
Modeling and Performance Analysis of BitTorrent-Like
Peer-to-Peer Networks

Dongyu Qiu and R. Srikant∗
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
Urbana, IL 61801

{dqiu, rsrikant}@uiuc.edu

ABSTRACT
In this paper, we develop simple models to study the per-
formance of BitTorrent, a second generation peer-to-peer
(P2P) application. We first present a simple fluid model
and study the scalability, performance and efficiency of such
a file-sharing mechanism. We then consider the built-in in-
centive mechanism of BitTorrent and study its effect on net-
work performance. We also provide numerical results based
on both simulations and real traces obtained from the In-
ternet.

Categories and Subject Descriptors
H.1.0 [Information Systems]: Models and Principles

General Terms
Performance

Keywords
Peer-to-Peer Networks, Fluid Model, Game Theory

1. INTRODUCTION
Peer-to-Peer (P2P) applications have become immensely

popular in the Internet. Traffic measurements shows that
P2P traffic is starting to dominate the bandwidth in cer-
tain segments of the Internet [2]. Among P2P applications,
file sharing is perhaps the most popular application. Com-
pared to traditional client/sever file sharing (such as FTP,
WWW), P2P file sharing has one big advantage, namely,
scalability. The performance of traditional file sharing ap-
plications deteriorates rapidly as the number of clients in-
creases, while in a well-designed P2P file sharing system,
more peers generally means better performance. There are
many P2P file sharing programs, such as Kazza, Gnuttella,

∗This work was supported by DARPA Grant F30602-00-2-
0542 and AFOSR URI F49620-01-1-0365.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’04, Aug. 30–Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-862-8/04/0008 ...$5.00.

eDonkey/overnet, BitTorrent, to name a few. In this paper,
we develop simple models to understand and study the be-
havior of BitTorrent [8] which is proving to be one of the
more popular P2P applications today.

For a BitTorrent network (or a general P2P file sharing
network), several issues have to be addressed in order to
understand the behavior of the system.

• Peer Evolution: In P2P file sharing, the number of
peers in the system is an important factor in deter-
mining network performance. Therefore, it is useful to
study how the number of peers evolves as a function
of the request arrival rate, the peer departure rate, the
uploading/downloading bandwidth of each peer, etc.

• Scalability: To realize the advantages of P2P file shar-
ing, it is important for the network performance to not
deteriorate, and preferably to actually improve, as the
size of the network increases. Network performance
can be measured by the average file downloading time
and the size of the network can be characterized by
the number of peers, the arrival rate of peers, etc.

• File Sharing Efficiency: It is common for peers in a
P2P network to have different uploading/downloading
bandwidths. Further, in BitTorrent-like systems, a file
may be broken into smaller pieces and the pieces may
be distributed at random among the peers in the net-
work. To efficiently download the file, it is important
to design the file-sharing protocol such that each peer
is matched with others who have the pieces of the file
that it needs and further, to ensure that the download-
ing bandwidth of each peer is fully utilized.

• Incentives to prevent free-riding: Free-riding is a ma-
jor cause for concern in P2P networks. Free-riders are
peers who try to download from others while not con-
tributing to the network, i.e., by not uploading to oth-
ers. Thus, most P2P networks try to build in some
incentives to deter peers from free-riding. Once the in-
centive mechanism is introduced into the network, each
peer may try to maximize its own net benefit within
the constraints of the incentive mechanism. Thus, it is
important to study the effect of such behavior on the
network performance.

1.1 Relationship to prior work
The basic idea of P2P network is to have peers participate

in an application level overlay network and operate as both

367

Session 10: Distributed Information Systems

servers and clients. Since the service burden is distributed to
all participating peers, the system is expected to scale well
even when the network is very large. Besides file sharing,
P2P overlays have also been deployed in distributed direc-
tory service [18, 21], web cache [15], storage [9], and grid
computation [1] etc.

While early work on P2P systems has mainly focused on
system design and traffic measurement [19, 20, 17], some re-
cent research has emphasized performance analysis. In [13],
a closed queueing system is used to model a general P2P
file sharing system and basic insights on the stationary per-
formance are provided. In [6, 7], a stochastic fluid model is
used to study the performance of P2P web cache (SQUIR-
REL) and cache clusters. A part of our work is motivated by
the models in [11, 24], where a branching process is used to
study the service capacity of BitTorrent-like P2P file shar-
ing in the transient regime and a simple Markovian model
is presented to study the steady-state properties. Our work
differs from [11, 24] in the following respects:

• Instead of studying the Markov chain numerically, we
develop a simple deterministic model which allows us
to obtain simple expressions for the average file-transfer
time, thus providing insight into the performance of
the P2P network. We also incorporate realistic sce-
narios in our fluid model such as the abandonment of
file transfers by peers and download bandwidth con-
straints.

• Then, we develop a simple stochastic fluid model which
characterizes the variability of the number of peer around
the equilibrium values predicted by the deterministic
fluid model.

• We also develop a simple model to study the efficiency
of downloading from other peers and argue that the
file-sharing protocol in BiTorrent is very efficient.

• Finally, we consider the mechanisms built into BitTor-
rent to avoid free-riding and study the impact of these
mechanisms on the users’ behaviors and network per-
formance.

2. A BRIEF DESCRIPTION
OF BITTORRENT

BitTorrent is a P2P application whose goal is to facili-
tate fast downloads of popular files. Here we provide a brief
description of how BitTorrent operates when a single file is
downloaded by many users. Typically the number of simul-
taneous downloaders for popular files could be of the order
of a few hundreds while the total number of downloaders
during the lifetime of a file could be of the order of several
tens or sometimes even hundreds of thousands. The basic
idea in BitTorrent is to divide a single large file (typically a
few 100 MBytes long) into pieces of size 256 KB each. The
set of peers attempting to download the file do so by con-
necting to several other peers simultaneously and download
different pieces of the file from different peers.

To facilitate this process, BitTorrent uses a centralized
software called the tracker. In a BitTorrent network, a peer
that wants to download a file first connects to the tracker of
the file. The tracker then returns a random list of peers that
have the file. The downloader then establishes a connection
to these other peers and finds out what pieces reside in each

of the other peers. A downloader then requests pieces which
it does not have from all the peers to which it is connected.
But each peer is allowed to upload only to a fixed num-
ber (default is four) at a given time. Uploading is called
unchoking in BitTorrent. Which peers to unchoke is deter-
mined by the current downloading rate from these peers,
i.e., each peer uploads to the four peers that provide it with
the best downloading rate even though it may have received
requests from more than four downloaders. This mechanism
is intended to deter free-riding. Since a peer is only upload-
ing four other peers at any time, it is possible that a peer,
say Peer A, may not be uploading to a peer, say Peer B,
which could provide a higher downloading rate than any of
the peers to which Peer A is currently uploading. There-
fore, to allow each peer to explore the downloading rates of
other peers, BitTorrent uses a process called optimistic un-
choking. Under optimistic unchoking, each peer randomly
selects a fifth peer from which it has received a downloading
request and uploads to this peer. Thus, including optimist
unchoking, a peer may be uploading to five other peers at
any time. Optimistic unchoking is attempted once every 30
seconds and to allow optimistic unchoking while keeping the
maximum number of uploads equal to five, an upload to the
peer with the least downloading rate is dropped.

