
Kelips∗: Building an Efficient and Stable P2P DHT

Through Increased Memory and Background Overhead

Indranil Gupta, Ken Birman, Prakash Linga, Al Demers, Robbert van Renesse †

Cornell University, Ithaca, NY, USA

{gupta, ken, linga, ademers, rvr}@cs.cornell.edu

Abstract

A peer-to-peer (p2p) distributed hash table (DHT)
system allows hosts to join and fail silently (or
leave), as well as to insert and retrieve files (ob-
jects). This paper explores a new point in de-
sign space in which increased memory usage and
constant background communication overheads are
tolerated to reduce file lookup times and increase
stability to failures and churn. Our system, called
Kelips, uses peer-to-peer gossip to partially repli-
cate file index information. In Kelips, (a) under
normal conditions, file lookups are resolved with
O(1) time and complexity (i.e., independent of sys-
tem size), and (b) membership changes (e.g., even
when a large number of nodes fail) are detected
and disseminated to the system quickly. Per-node
memory requirements are small in medium-sized
systems. When there are failures, lookup success is
ensured through query rerouting. Kelips achieves
load balancing comparable to existing systems. Lo-
cality is supported by using topologically aware
gossip mechanisms. Initial results of an ongoing
experimental study are also discussed.

∗System name derived from kelip-kelip, Malay name for
the self-synchronizing fireflies that accumulate after dusk on
branches of mangrove trees in Selangor, Malaysia [11]. Our
system organizes similarly into affinity groups, and nodes
in a group “synchronize” loosely to store information for a
common set of file indices.

†The authors were supported in part by DARPA/AFRL-
IFGA grant F30602-99-1-0532 and in part by a MURI grant
AFOSR F49620-02-1-0233, with additional support from
the AFRL-IFGA Information Assurance Institute, from Mi-
crosoft Research and from the Intel Corporation.

1 Introduction

A peer-to-peer (p2p) distributed hash table (DHT)
implements operations allowing hosts or processes
(nodes) to join the system, and fail silently (or
leave the system), as well as to insert and retrieve
files with known names. Many DHTs have been
deployed (e.g. Fasttrack-based systems such as
Kazaa) while several others are a focus of academic
research, e.g., Chord [3], Pastry [6], Tapestry, etc.
[8].

All p2p systems make tradeoffs between the
amount of storage overhead at each node, the
communication costs incurred while running, and
the costs of file retrieval. With the exception of
Gnutella, the work just cited has focused on a de-
sign point in which storage costs are logarithmic
in system size and hence small, and lookup costs
are also logarithmic (unless cache hits shortcut the
search). However, a study [9] on file sharing sys-
tems such as Gnutella and Napster has shown that
a significant fraction of nodes could be connected
over high latency / low bandwidth links. The pres-
ence of even one such slow logical hop on a loga-
rithmically long path is thus likely. This increases
the overall cost of the lookup.

We argue that this can be avoided by explor-
ing other potentially interesting points in the de-
sign of p2p DHTs. One could vary the soft state
memory usage and background network communi-
cation overhead at a node in order to realize O(1)
lookup costs. For example, complete replication
of soft state achieves this, but this approach has
prohibitive memory and bandwidth requirements.

The Kelips system uses O(
√

n) space per node,
where n is the number of nodes in the system. This
soft state suffices to resolve lookups with O(1) time

1

and message complexity. Continuous background
communication with a constant overhead is used
to maintain the index structure with high quality,
as well as guarantee quick convergence after mem-
bership changes. The

√
n design point is of inter-

est because, within Kelips, both the storage over-
head associated with the membership data struc-
ture and that associated with replication of file-
index (henceforth called filetuple) data impose the
same O(

√
n) asymptotic cost. Kelips uses query

rerouting to ensure lookup success in spite of fail-
ures. The mechanism also allows us to use round
trip time estimates to select nearby peers for each
node.

Memory usage is small for systems with mod-
erate sizes - if 10 million files are inserted into a
100,000-node system, Kelips uses only 1.93 MB of
memory at each node. The system exhibits stabil-
ity in the face of node failures and packet losses,
and hence would be expected to ride out “churn”
arising in wide-area settings from rapid arrival and
failure of nodes. This resilience is achieved through
the use of a lightweight Epidemic multicast proto-
col for replication of system membership data and
file indexing data [1, 4]. We note that whereas
many DHT systems treat file replication as well as
lookup, our work focuses only on the lookup prob-
lem, leaving replication to the application. For rea-
sons of brevity, this paper also omits any discussion
of privacy and security considerations.

