
Design and Evaluation of a Wide-Area
Event Notification Service

ANTONIO CARZANIGA
University of Colorado at Boulder
DAVID S. ROSENBLUM
University of California, Irvine
and
ALEXANDER L. WOLF
University of Colorado at Boulder

The components of a loosely coupled system are typically designed to operate by generating and

responding to asynchronous events. An event notification service is an application-independent in-

frastructure that supports the construction of event-based systems, whereby generators of events

publish event notifications to the infrastructure and consumers of events subscribe with the infras-

tructure to receive relevant notifications. The two primary services that should be provided to com-

ponents by the infrastructure are notification selection (i.e., determining which notifications match

which subscriptions) and notification delivery (i.e., routing matching notifications from publishers

to subscribers). Numerous event notification services have been developed for local-area networks,

generally based on a centralized server to select and deliver event notifications. Therefore, they

suffer from an inherent inability to scale to wide-area networks, such as the Internet, where the

number and physical distribution of the service’s clients can quickly overwhelm a centralized solu-

tion. The critical challenge in the setting of a wide-area network is to maximize the expressiveness

in the selection mechanism without sacrificing scalability in the delivery mechanism. This paper

presents SIENA, an event notification service that we have designed and implemented to exhibit

both expressiveness and scalability. We describe the service’s interface to applications, the algo-

rithms used by networks of servers to select and deliver event notifications, and the strategies used

Effort sponsored by the Defense Advanced Research Projects Agency, and Air Force Research Labo-

ratory, Air Force Materiel Command, USAF, under agreement numbers F30602-94-C-0253, F30602-

97-2-0021, F30602-98-2-0163, F30602-99-C-0174, F30602-00-2-0608, and N66001-00-8945; by the

Air Force Office of Scientific Research, Air Force Materiel Command, USAF, under grant number

F49620-98-1-0061; and by the National Science Foundation under Grant Number CCR-9701973.

The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright annotation thereon. The views and conclusions contained herein are

those of the authors and should not be interpreted as necessarily representing the official policies

or endorsements, either expressed or implied, of the Defense Advanced Research Projects Agency,

Air Force Research Laboratory, or the U.S. Government.

Authors’ addresses: A. Carzaniga and A. L. Wolf, Department of Computer Science, University

of Colorado at Boulder, 430 UCB, Boulder, CO 80309-0430; email: {carzanig,alw}@cs.colorado.edu;

D. S. Rosenblum, Department of Information and Computer Science, University of California,

Irvine, Irvine, CA 92697-3425; email: dsr@ics.uci.edu.

Permission to make digital/hard copy of part or all of this work for personal or classroom use

is granted without fee provided that the copies are not made or distributed for profit or com-

mercial advantage, the copyright notice, the title of the publication, and its date appear, and

notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to repub-

lish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a

fee.
C© 2001 ACM 0734-2071/01/0800–0332 $5.00

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001, Pages 332–383.

Wide-Area Event Notification Service • 333

to optimize performance. We also present results of simulation studies that examine the scalability

and performance of the service.

Categories and Subject Descriptors: C.2.1 [Network Architecture and Design]: Distributed

Networks; Network Communication; Network Topology; Store and Forward Networks; C.2.2 [Net-
work Protocols]: Applications; Routing Protocols; C.2.4 [Distributed Systems]: Client/server—

Distributed applications; C.2.5 [Local and Wide-Area Networks]: Internet; C.2.6 [Internet-
working]: Routers; C.4 [Performance of Systems]: Design Studies; Modeling Techniques; I.6.3

[Simulation and Modeling]: Applications; I.6.4 [Simulation and Modeling]: Model Validation

and Analysis; I.6.8 [Simulation and Modeling]: Types of Simulation—Discrete event

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Event notification, publish/subscribe, content-based addressing

and routing

1. INTRODUCTION

The asynchrony, heterogeneity, and inherent loose coupling that characterize

applications in a wide-area network promote event interaction as a natural

design abstraction for a growing class of software systems. An emerging build-

ing block for such systems is an infrastructure called an event notification ser-
vice [Rosenblum and Wolf 1997].

We envision a ubiquitous event notification service accessible from every site

on a wide-area network and suitable for supporting highly distributed appli-

cations requiring component interactions ranging in granularity from fine to

coarse. Conceptually, the service is implemented as a network of servers that

provide access points to clients. Clients use the access points to advertise infor-

mation about events and subsequently to publish multiple notifications of the

kind previously advertised. Thus, an advertisement expresses the client’s in-

tent to publish a particular kind of notification. They also use the access points

to subscribe for notifications of interest. The service uses the access points to

then notify clients by delivering any notifications of interest. Clearly, an event

notification service complements other general-purpose middleware services,

such as point-to-point and multicast communication mechanisms, by offering

a many-to-many communication and integration facility.

The event notification service can carry out a selection process to determine

which of the published notifications are of interest to which of its clients, rout-

ing and delivering notifications only to those clients that are interested. In

addition to serving clients’ interests, the selection process also can be used by

the event notification service to optimize communication within the network.

The information that drives the selection process originates with clients. More

specifically, the event notification service may be asked to apply a filter to the

contents of event notifications, such that it will deliver only notifications that

contain certain specified data values. The selection process may also be asked to

look for patterns of multiple events, such that it will deliver only sets of notifica-

tions associated with that pattern of event occurrences (where each individual

event occurrence is matched by a filter).

Given that the primary purpose of an event notification service is to support

notification selection and delivery, the challenge we face in a wide-area setting

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

334 • A. Carzaniga et al.

is maximizing expressiveness in the selection mechanism without sacrificing

scalability in the delivery mechanism [Carzaniga et al. 2000a]. Expressiveness

refers to the ability of the event notification service to provide a powerful data

model with which to capture information about events, to express filters and

patterns on notifications of interest, and to use that data model as the basis

for optimizing notification delivery. In terms of scalability, we are referring not

simply to the number of event generators, the number of event notifications,

and the number of notification recipients, but also to the need to discard many

of the assumptions made for local-area networks, such as low latency, abundant

bandwidth, homogeneous platforms, continuous and reliable connectivity, and

centralized control. We recognize that there are other important attributes of

an event notification service besides expressiveness and scalability, including

security, reliability, and fault tolerance, but we do not address them in this

paper.

Intuitively, a simple event notification service that provides no selection

mechanism can be reduced to a multicast routing and transport mechanism

for which there are numerous scalable implementations. However, once the

service provides a selection mechanism, then the overall efficiency of the ser-

vice and its routing of notifications are affected by the power of the language

used to construct notifications and to express filters and patterns. As the power

of the language increases, so does the complexity of the processing. Thus, in

practice, scalability and expressiveness are two conflicting goals that must be

traded off.

This paper presents SIENA, an event notification service that we have de-

signed and implemented to maximize both expressiveness and scalability. In

Section 3 we describe the service’s formally defined application programming in-

terface, which is an extension of the familiar publish/subscribe protocol [Birman

1993]. Several candidate server topologies and protocols are presented in Sec-

tion 4. We then describe in Section 5 the routing algorithms used by the service

to deliver event notifications to clients; these algorithms are designed specifi-

cally for distributed networks of event servers. This is followed by a description

of strategies for optimizing the performance of the notification selection process.

Supported in part by the results of simulation studies, we present an analysis

of the scalability of our design choices in Section 6. In our simulation studies,

we focus on two alternative service architectures, one based on a hierarchical

topology, and the other based on a peer-to-peer topology. In particular, we study

how these two architectures perform under various classes of applications in

which the densities and distributions of clients differ. We conclude in Sections 7

and 8 with a discussion of related work and a brief indication of our future

plans.

2. FRAMING THE PROBLEM AND ITS SOLUTION

As discussed in Section 1, an event notification service implements two key

activities, notification selection and notification delivery. A naive approach to

realizing these activities is to employ a central server where all subscriptions

are recorded, where all notifications are initially targeted, where notifications

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 335

Fig. 1. Distributed event notification service.

are evaluated against all subscriptions, and from where notifications are sent

out to all relevant subscribers. This solution is logically very simple, but is im-

practical in the face of scale. Clearly, the service instead must be architected as a

distributed system in which activities are spread across the network, hopefully

exploiting some sort of locality, and hopefully exhibiting a reasonable growth

in complexity.

In its most general form, a distributed event notification service is composed

of interconnected servers, each one serving some subset of the clients of the

service, as shown in Figure 1. (Some use the terms proxy and broker instead

of the term server.) The clients are of two kinds: objects of interest, which are

the generators of events, and interested parties, which are the consumers of

event notifications. Of course, a client can act as both an object of interest

and an interested party. Both kinds of clients interact with a locally accessible

server, which functions as an access point to the networkwide service. In prac-

tice, the service becomes a wide-area network of pattern matchers and routers,

overlaid on top of some other wide-area communication facility, such as the

Internet. One reasonable allocation of such servers might be to place a server

at each administrative domain within the low-level, wide-area communication

network.

Creating a network of servers to provide a distributed service of any sort

gives rise to three critical design issues:

—Interconnection topology: In what configuration should the servers be con-

nected?

—Routing algorithm: What information should be communicated between the

servers to allow the correct and efficient delivery of messages?

—Processing strategy: Where in the network, and according to what heuristics,

should message data be processed in order to optimize message traffic?

These three design issues have been studied extensively for many years and

in many contexts. Our challenge is to find a solution in the particular domain

of wide-area event notification, leveraging previous results (both positive and

negative) wherever possible.

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

336 • A. Carzaniga et al.

In terms of interconnection topology, there are essentially two broad classes

from which to choose: a hierarchy and a general graph. Existing distributed

event notification services, such as JEDI [Cugola et al. 1998] and TIBCO’s

product TIB/Rendezvous™, adopt a hierarchical topology. However, our analy-

sis (presented in Section 6) shows that such a topology can exhibit significant

performance problems. In SIENA we have adopted the general graph, which in

common terms means that the servers are organized in a peer-to-peer rela-

tionship, as we detail in Section 4. A hybrid of the two structures—whether

a hierarchy of peers, or peers of hierarchies—is also a topology to consider,

but requires a priori knowledge of the inherent structure of the service’s ap-

plications in order to make a proper subdivision among peers and hierarchies.

Having such knowledge would violate the notion that the service is general

purpose.

Our desire for the event notification service to be general purpose also compli-

cates the routing problem for the service. In particular, we assume that objects

of interest have no knowledge of interested parties. Therefore, event notifica-

tions cannot be addressed and routed in the same, relatively simple manner

as, for example, an electronic mail message. Moreover, we cannot assume any

particular locality of objects of interest and interested parties, which is a fact

that bears a strong relationship to the server topology issue. At best we can

only try to take advantage of any locality or structure in the message traffic as

it emerges. We demonstrate below that advertisements and subscriptions serve

as the basis for this.

Given these considerations, solving the routing problem can be seen as a

choice among three alternatives. Common to the three alternatives is the need

to broadcast some piece of information to all the servers in the network, where

the broadcast is required by the lack of a priori knowledge of locality. The first

alternative broadcasts notifications, which implies that notification matching

is performed at each local server based on the subscriptions received at that

server. This alternative suffers from the drawback that all notifications are

delivered to all local servers, whether or not they are serving any parties inter-

ested in the notifications.

The second and third alternatives try to take advantage of emergent locality

and structure. In particular, the second alternative involves a broadcast of sub-

scriptions. A shortest-path algorithm is used to route notifications back to only

the local servers of interested parties. Under the third alternative, advertise-

ments are broadcast, and subscriptions are then used to establish paths, akin

to virtual circuits, by which notifications are routed to only the local servers

of interested parties. Of course, both these alternatives suffer from the cost of

having to store either all subscriptions or all advertisements at all servers. The

drivers that trade off among the three alternatives are fairly straightforward

to identify, but in the design of a general-purpose service, any choice will be

suboptimal for some situation, as we discuss in Section 5.

Fortunately, we can improve the situation considerably by being intelligent

about how we allocate the notification-matching tasks within the network.

This is the design issue that concerns the processing strategy. We observe,

that in practice, many parties are interested in “similar” events. Put another

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 337

way, it is likely that distinct subscriptions define partially, or even completely,

overlapping sets of notifications. A similar observation can be made about ob-

jects of interest and their advertisements. We therefore sketch how this observa-

tion leads to a processing strategy for subscriptions and assume a corresponding

strategy exists for advertisements; Section 5 presents a detailed discussion of

these strategies.

Based on our observation about the likely relationship among subscriptions,

the strategy works as follows. When a subscription reaches a server (either

from a client or from another server), the server propagates that subscription

only if it defines new selectable notifications that are not in the set of selectable

notifications defined by any previously propagated subscription. Three bene-

fits accrue from this approach. First, we reduce network costs by pruning the

propagation of new subscriptions. Second, we reduce the storage requirements

for servers. Third, by reducing the number of subscriptions held at each server,

we reduce the computational resources needed to match notifications at that

server. We use a similar strategy for propagation of advertisements.

Up to this point in the discussion we have treated notifications, subscrip-

tions, and advertisements in rather abstract terms. We now make these con-

cepts somewhat more concrete as a basis for the material presented in the next

several sections.

As mentioned in the introduction, the information associated with an event is

represented by a data structure called a notification. We refer to the data model

or encoding schema of notifications as the event notification model or simply

event model. Most existing event notification services adopt a simple record-

like structure for notifications, while some more recent frameworks define an

object-oriented model (e.g., the Java™ Distributed Event Specification [Sun

Microsystems 1998] and the CORBA Notification Service [Object Management

Group 1998b]).

Closely related to the event model is the subscription language, which defines

the form of the expressions associated with subscriptions. Two aspects of the

subscription language are crucial to the issue of expressiveness.

—Scope of the subscription predicates: This aspect is concerned with the visibil-

ity that subscriptions have into the contents of a notification. For a recordlike

notification structure, visibility determines which fields can be used in spec-

ifying a subscription.

—Power of the subscription predicates: This aspect is concerned with the so-

phistication of operators that can be used in forming subscription predicates.