BitTorrent distinguishes between two types of peers, namely
downloaders and seeds. Downloaders are peers who only
have a part (or none) of the file while seeds are peers who
have all the pieces of the file but stay in the system to al-
low other peers to download from them. Thus, seeds only
perform uploading while downloaders download pieces that
they do not have and upload pieces that they have. Ideally,
one would like an incentive mechanism to encourage seeds
to stay in the system. However, BitTorrent currently does
not have such a feature. We simply analyze the performance
of BitTorrent as is.

In practice, a BitTorrent network is a very complicated
system. There may be hundreds of peers in the system.
Each peer may have different parts of the file. Each peer
may also have different uploading/downloading bandwidth.
Further, each peer only has partial information of the whole
network and can only make decisions based on local infor-
mation. In addition, BitTorrent has a protocol (called the
rarest-first policy) to ensure a uniform distribution of pieces
among the peers and protocols (call the endgame mode) to
prevent users who have all but a few of the pieces from
waiting too long to finish their download. As with any good
modelling exercise, we tradeoff between the simplicity of the
model and its ability to capture all facets of the protocol.
Thus, we will first use a simple fluid model to study the scal-
ability and the stability of the system. We will then assume
that each peer has the global information and study the
incentive mechanism of BitTorrent. We will finally briefly
study the effect of the optimistic unchoking on free-riding.

3. A SIMPLE FLUID MODEL
Our model for file-sharing is influenced by the model in

[11]. However, while [11] only uses the model to develop a
Markov chain which is then studied numerically, we use the
key modelling idea in [11] to develop a simple determinis-
tic fluid model which is amenable to analysis and provides
insights into the system performance.

In our model, we use the following quantities to capture a
BitTorrent peer-to-peer network [8] that serves a given file

368

(without loss of generality, we assume that the file size is 1):

x(t) number of downloaders (also known as leechers) in the
system at time t.

y(t) number of seeds in the system at time t.

λ the arrival rate of new requests. We assume that peers
arrive according to a Poisson process.

µ the uploading bandwidth of a given peer. We assume that
all peers have the same uploading bandwidth.

c the downloading bandwidth of a given peer. We assume
that all peers have the same downloading bandwidth
and c ≥ µ.

θ the rate at which downloaders abort the download.

γ the rate at which seeds leave the system.

η indicates the effectiveness of the file sharing, which we will
describe shortly. η takes values in [0, 1].

In a BitTorrent-like P2P network, a downloader can up-
load data to other peers even though it may only have parts
of a file. The parameter η is used to indicate the effectiveness
of this file sharing. If there is no constraint on downloading
bandwidth, the total uploading rate of the system can be ex-
pressed as µ(ηx(t)+y(t)). If η = 0, then the downloaders do
not upload data to each other and only download from seeds.
When the downloading bandwidth constraint is considered,
the total uploading rate will be min{cx(t), µ(ηx(t) + y(t))}.
To obtain a Markovian description of the system, we as-
sume that the probability that some downloader becomes a
seed in a small interval δ is given by min(cx, µ(ηx + y))δ.
These assumptions can be easily relaxed to allow more gen-
eral distributions for all the random variables involved by
using phase-type distributions as in [14, 22, 10].

Next, we comment on the parameters θ and γ. A down-
loader may not stay in the system till it completely down-
loads the file. Occasionally, a downloader may leave the
network before the downloading is complete if he/she feels
that the download is taking too long. We assume that each
downloader independently aborts its download after a cer-
tain amount of time which is exponentially distributed with
mean 1/θ. Equivalently, θ is the rate at which downloaders
abort their download and leave the system. In a fluid model,
the rate of departures of downloaders will be given be

min{cx(t), µ(ηx(t) + y(t))}+ θx(t).

While the departures that occur due to the fact that the file
download has been completed will become seeds instanta-
neously, the remaining downloaders will permanently leave
the system. The parameter γ is the rate at which seeds de-
part from the network. We assume that each seed stays in
the system for a random time which is exponentially dis-
tributed with mean 1/γ. Clearly, γ will have an effect on
system performance: the lower the γ, the lower the down-
load times since this means that there will more seeds in
the system. This parameter γ can be influenced by pro-
viding incentives for users to stay in the system after they
have downloaded the file, i.e., after they have become seeds.
However, BitTorrent currently does not have such incentives
and therefore, we simply consider γ to be a fixed constant.

Now, we are ready to describe the evolution of x and
y based on the above model. A deterministic fluid model
for the evolution of the number of peers (downloaders and
seeds) is given by

dx

dt
= λ− θx(t) − min{cx(t), µ(ηx(t) + y(t))},

dy

dt
= min{cx(t), µ(ηx(t) + y(t))} − γy(t), (1)

along with the obvious constraint that x(t) and y(t) should
be non-negative. A key contribution of [11] was to describe
the efficiency of data transfer from other downloaders using
the parameter η. Our fluid model provides a simple descrip-
tion of the system that was described by a Markov chain in
[11]. In addition, we have incorporated other realistic sce-
narios such as departures of downloaders due to impatience
with the downloading process (described by θ) and down-
loading bandwidth constraint c. In a later subsection, we
will also present a simple stochastic fluid model that char-
acterizes the variability around the fluid model. We now
study the steady-state performance of the P2P system us-
ing the above fluid model.

3.1 Steady-State Performance
To study the system in steady-state, we let

dx(t)

dt
=

dy(t)

dt
= 0

in (1) and obtain

0 = λ− θx̄− min{cx̄, µ(ηx̄+ ȳ)},
0 = min{cx̄, µ(ηx̄+ ȳ)} − γy(t), (2)

where x̄ and ȳ are the equilibrium values of x(t) and y(t)
respectively.