2 Core Design

Kelips consists of k virtual affinity groups, num-
bered 0 through (k−1). Each node lies in an affin-
ity group determined by using a consistent hashing
function to map the node’s identifier (IP address
and port number) into the integer interval [0, k−1].
Let n be the number of nodes currently in the sys-
tem. The use of a cryptographic hash function such
as SHA-1 ensures that with high probability, the
number of nodes in each affinity group is around
n

k
.

Node soft state consists of the following entries:
• Affinity Group View: A (partial) set of other
nodes lying in the same affinity group. Each entry
carries additional fields such as round-trip time es-
timate, heartbeat count, etc. for the other node.

432,...

hello.c

30 1490 23ms

.
.
.

.
.
.

2

.
.
.

1602057 79ms

160,...

Group #
Affinity

0 1 2 9

30

110

160

432

...

Node 110

id rtthbeat

filename homenode

contactnodesgroup

Affinity Group View

Contacts

Filetuples

Figure 1: Soft State at a Node: A Kelips system with
nodes distributed across 10 affinity groups, and soft state at
a hypothetical node.

• Contacts: For each of the other affinity groups
in the system, a small (constant-sized) set of nodes
lying in the foreign affinity group. Entries contain
the same additional fields as in the affinity group
view.
• Filetuples: A (partial) set of tuples, each detail-
ing a file name and host IP address of the node
storing the file (called the file’s homenode). A node
stores a filetuple only if the file’s homenode lies in
this node’s affinity group. Filetuples are also asso-
ciated with heartbeat counts.

Figure 1 illustrates an example. Entries are
stored in AVL trees to support efficient operations.

Memory Usage at a node: The total stor-
age requirements for a Kelips node are S(k, n) =
n

k
+ c × (k − 1) + F

k
entries (c is the number of

contacts per foreign affinity group and F the total
number of files present in the system). For fixed n,

S(k, n) is minimized at k =
√

n+F

c
. Assuming the

total number of files is proportional to n, and that
c is fixed, the optimal k then varies as O(

√
n). The

minimum S(k, n) varies as O(
√

n). This is asymp-
totically larger than Chord or Pastry, but turns out
to be reasonably small for most medium-sized p2p
systems.

Consider a system with n = 100, 000 nodes over
k = d√ne = 317 affinity groups. Our current
implementation uses 60 B filetuple entries and 40
B membership entries, and maintains 2 contacts
per foreign affinity group. Inserting a total of 10

2

million files into the system thus entails 1.93 MB
of node soft state. With such memory require-
ments, file lookup queries return the location of
the file within O(1) time and message complexity,
i.e., these costs are invariant with system size n.

2.1 Background Overhead

Existing view, contact and filetuple entries are re-
freshed periodically within and across groups. This
occurs through a heartbeating mechanism. Each
view, contact or filetuple entry stored at a node
is associated with an integer heartbeat count. If
the heartbeat count for an entry is not updated
over a pre-specified time-out period, the entry is
deleted. Heartbeat updates originate at the re-
sponsible node (for filetuples, this is the homen-
ode) and are disseminated through a peer-to-peer
epidemic-style (or gossip-style) protocol [7]. This
gossip communication constitutes the background
communication within a group. This continuous
gossip stream is also used to disseminate new view,
contact and filetuple entries to the system.

We first outline gossip-style dissemination within
one affinity group. A piece of information (e.g., a
heartbeat update for a filetuple) is multicasted to
the group by using a constant background band-
width, incurring latency that increases polyloga-
rithmically with group size. Once a node receives
the piece of information to be multicast (either
from some other node or from the application), the
node gossips about this information for a number
of rounds, where a round is a fixed local time in-
terval at the node. During each round, the node
selects a small constant-sized set of target nodes
from the group membership, and sends each of
these nodes a copy of the information. Gossiping
thus uses constant bandwidth. With high proba-
bility, the protocol transmits the multicast to all
nodes. The latency can be shown to vary with
the logarithm of affinity group size. Gossip mes-
sages are transmitted via a lightweight unreliable
protocol such as UDP. Gossip target nodes are se-
lected through a weighted scheme based on round-
trip time estimates, preferring nodes that are topo-
logically closer in the network. Kelips uses the spa-
tially weighted gossip proposed in [5] towards this.
A node with round-trip time estimate rtt is selected
as gossip target with probability proportional to

1

rttr
. As suggested in [5], we use a value of r = 2,

where the latency is polylogarithmic (O(log2(n)).

