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Abstract

High lookup latencies prohibit peer-to-peer overlays from
being used in many performance intensive applications,
even though they provide self-organization, scalability,
and failure resilience. In this paper, we show that lookup
performance of structured DHTs can be improved to any
desired constant, even under a single hop, by controlled
proactive replication. By exploiting the popularity distri-
bution of objects, we can minimize the number of repli-
cas and reduce the storage and bandwidth cost of repli-
cation. This enables structured DHTSs to efficiently sup-
port a wide variety of latency sensitive applications. We
describe three different applications, namely DNS, web
access, and content distribution, and show how they can
derive significant performance gains by using DHTSs.

1 Introduction

Structured overlays provide a framework for storing and
retrieving objects with guaranteed lookup performance in
both the worst and the average case, at the same time pro-
viding self-organization, scalability, and high resilience
to failures. These properties make them ideal building
blocks for a number of large scale distributed applications
including archival file storage, cooperative web caching,
and application level multicast. However, recent stud-
ies have shown that the lookup performance provided by
most structured distributed hash tables (DHTS) is inad-
equate to support latency sensitive applications such as
the domain name service (DNS) and web content distri-
bution [3]. Table 1 shows a comparison of the mean and
median latencies for a DNS request with the mean and
median round trip times between two hosts in Planetlab.
The average latency of a DNS request is comparable to
the average round trip time in the Internet. Therefore, dis-
tributed overlays need to provide lookup latency of one
hop or lower in order to support performance intensive
applications such as DNS.

One distributed approach for improving lookup latency
is passive caching. Passive caching refers to an oppor-
tunistic scheme that stores a replica of the object at each
intermediate node traversed by the request. While caching
is known to be very effective in many systems applica-
tions, we show that the improvement in lookup perfor-

median mean
DNS latency | 112ms | 256 ms
Internet RTT | 81.9ms | 202 ms

Table 1: This table comparesthe latency of DNS requests
with the round trip time between two hosts in Planetlab.
It shows that DHTs need to provide better than single-hop
lookup performance to compete with latency sensitive ap-
plications.

mance provided by caching in DHTSs is small and insuf-
ficient to support DNS and web content distribution. Our
studies identify two reasons for the limited effectiveness
of caching for these applications. First, DNS and web re-
quests follow Zipf-like or power-law popularity distribu-
tions that are characterized by heavy-tails [1, 9]. In such
distributions, objects of very low popularity cumulatively
get a predominant number of requests. Consequently, the
benefit of passively caching the most popular objects does
not compensate for the high cost of finding the less popu-
lar objects. Second, the contents of DNS resource records
and web pages are not static but changing. In order to
support mutable objects, caching schemes generally as-
sociate a lifetime with the stored objects and remove the
object from the cache upon expiry of this lifetime. Guar-
anteeing the consistency of the objects upon updates im-
poses a conservative choice for the lifetime. For example,
95% of the DNS records have a lifetime of less than 1
day, whereas less than 0.8% of the records change in 24
hours. Consequently, caching systems have to frequently
refetch the objects, significantly reducing the improve-
ment in lookup performance as well as substantially in-
creasing the load on the Internet.

In this paper, we propose the use of proactive replica-
tion and show that controlled replication of objects can
provide very low, even less than a single hop, lookup
performance in structured overlays with minimal over-
head. By proactive replication, we mean that copies of
the object are replicated on some nodes that requests
are likely to traverse even before the requests are routed
through those nodes. This enables the proactive replica-
tion scheme to achieve considerable improvement in the
lookup performance even for heavy tailed distributions.
By controlled replication, we mean that replicas are dis-
tributed in the network strategically, exploiting the under-
lying structure of the DHT, in order to achieve a target



lookup performance. In fact, we show that by suitably
varying the extent of replication based on the popularity
of the objects, we can tune the amortized lookup perfor-
mance of the system to any desirable constant. Of course,
any improvement in lookup performance must incur some
cost. Our replication scheme is based on an analytical
model that minimizes the number of replicas required to
achieve the desired performance. Minimizing the num-
ber of replicas enables us to optimize the per node storage
consumption, reduce the total bandwidth required to repli-
cate and maintain the objects, and impose a low network
load at each node. Controlled placement of the replicas
also facilitates an efficient mechanism to handle object
mutability. Since the locations of the replicas can be eas-
ily tracked, we can proactively disseminate updates to ob-
jects, supporting coherent updates and obviating conser-
vative timeouts.