We first assume η > 0. Further, suppose that the down-
loading speed is the constraint, i.e., cx̄ ≤ µ(ηx̄ + ȳ). Equa-
tion (2) then becomes a simple linear equation. Solving the
equation, we have

x̄ =
λ

c(1 + θ
c
)

ȳ =
λ

γ(1 + θ
c
)
. (3)

Now, the assumption that cx̄ ≤ µ(ηx̄+ ȳ) is equivalent to

1

c
≥ 1

η
(
1

µ
− 1

γ
).

Instead, if we assume that the uploading bandwidth is the
constraint, i.e., cx̄ ≥ µ(ηx̄+ ȳ), we get

x̄ =
λ

ν(1 + θ
ν
)

ȳ =
λ

γ(1 + θ
ν
)
, (4)

where 1
ν

= 1
η
(1

µ
− 1

γ
). From cx̄ ≥ µ(ηx̄+ ȳ), we have

1

c
≤ 1

ν
=

1

η
(
1

µ
− 1

γ
).

Define 1
β

= max{ 1
c
, 1

η
(1

µ
− 1

γ
)}, then (3) and (4) can be

369

combined to yield

x̄ =
λ

β(1 + θ
β
)

ȳ =
λ

γ(1 + θ
β
)
. (5)

To calculate the average downloading time for a peer in
steady state, we use Little’s law [4] as follows:

λ− θx̄

λ
x̄ = (λ− θx̄)T,

where T is the average downloading time, λ − θx̄ is the
average rate at which downloads are completed, and λ−θx̄

λ
is the fraction of downloaders that will become seeds. Using
(5), it is now easy to see that

T =
1

θ + β
. (6)

Recall that 1
β

= max{ 1
c
, 1

η
(1

µ
− 1

γ
)}. Equation (6) provides

several insights into the behavior of BitTorrent:

• The average downloading time T is not related to λ,
the request arrival rate. Hence, the BitTorrent P2P
system scales very well.

• When η increases, T decreases. This is because the
peers share the file more efficiently.

• When γ increases, T increases because a larger γ means
that there are fewer seeds in the system.

• Initially, when c increases, T decreases. However, once
c is large enough (1

c
≤ 1

η
(1

µ
− 1

γ
)), increasing c further

will not decrease T, because the downloading band-
width is no longer the bottleneck. A similar observa-
tion can be made regarding the uploading bandwidth
µ.

• It is often true that the downloading bandwidth c of a
peer would be much higher than its uploading band-
width µ. Common examples of such an asymmetry are
DSL and cable modem connections. For performance
analysis purposes, it may be tempting to set c = ∞
as in [11, 24]. However, the expression for T in (6)
shows that the average download time is not always
constrained by the uploading bandwidth of the peers.
In fact, if the seed leaving rate γ is smaller than µ, then
the downloading bandwidth c determines the network
performance even though c may be much larger than
µ.

We briefly comment on the case η = 0, which means that
downloaders do not upload data to each other and only
download from seeds. If γ < µ, the previous analysis as
in the case of η > 0 still holds and T = 1/c. On the other
hand, if γ > µ, from (1), we can see

dy(t)

dt
≤ (µ− γ)y(t).

This tells us that y(t) decreases at least exponentially. So
if γ > µ, the number of seeds will exponentially decrease to
zero and the system dies. Recall that when η > 0, the sys-
tem reaches a steady state no matter what γ is. So, it is very
important for the downloaders to upload data to each other.

Even if the file sharing is not very efficient (a small η), it can
play an important role in keeping the system alive. From
(6), we also see that η is important to the network perfor-
mance. In the next subsection, we will derive an expression
for η and argue that η is very close to 1 in BitTorrent.

3.2 Effectiveness of File Sharing
In this section, we present a simple model to calculate

the value of η, which indicates the effectiveness of the file
sharing. For a given downloader i, we assume that it is con-
nected to k = min{x− 1, K} other downloaders, where x is
the number of downloaders in the system and K is the max-
imum number of downloaders to which a peer can connect.
We also assume that each downloader has the information
about which pieces the connected peers have. Hence if peer
i has pieces that are of interest to at least one peer that is
connected to it, then peer i will upload data. We then have

η = 1 − P

downloader i has no piece that

the connected peers need

ff
.

We assume that the piece distributions between different
peers are independent and identical. Then

η = 1 − P

downloader j needs no
piece from downloader i

ffk

,

where j is a downloader connected to i.
For each downloader, we assume that the number of pieces

it has is uniformly distributed in {0, · · · , N − 1}, where N
is the number of pieces of the served file. Let ni denote the
random variable describing the number of pieces at down-
loader i. We assume that given ni, these pieces are chosen
randomly from the set of all pieces of the file. This is a rea-
sonable assumption because BitTorrent takes a rarest first
piece selection policy when downloading. Under these as-
sumptions, we have

P

downloader j needs no
piece from downloader i

ff

= P{j has all pieces of downloader i}

=

N−1X
nj=1

njX
ni=0

1

N2
P{j has all pieces of i|ni, nj}

=
N−1X
nj=1

njX
ni=0

1

N2

`
N−ni
nj−ni

´
`

N
nj

´

=

N−1X
nj=1

1

N2

`
N+1
nj

´
`

N
nj

´

=

N−1X
nj=1

N + 1

N2(N + 1 − nj)

=
N + 1

N2

N−1X
nj=1

1

N + 1 − nj

=
N + 1

N2

NX
m=2

1

m
≈ logN

N

and

η ≈ 1 −
„

logN

N

«k

. (7)

370

Now, we will interpret the expression for realistic file sizes.
In BitTorrent, each piece is typically 256KB. Thus, for a
file that is a few hundreds of megabytes in size, N is of the
order of several hundreds. Hence, even if k = 1, η is very
close to one. For BitTorrent, k is actually larger, since the
maximum number of connections K is typically 40. This tells
us that BitTorrent is very efficient in sharing files. When k
increases, η also increases but very slowly and the network
performance increases slowly. Note that, since k depends on
the number of other peers in the system, it may be related to
the arrival rate λ. Hence, when λ increases, the network per-
formance increases but very slowly. Thus, our observation in
the previous subsection that the network performance is es-
sentially independent of λ still holds. This also matches the
observations of real BitTorrent networks presented in [11,
24]. Note that when k = 0, the downloader is not connected
to any other downloaders and hence η = 0.

3.3 Local Stability
When deriving the steady-state quantities x̄, ȳ and T, we

implicitly assumed that the system is stable and will reach
its equilibrium. In this section, we study the stability of the
fluid model (1) around the equilibrium {x̄, ȳ}.

When 1
c
< 1

η
(1

µ
− 1

γ
), the uploading bandwidth is the

constraint and around a small neighborhood of {x̄, ȳ}, we
have

dx(t)

dt
= λ− θx(t) − µ(ηx(t) + y(t))

dy(t)

dt
= µ(ηx(t) + y(t)) − γy(t).