Analysis and experimental studies have revealed
that epidemic style dissemination protocols are ro-
bust to network packet losses, as well as to tran-
sient and permanent node failures. They maintain
stable multicast throughput to the affinity group
even in the presence of such failures. See references
[1, 2, 4].

Information such as heartbeats also need to
propagate across affinity groups (e.g., to keep con-
tact entries for this affinity group from expiring).
This is achieved by selecting a few of the contacts
as gossip targets in each gossip round. Such cross-
group dissemination implies a two-level gossiping
scheme similar to [7]. With uniform cross-group
target selection, latency is more than that of single
group gossip by a multiplicative factor of O(log(k))
(with k =

√
n affinity groups, this is the same as

O(log(n))).

Gossip messages in Kelips carry not just a single
entry, but several filetuple and membership entries.
This includes entries that are new, were recently
deleted, or have an updated heartbeat. Since Ke-
lips limits bandwidth use at each node, not all the
soft state can be packed into a gossip message.
Maximum rations are imposed on the numbers of
view entries, contact entries and filetuple entries
that a gossip message may contain. For each entry
type, the ration subdivides equally for fresh entries
(ones that have so far been included in fewer than a
threshold number of gossip messages sent out from
this node) and for older entries. Entries are chosen
uniformly at random, and unused rations (e.g., due
to fewer fresh entries) are filled with older entries.

Ration sizes do not vary with n. With k =
√

n,
this increases dissemination latencies a factor of
O(

√
n) above that of the Epidemic protocol (since

soft state is O(
√

n)). Heartbeat timeouts thus need
to vary as O(

√
n × log2(n)) for view and filetuple

entries, and O(
√

n × log3(n)) for contact entries.

These numbers are thus the convergence times
for the system after membership changes. Such
low convergence times are achieved through only
the gossip messages sent and received at a node.
This gossip stream imposes a constant per-node
background overhead. The gossip stream is able
to disseminate heartbeats and new entries despite
node and packet delivery failures.

3

1

10

100

1000

0 1 2 3 4 5 6 7 8

N
u
m

b
e
r

o
f
M

e
m

b
e
rs

 w
ith

 x
 F

ile
s

x = Number of Files

 840 files
 1200 files
 1900 files

Figure 2: Load Balancing I: Number of nodes (y-axis)
storing given number of files (x-axis), in a Kelips system
with 1500 nodes (38 affinity groups).

2.2 File Lookup and Insertion

Lookup: Consider a node (querying node) that
desires to fetch a given file. The querying node
maps the file name to the appropriate affinity group
by using the same consistent hashing used to de-
cide node affinity groups. It then sends a lookup
request to the topologically closest contact among
those it knows for that affinity group. A received
lookup request is resolved by searching among the
filetuples maintained at the node, and returning
to the querying node the address of the homenode
storing the file. This scheme returns the homen-
ode address to a querying node in O(1) time and
with O(1) message complexity. Finally, the query-
ing node fetches the file directly from the homen-
ode.

Insertion: A node (origin node) that wants to in-
sert a given file f , maps the file name to the appro-
priate affinity group, and sends an insert request
to the topologically closest known contact for that
affinity group. This contact picks a node h from its
affinity group, uniformly at random, and forwards
the insert request to it. The node h is now the
homenode of the file. The file is transferred from
the origin node to the homenode. A new filetuple
is created to map the file f to homenode h, and
is inserted into the gossip stream. Thus, filetuple
insertion also occurs in O(1) time and with O(1)
message complexity. The origin node periodically
refreshes the filetuple entry at homenode h in order
to keep it from expiring.

Clearly, factors such as empty contact sets or
incomplete filetuple replication might cause such

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800

S
to

re
d
 P

e
r

M
e
m

b
e
r

Normalized Time (2 file ins per sec)

File Tuples
Files On Disk * 30

Figure 3: Load Balancing II: Files are inserted into a
1000 node system (30 affinity groups), 2 insertions per sec
between t=0 and t=500. Plot shows variation, over time,
of number of files and filetuples at a node (average and one
standard deviation).

one-hop lookup or insertion to fail. Biased partial
membership information might cause uneven load
balancing. This is addressed by the general multi-
hop multi-try query routing scheme of Section 3.

3 Auxiliary Protocols and Algo-

rithms

We outline Kelips’ protocols for node arrival, mem-
bership and contact maintenance, topological con-
siderations and multi-hop query routing.

