
Samsara: Honor Among Thieves in Peer-to-Peer Storage

Landon P. Cox
lpcox@umich.edu

Brian D. Noble
bnoble@umich.edu

Department of Electrical Engineering and Computer Science
University of Michigan

Ann Arbor, MI 48109-2122

ABSTRACT
Peer-to-peer storage systems assume that their users consume re-
sources in proportion to their contribution. Unfortunately, users are
unlikely to do this without some enforcement mechanism. Prior
solutions to this problem require centralized infrastructure, con-
straints on data placement, or ongoing administrative costs. All of
these run counter to the design philosophy of peer-to-peer systems.

Samsara enforces fairness in peer-to-peer storage systems with-
out requiring trusted third parties, symmetric storage relationships,
monetary payment, or certified identities. Each peer that requests
storage of another must agree to hold a claim in return—a place-
holder that accounts for available space. After an exchange, each
partner checks the other to ensure faithfulness. Samsara punishes
unresponsive nodes probabilistically. Because objects are repli-
cated, nodes with transient failures are unlikely to suffer data loss,
unlike those that are dishonest or chronically unavailable. Claim
storage overhead can be reduced when necessary by forwarding
among chains of nodes, and eliminated when cycles are created.
Forwarding chains increase the risk of exposure to failure, but such
risk is modest under reasonable assumptions of utilization and si-
multaneous, persistent failure.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management; K.6.4 [Man-
agement of Computing and Information Systems]: System Man-
agement

General Terms
Management, Performance

Keywords
Peer-to-peer storage systems, distributed accounting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP ’03 October 19–22, 2003, Bolton Landing, New York, USA
Copyright 2003 ACM 1-58113-757-5/03/0010 ...$5.00.

1. INTRODUCTION
A peer-to-peer storage system offers a number of significant ad-

vantages. Each node stores its data on some remote hosts, and
agrees to accept data from other hosts in return. Each object is
replicated across an independent set of remote nodes in the collec-
tive, providing strong fault-tolerance and survivability in the face
of node failure. Nodes can enter and leave the collective without
administrative action; such systems are entirely decentralized, self-
organizing, and scalable [2, 7, 8, 23].

These systems depend on individual nodes consuming storage
space in proportion to their contribution. Without such balance, the
demand for storage space exceeds supply, and the system collapses.
Because the benefit of using the system accrues individually, but
the costs are shared, users have little incentive to contribute beyond
goodwill. This is called the tragedy of the commons [15]. Recent
studies of Gnutella and Napster confirm that many users consume
without contributing [1, 24]. Worse, some users under-report their
available resources to avoid providing them to others [24].

Several mechanisms to compel storage fairness have been pro-
posed, but all of them rely on one or more features that run counter
to the goals of peer-to-peer storage systems. Trusted third parties
can enforce quotas and certify the rights to consume storage [23]
but require centralized administration and a common domain of
control. One can use currency to track the provision and consump-
tion of storage space [16], but this requires a trusted clearance in-
frastructure. Finally, certified identities and public keys can be used
to provide evidence of storage consumption [16, 21, 23], but re-
quire a trusted means of certification. All of these mechanisms
require some notion of centralized, administrative overhead—pre-
cisely the costs that peer-to-peer systems are meant to avoid.

If storage relationships in peer-to-peer systems are always sym-
metric, then the problem of enforcing fairness is much simpler. In
a symmetric storage system, node A stores data on node B if and
only if B also stores data on A. In such a system, B can periodi-
cally check to see if its data is still held by A, and vice versa. Col-
lectively, these pairwise checks ensure that each node contributes
as it consumes, and some systems require symmetry for exactly this
reason [6, 18].

Unfortunately, symmetry is rare in most peer-to-peer systems. In
some, an underlying distributed hash table [22, 26] directs replica
placement. Nodes are given random, numerical identifiers within
an ID space, and replicas of a data object are hashed and stored on
the nodes with the numerically closest identifiers. Other systems
provide more freedom in the choice of replica sites [2, 7], but such
decisions are influenced by factors such as node locality, diversity,
content overlap, and availability. Requiring symmetric storage in
such systems constrains data placement unnecessarily.