Let

A1 =

» −(µη + θ) −µ
µη −(γ − µ)

–
. (8)

Then the eigenvalues of A1 determine the stability of the
equilibrium {x̄, ȳ}. Let ψ be an eigenvalue of A1. The eigen-
values of A are the solutions of

ψ2 + (µη + θ + γ − µ)ψ + µηγ + θ(γ − µ) = 0. (9)

Since 1
c
< 1

η
(1

µ
− 1

γ
), we have γ > µ. When η > 0, both

µη + θ + γ − µ and µηγ + θ(γ − µ) are greater than zero.
So the eigenvalues have strictly negative real parts and the
system is stable.

Similarly, when 1
c
> 1

η
(1

µ
− 1

γ
), the downloading band-

width is the constraint and around a small neighborhood of
{x̄, ȳ}, we have

dx(t)

dt
= λ− θx(t) − cx(t)

dy(t)

dt
= cx(t) − γy(t).

Let

A2 =

» −(θ + c) 0
c −γ

–
. (10)

Then the eigenvalues of A2 satisfy

ψ2 + (θ + γ + c)ψ + (θ + c)γ = 0. (11)

Again, since both θ + γ + c and (θ + c)γ are greater than
zero, we see that the eigenvalues have strictly negative real
parts and the system is stable.

The case where 1
c

= 1
η
(1

µ
− 1

γ
) is a little more tricky since

the dynamics are determined by the matrix A1 or the matrix

A2, depending upon the direction in which the system is
perturbed. Thus, a linear analysis will not suffice to even
determine local stability. To avoid lengthy arguments, we
do not consider this special case here.

Even in the cases where 1
c
�= 1

η
(1

µ
− 1

γ
), the global stability

of the fluid model (1) may be hard to analyze because of
the fact that the dynamics of the system changes depending
upon whether cx > µ(ηx+y) or not. Such systems are called
switched linear systems; we refer the reader to the survey in
[16] for the stability issues associated with such models.

3.4 Characterizing Variability
When the request arrival rate is large (which also means

a large number of downloaders and seeds), the fluid model
is a good approximation of the real system. However, it
is important to understand how the number of seeds and
downloaders vary around the numbers predicted by the de-
terministic model. In this subsection, we present a simple
characterization of the variance of x and y around x̄ and ȳ
using a Gaussian approximation.

Under the assumptions that we have discussed in Sec-
tion 3, when the arrival rate λ is large, the number of down-
loaders and seeds at any time t can be described by

x(t) +
√
λx̂(t), y(t) +

√
λŷ(t),

respectively, where X̂ = (x̂, ŷ)T is the solution to the fol-
lowing stochastic fluid differential equation whose solution
is known as the Ornstein-Uhlenbeck process:

dX̂(t) = AX̂(t)dt+ BdW(t). (12)

In (12), the components of W are independent standard
Wiener processes (Brownian motions), with the entries of
A and B being determined by whether the downloading
or the uploading bandwidth is the bottleneck. Specifically,
A = A1 given by (8) if 1

c
< 1

η
(1

µ
− 1

γ
) and A = A2 given by

(10) if 1
c
> 1

η
(1

µ
− 1

γ
). In both cases, we have

B =

»
1 −√

ρ −p
(1 − ρ) 0

0 0
p

(1 − ρ) −p
(1 − ρ)

–
(13)

where ρ := θ
θ+β

. We do not consider the more complicated

case 1
c

= 1
η
(1

µ
− 1

γ
) which is unlikely to occur in practice.

From (12), it is easy to compute the steady-state covari-

ance of X̂, i.e, Σ = limt→∞ E(X̂(t)X̂T (t)). This is given by
the so-called Lyapunov equation [3]

AΣ + ΣAT + BBT = 0. (14)

The steady-state variance of x̂ is then given by (1, 1) ele-
ment of Σ and the steady-state variance of ŷ is given by
the (2, 2) element of Σ. The above result essentially states
that, in steady-state, the number of seeds and downloaders
is distributed as Gaussian random variables whose variances
are determined by Σ.

The formal proof required to establish (12) is beyond the
scope of this paper. We will simply state here that it involves
showing that the original stochastic process converges to
the deterministic and stochastic differential equation limits
when the arrival rate goes to ∞. This can be established
using weak-convergence theorems such as the ones in [5, 12,
23].

371

4. INCENTIVE MECHANISM
In this section, we discuss the algorithm in BitTorrent

which is intended to discourage free-riding. We first describe
the algorithm and then study the optimal selfish behavior
of the users under this algorithm.

4.1 Peer Selection Algorithm
There is a built-in incentive mechanism in BitTorrent to

encourage users to upload. The basic idea is that each peer
uploads to nu peers from which it has the highest down-
loading rates (the default value of nu is 4). But since a peer
only has partial information of the whole network (i.e., it
doesn’t have the upload rate information of all peers), opti-
mistic unchoking [8] is used to explore the network. In this
section, our objective is to understand how the built-in in-
centive mechanism affects the network performance. Hence,
we ignore the details of optimistic unchoking and assume
that each peer has the global information of uploading rates.
We also assume that there are no downloading bandwidth
constraints, all peers are fully connected and have demands
from each other.

Under the above assumptions, we can simplify the peer
selection algorithm of BitTorrent as follows. We first sort
the peers according to their uploading bandwidth (it could
be the physical uploading bandwidth or the uploading band-
width that has been set manually by the user) such that the
first peer has the highest uploading bandwidth. If two or
more peers have the same uploading bandwidth, they are
randomly ordered. The peer selection process proceeds in
steps with peer i choosing peers to upload at step i. In the
real BitTorrent, the peer selection does not proceed in steps
like this. However, after we describe the selection algorithm,
it would be clear that the step-by-step selection process does
not change the selection of the peers significantly. Let N be
the total number of peers and let µi be the uploading band-
width of peer i. Then at step i, peer i selects peers to upload
according to the following rules.

1. If peer i is selected by peer j (j < i), then i selects j.
For any peer k (k ≥ i), let ni

k be the number of peers
that have selected peer k prior to step i.

2. If ni
i < nu and nu − ni

i ≤ N − i, peer i selects nu − ni
i

peers from the set {k|k > i} using the following set
of rules to prioritize a peer, say k1, over another peer
k2 :

(a) If µk1 > µk2, select k1.

(b) If µk1 = µk2 and ni
k1 < ni

k2, select k1.