The predicates apply both to any possible filtering of individual notifications

as well as to any possible formation of patterns of multiple notifications.

The dual of the subscription language is the advertisement language, which

shares the issues of scope and power, but from the perspective of an object of

interest, rather than an interested party. One consequence of this difference

in perspective is that interested parties may subscribe for patterns of multiple

notifications, whereas objects of interest advertise only individual notifications.

The following sections elaborate on these basic concepts and our approach

to achieving expressiveness and scalability.

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

338 • A. Carzaniga et al.

Table I. Interface of SIENA

publish(notification n)

subscribe(string identity, pattern expression)

unsubscribe(string identity, pattern expression)

advertise(string identity, filter expression)

unadvertise(string identity, filter expression)

3. API AND SEMANTICS

At a minimum, an event notification service exports two functions that together

define what is usually referred to as the publish/subscribe protocol. Interested

parties specify the events in which they are interested by means of the func-

tion subscribe. Objects of interest publish notifications via the function publish.

SIENA extends the publish/subscribe protocol with an additional interface func-

tion called advertise, which an object of interest uses to advertise the notifica-

tions it publishes. SIENA also adds the functions unsubscribe and unadvertise.

Subscriptions can be matched repeatedly until they are canceled by a call to

unsubscribe. Advertisements remain in effect until they are canceled by a call

to unadvertise.

Table I shows the interface functions of SIENA. The expression given to sub-
scribe and unsubscribe is a pattern, while the expression given to advertise and

unadvertise is a filter; we discuss patterns and filters in greater detail below.

The parameter identity specifies the identity of the object of interest or inter-

ested party. Objects of interest and interested parties must identify themselves

to SIENA when they advertise or subscribe, respectively, so that they can later

cancel their own advertisements or subscriptions. The only requirement that

SIENA imposes on identifiers is that they be unique.

We note that SIENA maintains a mapping between the identities of inter-

ested parties and their handlers. A handler specifies the means by which an

interested party receives notifications, either through callbacks or through mes-

sages sent via a communication protocol such as HTTP or SMTP. Separating

these two concepts at the level of clients allows for the possibility of redirecting

and/or temporarily suspending the flow of notifications from objects of interest

to interested parties, and supports the mobility of clients. Detailed discussion

of handlers is beyond the scope of this paper.

3.1 Notifications

An event notification (or simply a notification) is a set of typed attributes. For

example, the notification displayed in Figure 2 represents a stock price change

event. Each individual attribute has a type, a name, and a value, but the no-

tification as a whole is purely a structural value derived from its attributes.

Attribute names are simply character strings. The attribute types belong to

a predefined set of primitive types commonly found in programming lan-

guages and database query languages, and for which a fixed set of operators is

defined.

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 339

Fig. 2. Example of a notification.

The justification for choosing this typing scheme is scalability. In other sys-

tems, such as one finds for example in the Java Distributed Event Specifica-

tion [Sun Microsystems 1998] and CORBA Notification Service [Object Manage-

ment Group 1998b], a notification is a value of some named, explicit notification

type. This implies a global authority for managing and verifying the type space,

something which is clearly not feasible at an Internet scale. On the other hand,

we define a restricted set of attribute types from which to construct (arbitrary)

notifications. By having this well-defined set, we can perform efficient routing

based on the content of notifications. As we discuss in Section 7, content-based

routing has distinct advantages over the alternative schemes of channel- and

subject-based routing.

3.2 Filters

An event filter, or simply a filter, selects event notifications by specifying a set

of attributes and constraints on the values of those attributes. Each attribute

constraint is a tuple specifying a type, a name, a binary predicate operator,

and a value for an attribute. The operators provided by SIENA include all the

common equality and ordering relations (=, 6=, <, >, etc.) for all of its types;

substring (∗), prefix (> ∗), and suffix (∗ <) operators for strings; and an operator

any that matches any value.

An attribute α= (typeα, nameα, valueα) matches an attribute constraint φ=
(typeφ , nameφ , operatorφ , valueφ) if and only if typeα = typeφ ∧nameα =nameφ
∧ operatorφ(valueα, valueφ). We say an attribute α satisfies or matches an

attribute constraint φ with the notation α≺φ. When α matches φ, we also say

that φ covers α. Figure 3 shows a filter that matches price increases for stock

DIS on stock exchange NYSE.

When a filter is used in a subscription, multiple constraints for the same at-

tribute are interpreted as a conjunction; all such constraints must be matched.

Thus, we say that a notification n matches a filter f , or equivalently that f
covers n (n≺N

S f for short):

n≺N
S f ⇔ ∀φ ∈ f : ∃α ∈ n : α≺φ

A filter can have two or more attribute constraints with the same name, in

which case the matching rule applies to all of them. Also, the notification may

contain other attributes that have no correspondents in the filter. Table II gives

some examples that illustrate the semantics of ≺N
S . The second example is not

a match because the notification is missing a value for attribute level. The third

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

340 • A. Carzaniga et al.

Fig. 3. Example of an event filter.

Table II. Examples of ≺N
S

Notification Subscription

string what= alarm ≺N
S string what= alarm

time date= 02:40:03

string what= alarm string what= alarm6≺N
Stime date= 02:40:03 integer level> 3

string what= alarm
string what= alarm 6≺N

S integer level> 3
integer level= 10

integer level< 7

string what= alarm
string what= alarm ≺N

S integer level> 3
integer level= 5

integer level< 7

example is not a match because the constraints specified for attribute level in

the subscription are not matched by the value for level in the notification.

3.3 Patterns

While a filter is matched against a single notification based on the notification’s

attribute values, a pattern is matched against one or more notifications based

on both their attribute values and on the combination they form. At its most

generic, a pattern might correlate events according to any relation. For example,

the programmer of a stock market analysis tool might be interested in receiving

price change notifications for the stock of one company only if the price of a

related stock has changed by a certain amount. Rich languages and logics exist

that allow one to express event patterns [Mansouri-Samani and Sloman 1997].

In SIENA we do not attempt to provide a complete pattern language. Our

goal is rather to study pattern operators that can be exploited to optimize the

selection of notifications within the event notification service. Here, we restrict

a pattern to be syntactically a sequence of filters, f1 · f2 · · · fn, that is matched

by a temporally ordered sequence of notifications, each one matching the cor-

responding filter. An example of a pattern is shown in Figure 4, which matches

an increase in the price of stock MSFT followed by a subsequent increase in the

price of stock NSCP. In general, we observe that more sophisticated forms of

patterns can always be split into a set of simple subscriptions and then matched

externally to SIENA (i.e., at the access point of the interested party), although

this is likely to induce extra network traffic. We say that a pattern is simple
when it is composed of a single filter, and similarly we say that a subscription

is simple when it requests a simple pattern.

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 341

Fig. 4. Example of an event pattern.

There are many possible semantics for the filter sequence operator. In the

interests of scalability, we have opted for the simplest possible semantics, which

ignores out-of-order matches of notifications due to network latency (see Sec-

tion 3.8). To understand the semantics we chose, consider the pattern A ·B (read

“A followed by B”), which we assume to be submitted as a subscription at time

t0. We represent notifications that match A as Aj
i , meaning the notification was

generated at time ti by the object of interest and was matched at time t j by

the server responsible for matching the pattern (and similarly for notifications

B j
i matched to B). Consider the following sequence of notifications (shown in

match order):

B1
4 A2

3 A3
1 B4

2 A5
5 B6

6 A7
7 B8

8

According to the semantics we chose, the server matching A ·B uses the first

Aj
i it matches followed by the first Bm

k it matches to form the first match of the

pattern, such that i< k and j <m. It then uses the next A it matches followed

by the next B it matches to form the second match of the pattern, and so on.

Hence, the first match of the pattern would be the sequence A2
3 · B6

6 , and the

second match would be the sequence A7
7 · B8

8 . The matcher receives B1
4 first but

discards it because it has not yet matched an A. The first A it matches is A2
3, so it

ignores all subsequent A’s until it matches a Bm
k where k> 3. Thus it ignores A3

1

and A5
5 because it is waiting for a B; it also ignores B4

2 because it was generated

before A2
3. Hence B6

6 is the first B that can be matched with A2
3. Once this whole

sequence has been matched, the matching of the pattern begins anew with the

next A following B6
6 , which is A7

7. The second match of the pattern is completed

with B8
8 .

3.4 Advertisements

We have seen how the covering relation ≺N
S defines the semantics of filters in

subscriptions. We now define the semantics of advertisements by defining a

similar relation ≺N
A . The motivation for advertisements is to inform the event

notification service about which kind of notifications will be generated by which

objects of interest, so that it can best direct the propagation of subscriptions.

The idea is, that while a subscription defines the set of interesting notifica-

tions for an interested party, an advertisement defines the set of notifications

potentially generated by an object of interest. Therefore, the advertisement

is relevant to the subscription only if these two sets of notifications have a

nonempty intersection.

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

342 • A. Carzaniga et al.

Table III. Examples of ≺N
A

Notification Advertisement

string what= alarm

string what= alarm ≺N
A string what= login

string username=any

string what= alarm
string what= alarm 6≺N

A string what= login
time date= 02:40:03

string username=any

string what= alarm
string what= login ≺N

A string what= login
string username= carzanig

string username=any

string what= alarm
string what= logout 6≺N

A string what= login
string username= carzanig

string username=any

The relation ≺N
A defines the set of notifications covered by an advertisement:

n≺N
A a⇔ ∀α ∈ n : ∃φ ∈ a : α≺φ

This expression says that an advertisement covers a notification if and only

if it covers each individual attribute in the notification. Note that this is the

dual of subscriptions, which define the minimal set of attributes that a notifi-

cation must contain. In contrast to subscriptions, when a filter is used as an

advertisement, multiple constraints for the same attribute are interpreted as

a disjunction rather than as a conjunction; only one of the constraints need be

satisfied. Table III shows some examples of the relation ≺N
A . The second exam-

ple is not a match because the attribute date of the notification is not defined

in the advertisement. The fourth example is not a match because the value of

attribute what in the notification does not match any of the constraints defined

for what in the advertisement.

3.5 Two Variants of the Semantics of SIENA

We have studied two alternative semantics for SIENA, a subscription-based se-

mantics and an advertisement-based semantics.

Under the subscription-based semantics, the semantics of subscriptions is

defined solely by the relation ≺N
S and its extensions to patterns. Advertise-

ments are not enforced on notifications—they may be used for optimization

purposes, or they can be ignored completely by the implementation of the ser-

vice. Thus, a notification n is delivered to an interested party X if and only if

X submitted at least one subscription s such that n≺N
S s.

Under the advertisement-based semantics, both advertisements and sub-

scriptions are used. In particular, a notification n published by object Y is de-

livered to interested party X if and only if Y advertised a filter a that covers

n (i.e., such that n≺N
A a) and X registered a subscription s that covers n (i.e.,

such that n≺N
S s).

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 343

Under both semantics, a notification is delivered at most once to any inter-

ested party.

3.6 Other Important Covering Relations

So far we have defined a number of relations that express the semantics of

subscriptions and advertisements:

—α≺φ: attribute α matches attribute constraint φ;

—n≺N
S f : notification n matches filter f , where f is interpreted as a subscrip-

tion filter;

—n≺N
A a: notification n matches filter a, where a is interpreted as an adver-

tisement filter;

From these, other relations can be derived:

— f2≺S
S f1: filter f1 covers filter f2, where f1 and f2 are interpreted as sub-

scriptions. Formally,

f2≺S
S f1 ⇔ ∀n : n≺N

S f2 ⇒ n≺N
S f1

which means that f1 defines a superset of the notifications defined by f2.

—a2≺A
A a1: filter a1 covers filter a2, where a1 and a2 are interpreted as adver-

tisements. Formally

a2≺A
A a1 ⇔ ∀n : n≺N

A a2 ⇒ n≺N
A a1

which means that a1 defines a superset of the notifications defined by a2.

— f ≺S
A a: filter a covers filter f , where a is interpreted as an advertisement

and f is interpreted as a subscription. Formally,

f ≺S
A a⇔ ∃n : n≺N

A a ∧ n≺N
S f

which means that a defines a set of notifications that has a nonempty inter-

section with the set defined by f .

The relations ≺S
S and ≺A

A can also define the equality relation between filters

with its intuitive meaning:

f1 = f2 ⇔ f1≺ f2 ∧ f2≺ f1.

We now use the relations ≺S
S and ≺A

A to define the semantics of unsubscrip-

tions and unadvertisements.

3.7 Unsubscriptions and Unadvertisements

Unsubscriptions and unadvertisements serve to cancel previous subscrip-

tions and advertisements, respectively. Given a simple unsubscription

unsubscribe(X , f), where X is the identity of an interested party and

f is a filter, the event notification service cancels all simple subscriptions

subscribe(X , g) submitted by the same interested party X with a subscription

filter g covered by f (i.e., such that g ≺S
S f). This semantics is extended easily to

patterns. An unsubscription for a pattern P = f1 · f2 · · · fk cancels all previous

subscriptions S= g1 · g2 · · · gk such that g1≺S
S f1∧ g2≺S

S f2∧ . . .∧ gk ≺S
S fk . In

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

344 • A. Carzaniga et al.

an analogous way, unadvertisements cancel previous advertisements that are

covered according to the relation ≺A
A.

Note that an unsubscription (unadvertisement) either cancels previous sub-

scriptions (advertisements) or else has no effect. It cannot impose further

constraints onto existing subscriptions. For example, subscribing with a fil-

ter [price> 100] and then unsubscribing with [price> 200] does not result in

creation of a reduced subscription, [price> 100, price≤ 200]. Rather, the un-

subscription simply has no effect, since it does not cover the subscription. Note

also that all subscriptions covered by an unsubscription are canceled by that

unsubscription. Thus, when an interested party initially subscribes with a spe-

cific filter (say, [change> 10]), then subscribes with a more generic one (say,

[change> 0]), and then finally unsubscribes with a filter that covers the more

generic subscription (say, [change> 0]), the effect is to cancel all the previous

subscriptions, not to revert to the more specific one [change> 10].