Joining protocol: Like in several existing p2p
systems, a node joins the Kelips system by contact-
ing a well-known introducer node (or group), e.g.,
a well-known http URL could be used. The joiner
view returned by the introducer is used by the new
node to warm up its soft state and allow it to start
gossiping and populating its view, contact and file-
tuple set. The gossip stream spreads news about
the new node quickly throughout the system.

Spatial Considerations: Each node period-
ically pings a small set of other nodes it knows
about. Response times are included in round-trip
time estimates used in spatial gossip.

Contact maintenance: The maximum number
of contacts is fixed, yet the gossip stream supplies
potential contacts continuously. Contact replace-
ment policy can affect lookup/insert performance
and system partitionability. It could be either
proactive or reactive, and takes into account factors
such as node distance, accessibility (e.g., firewalls

4

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 400 450 500

T
im

e
 (

ro
u
n
d
 t
ri
p
 t
im

e
s)

Normalized Time (2 file ins per sec)

1st try
2nd try
3rd try
4th try
Failure

Figure 4: File Insertion: Turnaround times (in round-
trip time units) for file insertion in a 1000-node Kelips sys-
tem (30 affinity groups).

in between), etc. Currently, we use a proactive pol-
icy that chooses the farthest contact as victim for
replacement.

Multi-hop Query routing: When a file lookup
or insert query fails, the querying node retries the
query. Query (re-) tries may occur along several
axes: a) the querying node could ask multiple con-
tacts, b) contacts could be asked to forward the
query within their affinity group (up to a specified
TTL), c) the querying node could request the query
to be executed at another node in its own affin-
ity group (if this is different from the file’s affinity
group). Query routing occurs as a random walk
within the file affinity group in (b), and within the
querying node’s affinity group in (c). TTL val-
ues on multi-hop routed queries and the maximum
numbers of tries trade off between lookup query
success rate and maximum processing time. The
normal case lookup processing time and message
complexity stay O(1).

File insertion occurs through a similar multi-hop
multi-try scheme, except the file is inserted ex-
actly at the node where the TTL expires. This
helps achieve good load balancing, although it in-
creases the normal case insertion time to grow as
O(log(

√
n)). However, this is competitive with ex-

isting systems.

4 Experimental Results
We are evaluating a C WinAPI prototype imple-
mentation of Kelips. This section reveals prelimi-
nary numbers from trace-based experiments, most
done along similar lines as previous work [3, 6].
Multiple nodes were run on a single host (1 GHz

1

2

3

1000 1100 1200 1300 1400 1500

L
o
o
ku

p
 R

e
su

lt
C

o
d
e

Normalized Time (2 file lookups per sec)

Failure (file on healthy node) [3]
Failure (file on failed node) [2]

Success [1]

Figure 5: Fault-tolerance of Lookups I: In a 1000 node
(30 affinity groups) system, lookups are generated 2 per sec.
At time t = 1300, 500 nodes are selected at random and
caused to fail. This plot shows for each lookup if it was
successful [y−axis = 1], or if it failed because the homenode
failed [y − axis = 2], or if it failed in spite of the homenode
being alive [y − axis = 3].

CPU, 1GB RAM, Win2K) with an emulated net-
work topology layer. Unfortunately, limitations on
resources and memory requirements restrict cur-
rently simulated system sizes to a few thousand.

Background overhead in the current configura-
tion consists of each node gossiping once every 2
(normalized) seconds. Rations limit gossip mes-
sage size to 272 B. 6 gossip targets are chosen, 3 of
them among contacts.

Load Balancing: Files are inserted into a sta-
ble Kelips system. The file name distribution used
is a set of anonymized web URLs obtained from
the Berkeley Home IP traces at [10]. The load bal-
ancing characteristics are better than exponential
(Figure 2). File and filetuple distribution as files
are inserted (2 insertions per normalized second of
time) is shown in Figure 3; the plot shows that file-
tuple distribution has small deviation around the
mean.