(c) If µk1 = µk2, n
i
k1 = ni

k2, and k1 < k2, select k1.

3. If ni
i < nu and nu−ni

i > N−i, peer i selects all peers in
{k|k > i} and also randomly selects (nu−ni

i)−(N− i)
peers from the peers that i has not selected yet.

These rules are easy to understand. Rule 1 states that if
the downloading rate from peer j to peer i is greater than
or equal to the uploading rate of i, peer i should upload
to peer j to try to keep the downloading rate high. We
will show in Lemma 1 that ni

i ≤ nu. So rule 1 will not
violate the requirement that the number of uploads cannot
exceed nu. Rule 2(a) simply gives priority to peers with
higher uploading rates. Rule 2(b) tries to treat peers with
the same uploading rate as fairly as possible and rule 2(c) is

simply a tie-break rule. Rule 3 takes care of the last several
peers and makes sure that all peers have nu uploads. The
following lemma is a simple property of the peer selection
algorithm.

Lemma 1. With the peer selection algorithm, when peer
i selects uploading peers, we have ni

i ≤ nu and for any k2 >
k1 ≥ i, ni

k2 ≤ ni
k1 ≤ nu.

Proof: First, when i = 1, ni
i = 0 ≤ nu and ni

k2 = ni
k1 =

0 ≤ nu, the lemma is true. Now, we assume that the lemma
is true for peer i and prove that it is also true for peer i+ 1
and hence by induction, it is true for all i.

If the lemma is true for i, we will have ni
i+1 ≤ ni

i ≤ nu and
ni

k2 ≤ ni
k1 ≤ nu for any k2 > k1 ≥ i+ 1. Now, if ni

i = nu,
then peer i already has nu uploads and it will not select any
peer from {k|k > i}. Hence, for any k > i, ni

k = ni+1
k and

the lemma is true for i+ 1. If ni
i < nu, then ni

i+1 < nu. So,
no matter whether peer i selects peer i+1 or not, we always
have ni+1

i+1 ≤ nu. To show the second part of the lemma, if

ni
k1 > ni

k2, after peer i makes the selection, we always have
ni+1

k1 ≥ ni+1
k2 . If ni

k1 = ni
k2, according to rule 2, we also have

ni+1
k1 ≥ ni+1

k2 . Hence the lemma is true for i+ 1.
Now let Di be the set of peers that select peer i. We

exclude peers that randomly select i by using rule 3 here for
two reasons. First, each peer i has about equal chance to
be selected and hence on average, the effect of the random
selection can be equivalently seen as each peer getting a
constant download rate dr. Secondly, if the number of peers
is large, dr will be very small and can be ignored. The
aggregate downloading rate of peer i then is

di =
1

nu

X
k∈Di

µk.

Note that if two peers have the same uploading bandwidth,
they may get different downloading rates. Generally, if µi =
µi+1 = · · · = µj are peers with the same uploading band-
width, we will have di ≥ di+1 ≥ · · · ≥ dj . So, for a given
peer i, the downloading rate not only depends on the up-
loading bandwidth µi, but also depends on how the peer is
ordered with regards to other peers with the same upload-
ing bandwidth. To eliminate the ambiguity, when there are
two or more peers with the same uploading bandwidth µ,
we define the downloading rate of these peers to be

d(µ) =
1

j − i+ 1

jX
k=i

dk, (15)

where i (resp. j) is the first (resp. last) peer with uploading
bandwidth µ. Moreover, we have the following lemma when
nu ≥ 2.

Lemma 2. Suppose that peers i, i+1, · · · , j have the same
uploading bandwidth µ, where i (resp. j) is the first (resp.
last) peer with uploading bandwidth µ. If j+ i−1 > nu ≥ 2,
then for any k > j, we have

1. di ≥ di+1 ≥ · · · ≥ dj ≥ dk,

2. di > dk,

3. d(µ) > dk.

Proof: First, from the peer selection rules, it is easy to
see that for any two peers k1 < k2, dk1 ≥ dk2. So condition

372

1 is obviously true. Now, to prove condition 2, we only need
to prove di > dj+1. When peer i selects peers, if ni

i = nu

(i.e., peer i has already been selected by nu peers that have
uploading bandwidth greater than µ), then di > µ. If ni

i <
nu, peer i will select nu − ni

i peers from i+ 1, · · · , j. So, we
always have di ≥ µ.

Now, when peer m (i ≤ m ≤ j − nu) selects peers, if
nm

m+1 ≥ 1, obviously we will have nm+1
m+1 ≥ 1. If nm

m+1 = 0,
since peersm andm+1 have the same uploading bandwidth,
from peer selection rule 2(b), we have nm

m ≤ 1 < nu and m
will select peer m + 1. Hence nm+1

m+1 = 1. In both case, we

have nm+1
m+1 ≥ 1.

When m+ 1 selects peers, since nm+1
m+1 ≥ 1, nu − nm+1

m+1 ≤
nu − 1. From m + 2 to j, we have more than nu − 1 peers
with uploading bandwidth µ. So, m+ 1 will not select peer
j+1 and peer j+1 can at most be selected by nu − 1 peers
with uploading bandwidth µ. So

dj+1 ≤ 1

nu
((nu − 1)µ+ µj+2) < µ ≤ di.

Since dj+1 ≥ dk for any k ≥ j + 1, we have di > dk.
From the condition 2 and the definition of d(µ) (15), it is

easy to see that d(µ) > dk and we are done.
Now, we have defined the peer selection rules. We will

next study how these rules affect the peer’s choice of µi, the
uploading bandwidth.

4.2 Peer Strategy
The objective of the incentive mechanism is to encourage

users to contribute. In BitTorrent, the uploading bandwidth
can be chosen by each user up to a maximum of the physical
uploading bandwidth. The purpose of the rest of this section
is to study how the incentive mechanism will affect the peer
strategy, i.e, how the users set their bandwidth. Let pi be
the physical uploading bandwidth of peer i and let {µ−i} be
the set of uploading bandwidth chosen by the peers except
µi. Let di(µi, µ−i) be the aggregate downloading rate of peer
i when the uploading bandwidth of peer i is µi. When {µ−i}
is given, it is obvious that di is a non-decreasing function of
µi. So when µi = pi, peer i gets the maximum downloading
rate. But setting µi = pi is not necessarily the best strategy
for peer i. For each peer i, di is the gain and µi is the cost.
A peer wants to maximize the gain, but at the same time,
it also wants to minimize the cost. Here, we assume that
maximizing the gain has priority over minimizing the cost.
Intuitively, we may want peer i to choose µi such that

µi = min{µ̃i|di(µ̃i, µ−i) = di(pi, µ−i)}. (16)

But unfortunately, the minimum of the set {µ̃i|di(µ̃i, µ−i) =
di(pi, µ−i)} may not exist (e.g., for the set (4, 6]). If we take
this into account, the best strategy for peer i will be

µi = min {inf{µ̃i|di(µ̃i, µ−i) = di(pi, µ−i)} + ε, pi} , (17)

where ε > 0 is a small number. The parameter ε can be
interpreted as the small difference between two rates that
a peer can differentiate. Note that even if the minimum of
{µi|di(µi, µ−i) = di(pi, µ−i)} exists, it is still better to add
a small number ε. Because if the uploading bandwidth of
two peers are very close, we may not be able to detect the
difference between them. Hence, adding a small positive
number can help differentiate peer i from other competing
peers.

