy, M. Serrano. Thin Locks: Featherweight
Synchronization for Java. In Proceedings of the 1998 Conference on Programming
Language Design and Implementation, Montreal, Canada, June 1998.

[BW88] H. Boehm and M. Weiser. Garbage Collection in an Uncooperative Environment.
Software Practice & Experience, September 1988, pp. 807-820.

[C98] J. Corbett. Using Shape Analysis to Reduce Finite-State Models of Concurrent Java
Programs. In Proceedings of the International Symposium on Software Testing and
Analysis, March 1998. A more recent version is University of Hawaii ICS-TR-98-20,
available at http://www.ics.hawaii.edu/~corbett/pubs.html.

[DDG+96] J. Dean, G. DeFouw, D. Grove, V. Litvinov, and C. Chambers. Vortex: An
Optimizing Compiler for Object-Oriented Languages. In Proceedings of the Eleventh

Conference on Object-Oriented Programming, Systems, Languages, and Applications,
October 1996.

[DRL+98] David L. Detlefs, K. Rustan, M. Leino, Greg Nelson, and James B. Saxe. Extended
Static Checking. Compaq SRC Research Report 159. 1998.

[DR98] P. Diniz and M. Rinard. Lock Coarsening: Eliminating Lock Overhead in
Automatically Parallelized Object-based Programs. In Journal of Parallel and Distributed
Computing, Volume 49, Number 2, March 1998, pp. 218-244.

[D97] J. Dolby. Automatic Inline Allocation of Objects. In Proceedings of the 1997 ACM
SIGPLAN Conference on Programming Language Design and Implementation, June 1997.

[GMS77] C. M. Geschke, J. H. Morris and E. H. Satterthwaite. Early Experiences with Mesa.
Communications of the Association for Computing Machinery, 20(8), August 1977, pp.
540-553.

[GJS96] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley,
1996.

[GDD+97] D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call Graph Construction in
Object-Oriented Languages. In Proceedings of the 12th Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 1997.

[H91] J. Hogg. Islands: Aliasing Protection in Object-Oriented Languages. In Proceedings of
the Sixth Conference on Object-Oriented Programming, Systems, Languages, and
Applications, November 1991.

[K93] D. Keppel. Tools and Techniques for Building Fast Portable Thread Packages.
University of Washington Technical Report UW CSE 93-05-06, May 1993.

[KP98] A. Krall and M. Probst. Monitors and Exceptions: How to implement Java efficiently.
ACM 1998 Workshop on Java for High-Performance Network Computing, 1998.

[LR80] B. Lampson and D. Redell. Experience with Processes and Monitors in Mesa. In
Communications of the Association for Computing Machinery 23(2), February 1980, pp.
105-117.

[M96] N. Minsky. Towards Alias-Free Pointers. In Proceedings of the 10th European
Conference on Object Oriented Programming, Linz, Austria July 1996.

[NVP98] J. Noble, J. Vitek, and J. Potter. Flexible Alias Protection. In Proceedings of the 12th
European Conference on Object Oriented Programming, Brussels, Belgium, July 1998.

[PZC95] J. Plevyak, X. Zhang, and A. Chien. Obtaining Sequential Efficiency for Concurrent
Object-Oriented Languages. In Proceedings of the 22nd Symposium on Principles of
Programming Languages, San Francisco, CA, January 1995.

[S88] Olin Shivers. Control-Flow Analysis in Scheme. SIGPLAN Notices, 23(7):164-174,
July 1988. In Proceedings of the ACM SIGPLAN ’88 Conference on Programming
Language Design and Implementation.

[SNR+97] S. Singhal, B. Nguyen, R. Redpath, M. Fraenkel, and J. Nguyen. Building High-
Performance Applications and Services in Java: An Experiential Study. IBM T.J. Watson
Research Center white paper, available at
http://www.ibm.com/java/education/javahipr.html. 1997.

[SGA+98] E. G. Sirer, A. J. Gregory, N.R. Anderson, B.N. Bershad. Distributed Virtual
Machines: A System Architecture for Network Computing. In Proceedings of the Eighth
ACM SIGOPS European Workshop, September 1998.