3.8 Timing Issues

The semantics of SIENA depends on the order in which SIENA receives and

processes requests (subscriptions, notifications, etc.). For instance, in the

subscription-based semantics, a subscription s is effective after it is processed

and until an unsubscription u that cancels s is processed.

In the most general case, a service request R, say a subscription, is gener-

ated at time Rg , received at time Rr , and completely processed at time Rp (with

Rg ≤ Rr ≤ Rp). SIENA guarantees the correct interpretation of R immediately

after Rp. Notice that the external delay Rg − Rr is caused by external commu-

nication mechanisms and is by no means controllable by SIENA. The processing
delay Rp−Rg is instead directly caused by computations and possibly by other

communication delays internal to SIENA.

SIENA’s semantics is that of a best-effort service. This means that the imple-

mentation of SIENA must not introduce unnecessary delays in its processing,

but it is not required to prevent race conditions induced by either the exter-

nal delay or the processing delay. Clients of SIENA must be resilient to such

race conditions; for instance, they must allow for the possibility of receiving a

notification for a canceled subscription.

SIENA associates a timestamp with each notification to indicate when it was

published.1 This allows the service to detect and account for the effects of latency

on the matching of patterns, which means that within certain limits the actual

order of notifications can be recognized.

4. ARCHITECTURES: SERVER TOPOLOGIES AND PROTOCOLS

The previous section describes the protocol by which clients (i.e., objects of inter-

est and interested parties) communicate with the servers that act as the clients’

access points to the event notification service. As mentioned in Section 2, the

1With the advent of accurate network time protocols and the existence of the satellite-based Global

Positioning System (GPS), it is reasonable to assume the existence of a global clock for creation

of these timestamps, and it is hence reasonable for all but the most time-sensitive applications to

rely on these timestamps.

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 345

Fig. 5. Hierarchical client/server architecture.

servers themselves communicate in order to cooperatively distribute the selec-

tion and delivery tasks across a wide-area network. The servers must therefore

be arranged into an interconnection topology and make use of a server/server

communication protocol. Together, the topology and protocol define what we

refer to as an architecture for the event notification service.

The architecture is assumed to be implemented on top of a lower-level net-

work infrastructure. In particular, a topological connection between two servers

does not necessarily imply a permanent or direct physical connection between

those servers, such as TCP/IP. Moreover, the server/server protocol might make

use of any one of a number of network protocols, such as HTTP or SMTP, through

standard encoding and/or tunneling techniques. All we assume at this point in

the discussion is that a given server can communicate with some number of

other specific servers by exchanging messages. This is the same assumption we

make about the communication between clients and servers.

In this section we consider three basic architectures: hierarchical

client/server, acyclic peer-to-peer, and general peer-to-peer. We also consider

some hybrid architectures. Because it is not scalable, the degenerate case of a

centralized architecture having a single server is ignored in this paper.

4.1 Hierarchical Client/Server Architecture

A natural way of connecting event servers is according to a hierarchical topology,

as illustrated in Figure 5. In this topology, pairs of connected servers interact

in an asymmetric client/server relationship. Hence, we use a directed graph to

represent the topology of this architecture, and we refer to this architecture as a

hierarchical client/server architecture (or simply a hierarchical architecture). A

server can have any number of incoming connections from other “client” servers,

but only one outgoing connection to its own “master” server. A server that has

no “master” server of its own is referred to as a root.

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

346 • A. Carzaniga et al.

Fig. 6. Acyclic peer-to-peer server architecture.

The hierarchical architecture is a straightforward extension of a centralized

architecture. It only requires that the basic central server be modified to propa-

gate any information that it receives (i.e., subscriptions, etc.) on to its “master”

server. In fact, the server/server protocol we use within the hierarchical archi-

tecture is exactly the same as the protocol described in Section 3 for commu-

nication between the servers and the external clients of the event notification

service. Thus, in terms of communication, a server is not distinguished from

objects of interest or interested parties. In practice, this means that a server

will receive subscriptions, advertisements, and notifications from its “client”

servers, and will send only notifications back to those “client” servers.

As we demonstrate in Section 6.2.2.3, the main problem exhibited by the

hierarchical architecture is the potential overloading of servers high in the hi-

erarchy. Moreover, every server acts as a critical point of failure for the whole

network. In fact, a failure in one server disconnects all the subnets reachable

from its “master” server and all the “client” subnets from each other.

4.2 Acyclic Peer-to-Peer Architecture

In the acyclic peer-to-peer architecture, servers communicate with each other

symmetrically as peers, adopting a protocol that allows a bidirectional flow of

subscriptions, advertisements, and notifications. Hence we use an undirected

graph to represent the topology of this architecture. (As always, the external

clients of the service use the standard client/server protocol described in Sec-

tion 3.) The configuration of the connections among servers in this architecture

is restricted so that the topology forms an acyclic undirected graph. Figure 6

shows an acyclic peer-to-peer architecture of servers. The communication be-

tween servers is represented by thick undirected lines, while the communica-

tion between clients and servers is represented by dashed arrows.

It is important that the procedures adopted to configure the connections

among servers maintain the property of acyclicity, since routing algorithms

might rely on the property to assume, for instance, that any two servers are

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 347

Fig. 7. General peer-to-peer server architecture.

connected with at most one path. However, ensuring this can be difficult and/or

costly in a wide-area service in which administration is decentralized and

autonomous.

As in the hierarchical architecture, the lack of redundancy in the topology

constitutes a limitation in assuring connectivity, since a failure in one server S
isolates all the subnets reachable from those servers directly connected to S.

4.3 General Peer-to-Peer Architecture

Removing the constraint of acyclicity from the acyclic peer-to-peer architecture,

we obtain the general peer-to-peer architecture. Like the acyclic peer-to-peer

architecture, this architecture allows bidirectional communication between two

servers, but the topology can form a general undirected graph, possibly having

multiple paths between servers. An example is shown in Figure 7.

The advantage of the general peer-to-peer architecture over the previous

two architectures is that it requires less coordination and offers more flexi-

bility in the configuration of connections among servers. Moreover, allowing

redundant connections makes it more robust with respect to failures of single

servers. The drawback of having redundant connections is that special algo-

rithms must be implemented to avoid cycles and to choose the best paths. Typi-

cally, messages will carry a “time-to-live” counter, and routes will be established

according to minimal spanning trees. Consequently, the server/server protocol

adopted in the general peer-to-peer architecture must accommodate this extra

information.

4.4 Hybrid Architectures

A wide-area, large-scale, decentralized service such as SIENA poses different

requirements at different levels of administration. In other words, we must

account for intermediate levels between the local area and the wide area. We can

potentially take advantage of these intermediate levels to gain some efficiencies

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

348 • A. Carzaniga et al.

Fig. 8. Hierarchical/general hybrid server architectures.

by considering the use of different architectures at different levels of network

granularity.

For example, in the case of a multinational corporation, it might be reason-

able to assume a high degree of control and coordination in the administration

of the cluster of subnets of the corporation’s intranet. The administrators of

this intranet might very well be able to design and manage the whole network

of event servers deployed on their subnets, and thus it might be a good idea to

adopt a hierarchical architecture within the intranet. Of course, the intranet

would connect to other networks outside of the influence of the administrators.

Thus, what could arise is a general peer-to-peer architecture at the global level,

serving to interconnect different corporate intranets, each having a hierarchical

architecture. This is illustrated in Figure 8.

In other cases, we might want to invert the structure, as illustrated in

Figure 9. For example, suppose that some clusters of subnets carry a high de-

gree of event-service message traffic, and for some specific applications or per-

haps for security reasons, only a small fraction of that traffic is visible outside

the cluster. In this case, for efficiency reasons a general peer-to-peer architec-

ture might be preferable within the clusters, while the high-level architecture

could be acyclic peer-to-peer. For every cluster, there would be a gateway server

that should be able to filter the messages used for the protocol inside the cluster,

and adapt them to the protocol used between clusters. For example, if a protocol

is used locally within a cluster to discover minimal spanning trees, then the mes-

sages associated with that protocol should not be propagated outside the cluster.

Hybrid architectures such as these are somewhat more complicated than

the three basic architectures. Nevertheless, they offer the opportunity to tailor

the server/server topologies and protocols in such a way that localities can be

exploited.

5. ROUTING ALGORITHMS AND PROCESSING STRATEGIES

Once a topology of servers is defined, the servers must establish appropriate

routing paths to ensure that notifications published by an object of interest are

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 349

Fig. 9. General/acyclic hybrid server architectures.

correctly delivered to all the interested parties that subscribed for them. In

general, we observe that notifications must “meet” subscriptions somewhere in

the network so that the notifications can be selected according to the subscrip-

tions and then dispatched to the subscribers. This common principle can be

realized according to a spectrum of possible routing algorithms. One possibility

is to maintain subscriptions at their access point and to broadcast notifica-

tions throughout the whole network; when a notification meets and matches a

subscription, the subscriber is immediately notified locally. However, since we

expect the number of notifications to far exceed the number of subscriptions or

advertisements, this strategy appears to offer the least possible efficiency, and

so we consider it no further for SIENA.

5.1 Routing Strategies in SIENA

To devise more efficient routing algorithms, we employ principles found in IP

multicast routing protocols [Deering and Cheriton 1990]. Similar to these proto-

cols, the main idea behind the routing strategy of SIENA is to send a notification

only toward event servers that have clients that are interested in that notifica-

tion, possibly using the shortest path. The same principle applies to patterns

of notifications as well. More specifically, we formulate two generic principles

that become requirements for our routing algorithms:

—downstream replication: A notification should be routed in one copy as

far as possible and should be replicated only downstream, that is, as close as

possible to the parties that are interested in it. This principle is illustrated

in Figure 10.

—upstream evaluation: Filters are applied, and patterns are assembled up-

stream, that is, as close as possible to the sources of (patterns of) notifications.

This principle is illustrated in Figure 11.

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

350 • A. Carzaniga et al.

Fig. 10. Downstream notification replication.

Fig. 11. Upstream filter and pattern evaluation.

These principles are implemented by two classes of routing algorithms, the first

of which involves broadcasting subscriptions and the second of which involves

broadcasting advertisements:

—subscription forwarding: In an implementation that does not use adver-

tisements, the routing paths for notifications are set by subscriptions, which

are propagated throughout the network so as to form a tree that connects

the subscribers to all the servers in the network. When an object publishes a

notification that matches that subscription, the notification is routed toward

the subscriber following the reverse path put in place by the subscription.

—advertisement forwarding: In an implementation that uses advertise-

ments, it is safe to send a subscription only toward those objects of interest

that intend to generate notifications that are relevant to that subscription.

Thus, advertisements set the paths for subscriptions, which in turn set the

paths for notifications. Every advertisement is propagated throughout the

network, thereby forming a tree that reaches every server. When a server re-

ceives a subscription, it propagates the subscription in reverse, along the

paths to all advertisers that submitted relevant advertisements, thereby

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 351

activating those paths. Notifications are then forwarded only through the

activated paths.

In the process of forwarding subscriptions, SIENA exploits commonalities

among the subscriptions. In particular, SIENA prunes the propagation trees

by propagating along only those paths that have not been covered by previous

requests. The derived covering relation ≺S
S is used to determine whether a

new subscription is covered by a previous one that has already been forwarded.

Advertisements are treated similarly using the relation ≺A
A. And although not

discussed in detail here, unsubscriptions and unadvertisements are handled in

a similar way as well.

Subscription-forwarding algorithms realize a subscription-based semantics,

while advertisement-forwarding algorithms realize an advertisement-based
semantics. As we show in Section 5.3, advertisement-forwarding algorithms

are needed in order to implement the upstream evaluation principle for event

patterns.

In addition to the principles introduced above, we have also devised sev-

eral other strategies that lead to optimizations in resource usage. These are

discussed elsewhere [Carzaniga 1998; Carzaniga et al. 1999].

5.2 Putting Algorithms and Topologies Together

We now describe in detail how subscription-forwarding and advertisement-

forwarding algorithms are implemented within the hierarchical and peer-to-

peer architectures. In particular, we describe the principal data structures

maintained by servers and the main algorithms that process the various re-

quests coming from clients or other servers. Here we consider only simple sub-

scriptions; Section 5.3 deals with patterns.

At a high level and in general terms, the algorithms for the acyclic and peer-

to-peer architectures attempt to reduce communication, storage, and compu-

tation costs by pruning spanning trees over a network of SIENA servers. More

specifically, the subscription-forwarding algorithms operate by broadcasting

subscriptions along spanning trees rooted at interested parties. When a server

receives a new subscription, it can terminate the further propagation of that

subscription if it has already propagated a more general subscription that cov-

ers the new one. In this way servers prune spanning trees along which new

subscriptions are propagated. The advertisement-forwarding algorithms oper-

ate in an analogous fashion by pruning the spanning trees rooted in objects of

interest. Computation of spanning trees in a network is a solved problem [Dalal

and Metcalfe 1978], and therefore we do not discuss their construction. Instead,

our focus is on the details of pruning. The algorithms for the hierarchical archi-

tectures are simpler, because subscriptions and advertisements are not propa-

gated along spanning trees, but are merely propagated along unique paths to

the root of the hierarchy.

5.2.1 The Filters Poset. In order to keep track of previous requests, their re-

lationships, where they came from, and where they have been forwarded, event

servers maintain a data structure that is common to the different algorithms

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

352 • A. Carzaniga et al.

Fig. 12. Example of a poset of simple subscriptions. Arrows represent the immediate relation ≺S
S .

and topologies. This data structure represents a partially ordered set (poset) of

filters. The partial order is defined by the covering relations ≺S
S for subscription

filters, and ≺A
A for advertisement filters. We denote with PS a poset defined by

≺S
S , and denote with PA a poset defined by ≺A

A. Figure 12 shows an example of

a poset of subscriptions.