Given the peer selection algorithm (game rules), we can
now study the system as a non-cooperative game. A Nash
equilibrium for our problem is a set of uploading rates {µ̄i}
such that

µ̄i = min {inf{µ̃i|di(µ̃i, µ̄−i) = di(pi, µ̄−i)} + ε, pi} .
Let’s consider a small BitTorrent network with 6 peers.

The number of uploads nu = 4 for all peers. We will show
that if the peers have different physical uploading bandwidth
and the minimum uploading bandwidth min{pi} > 2ε, there
is no Nash equilibrium point for the system. In this simple
example, we can see that if the uploading bandwidth µi of
peer i is less than those of all other peers, then peer i will
get zero downloading rate because the other five peers will
upload to each other and not to peer i. On the other hand,
once µi is greater than the uploading bandwidth of at least
one peer, peer i will get the same downloading rate even
if µi < pi. So the strategy for peer i (17) in this exam-
ple turns out to setting µi such that it is the fifth highest
uploading bandwidth. Now, assume that there is a Nash
equilibrium point {µ̄i} and we sort the peers by their up-
loading bandwidth such that µ̄1 is the highest uploading
bandwidth. Then we have µ̄5 > µ̄6. Otherwise, if they are
equal, since the two peers have different physical uploading
bandwidth, there is at least one peer with µi < pi and this
peer can increase its uploading bandwidth to increase its
download rate. Now, if µ̄5 > µ̄6, we know that peer 6 gets
a zero downloading rate. Since {µ̄i} is a Nash equilibrium,
given {µ̄−6}, the maximum downloading rate that peer 6
can get is also zero. Hence, from (17), we have µ̄6 = ε.
Now, if µ̄6 = ε, from (17), we have µ̄5 = 2ε < min{pi}. If
µ̄5 < min{pi}, peer 6 can increase its uploading bandwidth
such that µ6 > µ̄5, which contradicts the fact that µ̄5 is the
fifth highest uploading bandwidth. Hence, there is no Nash
equilibrium point for the system. While there may be no
Nash equilibrium point for a general network setting, when
the network consists of groups of peers where members of
each group have the same uploading and downloading band-
widths, there does exist a Nash equilibrium point as we will
show in the next subsection.

4.3 Nash Equilibrium Point
We consider a network with a finite number of groups of

peers. In group j, all peers have the same physical uploading
bandwidth pj . Note that this is in fact a good model for
the current Internet users, who have only a finite number
of network access methods (dial-up, dsl, cable modem, etc).
Let gj be the set of peers in group j and ||gj || be the number
of peers in group j. Without loss of generality, we also
assume p1 > p2 > · · · .

Proposition 1. If nu ≥ 2 and the number of peers in
a group ||gj || > nu + 1 for all groups, there exists a Nash
equilibrium point for the system, in which µ̄i = pj if peer
i ∈ gj. Moreover, with any initial setting of {µ0

i }, the system
converges to the Nash equilibrium point {µ̄i}.

Proof: We first prove that {µ̄i} is a Nash equilibrium
point. To prove this, we only need to prove that for any peer
i, if µi < µ̄i, then di(µi, µ̄−i) < di(µ̄i, µ̄−i). Without loss of
generality, we assume that i ∈ gj . Since ||gj || > nu + 1, if
we set µi < µ̄i = pj , there will be still at least nu + 1 peers
with uploading bandwidth pj . From Lemma 2, it is easy to
see that di(µi, µ̄−i) < di(µ̄i, µ̄−i).

373

To prove convergence, we first consider the first group
g1. Let vm be the (nu + 1)th highest uploading bandwidth
after m rounds of iterations. Then v0 is the (nu + 1)th
highest uploading bandwidth of the initial set {µ0

i }. If after
m rounds, vm + ε ≤ p1, then in the m+ 1 round, any peer
i ∈ g1 will increase its uploading bandwidth to µi ≥ vm + ε
to maximize its downloading rate. Since ||g1|| > nu+1, after
the m+ 1 round, we will have vm+1 ≥ vm + ε. The increase
in vm will continue until vm = p1 and the peers cannot
increase their uploading bandwidth anymore. In this case,
any peer i ∈ g1 will have the uploading bandwidth µi = p1.
Once peers in the first group reach their maximum limit,
they will not change their uploading bandwidth anymore.
We can now use a similar argument to prove that peers in
the second group will also reach the Nash equilibrium point.
Continuing in a similar fashion, we can establish that the
whole system converges to the Nash equilibrium point.

5. OPTIMISTIC UNCHOKING
In Section 4, we assume that each peer knows the up-

loading bandwidths of all other peers. In reality, each peer
only has the rate information about peers from which it is
downloading. Hence optimistic unchoking is used to explore
the network and obtain information about other peers. In
this section, we briefly study the effect of optimistic un-
choking on free-riders. Specifically, while in Section 4.3, we
showed that rational users would set their uploading rate to
be equal to the maximum possible limit, here we will show
that the maximum downloading rate that an irrational user
who chooses to free-ride is limited to 1

nu+1
of the normal

downloading rate that they can get if they behave rationally.

5.1 Free-Riding
Free-riding means that a peer does not contribute any-

thing to the system, while it attempts to obtain service (or
downloading) from other peers. If peers have global informa-
tion, the free-riding problem can be solved by not uploading
to peers with zero uploading bandwidth. In reality, peers use
optimistic unchoking to explore the network and this gives
an opportunity to free-ride. To illustrate it, let’s consider a
simple example.