Popularity based replication helps structured overlays
to achieve high performance at low cost in addition to im-
proved failure resilience and availability. These properties
enable them to support highly demanding latency sensi-
tive applications. In this paper, we survey three widely
different applications that are particularly well suited for
overlay networks. The DNS, web access, and multime-
dia content distribution are all performance intensive ap-
plications that suffer from similar problems. First, they
are all slow; accessing information currently takes much
longer time in these systems than what users desire. Sec-
ond, they are highly unreliable; sudden increases in load
due to flash-crowd effect or denial of service attacks eas-
ily bring down these systems. We show that implement-
ing these applications on distributed overlays using proac-
tive caching can substantially improve the lookup perfor-
mance, while enabling them to effectively manage rapid
changes in popularity of objects.

A few existing overlays also provide constant lookup
performance by utilizing various techniques such as d-
dimensional hypercube [4], gossip based fixed replica-
tion [7] and fully replicated routing tables [8]. We take
an orthogonal approach and propose a general replication
scheme that can be applied to improve the performance
of many existing structured DHTSs, including [13] and
[12]. Our scheme allows the system to tune its amortized
lookup performance to any desired constant, even frac-
tions under one hop, instead of binding the lookup perfor-
mance to the design of the system. Finally, our scheme
exploits the popularity distribution of the requests to pro-
vide high performance with minimal overhead.

2 Improving on Single-Hop L ookups

The regular underlying structure of a DHT enables us to
analyze the impact of different replica placement strate-
gies on lookup performance. Our controlled proactive
replication scheme exploits the structure of the underly-
ing DHT to tune the lookup latency, and utilizes the pop-
ularity distribution of the objects to achieve the desired
target performance with low overhead. We will illustrate
our replication scheme by considering Pastry [12] as the
underlying DHT. The general replication scheme is appli-
cable to all structured DHTs with a uniform fanout.

In Pastry, both objects and nodes have randomly as-
signed identifiers from the same circular space, and each
object is stored at the nearest node in the identifier space,
called the home node. Each Pastry node routes a request
for an object, say 0121, by successively matching pre-
fixes; that is, by routing the request to a node that matches
one more digit with the object until the home node, say
0122, is reached. This process takes O(logN) hops to
reach the home node. By placing copies of the object at
all nodes one hop prior to the home node in the request
path, the lookup latency can be reduced by one hop. Inthe
above example, the lookup latency can be reduced from 3
hops to 2 hops by replicating the object at all nodes that
start with 01. Similarly, the lookup latency can be reduced
to 1 hop by replicating the object at all nodes that start
with 0. Thus, we can vary the lookup latency of the object
between 0 and logN hops by systematically replicating the
object to different levels. We say an object is replicated at
level 4, if it is replicated on nodes with < matching prefixes.

The central insight behind our scheme is that by judi-
ciously choosing different levels of replication for differ-
ent objects, the amortized lookup performance of the sys-
tem can be tuned to any desired constant. Naturally, an
efficient approach to determine the appropriate replication
level for each object must incorporate the popularity dis-
tribution of the objects, that is, objects with greater popu-
larity should be replicated to a greater extent than objects
with lesser popularity. We can obtain the most efficient
replication strategy by solving the following optimization
problem: minimize the total number of replicas subject
to the constraint that the aggregate lookup latency is less
than a desired constant C.

We earlier noted that several interesting applications in-
cluding DNS and the web are characterized by power-law
or Zipf-like popularity distributions [1, 9]. For Zipf-like
query distributions, we can solve the above optimization
problem analytically and obtain the closed form optimal
solution [11]. The following expression gives the optimal
replication level for each object for Zipf-like distributions



with parameter @ < 1. Here z; is the fraction of most
popular objects to be replicated at level ¢ or lower, and b
is the fanout or base of the DHT.
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Our analysis clearly captures the trade off between
lookup latency and cost of replication by using the num-
ber of replicas as an indication of the storage and band-
width overhead. Zipf-like distributions exhibit an expo-
nential trade off between performance and overhead; that
is, the optimal number of replicas grows exponentially as
the target latency decreases. The analytical model facili-
tates the overlay system to optimally distribute the repli-
cas of the objects and reduce the storage and bandwidth
consumption, while also enabling the deployer to under-
stand the overhead required to meet the desired lookup
performance.

Experimental Results

Beehive [11] implements this model-driven proactive
caching scheme to provide constant lookup performance
in Pastry [12]. While the design and implementation of
Beehive is beyond the scope of this paper, we merely
provide experimental results from the Beehive system to
demonstrate that better than single-hop lookup perfor-
mance is efficiently achievable in practice.

We ran Beehive in the simulation mode for a network of
1024 nodes for Pastry with base= 16. We studied the per-
formance of this system by issuing requests from traces
collected for three different performance intensive appli-
cations, namely DNS, Web, and Gnutella to 40960 dis-
tinct objects. We issued queries from MIT DNS traces,
UC Berkeley Home IP Web traces, and CMU Gnutella
traces. The DNS and Web traces are characterized by Zipf
distributions of & = 0.91 and 0.78, while the Gnutella
trace does not exhibit Zipf-like behavior. We compared
the lookup performance of Beehive with that of pure Pas-
try, as well as, PC-Pastry, which performs passive caching
using an unlimited cache for the DNS application.