Note that ≺S
S and ≺A

A are transitive relations, while the diagram and its

representation in memory store immediate relationships only. In a poset PS ,

ordered according to ≺S
S , a filter f1 is an immediate predecessor of another filter

f2 and f2 is an immediate successor of f1 if and only if f1≺S
S f2 and there is no

other filter f3 in PS such that f1≺S
S f3≺S

S f2. The “top-level” filters, which we

refer to as roots, are those that have no successors in the poset.

Inserting a new filter f into a poset, three different cases apply that are of

special interest for the forwarding algorithms:

— f is added as a root filter;

— f exists already in the poset; or

— f is inserted somewhere in the poset with a nonempty set of successors.

As we detail below, only root filters produce network traffic, due to the propaga-

tion of subscriptions (or advertisements). Thus the “shape” of a subscription (or

advertisement) poset roughly reflects the degree of opportunity presented to our

processing strategies. In particular, a poset that extends “vertically” indicates

that subscriptions are very much interdependent and that there are just a few

subscriptions summarizing all the other ones. Conversely, a poset that extends

“horizontally” indicates that there are few similarities among subscriptions and

that there are thus few opportunities to reduce network traffic.

5.2.2 Hierarchical Client/Server Architecture. A hierarchical server main-

tains its subscriptions in a poset PS . Each subscription s in PS has an associated

set called subscribers(s) containing the identities of the subscribers of that filter.

Every server also has a variable master, possibly null, containing the identity

of its “master” server.

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 353

5.2.2.1 Subscriptions. Upon receiving a simple subscription subscribe(X ,

f), a server E walks through its subscription poset PS , starting from each root

subscription, looking for a filter f ′ that covers the new filter f and that contains

X in its subscribers set: f ≺S
S f ′ ∧X ∈ subscribers(f ′). If the server finds such a

subscription f ′ in PS , it simply terminates the search without any effect. This

happens when the same interested party (X) has already subscribed for a more

generic filter (f ′).
In case the server does not find such a subscription, the search process termi-

nates producing two possibly empty sets f and f , representing the immediate

successors and the immediate predecessors of f , respectively. If f = f ={ f },
i.e., if filter f already exists in PS , then the server simply inserts X in

subscribers(f). Otherwise, f is inserted in PS between f and f , and X is

inserted in its subscribers set.

Only if f =∅, i.e., only if f is inserted as a root subscription, does the server

then forward the same subscription to its master server. In particular, if master
is not null, the server (E) sends a subscription subscribe(E, f) to master.

If f 6= ∅, the server removes X from the sets of subscribers of all the subscrip-

tions covered by f . This is done by recursively walking breadth first through

the poset PS starting from the subscriptions in f . The recursion is stopped

whenever X is found in a subscription (and removed). Note that in this process

some subscriptions might be left with no associated interested parties; such

subscriptions are removed from PS .

We illustrate the processing of subscriptions in the hierarchical architecture

with the scenario depicted in Figure 13. Figure 13(a) depicts a hierarchical

server (1) that has two clients (a and b) and a master server (2). The server

receives and processes a subscription [airline=UA] from client a. The right side

of the figure shows the subscription poset PS of server 1. The new subscription

is inserted as a root subscription, so server 1 forwards it to its master server (2).

In Figure 13(b), server 1 receives another subscription [airline=UA,

dest=DEN] from client b. Since this new subscription is already covered by

the previously forwarded subscription (it is not made a root subscription in

PS), server 1 does not forward it to its master.

In Figure 13(c), server 1 processes another subscription [airline=any] from

client a. This is a root subscription, so it is forwarded to server 2. In this case,

server 1 eliminates a from the subscribers of all the subscriptions covered by the

new one. In particular, it removes a from the first subscription [airline=UA];

because there are no other subscribers for that subscription, the subscription

itself is also removed.

5.2.2.2 Notifications. When a server receives a notification n, it walks

through its subscriptions poset PS breadth first looking for all the subscrip-

tions matching n. In particular, the server initializes a queue Q with its root

subscriptions. Then, the server iterates through each element s in Q . If n≺N
S s,

the server appends to Q all the immediate predecessors of s that have not yet

been visited. Otherwise, if n 6≺N
S s, the server removes s from the queue.

When this process terminates, Q contains all the subscriptions that cover

n. The server then sends a copy of n to each subscriber of the subscriptions in

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

354 • A. Carzaniga et al.

(a)

(b)

(c)

Fig. 13. Example scenario using a hierarchical client/server architecture (subscription).

Q . Independently of the matching of subscriptions, if the server has a master

server and the master server was not the sender of n, then the server also sends

a copy of n to its master server.

5.2.2.3 Unsubscription. Unsubscriptions cancel previous subscriptions, but

they are not exactly the inverse of subscriptions. They are slightly more com-

plex to handle and sometimes more expensive in terms of communication. One

reason is that a single unsubscription might cancel more than one previous sub-

scription. The other reason is that an unsubscription might cancel one or more

root subscriptions, which in turn might uncover other more specific subscrip-

tions (which in turn become new root subscriptions). In this case, the server

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 355

Fig. 14. Example scenario using a hierarchical client/server architecture (unsubscription).

must forward the unsubscription to its master server, but it must also forward

the new root subscriptions as well.

More specifically, when a server receives an unsubscription unsubscribe(X ,

f), it removes X from the subscribers set of all the subscriptions in PS that

are covered by f . The algorithm used by the server in this case is a simple

variation of the algorithm that computes the set of matching subscriptions for

a notification. The only difference is that the relation ≺S
S is used to fill the

queue instead of ≺N
S .

As a consequence of removing X , some subscriptions might remain with an

empty set of subscribers. Let SX be the set of such subscriptions, and let Sr
X

(Sr
X ⊂ SX) be the set of those that are also root subscriptions in PS . The server

computes Sr
X as the union of all the immediate predecessors of each subscription

in Sr
X . With all this, the server

(1) removes all the subscriptions in SX from PS ,

(2) forwards the unsubscription for f to its master server, and

(3) sends all the subscriptions in Sr
X to its master server.

Figure 14 continues the scenario from Figure 13(c). Server 1 receives an un-

subscription for [airline=any] from client a. As a consequence, it removes a
from the subscribers of subscription [airline=any], which is the only subscrip-

tion from a covered by the unsubscription (in this case, the two filters coincide).

The subscription contains no more subscribers, so the server removes it. But

since it was also a root subscription, the server forwards the unsubscription to

its master along with the new root subscription, [airline=UA, dest=DEN].

5.2.2.4 Advertisements. The advertisement-forwarding technique does not

apply to the hierarchical architecture. Although it would be possible to prop-

agate advertisements from a server to its master, this would be useless, since

the master server would never respond by sending back subscriptions. In fact,

a hierarchical server considers all its clients as “normal” clients (i.e., outside

the event notification service), so it would not forward subscriptions to them.

In practice, advertisements and unadvertisements are silently dropped.

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

356 • A. Carzaniga et al.

5.2.3 Peer-to-Peer Architectures with Subscription Forwarding. In peer-to-

peer architectures, each server maintains a set neighbors containing the identi-

fiers of the peer servers to which the server is connected. A peer-to-peer server

also maintains its subscriptions in a poset PS that is an extension of the sub-

scription poset of a hierarchical server. As in the hierarchical server, a peer-

to-peer server associates a set subscribers(s) with each subscription s, and it

associates an additional set with s called forwards(s), which contains the sub-

set of neighbors to which s has been forwarded.

5.2.3.1 General vs. Acyclic Architectures. A subscription or notification is

propagated from its origin to its destination following a minimal spanning tree.

In an acyclic peer-to-peer architecture the path that connects any two servers

(if it exists) is unique, and any such spanning tree coincides with the whole

network of servers. Thus, when propagating a message m, say a subscription,

a server simply sends it to all of its neighbors excluding the sender of m. Any

server that propagates m is considered to be a sender of m, but the origin of

a message is the (unique) event notification service access point to which the

message is originally posted.

In a general peer-to-peer architecture, two servers might be connected by

two or more different paths. So when a server receives a message that must

be forwarded throughout the network of servers, the first server must make

sure to forward it only through the links of the minimal spanning tree rooted

in the origin of that message. This is similar to the well-known problem of

broadcasting information over a packet-switched network. In order to simplify

the description of the algorithms, we focus only on acyclic peer-to-peer archi-

tectures; algorithms for the general peer-to-peer architectures can be found

elsewhere [Carzaniga 1998].

5.2.3.2 Peer Connection Setup. A server E1 connects to a server E2 by send-

ing a peer connect(E1) request to E2. E2 can either accept or refuse the con-

nection. In case E2 accepts E1 as a peer, E2 sends a confirmation message back

to E1 so that both servers add each other’s address to their neighbors set. Then

the accepting server E2 forwards every root subscription in its subscriptions

poset PS to the requesting server E1, adding E1 to the corresponding forwards

set. Servers can also be dynamically disconnected with a peer disconnect(E1)

request. When a server E2 receives a peer disconnect(E1), it removes E1 from

its neighbors set, unsubscribes E1 for all its root subscriptions, and finally re-

moves E1 from all its forwards sets.

5.2.3.3 Subscriptions. The algorithm by which a peer-to-peer server pro-

cesses subscriptions is an extension of the algorithm of the hierarchical server.

When a server receives a subscription subscribe(X , f), it searches its sub-

scriptions poset PS for either

(1) a subscription f ′ that covers f and has X among its subscribers: f ≺S
S f ′ ∧

X ∈ subscribers(f ′). In this case, the search terminates with no effect; or

(2) a subscription f ′ that is equal to f and does not have X among its sub-

scribers: f ≺S
S f ′ ∧ f ′ ≺S

S f . Here the server adds X to subscribers(f ′); or

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 357

(3) two possibly empty sets f and f , representing the immediate successors

and the immediate predecessors of f respectively. Here the server inserts

f as a new subscription between f and f , and adds X to subscribers(f).

In cases 2 and 3, the server also removes X from all the subscriptions in PS

that are covered by f , and then removes from PS those subscriptions that have

no other subscribers.

This procedure differs from the corresponding procedure of the hierarchical

server in how the peer-to-peer server forwards the subscription to its neighbors.

Formally, given a subscription f in PS , let forwards(f) be defined as follows:

forwards(f) = neighbors−NST(f)−
⋃

f ′∈PS∧ f ≺S
S f ′

forwards(f ′) (1)

In other words, f is forwarded to all neighbors of the server except those not

downstream from the server along any spanning tree rooted at an original sub-

scriber of f (the second term in the formula), and those to which subscriptions

f ′ covering f have been forwarded already by this server (the last term in the

formula).

The second term in the formula (whose functor stands for “Not on any Span-

ning Tree”) accounts for the fact that there may be multiple paths connecting

a subscriber to potential publishers, and that therefore the propagation of a

subscription f must follow only the computed spanning trees rooted at the

original subscribers of f . Viewing a spanning tree rooted at f as a directed

graph, we may refer to paths traveling away from f as going “downstream”

with the edges, and those traveling toward f as going “upstream” against the

edges. In practice, the propagation process excludes those neighbors that are

not downstream from the server of interest along any spanning tree rooted at a

subscriber of f . NST(f) is trivially computed for the topology of the acyclic ar-

chitecture, since every spanning tree in the topology coincides with the whole

topology itself. For the topology of the general architecture its computation

is more complicated; however, the necessary techniques, such as link-state or

distance-vector routing algorithms, are well-known and widely deployed. An al-

ternative approach to propagating subscriptions is to use Dalal and Metcalfe’s

broadcasting algorithm [Dalal and Metcalfe 1978].

The last term in the formula represents an important optimization that the

server makes in the situation where more generic subscriptions have been prop-

agated already to some neighbors.

We illustrate the processing of subscriptions in the acyclic peer-to-peer archi-

tecture with the scenario depicted in Figure 15. Figure 15(a) shows a fragment

of a peer-to-peer event notification service. In this example, server 1 is con-

nected to servers 2, 3, and 4. Server 1 also has a local client a. Server 3 sends

a subscription [airline=any] to server 1. The poset shown on the right side of

the figure represents the subscription poset PS of server 1. As shown in the

figure, the new subscription is inserted as a root subscription in PS and then

forwarded to servers 2 and 4 but not to server 3, which is in the NST set of the

subscription. In this figure and the following ones, for each subscription in PS ,

subscribers are denoted with an outgoing arrow from the subscription, while

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

358 • A. Carzaniga et al.

(a)

(b)

(c)

Fig. 15. Example scenario using an acyclic peer-to-peer architecture.

forwards are denoted with an incoming arrow. Intuitively, arrows indicate the

direction of notifications.

Figure 15(b) shows the effect of a second subscription [airline=UA,

orig=DEN] sent to server 1 by server 2. This subscription is inserted in PS as

an immediate predecessor of the previous (root) subscription and is forwarded

to server 3, which is the only neighbor that is not in the forwards set for the

covering subscription [airline=any].

In Figure 15(c), client a subscribes for [airline=any]. In this case the sub-

scription is found in PS , and a is simply added to its subscribers set. Because the

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 359

NST set for that subscription is now empty, the subscription is then forwarded

to server 3. Every time the server forwards a subscription f to a neighbor server

E2, it adds E2 to the forwards set of f and consequently removes E2 from the

forwards sets of all the subscriptions covered by f . In the example, the server

removes 3 from the forwards set of subscription [airline=UA, orig=DEN].

5.2.3.4 Unsubscriptions. An unsubscription has the effect of removing a

subscriber from a number of subscriptions in PS . More specifically, when a

server E receives an unsubscription unsubscribe(X , f), it removes X from

the subscribers set of every subscription covered by f .

As a consequence of these cancellations, some subscriptions might remain

with an empty subscribers set; such subscriptions are removed from PS . The

removal of X from some subscriptions might also affect the NST set of those

subscriptions. In particular, removing a subscriber for a subscription means

removing its distribution spanning tree, which in turn might add some neighbor

servers to NST for those paths that are not on the spanning tree of any other

subscriber (see Eq. (1)). In order to reduce the forwards set of those subscriptions

according to Eq. (1), the server forwards the corresponding unsubscriptions to

every neighbor server added to NST.