B

a1

C

b1

A

(a) A simple data storage network

B

a1 γ1

C

b1

A

β1

(b) One claim per stored block

B

a1

A

γ1

C

b1

(c) With claim forwarding

This figure illustrates a simple data storage network. The top panel
shows only the blocks stored by each node. Node B stores block
a1 for node A, and C stores b1 for B. The middle panel shows
the network with the addition of storage claims. Node B must store
claim γ1 for node C, and A must store β1 for B. In the bottom
panel, node B forwards claim γ1, rather than generating its own.
This reduces storage overhead, but creates a dependency chain; B’s
data now depends on the faithfulness of A.

Figure 1: Storage claims

In this paper, we present Samsara, an infrastructure for enforc-
ing fairness in peer-to-peer storage systems. To the best of our
knowledge, Samsara is the only system that enforces storage fair-
ness without requiring trusted third parties, monetary payment, cer-
tified identities, or symmetric storage relationships.

Samsara is based on the following observation: symmetric stor-
age relationships can be manufactured where they do not arise nat-
urally. For example, consider the asymmetric storage network in
Figure 1(a). There are two blocks stored in this system. Node A
stores one block on B and B stores a block on C. Samsara man-
ufactures symmetry through the construction of storage claims—
incompressible placeholders for storage. Each stored block rep-
resents the transfer of storage rights; one node contributes those
rights and another consumes them. For example, C contributes
storage that is consumed by B, and B contributes storage con-
sumed by A. In Samsara, each contributing node creates a claim
that the corresponding consuming node must store, as shown in
Figure 1(b).

An exchange of data for claim forms a symmetric storage con-
tract; each node periodically checks the other to ensure that it is ad-
hering to the contract. If a node breaches the contract, its exchange
partner is free to drop its data. These periodic inspections are done
for purely selfish reasons; each node is concerned only with the
maintenance of its own data and claims, and not with the system as
a whole. Collectively, this ensures that all nodes act fairly—each
node provides at least as much storage as it consumes.

This simple scheme leads to three important questions. How
can the storage overhead of this scheme be reduced as utilization
increases? When a node is found to be cheating, how much data
must be discarded? When a node does not respond to a query, has

it suffered a transient failure, or is it cheating?
Storage claims require space overhead equal to the data stored in

the system. As space becomes scarce, claim overhead can be re-
duced or even eliminated through forwarding. When node A stores
data on node B, we say A is downstream of B; this is a transitive
relationship. Nodes are free to forward a claim downstream, rather
than manufacture a new claim. For example, in Figure 1(c) node
B is midstream of nodes A and C. If space on B is scarce, it can
forward the claim γ1 to A, replacing the claim β1 and reducing lo-
cal storage overhead. Note that B must still contribute at least one
block in exchange for consuming space via b1. However, this block
is occupied by the data a1 rather than the claim γ1.

A node is still responsible for claims it has forwarded. In our
example, B is still responsible for the claim γ1, even though it
is stored on A. If A cheats, B will be penalized. because it is
ultimately responsible for γ1. In other words, claim forwarding can
reduce the reliability of data. Thus, nodes in Samsara retain claims
rather than forward them whenever possible—individual users have
both the incentive and the means to increase the reliability of their
data stored elsewhere by contributing more storage to the system.

Peer-to-peer systems must tolerate occasional, transient failure
of their constituents. Therefore, data stored in such systems is fact
to ensure high availability. Samsara leverages this observation, pe-
nalizing unresponsive nodes probabilistically. A node that suffers
only a short outage might find that one copy of one of its objects
has been lost, and can reestablish it from remaining replicas. How-
ever, a dishonest node will find it increasingly difficult to maintain
its own objects in the system.

Samsara was designed as an extension to Pastiche [7], a cooper-
ative backup system, but is applicable to other peer-to-peer storage
systems. We have constructed a prototype of Samsara, and have
evaluated it through benchmarking and simulation. The time re-
quired to exchange data is comparable to copying it via scp [27].
At low utilization, nodes have low exposure to risk of data loss,
while as space becomes scarce, claims can be nearly eliminated.
We explore the tension between space efficiency and reliability, and
find that loss rates are modest—at 50% utilization, permanent and
simultaneous failure of 16% of all nodes results in the loss of only
0.28% of all objects.

2. BACKGROUND AND CONTEXT
Pastiche [7] is a peer-to-peer, cooperative backup system. While

greed—in the form of unchecked storage consumption—was iden-
tified as an important problem in Pastiche, it remained unsolved.