Figure 1 shows the average number of hops taken by re-
quests in Pastry, Beehive, and PC-Pastry for different ap-
plications as the systems evolve with time. Pastry incurs
an average lookup cost of about 2.34 hops independent
of the popularity distribution. The lookup performance
of Beehive quickly converges to reach the targeted con-
stant target lookup performance of 0.5 hops for all appli-
cations. In contrast, PC-Pastry provides about 1.54 hops
for DNS, a limited improvement over the lookup perfor-
mance of Pastry. Beehive is also significantly more effi-
cient than passive caching. PC-Pastry caches 420 objects
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Figure 1: Proactive caching enables Beehive to achieve the
target lookup performance of 0.5 hops. In contrast, passive
caching provides only a small improvement in lookup per-

formance.

per node on average, while Beehive can provide the same
lookup performance by replicating only 100 objects per
node. Overall, these experimental results substantiate our
earlier claim that passive caching is unsuited for demand-
ing applications such as DNS, and indicate that controlled
proactive replication can provide better than single-hop
lookup performance efficiently for a wide variety of ap-
plications.

3 Performance Intensive Applications

We have shown that lookup performance in structured
DHTSs can be improved to any extent through controlled
replication exploiting the DHT structure and popularity
distribution. In addition to the performance improvement,
proactive replication also substantially increases the avail-
ability of the content. Continuous adaptation of replica-
tion to changes in popularity enables prompt response to
flash crowds, while stipulating a minimum level of repli-
cation for all objects easily provides tolerance against fail-
ures. High performance combined with self-organization
and resilience make distributed overlays ideal building
blocks for a wide class of highly demanding and perfor-
mance sensitive applications. In this section, we describe
three important applications that can benefit greatly from
our proactive replication scheme.

Domain Name System

The DNS is a legacy system that has existed for more than
15 years with very little change to its core design. The cur-
rent use and scale of the Internet has exposed several of its
shortcomings. First, DNS is a latency sensitive service;
even though the current DNS response times (see Table 1)
compare to average round trip times in the Internet, DNS
is a huge performance bottleneck in providing fast access
to web content, since access to every web page generates
one or more DNS queries. Second, the hierarchical design
of DNS poses improper load balance at the root servers



and makes them a significant source of vulnerability to
the whole system. Distributed denial of service attacks
targeting some or all of the root servers can easily bring
down the whole DNS. Finally, DNS imposes a consider-
able overhead to administer and secure; misconfigurations
and faulty implementation of name servers are a signifi-
cant cause for high DNS query failure rate [9, 10].

Proactive caching enables peer-to-peer overlays to meet
the performance requirements of DNS. Proactive caching
provides lookup performance that can be tuned to pro-
vide very low latency. At the same time, updates can
be quickly propagated to all replicas in a proactive man-
ner. The decentralized peer-to-peer design obviates the
necessity for manual administration, evenly balances load
across several peers, and reduces vulnerability to DDoS
attacks. Overall, distributed overlays can be used to build
a cooperative DNS that outperforms legacy DNS in many
aspects including response time, availability, and robust-
ness.

Implementing DNS on a distributed overlay raises sev-
eral issues. Security is the primary concern, since DNS
requests may be answered by any peer node. Clients re-
ceiving responses from peer nodes need to be assured of
the authenticity of the name mappings. DNS Security Ex-
tensions [5] (DNSSEC), an existing standard, offers a so-
lution for authenticating DNS responses. DNSSEC en-
ables authentication by associating a chain of certificates
that can be easily verified by any client. By replicating the
certificates along with DNS data, distributed overlays can
provide secure and robust services.

Some DNS servers dynamically generate responses to
DNS requests for different reasons. For example, name-
servers perform load balancing by randomly changing the
order of IP addresses in DNS replies, and Akamai name-
servers provide addresses of nearby web servers by dy-
namically generating DNS replies. Distributed overlays
automatically provide load balancing, and can be easily
modified to route queries through nearby nodes. However,
changes to the DNS client may be required to implement
other specialized services. Alternatively, the clients can
incur an extra hop by forwarding the request directly to
the nameserver after obtaining the identity of the name-
server using the overlay network.