The reduced forwards sets of some subscriptions might affect the forwards

sets of other covered subscriptions. This effect is produced by the last term

of Eq. (1) for the covered subscriptions. Intuitively, this means that after

unsubscribing for some more generic subscriptions it might be necessary to

(re)forward some more specific subscriptions whose propagation was blocked

by the existence of the more generic subscriptions.

We illustrate the processing of unsubscriptions in the acyclic peer-to-peer

architecture with the scenario depicted in Figure 16. Figure 16(a) depicts the

subscriptions poset of server 1 from Figure 15(c) after it has received some

subscriptions from local clients and neighbor servers. This is the state of server 1

just before it receives an unsubscription filter [airline=any] from client a.

As a first step in processing the unsubscription from client a, server 1 re-

moves the subscriber (i.e., a) from all the subscriptions covered by the unsub-

scription filter [airline=any]. Figure 16(b) shows the subscriptions poset PS

in this state. Two (root) subscriptions are affected: subscription [airline=UA]

changes its NST set (which is initially empty) to include server 3, while sub-

scription [airline=AZ] remains with an empty subscribers set. As a conse-

quence, server 1 forwards the first unsubscription [airline=UA] to the neigh-

bor server added to the NST set (i.e., 3) and forwards the second unsubscription

[airline=AZ] to all the previous forwards 2, 3, and 4.

Eventually, server 1 processes the immediate predecessors of the canceled

subscriptions, since their forwards might have changed as a consequence of the

previous unsubscriptions. Figure 16(c) shows the state of the subscription poset

at this time. The subscription [airline=UA, price< 500] must be forwarded to

server 3 because its (only) successor has not been forwarded to server 3 (see

Eq. (1)). Subscription [airline=UA, dest=DEN] does not need to be propagated

because all the neighbor servers have received either one of its successors.

Subscription [airline=AZ, price< 800] has now become a root subscription and

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

360 • A. Carzaniga et al.

(a)

(b)

(c)

Fig. 16. Unsubscriptions in an acyclic peer-to-peer architecture.

thus must be forwarded to every neighbor server except those in its NST (i.e.,

server 3).

5.2.3.5 Notifications. The algorithm for peer-to-peer architectures pro-

cesses notifications exactly like the one that operates on the hierarchical ar-

chitecture. So, a subscription n is forwarded to every subscriber of s for every s
that covers n.

5.2.4 Advertisement Forwarding. With the subscription-forwarding algo-

rithm presented in the previous sections, we have described almost everything

needed to implement an advertisement-forwarding algorithm. In fact, we can

exploit the duality between subscriptions and advertisements to transpose

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 361

the subscription-forwarding algorithm to advertisement forwarding. To some

extent, if we read the description of the subscription-forwarding algorithm,

replacing the terms regarding subscriptions with the corresponding terms re-

garding advertisements, and replacing the terms regarding notifications with

the corresponding terms regarding subscriptions, we obtain an almost exact

description of the advertisement-forwarding algorithm.

The main difference with respect to the subscription-forwarding structure

is that there are actually two interacting computations; one realizes the for-

warding of advertisements while the other realizes the forwarding of subscrip-

tions. Both computations have similar data structures and similar algorithms,

equivalent to the ones described above. In particular, the server has a poset of

advertisements PA, ordered according to the relation ≺A
A, as well as a poset of

subscriptions PS . In PA, each advertisement a has an associated set of identities

advertisers(a) and another set of identities forwards(a).

These two computations interact in the sense that advertisement forward-

ing constrains subscription forwarding. For instance, in maintaining PS , when

processing a subscription s, the server does not use the global set neighbors, but

instead uses a subset neighborss ⊆ neighbors that is specific to s. neighborss is

defined as the set of advertisers listed in PA for all the advertisements

covering s. Formally:

neighborss =
⋃

a∈TA : s≺S
A a

advertisers(a)∩neighbors

Note that one effect of this constraint is that new advertisements and unad-

vertisements are viewed by the subscription-forwarding computation as new

peer connections or dropped peer connections, respectively. Thus, if the server

receives a new advertisement that covers a set of subscriptions s1, s2, . . . , sk ,

then the server reacts by forwarding s1, s2, . . . , sk immediately to the sender of

the advertisement.

5.3 Matching Patterns

So far we have seen how simple subscriptions and simple notifications are

handled by event servers. A major additional functionality provided by SIENA

is the matching of patterns of notifications. This functionality is implemented

with distributed monitoring following the upstream evaluation principle set

forth in Section 5.1.

To match patterns, servers assemble sequences of notifications from smaller

subsequences or from single notifications. Thanks to advertisements, every

server knows which notifications and which subpatterns may be sent from each

of its neighbors, which is why this technique requires an advertisement-based

semantics. In addition to the notifications and patterns available from its neigh-

bors, a server might further use patterns from previous subscriptions that the

server itself is already set up to recognize.

We use the term pattern factoring to refer to the process by which the server

breaks a compound subscription into smaller compound and simple subscrip-

tions. After a subscription has been factored into its elementary components, the

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

362 • A. Carzaniga et al.

Table IV. Example of a Table of Available Patterns

Pattern Providers

string alarm= “failed-login”
a1 3

integer attempts> 0

string file=any
string operation= “file-change”

a2 2,3

server attempts to group those factors into compound subscriptions to forward

to some of its neighbors. This process is called pattern delegation.

5.3.1 Available Patterns Table. Every server maintains a table TP of avail-

able patterns. This table is simply the advertisements poset PA that, in addi-

tion to the usual advertisements, contains also those patterns that the server

has already processed. Each pattern p in TP has an associated set of identi-

ties providers(p) that contains all the peer servers from which p is available.

Table IV shows an example of a table of available patterns. The table says that

notifications matching filter a1—notifications that signal a failed login with an

integer attribute named “attempts”—are available from server 2, and that noti-

fications matching filter a2—file modification notifications—are available from

servers 2 and 3.

5.3.2 Pattern Factoring. Let us suppose a server E receives a compound

subscription subscribe(X , s), where s= f1 · f2 · . . . · fk . Now, the server scans

s trying to match each fi with a pattern pi, or trying to match a sequence of

filters fi · fi+1 · . . . · fi+ki with a single compound pattern pi...i+ki using patterns

p that are contained in TP .

For example, assuming the table of available patterns shown in Table IV, sup-

pose server 1 receives a subscription s= f · g ·h for a sequence of two “failed lo-

gin” alarms with one and two attempts respectively (f = [alarm= failed-login,

attempts= 1], and g = [alarm= failed-login, attempts= 2]), followed by a file

modification event on file “/etc/passwd” (h= [file= /etc/passwd, operation=file-

change]). In response to s, the server factors s, matching the three filters of s
with the sequence of available patterns a1 ·a1 ·a2. Table V shows the subscrip-

tion and the factoring computed by the server. Because the only operator in

SIENA for combining subpatterns is the sequence operator, the output of the

factoring process is always a sequence.

5.3.3 Pattern Delegation. Once a compound subscription is divided into

available parts, the server must (1) send out the necessary subscriptions to

collect the required subpatterns and (2) set up a monitor that will receive all

the notifications matching the subpatterns and will observe and distribute the

occurrence of the whole pattern. In deciding which subscriptions to send out,

the server tries to reassemble the elementary factors in groups that can be del-

egated to other servers, thereby implementing the upstream evaluation prin-

ciple. The selection of subpatterns that are eligible for delegation follows some

intuitive criteria. For example, only contiguous subpatterns available from a

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 363

Table V. Example of a Factored Compound Subscription

Requested Available

string alarm= “failed-login” string alarm= “failed-login”

integer attempts= 1 integer attempts> 0
(a1)

string alarm= “failed-login” string alarm= “failed-login”

integer attempts= 2 integer attempts> 0
(a1)

string file= “/etc/passwd” string file=any
string operation= “file-change” string operation= “file-change”

(a2)

single source can be grouped and delegated to that source. A complete discus-

sion of these criteria is presented elsewhere [Carzaniga 1998].

In the example of Table V, server 1 would group the first two filters a1 ·a1 and

delegate the subpattern defined by the corresponding two subscriptions (f · g)

to server 2. Thus, it would send a subscription subscribe(E, s1) with pattern

s1 = string alarm= “failed-login” string alarm= “failed-login”•
integer attempts= 1 integer attempts= 2

to server 2, and would send the remaining filter h using a simple subscription

subscribe(E, s2) with

s2 = string file= “/etc/passwd”

string operation= “file-change”

to servers 2 and 3. Server 1 will then start up a monitor that recognizes the

sequence (s1= f · g) · (s2=h).

Figure 17 depicts an example that corresponds to the tables and subscrip-

tions discussed above. In particular, server 1 delegates f · g to server 2, sub-

scribes for h, and monitors (f · g) ·h. The diagram also shows how server 2

handles the delegated subscription. Assuming that f is available from server 5

and g is available from server 4, server 2 sends the two corresponding sub-

scriptions to 4 and 5 and then starts up a monitor for f · g .

6. EVALUATION

Substantiating claims of scalability for an event notification service is a dif-

ficult challenge. In particular, how does one demonstrate its ability to scale,

when fully doing so would require the deployment of an implementation of the

service to thousands of computers across the world? Conceding to pragmat-

ics, our approach is to build an argument based on (1) reasoning qualitatively

about the rationale for the expressiveness of the notification selection mecha-

nism, (2) performing simulation studies to determine the relative performance

of the various architectures under certain hypothetical usage scenarios, and

(3) constructing a prototype implementation of the service as a proof of concept.

This section presents each of these three elements of the argument. Our

conclusion is, that while more study is required to fully validate the design, the

early evidence strongly suggests that we have achieved our goal of developing

an event notification service suitable for use at the scale of a wide-area network.

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

364 • A. Carzaniga et al.

Fig. 17. Pattern monitoring and delegation.

6.1 Rationale for Chosen Expressiveness

The interface to the SIENA event notification service is a tailored application

of the basic publish/subscribe protocol. Certain factors affecting the scalability

of our design (such as network latency and data structure size) are intrinsic

to the service and its use, and hence are beyond our control. The key factors

we can control are the definitions of notifications, filters, and patterns, and the

complexity of computing the covering relations.

Our chosen level of expressiveness in SIENA represents a compromise, at

which notification structure, attribute types, and attribute operators approx-

imate those of the well-understood and widely used database query language

SQL.

The covering relations are well behaved and predictable in the sense that

they exhibit an arguably reasonable computational complexity deriving from

the expressiveness of filters: assuming a brute-force and unoptimized algo-

rithm, the complexity of determining whether a given subscription and a given

notification are related by ≺N
S is O(n+m), where n is the number of attribute

constraints in the subscription filter and m is the number of attributes in the

notification. The complexity of computing ≺N
S reflects the computation of an

intersection between the attribute values in a notification and constraints on

those values appearing in a subscription. The complexity of each individual

comparison is O(1) for all the predefined types we have included in SIENA. The

only exception is the string type, but efficient comparison algorithms are well

known.

The complexities of computing ≺S
S , ≺A

A, and ≺S
A are all O(nm), where n and

m represent the number of attribute constraints appearing in the respective

subscription and/or advertisement filters. This complexity represents a com-

parison between each attribute constraint in one filter and any corresponding

attribute constraints in the other filter. Checking a covering relation between

filters amounts to a universal quantification. But given our choice of types and

operators, comparing a pair of attribute constraints can be reduced to evaluat-

ing an appropriate predicate on the two constant values of the constraints, with

a complexity O(1). For example, to see if [x> k1] covers [x> k2] we can simply

verify that k2≥ k1.

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 365

We also restrict the expressiveness of patterns in SIENA in the interests of

efficiency. Patterns, as we discuss in Section 3.3, are a simple sequence of filters.

The computational complexity of matching a pattern is O(l (n+m)), where l is

the length of the pattern. This means that it is linear in the number of filters,

whose covering relation ≺N
S has complexity O(n+m).

Our conclusion from this analysis is that the covering relations exhibit a

complexity that is quite reasonable for a scalable event notification service. In

fact, the factors n and m are, in practice, likely to be relatively small (typically

less than 10), making the computations negligible compared to the network

costs they are attempting to reduce. This is all achieved with an expressiveness

that approximates SQL.

6.2 Simulation Studies

There are many questions that one could ask about a wide-area event notifi-

cation service. In our initial simulation studies, we have concentrated on the

particular question of scalability with respect to the architectures and algo-

rithms described in the previous sections.

6.2.1 Simulation Framework. The simulation framework we use consists

of two parts: (1) a configuration of servers and clients mapped onto the sites of

a wide-area network and (2) an assignment of application behaviors to objects

of interest and interested parties. A site represents a subnet and its possibly

many hosts, where the cost of communication between hosts within a site is

assumed to be zero. The configuration of servers reflects the choice of the event

notification service architecture, while the application behaviors involve the

basic service requests of advertise/unadvertise, subscribe/unsubscribe, and

publish.

The primary measurement of interest is an abstract quantity we refer to as

cost. We assign a relative cost to each site-to-site communication in the network

and then calculate the effect on this cost of varying a number of simulation

parameters. In other words, we evaluate the architectures and algorithms in

terms of the communication induced by the application behaviors, since we are

interested in characterizing the degree to which each architecture/algorithm

combination can or cannot absorb increased communication costs in the face of

increasing application demands.

6.2.1.1 Network Configuration. Figure 18 shows the layered structure of a

network configuration in our simulation framework. At the bottom level is a

model of a wide-area network topology. This model defines sites (depicted as

cubes) and links (depicted as heavy lines between cubes). To develop realis-

tic network topologies that account for important properties such as latency,

and approximate the relative costs of real wide-area networks, we use a pub-

licly available generator of random network topologies2 that implements the

Transit-Stub model [Zegura et al. 1996]. (A discussion of this and other models

2Georgia Tech Internet Topology Models (GT-ITM).