File Insertion: This occurs through a multi-try
(4 tries) and multi-hop scheme (TTL set to 3∗logN

logical hops). Figure 4 shows the turnaround times
for insertion of 1000 different files. 66.2% complete
in 1 try, 33% take 2 tries, and 0.8% take 3 tries.
None fail or require more than 3 tries. Views were
found to be well replicated in this instance. In
a different experiment with 1500 nodes and views
only 55.8% of the maximum size, 47.2% inserts re-
quired 1 try, 47.04% required 2 tries, 3.76% re-
quired 3 tries, 0.96% needed 4 tries, and 1.04%
failed. Multi-hop routing thus provides resilience

5

0

5

10

15

20

25

30

35

1000 1100 1200 1300 1400 1500

A
ve

ra
g
e
 A

ff
in

ity
 G

ro
u
p
 V

ie
w

 S
iz

e

Normalized Time
Figure 6: Fault-tolerance of Lookups II: At time
t=1300, 500 out of 1000 nodes in a 30 affinity group sys-
tem fail. This plot shows that failure detection and view
(and hence filetuple) stabilization occurs by time t=1380.

to incomplete replication of soft state.

Fault-tolerance: P2P DHTs are required to
be tolerant to dynamic conditions and high churn
rates. We measure the resilience of Kelips to a
scenario where half of the nodes in the system are
caused to fail simultaneously. Figures 5 and 6 show
the effectiveness of using background gossip com-
munication. Lookups were initiated at a constant
rate and were found to fail only if the homenode
had also failed (Figure 5). In other words, multi-
hop rerouting and redundant membership informa-
tion ensures successful lookups despite failures. Re-
sponsiveness to failures is good, and membership
and filetuple entry information stabilize quickly af-
ter a membership change (Figure 6).

5 Conclusion
We are investigating a new design point for DHT
systems, based on increased memory usage (for
replication of filetuple and membership informa-
tion), as well as a constant and low background
overhead at a node, in order to enable O(1) file
lookup operations and ensure stability despite high
failure and churn rates. Per-node memory require-
ments are small in medium-sized systems (less than
2 MB with 10 million files in a 100,000 node sys-
tem). Multi-hop (and multi-try) query routing en-
ables file lookup and insertion to succeed even when
bandwidth limitations or network disconnectivity
lead to only partial replication of soft state. We
observe satisfactory load balancing.

Kelips and other DHTs: Memory usage can
be traded off for faster lookup times in systems like

Chord, Pastry, Tapestry, e.g., by varying the value
of the base (the parameter d in Pastry, base value
of 2 in Chord) that determines the branching fac-
tor of the overlay structure. This would however
make routing table entries large and lead to high
network traffic to keep them updated as nodes join,
leave and fail. Kelips is loosely structured, and it
does not need to maintain a structure and invari-
ants (e.g., the ring, routing table entries, etc.) –
the soft state allows object lookups and insertions
to succeed in spite of stale membership or contact
entries.

References

[1] N.T.J. Bailey, “Epidemic Theory of Infectious Dis-
eases and its Applications”, Hafner Press, Second
Edition, 1975.

[2] K.P. Birman, M. Hayden, O. Ozkasap, Z. Xiao,
M. Budiu, Y. Minsky, “Bimodal Multicast”, ACM
Trans. Comp. Syst., 17:2, pp. 41-88, May 1999.

[3] F. Dabek, E. Brunskill, M. F. Kaashoek, D.
Karger, “Building peer-to-peer systems with
Chord, a distributed lookup service”, Proc. 8th

Wshop. Hot Topics in Operating Syst., (HOTOS-
VIII), May 2001.

[4] A. Demers, D.H. Greene, J. Hauser, W. Irish,
J. Larson, “Epidemic algorithms for replicated
database maintenance”, Proc. 6th ACM Symp.
Principles of Distributed Computing (PODC), pp.
1-12, 1987.

[5] D. Kempe, J. Kleinberg, A. Demers. “Spatial gos-
sip and resource location protocols”, Proc. 33rd
ACM Symp. Theory of Computing (STOC), pp.
163-172, 2001.

[6] A. Rowstron, P. Druschel, “Pastry: scalable, dis-
tributed object location and routing for large-scale
peer-to-peer systems”, Proc. IFIP/ACM Middle-
ware, 2001.

[7] R. van Renesse, Y. Minsky, M. Hayden, “A gossip-
style failure detection service”, Proc. IFIP Middle-
ware, 1998.

[8] Proc. 1st Intnl. Wshop. Peer-to-Peer Systems
(IPTPS), LNCS 2429, Springer-Verlag, 2002.

[9] S. Saroiu, P.K. Gummadi, S.D. Gribble, “A mea-
surement study of peer-to-peer file sharing sys-
tems”, Proc. Multimedia Computing and Network-
ing (MMCN), 2002.

[10] Internet Traffic Archive, http://ita.ee.lbl.gov

[11] Fireflies of Selangor River, Malaysia,
http://www.firefly-selangor-msia.com/fabout.htm

6

