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Problem Statement

• Network distance
– Round-trip propagation and transmission delay
– Relatively stable, may be predictable

• Given two Internet hosts, can we accurately estimate 
the network distance between them without sending 
any RTT probes between them?
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Why Predict Network Distance?

• Want to measure network performance to improve 
performance of applications
– Napster, content addressable overlays, overlay multicast

• Huge number of paths to measure
• TCP bandwidth and RTT probes are time-consuming

• Predicted network distance enables fast and scalable 
first-order performance optimization
– Eliminate poor choices
– Refine when needed
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IDMaps [Francis et al. ‘99]

• Servers maintain simplified topological map
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Disadvantage of Client-Server 
Architecture

• Unavoidable additional delay in communicating with 
servers 

• Shared servers can become performance bottleneck
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Can this Problem be Solved with a Peer-
to-Peer Architecture?

• Flip the problem: Can end hosts maintain 
“coordinates” that describe their network locations?

• End hosts exchange coordinates to compute distance
– High performance, high scalability

(10,50,22) (-9,-10,3)

Distance function

68ms
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Approach 1: Global Network Positioning 
(GNP) Coordinates

• Model the Internet as a geometric space (e.g. 3-D 
Euclidean) 

• Characterize the position of any end host with 
geometric coordinates

• Use geometric distances to 
predict network distances

y
(x2,y2,z2)

x

z

(x1,y1,z1)

(x3,y3,z3)
(x4,y4,z4)
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GNP Landmark Operations
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GNP Ordinary Host Operations
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Important Questions

• What geometric model to use? 
• How to measure error in minimizations?
• How to select Landmarks?
• How many Landmarks?
• What are the sources of prediction error?
• How to reduce overhead?
• Can we use geographical coordinates?

• Please see our paper
• This talk: focus on performance comparisons
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Approach 2: Triangulated Heuristic 
Coordinates

• Proposed by Hotz in 1994 for A* heuristic shortest 
network path search

• Provides upper and lower bounds for network 
distance
– Assumes shortest path routing enforced

• This paper is the first study to apply and evaluate 
triangulated heuristic as a network distance 
prediction mechanism
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Evaluation Methodology

• 19 Probes
– 12 in North America, 5 in East Asia, 2 in Europe

• 869 IP addresses called Targets we do not control
– Span 44 countries

• Probes measure
– Inter-Probe distances
– Probe-to-Target distances

• See paper for more results
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Evaluation Methodology (Cont’d)

• Choose a subset of well-distributed Probes to be 
Tracers/Base nodes/Landmarks

• Use the rest for evaluation
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Performance Metrics

• Directional relative error
– Symmetrically measure over and under predictions

• Relative error = abs(Directional relative error)

),min( predictedmeasured

measuredpredicted−
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Relative Error Comparison

90% = 0.97
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Relative Error Comparison
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Directional Relative Error Analysis

DRE
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Directional Relative Error Comparison
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Directional Relative Error Comparison
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Why the Difference in Over-Predictions?

IDMaps

Straight-line distance 
used in this example
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Sensitivity to Infrastructure Node 
Placement

• Which nodes are used as Tracers/Bases/Landmarks 
matter

• High sensitivity means the approach is less robust
• Test sensitivity by picking 20 random combinations of 

6 infrastructure nodes and observe performance 
variance
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6 Random Infrastructure Nodes
(20 Experiments)
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Conclusions

• Coordinates-based approaches represent a new 
class of solutions

• These solutions fit well with the peer-to-peer 
architecture
– Potentially better performance and scalability than the client-

server architecture

• Careful Internet evaluation shows that coordinates-
based approaches are more accurate than IDMaps

• GNP is the most accurate and robust solution
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Internet as an Euclidean Space? 
Remarkable!

Internet map as of 1998 by
Bill Cheswick, Bell Labs
Hal Burch, CMU