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

366 • A. Carzaniga et al.

Fig. 18. Layers in a network configuration.

for generating network topologies can be found elsewhere [Zegura et al. 1997].)

The results we present here were performed on networks of 100 sites.

We make several simplifying assumptions about sites and links at this level.

First, we assume that the costs of computation at sites and communication

through links are linear functions of load. Second, links have constant latency.

Third, sites and links have infinite capacity. Note that one consequence of these

assumptions is that our model does not account for the effect of congestion.

At the top level of the network configuration is a model of an event noti-

fication service topology. This model defines the servers (depicted as shaded

ovals) and clients (depicted as white ovals), with the interconnection among

servers resulting from a choice of architecture (depicted as heavy lines between

servers), the assignment of a client to a server (depicted as a dotted arrow), and

the mapping of clients and servers onto sites in a wide-area network (depicted

as dashed lines from ovals to cubes).

As a simplification, the simulations we present here involve only homoge-

neous architectures, and not the hybrid architectures that are also possible (see

Section 4.4). Moreover, each client represents only either an object of interest

or an interested party, although in general it is possible for a client to be both.

Finally, we allocate one server per site; we configure every server to connect

to the servers residing at its neighbor sites in the network topology; and we

configure every client to use a server at its (local) site. In other words, we as-

sume that the locations and interconnections among servers are an image of

the underlying network topology. This assumption significantly reduces the pa-

rameter space in the simulation. Nonetheless, this is a reasonable assumption,

since it reflects the structure of domains that characterize the Internet [Clark

1989].

In addition to simulating the various multiserver architectures, we simulate

a single-server, centralized architecture, which serves as a baseline for our com-

parisons; where the centralized architecture performs as well as or better than

the others, it should be chosen simply because of its simplicity. Of course, the

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 367

centralized architecture requires no forwarding algorithm, since it comprises a

single server.

6.2.1.2 Application Behavior. The behavior of an application using the

event notification service involves the collective behaviors of its objects of in-

terest and interested parties. These individual behaviors are specified as se-

quences of service requests. In particular, an object of interest executes m
sequences

advertise,

n times︷ ︸︸ ︷
publish, publish, . . . , unadvertise

and within each cycle publishes n notifications. In addition, an average delay

between publish requests, t, can be specified (with the delays generated ac-

cording to a Poisson distribution). Similarly, an interested party executes p
sequences

subscribe,

q times︷ ︸︸ ︷
recv notif, recv notif, . . . , unsubscribe

where recv notif represents the operation of waiting for and then receiving a

notification.

6.2.1.3 Scenario Generation. Input to our simulation tool is generated in a

two-step process. In the first step a (random) network topology is generated, as

discussed above. In the second step the generated topology is combined with a

scenario parameter file that specifies both the event notification service topology

and the application behavior.

6.2.2 Results. The space of studies made possible by our simulation frame-

work is quite extensive. Here we explore a portion of that space, focusing

on usage scenarios that distinguish four basic architecture/algorithm combi-

nations: centralized, hierarchical client/server with subscription forwarding,

acyclic peer-to-peer with subscription forwarding, and acyclic peer-to-peer with

advertisement forwarding.3 Furthermore, we are only simulating the objects

of interest and interested parties associated with one particular kind of event.

Because the main purpose of the simulations presented here is to highlight the

relative behaviors of the architectures and algorithms, we choose not to com-

plicate the experiments by simulating additional kinds of events (with their

associated objects of interest and interested parties). While it is conceivable

that this choice could affect the results in some way, our intuition tells us that

our conclusions about the relative behaviors would remain the same.

To reveal the scaling properties of the architecture/algorithm combinations,

our approach is to keep the behaviors of objects of interest and interested parties

constant while varying the number of objects of interest from 1 to 1000 and

the number of interested parties from 1 to 10,000. In all cases, the number of

network sites is 100. Referring to the characterization given in Section 6.2.1, we

3A more extensive set of data plots is presented elsewhere [Carzaniga 1998; Carzaniga et al. 1999].

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

368 • A. Carzaniga et al.

used parameter values of m= 10 and n= 10 for objects of interest, indicating 10

sequences of 10 iterations each, and an average interpublication delay t in the

interval 2000–2500. The behavior parameters for interested parties was p= 10

and q= 10, indicating 10 iterations of 10 received notifications each.

We ran our scenarios with artificially low ratios of publications-per-

advertisement and notifications-per-subscription in order to produce conser-

vative simulation results. Applications ultimately benefit from delivery of no-

tifications, so advertisements and subscriptions can be considered a necessary

overhead to obtain that benefit. Such low ratios then serve to exaggerate this

overhead. In real applications, we would expect the service to deliver a much

higher volume of notifications (with correspondingly lower overhead) than is

represented by these ratios.

The results we present are all shown as plots whose data points represent

the average of 10 simulation runs for the same parameter values. Except for

the plots of the acyclic peer-to-peer architecture with advertisement forwarding

(whose behavior is unstable and as yet inexplicable), the variance within each

set of 10 simulation runs was negligible, and therefore we choose not to include

error bars in the plots.

For the majority of the plots, the horizontal axis gives the number of inter-

ested parties in a logarithmic scale ranging from 1 to 10,000, while the vertical

axis gives a linear measure of cost. As mentioned above, the cost values are

derived from an assignment of relative costs for communicating over network

links. Therefore, the absolute value of a data point’s cost is meaningless, but

its relative value gives a useful characterization.

In the plots below we use the following aliases for the event notification

service architecture/algorithm combinations: ce= centralized, hs=hierarchical

client/server with subscription forwarding, as= acyclic peer-to-peer with

subscription forwarding, and aa= acyclic peer-to-peer with advertisement

forwarding.

6.2.2.1 Total Cost. A basic metric for the event notification service is the

total cost of providing the service. The total cost is calculated by summing the

costs of all site-to-site message traffic. The total cost captures an important

aspect of scalability by revealing how communication cost is impacted by in-

creases to the load presented to the service. Figure 19 compares the total costs

incurred by the three distributed architectures with 1, 10, 100, and 1000 ob-

jects of interest; we omit the curves for the centralized architecture because its

total cost far outweighs that of the distributed architectures, exhibiting expo-

nential blowup starting at around 1000 interested parties in each plot. There

are several interesting observations we can make about these plots.

First, when there are more than 100 interested parties, the total cost is

essentially constant, meaning that there is a point beyond which there is no

additional cost incurred in delivering notifications to additional interested par-

ties. We call this the saturation point, since there is high likelihood that there

is an object of interest at every site, and thus an object of interest near every

interested party. (Recall that all objects of interest are publishing the same

notifications.)

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 369

Fig. 19. Comparison of total costs incurred by distributed architectures.

Second, all the architectures scale sublinearly when the number of interested

parties is below the saturation point. When below this point, it is likely that an

object of interest and an interested party are not at the same site. Therefore,

it is also likely that the cost to deliver a notification is nonzero. However, as

the number of interested parties grows, the likelihood increases that each new

interested party will be located at a site at which there is already an interested

party. The marginal cost of each additional interested party decreases up to the

saturation point, where the cost becomes zero. This sublinear scaling character

of the architectures can be discerned more easily in the plots of Figure 20, which

present the portion of the data of Figure 19 below the saturation point using a

linear scale in the horizontal axis.

Third, as the number of objects of interest increases, the hierarchical

client/server architecture with subscription forwarding performs worse by an

increasingly large constant factor as compared to the acyclic peer-to-peer ar-

chitecture with subscription forwarding. This can be attributed to the fact that,

while the acyclic peer-to-peer architecture is penalized by its broadcast of sub-

scriptions, the hierarchical client/server architecture, which propagates noti-

fications only toward the root of the hierarchy, is forced to do so whether or

not interested parties exist on the other side of the root of the network. This

generates potentially significant amount of traffic in unnecessary notifications.

Finally, the acyclic peer-to-peer architecture with advertisement forwarding

displays a strikingly, and as yet inexplicable, unstable cost profile for low den-

sities of interested parties. On the other hand, its costs essentially follow those

of the acyclic peer-to-peer architecture with subscription forwarding once the

saturation point is passed. This effect becomes more evident as the number of

objects of interest increases. We can attribute this to our conservative choice of

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

370 • A. Carzaniga et al.

Fig. 20. Comparison of total costs below the saturation point.

behavior for objects of interest in these studies. In particular, an object of inter-

est unadvertises and readvertises quite frequently, compared to the number of

publications it generates at each iteration.

Overall, the acyclic peer-to-peer architecture with subscription forwarding

appears to scale well and predictably under all circumstances, and thus is likely

to represent a good choice to cover a wide variety of scenarios.

6.2.2.2 Cost Per Service Request. An event notification service is efficient

if it can amortize the cost of satisfying newer client requests over the cost of

satisfying previous client requests. This is another manifestation of the network

effect. The average per-service cost is calculated by dividing the total cost, as

introduced above, by the total number of client requests. A low value for this

ratio indicates low overhead. Recall that for these studies we configure the

network so that clients are connected to servers at their local sites, and therefore

the client-to-server communication cost is treated as zero. The per-service cost

thus purely reflects the choice of architecture/algorithm combination.

We can see several interesting things in the results of the data analysis

presented in Figure 21. First, the centralized architecture is unreasonable in

essentially all scenarios as compared to the other architectures. Second, adver-

tisement forwarding again shows itself unstable for high numbers of objects of

interest until the saturation point in interested parties is reached. Third, for

low numbers of objects of interest and low numbers of interested parties, the

costs are dominated by message-passing costs internal to SIENA; since there

are relatively few notifications generated in the network, there are few parties

interested in receiving those notifications, and there is a significant internal

cost incurred in setting up routing paths from objects of interest to interested

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 371

Fig. 21. Comparison of per-service costs.

parties. The hierarchical client/server architecture with subscription forward-

ing does well in this situation because subscriptions are forwarded only toward

the root server, resulting in lower setup costs. However, as the number of objects

of interest or the number of interested parties increases, its advantage quickly

disappears, recovering only beyond the saturation point for interested parties.

Finally, the acyclic peer-to-peer architecture with subscription forwarding does

extremely well when there is a high number of objects of interest, independent

of the number of interested parties. This effect is explained in the next series

of plots.

6.2.2.3 Cost Per Subscription and Per Notification. Based on the results of

studying the total and per-service cost incurred by each of the four architec-

ture/algorithm combinations, the hierarchical client/server architecture and

acyclic peer-to-peer architecture, both with subscription forwarding, appear to

be the two most promising choices. However, they are clearly distinguished if

we examine which kind of service request each one favors for its optimizations.

The average per-subscription cost is calculated by dividing the total cost of all

subscription-related messages by the number of subscriptions processed. The

graph of Figure 22 shows the per-subscription cost incurred by the hierarchical

client/server architecture and acyclic peer-to-peer architecture with a single

object of interest. In trying to understand the different cost drivers of the two

architectures, we simulated several scenarios with a single object of interest

while varying only the behavioral parameters. In these cases, we observed no

significant variation in cost. However, additional simulations, in which we var-

ied the density of interested parties, highlight the difference between the two

architectures. The results of these simulations are presented in Figure 22 and

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

372 • A. Carzaniga et al.

Fig. 22. Comparison of per-subscription costs for hierarchical client/server and acyclic peer-to-peer

architectures under varying numbers of interested parties.

Fig. 23. Comparison of per-notification costs for hierarchical client/server and acyclic peer-to-peer

architectures under varying numbers of interested parties.

reveal that the costs are primarily dependent on the density of interested par-

ties. In particular, the per-subscription cost is evidently higher for the acyclic

peer-to-peer architecture than the hierarchical client/server for low densities of

interested parties, while both architectures benefit from increasing densities of

interested parties.

The main difference is in the way each architecture forwards subscriptions.

In the acyclic peer-to-peer architecture, a subscription must be propagated

throughout the network; in a network of N sites, a subscription goes through

O(N) hops, and therefore the cost is O(N). The hierarchical client/server ar-

chitecture, on the other hand, requires that a subscription be forwarded only

upward toward the root server; in this case the number of hops and hence the

cost are both O(log N).

The acyclic peer-to-peer architecture recoups its greater setup costs for sub-

scriptions by reducing the average cost of notifications. Figure 23 compares the

per-notification costs incurred by the acyclic peer-to-peer architecture and the

hierarchical client/server architecture with a single object of interest. In the par-

ticular scenario of Figure 23, the difference between the per-notification costs

in the two architectures is constant with respect to the number of interested

parties. The same difference is clearly visible from the global per-service costs

shown in Figure 21.

We observe that this constant bracket depends on the number of ignored

notifications. In many of the scenarios we simulated, the total number of no-

tifications produced by objects of interest exceeds the number of notifications

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 373

Fig. 24. Comparison of per-notification costs for hierarchical client/server and acyclic peer-to-peer

architectures under varying numbers of publications in two degenerate cases.

consumed by interested parties. For example, in the scenario represented by

the results presented here, a total of 100,000 notifications are produced, while

each interested party consumes 100 notifications before terminating, leaving

99,900 ignored notifications.

The cost of ignored notifications is clearly shown by the degenerate scenar-

ios of Figure 24, in which per-notification costs are plotted against the number

of notifications published. The average per-notification cost is calculated by

dividing the total cost of all notification-related messages by the number of no-

tifications processed. The first scenario has one object of interest that emits a

varying number of notifications and no interested parties at all. Here the hi-

erarchical client/server architecture incurs a constant cost due to the fact that

every notification must be propagated toward the root of the hierarchy, whereas

the acyclic peer-to-peer architecture incurs no cost at all, since every notifica-

tion remains local to its access server. The second scenario has one interested

party that consumes exactly one notification and then terminates. Again, in

the hierarchical client/server architecture, the per-notification cost is constant,

while the acyclic peer-to-peer architecture incurs an initial cost for the first

notification that is subsequently amortized by the zero cost of the subsequent

ignored notifications.