Pastiche nodes periodically take snapshots of their own file sys-
tem state, and instantiate those snapshots on a set of remote replica
nodes; as new snapshots are added, others can be retired. Each
replica holds a complete copy of each retained snapshot. To min-
imize the storage overhead of this scheme, Pastiche nodes choose
machines with state in common. For example, two Windows XP
machines with the same set of applications already share most of
their file state.

Pastiche identifies similar machines through the use of finger-
prints. When node A needs a new replica, it hashes each of its
distinct objects, and samples the set of hashes to produce a small
fingerprint. This fingerprint is sent to a candidate node B to see
what fraction of the fingerprint matches hash values of B’s data.
This fraction is a good predictor of the total amount of data in com-
mon between A and B.

Candidate nodes are selected with two mechanisms. The first
is a systematic probe through a Pastry network [22], organized by
network locality. Machines with common installations are likely
to find suitable replica sites during this probe. Machines with less

OS, Disk

Pastiche

PastrySamsara

This figure illustrates the relationship between Samsara, Pastiche
and Pastry. Samsara sits between Pastiche and low-level storage. It
does not use Pastry routing.

Figure 2: Peer-to-peer storage stack.

common installations join a second Pastry overlay, organized by
degree of data overlap. As a result of the Pastry join process, the
machine is introduced to others with similar files. Once replica
sites are identified, Pastiche no longer routes messages via Pastry,
and uses IP instead.

Finally, each Pastiche node periodically checks its replica sites
to ensure that backup data is retained. Only a subset of the data
is checked during each period, providing a probabilistic guarantee.
If any of these checks fail, the node instantiates a new replica and
retires the old one.

Samsara was designed as a storage layer below Pastiche. All
network messages in Samsara are sent directly over IP—a peer-
to-peer message routing substrate is not needed. Figure 2 shows
Samsara’s relationship to Pastiche and Pastry.

3. DESIGN
Samsara’s goal is to ensure that nodes consume no more re-

sources than they contribute. Achieving Samsara’s goal is straight-
forward if all storage relationships are symmetric. In a symmetric
system, node A provides storage for node B if and only if B also
provides storage for A. We call this equal exchange. B can period-
ically check its data to see if its data is held by A, and vice versa.
Collectively, these pairwise checks ensure that each node consumes
as much as it contributes.

Unfortunately, most peer-to-peer systems, including Pastiche, do
not naturally conform to equal exchange. Samsara, therefore, pro-
vides storage claims—incompressible placeholders—to transform
asymmetric storage relationships into symmetric ones. If node A
stores data for node B, B must store an equal-sized claim for A. If
B ever discards A’s claims, A can discard B’s data. To preserve
equal exchange, B must be able to produce A’s claim only if it
is physically stored. A, however, cannot be forced to store local
copies of its claim in order to verify that it is being honored. This
would double A’s storage burden.

Enforcing equal exchange using claims and simple querying is
insufficient for a realistic system. First, no peer-to-peer system can
assume that its participants are fully reliable, but the simple claims
model punishes nodes severely for transient failure. Second, it dou-
bles the storage requirements of the system, which could prevent
nodes from creating replicas when storage utilization is high.

Peer-to-peer systems are composed of untrusted machines that
can enter and leave the system at any time. The system ensures
availability and durability by replicating objects at multiple nodes.
To enforce equal exchange while also allowing transient failures,
Samsara takes advantage of replication by punishing nodes proba-
bilistically for failed queries. When a node fails a query, each of
its replica sites independently drops data with some probability. If
a node suffers only a short outage, it can restore any lost replicas
from surviving copies. However, a cheating node that is never able
to respond will suffer weaker data availability and durability as it
fails more queries. Eventually, the cheating node will lose data.

Samsara reduces storage overhead when necessary by allowing
claims to move freely throughout the system. When a node runs

short of space, it can replace a claim it has given another node with
one it is responsible for. This creates a dependency chain. For
example, in Figure 1(c), B has replaced claim β1 with claim γ1,
forming the chain C → B → A. This has implications for data
reliability, because nodes who forward claims are still responsible
for them. When a downstream node fails, upstream nodes are pun-
ished.

However, if a claim is forwarded back to its creator it forms a
dependency cycle, and the claim can be removed from the system
entirely. The resulting cycle tolerates single failures without cas-
cading loss.