Web Access

The Web is an extensively used repository of information
and services, but access to the Web is still slow and un-
reliable. Existing approaches to reduce the access latency
on the web are predominantly based on caching, while ex-
tensive studies on web caching have shown that the perfor-
mance benefit is very limited [14]. The second significant

problem with the Web is that servers can be overwhelmed
by sudden increases in load and become extremely slow
or unresponsive. This behavior may arise due to flash-
crowds or may be intentionally caused by denial of ser-
vice attacks.

Proactive replication on distributed overlays can effi-
ciently provide lookup performance below a single-hop,
and hence is a well-suited approach to bring down the la-
tency of web access and improve its reliability. Fast ac-
cess to the most popular content at the expense of less
popular data substantially brings down the overall traffic.
Moreover, serving data replicated at other peers within the
same institution can considerably lower the cost paid for
the bandwidth consumption. Proactive replication scheme
not only thwarts the availability and load imbalance prob-
lems caused by flash crowds, but also proactively fetches
the suddenly popular content right to the user’s computer.

We have to address several problems while implement-
ing replication to support Web access on distributed over-
lays. First, web objects come in a wide range of sizes.
Hence, we need to incorporate object sizes to the repli-
cation cost in the analytical model. One simple heuristic
to enhance the analytical model is to treat each object as
a combination of several fixed-size fragments, but each
receiving a fraction of requests to the whole object. Ulti-
mately objects will be replicated at each node as a whole,
but with a small extra overhead. Second, the web hosts an
increasing amount of content that is dynamically gener-
ated by servers. Replicated versions of these servers can
be made available to improve the access latency of dy-
namic content. While distributed overlays do not support
replication of services in the same manner as objects, our
analytical model provides a good intuition to judge the
number of replicated servers that need to be deployed to
improve access latency.

Secure authentication of data provided by peer nodes
is a significant concern in distributed overlays. Unlike
the DNS, web objects are not self-certifying. Establish-
ing a centralized infrastructure to support Internet scale
data authentication is not a realistic solution. A practi-
cal approach to data authentication is to simultaneously
fetch copies of the object (or message-digests if the ob-
ject is large) from several nodes and check for majority
agreement. Secure admission control can limit the distri-
bution of malicious nodes and prevent them from occu-
pying large portions of the identifier space in DHTSs [2].
Hence, by querying 2f+1 nodes, where f is an estimate on
the number of malicious nodes in a fixed length portion
of the identifier space, we can efficiently authenticate the
data using few extra nodes.



Content Distribution

Distributed sharing of content, especially multimedia con-
tent, is the driving application for peer-to-peer systems
in today’s Internet. While sharing of copyrighted mul-
timedia content is a contentious issue, there are several
legitimate vendors and distributors of multimedia content
who would like to reach a vast audience. The existing
P2P systems, such as Kazaa, are very inefficient, have
expensive and unreliable lookup protocols, and generate
huge amount of traffic in the Internet. Further, multime-
dia servers frequently go down even with small increase
in load caused by sudden changes in popularity.

Proactive replication on structured overlays enables
content distributors to provide fast and efficient access to
their material by providing less than single-hop lookups.
In particular, some of the most popular files are proac-
tively fetched and stored in all the computers, thus provid-
ing instantaneous access to them. Replication based on
popularity allows the system to meet sudden increase or
decrease in demand, by increasing or decreasing the num-
ber of replicas. Distributed overlays also provide load bal-
ance, uniformly spreading requests among several nodes,
and find nearby nodes for downloading the content.

Replicating multimedia content imposes different kinds
of issues, because multimedia files differ from regular
web content in their characteristics. The popularity dis-
tribution of multimedia files deviates significantly from
Zipf-like distributions [6]. We can easily handle this prob-
lem by solving the optimization problem for any popular-
ity distribution numerically instead of analytically. Multi-
media content is immutable, and therefore caching can
provide reasonable improvement to lookup latency. But as
we showed earlier, controlled replication driven by an an-
alytical model incurs considerably lower bandwidth and
storage cost than passive caching. This is particularly sig-
nificant because, multimedia files are very big and unnec-
essary copying of data can impose substantial overhead
in terms of bandwidth. Overall, structured overlays can
serve multimedia content providing fast and guaranteed
access with minimal network overhead.

4 Conclusions

Even though structured overlays provide self organiza-
tion, load balance, and failure resilience, high lookup
costs make most of them unsuitable for latency sensitive
applications such as DNS. Proactive replication of objects
reduces lookup cost with a corresponding, but small in-
crease in storage and bandwidth overhead. By exploiting
the regular structure of the DHTs and popularity distribu-
tion of objects, we can reduce the cost of replication and

achieve any desired gain in lookup performance. This en-
ables overlays to serve as ideal building blocks for high
performance, scalable, and reliable systems. We have
presented a case for three different applications, namely
DNS, web access, and multimedia content distribution,
which can derive great benefits by using distributes over-
lays and controlled replication.
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