We consider a network with a group of peers (g1) that have
the same uploading bandwidth µ. The number of peers in
the group is N . We assume that each peer has nu uploads
and one optimistic unchoking upload. Now, a new peer j
with zero uploading bandwidth joins the network. Each peer
i ∈ g1 will randomly choose a peer that it is not currently
uploading to as the target of its optimistic unchoking. So,
for peer i, on average, 1

N−nu
of the time, it will optimistically

upload to peer j. Since there is a total of N peers in g1, the
total average downloading rate of peer j will be

N
1

N − nu

µ

nu + 1
≈ µ

nu + 1
,

when N is large.
In this example, we see that because of optimistic unchok-

ing, peer j contribute nothing to the system, but it still get
an average downloading rate of µ

nu+1
. In current BitTor-

rent, nu = 4 and thus a free-rider gets 20% of the possible
maximum downloading rate. It would seem that nu can be
increased to reduce the amount that a free-rider can get.
However, choosing nu to be large means that multiple TCP
connections have to share the same bandwidth and thus may

lead to more time-outs and result in poor performance. The
choice of an optimal nu or other methods to alleviate the
free-riding problem is a subject for further study.

6. EXPERIMENTAL RESULTS
We performed a series of experiments to validate the fluid

model described in Section 3. In the first two experiments,
we compare a simulated BitTorrent-like network and the
fluid model. In the last experiment, we actually introduced
a seed into the BitTorrent network, studied the evolution of
the seeds/downloaders, and compared it to our fluid model
results. Due to copyright reasons, we obviously could not
introduce a very popular file into the network. However,
as we will show in our experimental results, even for a file
which had a total of less than 100 completed downloads,
the match between the fluid model and the observed data is
quite close.

6.1 Experiment 1

0 1000 2000 3000 4000 5000
0

100

200

300

400

500

600

700

800

 time (min)

 N
or

m
al

iz
ed

 n
um

be
r

of
 s

ee
ds

 λ=0.04
 λ=0.4
 λ=4
 λ=40
 simple fluid model

Figure 1: Experiment 1 : The evolution of the num-
ber of seeds as a function of time

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

350

400

450

500

 time (min)

 N
or

m
al

iz
ed

 n
um

be
r

of
 d

ow
nl

oa
de

rs

 λ=0.04
 λ=0.4
 λ=4
 λ=40
 simple fluid model

Figure 2: Experiment 1 : The evolution of the num-
ber of downloaders as a function of time

In Figs 1 and 2, we compare the simple deterministic fluid
model that we derived with the results from a discrete-event

374

simulation of a BitTorrent-like network. In the discrete-
event simulation, we use the Markov model described in
Section 3.4. We chose the following parameters for this sim-
ulation: µ = 0.00125, c = 0.002, θ = γ = 0.001. When the
number of downloaders is 1, we set η = 0, otherwise, we set
η = 1. This is in keeping with our observation regarding
the efficiency of the download as described in Section 3.2.
Initially, there is one seed and no downloader. We also keep
the number of seeds no less than one during the entire sim-
ulation. We change the arrival rate λ from 0.04 to 40 and
plot number of seeds/downloaders normalized by the arrival

rate, i.e., y(t)
λ

and x(t)
λ
, from both simulations and the fluid

model. In this experiment, since γ < µ, we know that down-
loading bandwidth is the bottleneck. From the figures, we
see that the simple fluid model is a good approximation of
the system when λ is large, but the match is quite good
even for small λ. The figures also indicate that the number
of downloaders increases linearly with the arrival rate λ. By
Little’s law, this implies that the average download time is
constant, independent of the peer arrival rate, which shows
that the system scales very well. In other words, even very
popular files can be downloaded at the same speed as less
popular files.

6.2 Experiment 2

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

 time (min)

 N
or

m
al

iz
ed

 n
um

be
r

of
 s

ee
ds

 λ=0.04
 λ=0.4
 λ=4
 λ=40
 simple fluid model

Figure 3: Experiment 2 : The evolution of the num-
ber of seeds

In Figs. 3 and 4, we have the same setting as the first
experiment, except that now we set γ = 0.005. With the
change of γ, the uploading bandwidth now becomes the bot-
tleneck. In this setting, we have the similar result as before.
Again, we see that the simple fluid model is accurate when
λ is large, but performs well even for smaller λ. We also plot
the histogram of x̂ and ŷ in Figs. 5 and 6,

x̂(t) =
xsim(t) − x(t)√

λ

and

ŷ(t) =
ysim(t) − y(t)√

λ
,

where xsim(t) and ysim(t) are the number of downloaders
and seeds respectively in the actual simulation and x(t) and
y(t) are the number of downloaders and seeds in determin-
istic fluid model. From the theory presented in Section 3.4,

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

350

400

450

500

 time (min)

 N
or

m
al

iz
ed

 n
um

be
r

of
 d

ow
nl

oa
de

rs

 λ=0.04
 λ=0.4
 λ=4
 λ=40
 simple fluid model

Figure 4: Experiment 2 : The evolution of the num-
ber of downloaders

−40 −20 0 20 40 60
0

200

400

600

800

1000

1200

1400

1600

 y*

 H
is

to
gr

am
 o

f y
*

 λ=0.04
 λ=0.4
 λ=4
 λ=40

Figure 5: Experiment 2 : Histogram of the variation
of the number of seeds around the fluid model

we expect the histograms to look roughly Gaussian and this
fact is borne out by the figures for sufficiently large λ. We
can see that the variance of x̂ and ŷ do not change much
when λ changes from 0.04 to 40.

6.3 Experiment 3
In this experiment, we introduced a file into the BitTor-

rent network and collected the log files of the BitTorrent
tracker for a time period of around three days. When a
peer joins/leaves the system or completes the download, it
reports the event to the tracker. In addition, peers regu-
larly report information such as the total amount of data
uploaded/downloaded so far, the number of bytes that still
need to be downloaded, etc. The tracker keeps all the infor-
mation in the log files. Hence, we can analyze the tracker
log files and retrieve useful information. The parameters
λ, θ, and γ can be measured by counting the peer arrival,
the downloader departure, and the seed departure respec-
tively. However, from the tracker log files, we cannot deter-
mine whether the uploading bandwidth or the downloading
bandwidth is the bottleneck. So we assume the uploading
bandwidth is the bottleneck and estimate µ by dividing the
measured total uploading rate by the number of peers (i.e.,

375

−60 −40 −20 0 20 40 60
0

200

400

600

800

1000

1200

 x*

 H
is

to
gr

am
 o

f x
*

 λ=0.04
 λ=0.4
 λ=4
 λ=40

Figure 6: Experiment 2 : Histogram of the varia-
tion of the number of downloaders around the fluid
model

we assume that η = 1). The size of the file that was in-
troduced was around 530MB. The average uploading band-
width was estimated to be 90kb/s. We use 1 min as the time
unit to calculate arrival rates, departure rates, etc. The nor-
malized uploading bandwidth (normalized by the file size in
bytes) was estimated µ = 0.0013. The downloader leaving
rate was estimated to be θ = 0.001. An interesting feature
that we observed in the real BitTorrent is that λ and γ are
in fact time-varying. We attribute this to the fact that when
a new file is introduced into the system, the first few seeds
stay in the system long enough to ensure that there is a
sufficient population of peers to sustain the system. If the
initial seeds depart too quickly, the system will simply die,
i.e., there will be no one to download from.