6.2.2.4 Worst-Case Per-Site Cost. A critical issue in a communication net-

work is how it behaves in the face of congestion. In the simulation model pre-

sented here, however, we cannot directly simulate congestion (see Section 6.2.1).

Nevertheless, we can ask a related question that gives us an indication of which

architecture would approach a given level of congestion soonest. The metric we

use is the worst-case per-site cost. It is calculated, for each scenario, by averag-

ing the cost of communication incurred by each site over the 10 simulations of

that scenario, and then by computing the maximum over those average per-site

costs.

The plots of Figure 25 show the maximum cost incurred by a site in the

hierarchical client/server and acyclic peer-to-peer architectures under the same

scenarios of Figure 19 and Figure 20. The hierarchical client/server architecture

exhibits slightly lower worst-case per-site cost under low densities of objects of

interest. For high densities of objects of interests, and therefore under high

volumes of notifications, the hierarchical client/server architecture incurs a

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

374 • A. Carzaniga et al.

Fig. 25. Comparison of worst-case per-site costs.

much greater maximum per-site cost than the acyclic peer-to-peer architecture.

In other words, a high volume of notifications is likely to cause congestion to be

reached sooner in the hierarchical client/server architecture than in the acyclic

peer-to-peer architecture.

How do we explain this difference in behavior? We can see that it is not

attributable to a simple overloading of the root server in the hierarchical

client/server architecture. This, perhaps counterintuitive, observation is based

on the fact that the acyclic peer-to-peer architecture gains advantage only when,

for a given object of interest, there is no interested party on the “opposite side”

of the network, and hence the traffic remains within a localized neighborhood

of the object of interest. This situation rarely arises under high densities of

interested parties. Thus, the difference in behavior is explained solely by the

effect of relatively high numbers of ignored notifications unavoidably forwarded

to the root server, as discussed above.

6.2.3 Summary. We can summarize the differences between the hierar-

chical client/server and acyclic peer-to-peer architectures as follows:

—The hierarchical client/server architecture has a lower per-subscription cost

than the acyclic peer-to-peer (O(log N) and O(N) respectively). This cost does

not depend on the behavior of objects of interest or interested parties.

—In both architectures, the subscription cost is amortized for increased densi-

ties of interested parties. The cost difference between the two architectures

is also significantly reduced for high densities of interested parties.

—The cost of delivering a notification to interested parties is more or less the

same for the two architectures. However, the acyclic peer-to-peer architecture

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 375

has no cost for ignored notifications, while the hierarchical peer-to-peer ar-

chitecture pays a fixed cost (O(log N)).

In practice, the hierarchical client/server architecture should be used where

there are low densities of interested parties that subscribe (and unsubscribe)

very frequently. The acyclic peer-to-peer architecture is more suitable to sce-

narios where the total cost is dominated by notifications, and especially where

the total number of notifications exceeds the number of notifications consumed

by interested parties, i.e., in the presence of ignored notifications.

6.3 Prototype

We have implemented a prototype of SIENA that realizes the subscription-based

event notification service.4 The current implementation of SIENA offers two ap-

plication programming interfaces, one for C++ and the other for Java. Both

interfaces provide nearly the complete data model and subscription language

described in Section 3. The time data type is the only one that has not yet been

implemented.

Two event servers are also provided in the current implementation. One

(written in Java) is based on the hierarchical client/server algorithm, while the

other one (written in C++) is based on the acyclic peer-to-peer architecture

with subscription forwarding. These two servers have been used together to

form a hybrid topology.

For the client/server and server/server communication in SIENA, we have

developed a simple event notification protocol that we have implemented on top

of TCP/IP connections. We have also encapsulated application-level protocols

such as HTTP and SMTP.

7. RELATED WORK

In this section we briefly review related work in event notification services.

A more complete discussion of these topics is presented elsewhere [Carzaniga

1998; Carzaniga et al. 1999].

7.1 Classification Framework

In order to understand and classify technologies that are related to SIENA, we

can compare them from the perspective of their server architectures, which af-

fects scalability, and from the perspective of their subscription language, which

affects expressiveness. Table VI presents such a comparison in terms of the ar-

chitectures described in Section 4 and in terms of a classification of subscription

languages shown in Table VII.

We classify subscription languages based on their scope and expressive power.

Scope has two aspects: (1) whether a subscription is limited to considering a

single notification (thus reducing the language to that of filters) or whether it

can consider multiple notifications (thus involving both filters and patterns);

and (2) whether a subscription is limited to considering a single, designated field

4Source and binary packages are available at http://www.cs.colorado.edu/serl/siena/.

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

376 • A. Carzaniga et al.

T
a

b
le

V
I.

A
C

la
ss

ifi
ca

ti
o
n

o
f

R
e
la

te
d

T
e
ch

n
o
lo

g
ie

s

A
rc

h
it

e
ct

u
re

H
ie

ra
rc

h
ic

a
l

C
e
n

tr
a

li
z
e
d

cl
ie

n
t/

se
rv

e
r

P
e
e
r-

to
-p

e
e
r

F
ie

ld
[R

e
is

s
1

9
9

0
]

C
O

R
B

A
E

v
e
n

t
S

e
rv

ic
e

[O
b

je
ct

M
a

n
a

g
e
m

e
n

t
G

ro
u

p
1

9
9

8
a

]

C
h

a
n

n
e
l-

b
a

se
d

J
a
v
a

D
is

tr
ib

u
te

d
E

v
e
n

t
S

p
e
ci

fi
ca

ti
o
n

C
O

R
B

A
E

v
e
n

t
S

e
rv

ic
e

[O
b

je
ct

IP
m

u
lt

ic
a

st
[D

e
e
ri

n
g

[S
u

n
M

ic
ro

sy
st

e
m

s
1

9
9

8
]

M
a

n
a

g
e
m

e
n

t
G

ro
u

p
1

9
9

8
a

]
a

n
d

C
h

e
ri

to
n

1
9

9
0

]

S
o
ft

W
ir

e
d

’s
iB

u
s

J
a
v
a

M
e
ss

a
g
e

S
e
rv

ic
e

[S
u

n
M

ic
ro

sy
st

e
m

s
1

9
9

9
]

N
N

T
P

[K
a

n
to

r
a

n
d

L
a

p
sl

e
y

1
9

8
6

]

S
u

b
je

ct
-b

a
se

d
T

o
o
lT

a
lk

[J
u

li
e
n

n
e

a
n

d
H

o
lt

z
1

9
9

4
]

J
E

D
I

[C
u

g
o
la

e
t

a
l.

2
0

0
1

]
T

a
la

ri
a

n
’s

S
m

a
rt

S
o
ck

e
ts

V
it

ri
a

’s
B

u
si

n
e
ss

W
a

re
T

IB
C

O
’s

T
IB

/R
e
n

d
e
z
v
o
u

s
S

u
b

sc
ri

p
ti

o
n

L
a

n
g
u

a
g
e

K
e
ry

x
[W

ra
y

a
n

d
H

a
w

k
e
s

1
9

9
8

]
C

o
n

te
n

t-
b

a
se

d
E

lv
in

[S
e
g
a

ll
a

n
d

A
rn

o
ld

1
9

9
7

]
G

ry
p

h
o
n

[B
a

n
a
v
a

r
e
t

a
l.

1
9

9
9

]
Y

u
e
t

a
l.

[Y
u

e
t

a
l.

1
9

9
9

]

G
E

M
[M

a
n

so
u

ri
-S

a
m

a
n

i

a
n

d
S

lo
m

a
n

1
9

9
7

]

Y
e
a

st
[K

ri
sh

n
a

m
u

rt
h

y

C
o
n

te
n

t-
b

a
se

d
a

n
d

R
o
se

n
b

lu
m

1
9

9
5

]
S

IE
N

A
S

IE
N

A

w
it

h
p

a
tt

e
rn

s
C

O
R

B
A

N
o
ti

fi
ca

ti
o
n

S
e
rv

ic
e

[O
b

je
ct

M
a

n
a

g
e
m

e
n

t
G

ro
u

p
1

9
9

8
b

]

O
b

je
ct

-o
ri

e
n

te
d

a
ct

iv
e

d
a

ta
b

a
se

s
†

[C
e
ri

a
n

d
W

id
o
m

1
9

9
6

]

† A
ll

o
w

s
u

se
r-

d
e
fi

n
e
d

o
p

e
ra

to
rs

in
su

b
sc

ri
p

ti
o
n

p
re

d
ic

a
te

s;
a
ll

o
th

e
rs

su
p

p
o
rt

o
n

ly
p

re
d

e
fi

n
e
d

o
p

e
ra

to
rs

.

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 377

Table VII. Typical Features of Subscription Languages

Scope

Single notification Single notification Multiple notifications

one field multiple fields multiple fields

Simple equality channel-based — —

Expressions with restricted restricted restricted

predefined operators subject-based content-based content-based

Power with patterns

Expressions with general general general

user-defined operators subject-based content-based content-based

with patterns

in a notification or whether it can consider multiple fields. Expressive power is

concerned with the sophistication of operators that can be used in forming sub-

scription predicates, ranging from a simple equality predicate, to expressions

involving only predefined operators, to expressions involving user-defined op-

erators. We note that user-defined operators suffer from the disadvantage of

having arbitrary, unknown, and potentially unbounded complexity. Moreover,

the computation of the covering relations that allow the pruning of propagation

trees, such as ≺S
S , might be undecidable.

From Table VII we derive the four classes of subscription languages used

in Table VI. In a channel-based language, a client subscribes for all notifica-

tions sent across an explicitly identified channel, which is a discrete commu-

nication path. In a subject-based language, a client subscribes for all notifica-

tions that the publisher has identified as being relevant to a particular subject,

which is selected from a predefined set of available subjects. The difference be-

tween channel-based and subject-based is that a channel typically allows only

a straight equality test (e.g., channel= 314 or channel= “CNN”) whereas a sub-

ject often subsumes richer predicates, such as wild-card string expressions on

subject identifiers (e.g., subject= “comp.os.∗”). In both cases, the filter applies

to a single well-known field. In a content-based language, a client subscribes

for all notifications whose content matches client-specified predicates that are

evaluated on the content; evaluation of these predicates can be limited either

to individual notifications (a simple content-based language) or to patterns of

multiple notifications (a content-based language with patterns). We observe

that subscription languages with user-defined predicates are rare; in Table VI

we have combined the language classes corresponding to predefined and user-

defined predicates because only a single-entry, object-oriented active database

makes use of user-defined predicates.

In the remainder of this section, we discuss the relationship between SIENA

and the other technologies mentioned in Table VI in greater detail.

7.2 Related Technologies

The idea of integrating different components by means of messages was pio-

neered in a research system called Field [Reiss 1990]. As in several commercial

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

378 • A. Carzaniga et al.

products that followed (e.g., HP SoftBench [Cagan 1990], DEC FUSE [Hart and

Lupton 1995], and Sun ToolTalk [Julienne and Holtz 1994]), Field implements a

message-based integrated environment in which several software development

tools can cooperate by exchanging messages. Messages carry service requests

to other tools or announcements of changes of state. The domain of event notifi-

cations and subscriptions in these systems is limited. Tools can generate a fixed

set of messages, and in some cases (e.g., in DEC FUSE), the set of messages is

statically mapped into a set of callback procedures hard-wired into the tool.

Yeast [Krishnamurthy and Rosenblum 1995] is an event-action system sup-

porting the definition of rules that specify the actions to be taken upon the oc-

currence of particular events. Unlike message-based integrated environments,

Yeast is a general-purpose event notification service with a rich event pattern

language. The action part of a rule is a UNIX shell script. GEM [Mansouri-

Samani and Sloman 1997] is a more recent language that allows one to specify

event-action rules similarly to Yeast. A different, more specialized set of systems

that is conceptually equivalent to event-action systems is active databases [Ceri

and Widom 1996]. The main difference between an event notification service

like SIENA and an event-action system like Yeast is that an event notification

service only dispatches event notifications, so that responses to events (i.e., the

actions) are executed by interested parties externally to the service. An event-

action system or an active database, on the other hand, is responsible for also

executing the actions taken in response to event notifications.

The USENET News system, with its main protocol NNTP [Kantor and

Lapsley 1986], is perhaps the best example of a scalable, user-level, many-

to-many communication facility. News articles (modeled after email messages)

are propagated through a network of servers. A new server can join the net-

work by connecting as a slave to another (master) server that is already part of

the infrastructure. Articles are posted to newsgroups, which are organized in a

hierarchical name/subject space. NNTP provides a primitive filtering capabil-

ity, such that articles can be selected by means of simple expressions denoting

sets of group names and the dates of postings. For example, a slave server can

request all the groups in comp.os.* that have been posted after a given date.

Although group names and subnames reflect the general subject and content

of messages, the filter that they realize is too coarse-grained for most users

and definitely inadequate for a general-purpose event notification service. As a

result, it is common for news readers (the client programs of USENET News)

to allow users to perform additional, more sophisticated filtering over the mes-

sages that have been transferred from the server, but this is outside the purview

of the service itself and thus cannot be used to reduce network traffic. The ser-

vice is scalable but still quite heavyweight, and in fact the time frame of article

propagation ranges from hours to days, which is inadequate for an event noti-

fication service.

IP multicast [Deering 1991] is a network-level infrastructure that extends

the Internet protocol to realize a one-to-many communication service. The net-

work that realizes this extension is also referred to as the MBone. A multicast

address is a virtual IP address that corresponds to a group of hosts. IP data-

grams that are addressed to a host group are routed to every host belonging

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 379

to the group. Hosts can join or leave a group at any time reporting their group

membership with a specific protocol [Fenner 1997]. An event notification ser-

vice can be thought of as a multicast communication infrastructure in which

addresses are not explicit host addresses but rather arbitrary expressions of

interest, and in which subscribing is equivalent to joining a group. However,

the IP multicast infrastructure has major limitations when used as a generic

event notification service. The first issue is how to map expressions of interest

into IP group addresses in a scalable way. A separate service, perhaps similar

to DNS, could be sufficient to resolve the mapping. However, we would have

to assume that there exist enough multicast addresses to map every possible

expression of interest. The second and most crucial issue is the limited expres-

siveness of the addressing scheme itself. In fact, since IP multicast never relates

two different IP groups, it would not be possible to exploit similarities between

subscriptions mapped to different IP group addresses. Different notifications

matching more than one subscription would have to be sent to several separate

multicast addresses, each one being routed in parallel and independently by

the IP multicast network.