From the tracker logs, we estimate that, for t ≤ 800min,
λ = 0.06 and γ = 0.001. When t ≥ 1300min, λ = 0.03 and
γ = 0.0044. In between, the arrival rate increases roughly
linearly. In our fluid model simulation, for time between
800min and 1300min, we let λ and γ change linearly. We
also set the downloading bandwidth c = 1 for the fluid model
simulation (note that the actual value of c will not affect the
fluid model results if it is above a certain threshold).

The simulation results are shown in Figs 7 and 8. The
real trace is measured from the tracker log file and the fluid
model is calculated by using the above measured parame-
ters. For the fluid model, we also numerically calculate the
standard deviation from the steady state network parame-
ters by using (14) and plot the error bar for 95% confidence
intervals. From Fig. 7, we see that the fluid model captures
the evolution of the number of seeds well. In Fig. 8, the
oscillation of the number of downloaders is more significant.
This is because that the file is not very popular and the
arrival rate λ is small. Hence, our model is only an approx-
imation of the real network. But despite this, we can see
that the oscillation is within the level suggested by the 95%
confidence interval.

7. CONCLUSIONS
In this paper, we first presented a simple fluid model for

BitTorrent-like networks and studied the steady-state net-
work performance. Specifically, we obtained expressions for

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

14

16

18

20

 time (min)

 n
um

be
r

of
 s

ee
ds

 fluid model
 real trace

Figure 7: Experiment 3 : Evolution of the number
of seeds

0 1000 2000 3000 4000 5000
0

5

10

15

20

25

 time (min)

 n
um

be
r

of
 d

ow
nl

oa
de

rs

 fluid model
 real trace

Figure 8: Experiment 3 : Evolution of the number
of downloaders

the average number of seeds, the average number of down-
loaders, and the average downloading time as functions of
the peer arrival rate, downloader leaving rate, seed leav-
ing rate, uploading bandwidth, etc, which explicitly give
us insight on how the network performance is affected by
different parameters. We also characterized the variability
of the system by applying limit theorems to the stochastic
model when the arrival rate is large. We then abstracted
the built-in incentive mechanism of BitTorrent and studied
its effect on network performance. Under certain conditions,
we proved that a Nash equilibrium exists, under which each
peer chooses its physical uploading bandwidth to be equal to
the actual uploading bandwidth. We also briefly discussed
the effect of optimistic unchoking on free-riding. Our experi-
mental results show that the simple fluid model can capture
the behavior of the system even when the arrival rate is
small.

8. REFERENCES
[1] Entropia. http://www.entropia.com.

[2] Top applications (bytes) for subinterface: SD-NAP
traffic, 2002.
www.caida.org/analysis/workload/byapplication/sdnap.

376

[3] L. Arnold. Stochastic Differential Equations: Theory
and Applications. John Wiley, New York, NY, 1974.

[4] D. Bertsekas and R. Gallager. Data Networks.
Prentice Hall, Englewood Cliffs, NJ, 1987.

[5] P. Billingsley. Convergence of Probability Measures.
Wiley, 1968.

[6] F. Clevenot and P. Nain. A Simple Fluid Model for
the Analysis of the Squirrel Peer-to-Peer Caching
System. In Proceedings of IEEE INFOCOM, 2004.

[7] F. Clevenot, P. Nain, and K. Ross. Stochastic Fluid
Models for Cache Clusters. Technical Report 4815,
INRIA, Sophia Antipolis, 2003. To appear in
Performance Evaluation.

[8] B. Cohen. Incentives build robustness in bittorrent,
May 2003. http://bitconjurer.org/BitTorrent
/bittorrentecon.pdf.

[9] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP ’01), Chateau Lake Louise,
Banff, Canada, October 2001.

[10] A. Das and R. Srikant. Diffusion approximations for a
single node accessed by congestion-controlled sources.
IEEE Transactions on Automatic Control,
45(10):1783–1799, October 1998.

[11] G. de Veciana and X. Yang. Fairness, incentives and
performance in peer-to-peer networks. In the
Forty-first Annual Allerton Conference on
Communication, Control and Computing, Monticello,
IL, Oct. 2003.

[12] S. N. Ethier and T. G. Kurtz. Markov Processes:
Characterization and Convergence. Wiley, 1994.

[13] Z. Ge, D. R. Figueiredo, S. Jaiswal, J. Kurose, and
D. Towsley. Modeling peer-peer file sharing systems.
In Proceedings of IEEE INFOCOM, 2003.

[14] P. W. Glynn. On the Markov property of the
GI/G/∞ Gaussian limit. Advances in Applied
Probability, 14:191–194, 1982.

[15] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A
decentralized peer-to-peer web cache. In Proceedings
of ACM Symposium on Principles of Distributed
Computing (PODC ’02), Monterey, California, 2002.

[16] D. Liberzon and A. Morse. Basic problems in stability
and design of switched systems. IEEE Control
Systems Magazine, pages 59–70, 1999.

[17] T. S. Eugene Ng, Y.-H. Chu, S. G. Rao,
K. Sripanidkulchai, and Hui Zhang.
Measurement-Based Optimization Techniques for
Bandwidth-Demanding Peer-To-Peer Systems. In
Proceedings of IEEE INFOCOM, 2003.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network. In
Proceedings of ACM SIGCOMM, 2001.

[19] M. Ripeanu. Peer-to-peer architecture case study:
Gnutella network. Technical report, University of
Chicago, 2001.

[20] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the
gnutella network: Properties of large-scale
peer-to-peer systems and implications for system
design. IEEE Internet Computing Journal, 6(1), 2002.

[21] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishman. Chord: A scalable peer-to-peer
lookup protocol for internet applications. In
Proceedings of ACM SIGCOMM, 2001.

[22] W. Whitt. On the heavy-traffic limit theorems for
GI/G/∞ queues. Advances in Applied Probability,
14:171–190, 1982.

[23] W. Whitt. Stochastic Process Limits. Springer, 2002.

[24] X. Yang and G. de Veciana. Service Capacity of Peer
to Peer Networks. In Proceedings of IEEE INFOCOM,
2004.

377