Another network-level technology that is at least somewhat related to

SIENA is active networks. An active network is a network with programmable

switches [Tennenhouse et al. 1997]. In a sense, the programmability feature

of active networks is a form of content-based routing, since the content of the

packets can govern packet routing in a very expressive manner and can be used

to achieve routing optimizations. But while active networks themselves are not

a general-purpose event notification service like SIENA, they could nevertheless

possibly be used as an implementation platform.

Two prominent efforts are intended to lead specifically to event notification

services. These are the CORBA Notification Service [Object Management Group

1999] and the Java™ Message Service [Sun Microsystems 1999]. It is important

to note, however, that both these efforts do not themselves realize an event

notification service. Rather, they simply specify interfaces to be implemented

by a service, with the critical issue of how an implementation is to provide a

scalable service left unaddressed.

Commercial products such as SoftWired’s iBus, TIBCO’s TIB/Rendezvous™,

Talarian’s SmartSockets™, Hewlett-Packard’s E-speak™, and the messaging

system in Vitria’s BusinessWare™ provide implementations of an event notifi-

cation service. While these products support distribution of the service, they are

not specifically designed to support wide-area scale to the degree discussed in

this paper. In particular, they typically achieve simple distribution through

a federation of centralized servers with statically configured interserver

routing.

There are several research efforts concerned with the development of an

event notification service, including IBM’s Gryphon [Aguilera et al. 1999;

Banavar et al. 1999], Elvin [Segall and Arnold 1997], JEDI [Cugola et al. 1998],

Keryx [Wray and Hawkes 1998], and the recent work of Yu et al. [1999].

Gryphon is a distributed content-based message-brokering system similar

to SIENA. The techniques developed in Gryphon are complementary to the ones

of SIENA. In particular, Gryphon uses a fast algorithm to match a notification

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

380 • A. Carzaniga et al.

to a large set of subscriptions [Aguilera et al. 1999]. This algorithm, similar to

the one described by Gough and Smith [1995], exploits commonalities among

subscriptions. That is, whenever two or more subscriptions specify a constraint

on the same attribute, the algorithm organizes them in order to test the value

of that attribute in each notification once for all the subscriptions. The main dif-

ference with SIENA is that Gryphon propagates every subscription everywhere

in the network, whereas SIENA propagates only the most generic subscriptions.

Yu et al. propose an event notification service implemented using a peer-

to-peer architecture of proxy servers, with one server being the distinguished

“root” server. In a sense their architecture is an amalgam of SIENA’s hierarchical

and acyclic peer-to-peer architectures. They believe a hierarchical arrangement

of servers to have superior scalability to a nonhierarchical one. However, they

have not yet simulated or implemented their architecture, so this architecture’s

scalability properties are yet to be determined.

Elvin is a centralized event dispatcher that has a rich event-filtering lan-

guage that allows complex expressions of interest. The centralized architec-

ture facilitates efficient event filtering, although it poses severe limitations to

its scalability. Keryx also provides structured event notifications and filtering

capabilities extended to the whole structure of events. Keryx has a distributed

architecture similar to that of USENET News servers. The architectures of

TIB/Rendezvous and JEDI are also hierarchical, although their subscriptions

are based on a simplified regular expression applied to a single string—the

“subject” in TIB/Rendezvous or the entire notification in JEDI. Even simpler is

the selection mechanism offered by iBus that adopts channel-based addressing.

The same channel-based addressing is specified by the CORBA Event Ser-

vice [Object Management Group 1998a] and by the Java™ Distributed Event

Specification [Sun Microsystems 1998]. The shortcomings of the channel-based

addressing scheme have been recognized both in the CORBA and Java commu-

nities; therefore, these specifications have recently been superseded by more

advanced service specifications that are in line with the interface of SIENA. In

particular, the OMG has added additional filtering based on notification con-

tents with the specification of the CORBA Notification Service [Object Manage-

ment Group 1999], while Sun has specified a radically new service, the Java™
Message Service [Sun Microsystems 1999], that features SQL-like message

selectors.

8. CONCLUSIONS

In this paper, we have described our work on SIENA, a distributed, Internet-

scale event notification service. We have described the design of the interface to

the service, its semantics, the topological arrangements of event servers, and

the routing algorithms that realize the service over a network of servers. The

simulations that we performed confirm our intuitions about the scalability of

the topologies and algorithms that we have studied. To summarize, we found

that the hierarchical architecture is suitable with low densities of clients that

subscribe (and unsubscribe) very frequently, whereas the peer-to-peer archi-

tecture performs better when the total cost of communication is dominated by

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 381

notifications. In situations where there are high numbers of ignored notifica-

tions (i.e., notifications for which there are no subscribers), the peer-to-peer

architecture is also superior to the hierarchical architecture. We plan to con-

tinue exploring the parameter space of our simulations in several directions.

In particular, we are simulating different ranges of behavioral parameters to

see which algorithms are most sensitive to different classes of applications.

We plan on extending our design and prototype implementation of SIENA in

a number of ways. For instance, we plan to enhance the design of the interface

and algorithms to support mobility of clients. We also plan to implement the

advertisement-forwarding algorithm in the prototype, which will also allow us

to apply the pattern-matching optimizations that we discussed. Additionally,

we plan to work on extensions that support the expression of quality-of-service
parameters especially suited to the integration of software components. These

new features would allow the implementation of grouping mechanisms, such

as transactions for notifications. Finally, we plan to explore other important

aspects of a wide-area event notification service. Specifically, we are currently

developing a model of secure publish/subscribe communication, as well as mech-

anisms for reliability and fault tolerance of event notification services.

A significant new direction we intend to explore in the future is a realization

of content-based routing as a fundamental network service provided within the

physical network fabric itself [Carzaniga et al. 2000b]. This essentially involves

replacing the architecture described at the beginning of Section 4, where we

assume an event notification service such as SIENA to be implemented on top of

a lower-level network protocol such as TCP/IP. Viewed differently, this involves

embedding the content processing and routing capabilities of the upper layer of

Figure 18 within the network topology of the lower layer of that figure. Content-

based routing supported in this fashion could portend even more efficient and

scalable event notification services, supported by a new class of networks built

from high-speed content-based routers.

ACKNOWLEDGMENTS

We thank Gianpaolo Cugola, Elisabetta Di Nitto, Alfonso Fuggetta,

Richard Hall, Dennis Heimbigner, and André van der Hoek for their consider-

able contributions in discussing and shaping many of the ideas presented in

this paper.

REFERENCES

AGUILERA, M. K., STROM, R. E., STURMAN, D. C., ASTLEY, M., AND CHANDRA, T. D. 1999. Matching

events in a content-based subscription system. In Eighteenth ACM Symposium on Principles of
Distributed Computing (PODC ’99) (Atlanta, GA, May 4–6 1999), pp. 53–61.

BANAVAR, G., CHANDRA, T. D., MUKHERJEE, B., NAGARAJARAO, J., STROM, R. E., AND STURMAN, D. C. 1999.

An efficient multicast protocol for content-based publish-subscribe systems. In The 19th IEEE
International Conference on Distributed Computing Systems (ICDCS ’99) (Austin, TX, May 1999),

pp. 262–272.

BIRMAN, K. P. 1993. The process group approach to reliable distributed computing. Communica-
tions of the ACM 36, 12 (Dec.), 36–53.

CAGAN, M. R. 1990. The HP SoftBench environment: An architecture for a new generation of

software tools. Hewlett-Packard Journal: technical information from the laboratories of Hewlett-
Packard Company 41, 3 (June), 36–47.

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

382 • A. Carzaniga et al.

CARZANIGA, A. 1998. Architectures for an Event Notification Service Scalable to Wide-area Net-
works, Ph. D. thesis, Politecnico di Milano, Milano, Italy.

CARZANIGA, A., ROSENBLUM, D. S., AND WOLF, A. L. 1999. Interfaces and algorithms for a wide-

area event notification service. Technical Report CU-CS-888-99 (Oct.), Department of Computer

Science, University of Colorado, Revised May 2000.

CARZANIGA, A., ROSENBLUM, D. S., AND WOLF, A. L. 2000a. Achieving scalability and expressiveness

in an internet-scale event notification service. In Proceedings of the Nineteenth ACM Symposium
on Principles of Distributed Computing (PODC 2000) (Portland, OR, July 2000), pp. 219–227.

CARZANIGA, A., ROSENBLUM, D. S., AND WOLF, A. L. 2000b. Content-based addressing and rout-

ing: A general model and its application. Technical Report CU-CS-902-00 (Jan.), Department of

Computer Science, University of Colorado.

CERI, S. AND WIDOM, J. 1996. Active Database Systems: Triggers and Rules for Advanced Database
Processing. Morgan Kaufman, San Mateo.

CLARK, D. 1989. Policy routing in internet protocols. Internet Requests For Comments (RFC)

1102.

CUGOLA, G., DI NITTO, E., AND FUGGETTA, A. 1998. Exploiting an event-based infrastructure to

develop complex distributed systems. In Proceedings of the 20th International Conference on
Software Engineering (ICSE ’98) (Kyoto, Japan, April 1998), pp. 261–270.

CUGOLA, G., DI NITTO, E., AND FUGGETTA, A. 2001. The JEDI event-based infrastructure and its

application to the development of the OPSS WFMS. IEEE Transactions on Software Engineering.

DALAL, Y. K. AND METCALFE, R. M. 1978. Reverse path forwarding of broadcast packets. Commu-
nications of the ACM 21, 12 (Dec.), 1040–1048.

DEERING, S. E. 1991. Multicast Routing in a Datagram Internetwork. Ph. D. thesis, Stanford

University.

DEERING, S. E. AND CHERITON, D. R. 1990. Multicast routing in datagram networks and extended

LANs. ACM Transactions on Computer Systems 8, 2 (May), 85–111.

FENNER, W. 1997. Internet group management protocol, version 2. Internet Requests For Com-

ments (RFC) 2236.

GOUGH, J. AND SMITH, G. 1995. Efficient recognition of events in a distributed system. In Proceed-
ings of the 18th Australasian Computer Science Conference (Adelaide, Australia, Feb. 1995).

HART, R. O. AND LUPTON, G. 1995. DEC FUSE: Building a graphical software development en-

vironment from UNIX tools. Digital Technical Journal of Digital Equipment Corporation 7, 2

(Spring), 5–19.

JULIENNE, A. M. AND HOLTZ, B. 1994. ToolTalk and open protocols, inter-application communica-
tion. Prentice–Hall, Englewood Cliffs, New Jersey.

KANTOR, B. AND LAPSLEY, P. 1986. Network news transfer protocol—a proposed standard for the

stream-based transmission of news. Internet Request For Comments (RFC) 977.

KRISHNAMURTHY, B. AND ROSENBLUM, D. S. 1995. Yeast: A general purpose event-action system.

IEEE Transactions on Software Engineering 21, 10 (Oct.), 845–857.

MANSOURI-SAMANI, M. AND SLOMAN, M. 1997. GEM: A generalized event monitoring language for

distributed systems. IEE/IOP/BCS Distributed Systems Engineering Journal 4, 2 (June), 96–

108.

OBJECT MANAGEMENT GROUP 1998a. CORBAservices: Common object service specification. Tech-

nical report (July), Object Management Group.

OBJECT MANAGEMENT GROUP 1998b. Notification service. Technical report (Nov.), Object Manage-

ment Group.

OBJECT MANAGEMENT GROUP 1999. Notification Service. Technical report (Aug.), Object Manage-

ment Group.

REISS, S. P. 1990. Connecting tools using message passing in the Field environment. IEEE-
Software 7, 4 (July), 57–66.

ROSENBLUM, D. S. AND WOLF, A. L. 1997. A design framework for Internet-scale event observation

and notification. In Proceedings of the Sixth European Software Engineering Conference, Number

1301 in Lecture Notes in Computer Science (1997), pp. 344–360, Springer–Verlag.

SEGALL, B. AND ARNOLD, D. 1997. Elvin has left the building: A publish/subscribe notification ser-

vice with quenching. In Proceedings of AUUG97 (Brisbane, Australia), Sept. 3–5 1997), pp. 243–

255.

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

Wide-Area Event Notification Service • 383

Sun Microsystems 1998. Java Distributed Event Specification, Mountain View, CA: Sun Mi-

crosystems, Inc.

Sun Microsystems 1999. Java Message Service. Mountain View, CA: Sun Microsystems, Inc.

TENNENHOUSE, D. L., SMITH, J. M., SINCOSKIE, W. D., WETHERALL, D. J., AND MINDEN, G. J. 1997. A

survey of active network research. IEEE Communications Magazine 35, 1 (Jan.), 80–86.

WRAY, M. AND HAWKES, R. 1998. Distributed virtual environments and VRML: an event-based

architecture. Computer Networks and ISDN Systems 1–7, 30 (April), 43–51.

YU, H., ESTRIN, D., AND GOVINDAN, R. 1999. A hierarchical proxy architecture for Internet-scale

event services. In Proceedings of WETICE ’99, (Stanford, CA, June 1999).

ZEGURA, E. W., CALVERT, K., AND DONAHOO, M. J. 1997. A quantitative comparison of graph-based

models for internet topology. IEEE/ACM Transactions on Networking 5, 6 (Dec.), 770–783.

ZEGURA, E. W., CALVERT, K. L., AND BHATTACHARJEE, S. 1996. How to model an internetwork. In

Proceedings of IEEE INFOCOM ’96 (San Francisco, CA, April 1996), pp. 594–602.

Received June 2000; accepted March 2001

ACM Transactions on Computer Systems, Vol. 19, No. 3, August 2001.