Finally, Samsara must be careful not to impose too much of a
burden on nodes responding to queries. If queries are frequent and
require extensive disk and network bandwidth to satisfy, the sys-
tem will be unusable. Samsara makes an effort to minimize this
burden by querying infrequently, allowing nodes to respond when
convenient, and reducing response size to a single hash value.

3.1 Claim Construction
Samsara’s claims transform each storage request into an equal

exchange. To preserve equal exchange, nodes that are given claims
must only be able to produce them if they are physically stored.
Claim owners, however, must not be forced to store local copies of
claims in order to verify that they are being honored. This would
double the storage burden of the owner.

Before a node joins the system, it must initialize its storage space
by logically filling it with storage claims. Later, when data is placed
in the storage space, the node can return any claims that were over-
written.

Computing a claim requires three values—a secret passphrase P ,
a private, symmetric key K, and a location in the storage space. To
initialize the space, nodes first logically fill the storage space with
hash values. In the first 20 bytes, nodes compute the SHA1 hash of
the concatenation of the passphrase P and the number 0, denoted
h0 = SHA1(P, 0). For each 20 byte chunk that follows, the hash
hi = SHA1(P, i) is stored in the ith chunk.

Claims are fixed-sized blocks formed from consecutive hash val-
ues. For example, suppose that claims are 512 bytes long. The ini-
tial claim, denoted C0, would be computed by concatenating the
first 25 hashes with the first 12 bytes of the 26th hash, and then
encrypting it using the symmetric key K. The second claim, C1,
would be computed by encrypting the concatenation of the next 25
hashes and the first 12 bytes of the hash after those, and so forth.
Thus, the ithe claim, Ci, is :

Ci = {hj , hj+1, . . . , hj+24, hj+25[0], . . . , hj+25[11]}K

where j = i× 26.
Of course, claims do not have to be computed during initializa-

tion, and never need be stored on the originating host. They can be
computed on the fly as needed.

3.2 Querying Nodes
Querying allows nodes to monitor their remote storage. Because

querying is only intended to demonstrate that data is stored rather
than to examine its contents, queries can be made relatively infre-
quently. A node could reasonably query its replica sites every few
hours or even once a day.

Similarly, queries need not be answered immediately. This is
important because nodes might want to delay responding to a query
when they are busy. There are many ways to minimize the burden
of answering a query, including resource containers [3], progress-
based mechanisms [11], and free disk bandwidth [20]. The load of
responding to a query is quantified in Section 5.1.

a1 h0 a2 h1

SHA1

a3 h2

SHA1

... hn

This figure demonstrates how a node can respond to a query. The
querying node supplies an initial value h0, which is appended to
the first data object, a1 , and hashed to produce h1. This is then
appended to the second object, a2, and hashed, and so on. The
storing node only needs to return the final hash hn.

Figure 3: Query response construction.

The network bandwidth required to satisfy a query can be re-
duced to a single SHA1 hash as well. There is no need to return
the entire data object to prove that it is still stored. When querying,
nodes can send a unique value, h0, along with the list of n objects
they wish to verify. Responding nodes append h0 to the first object
in the list and compute the SHA1 hash of this concatenation. This
hash is called h1 and is appended to the second object to compute
h2 and so on. The responding node only needs to return hn to prove
that it is storing all the objects it is responsible for. This process is
shown in Figure 3.

Nodes must maintain three lists to perform queries. The location
list maps object identifiers to locations in the storage space, the
storage list maps node ids to ids of objects in the storage space,
and the replica list maps node ids to replicated object ids. Nodes
do not have to maintain a list of sites storing their claims. This
information can be recreated using the storage list and location list.
To query for a set of claims, a node walks the list of objects stored
locally for a given host and recomputes the claims exchanged for
those objects using their location in the storage space.

Nodes must be careful that queries cannot be answered by some-
one other than the intended node. This is easy to do for claim
queries, as claims are not replicated. For data, replicas must be
salted to make them unique to their intended storer.

3.3 Transient Failure
Nodes in peer to peer networks suffer from frequent transient

failures [5]. Distinguishing between a node that is trying to cheat
and one that experiences a transient failure is both difficult and im-
portant. Nodes should not lose all of their remote data because of a
temporary loss of connectivity or failure. This is especially true for
a backup service like Pastiche. When a node’s disk dies, it is unable
to respond to queries. If the node’s remote data is then discarded
because it fails a query, restore will be impossible!

One potential solution requires nodes to provide free storage for
a grace period up front as part of the cost of setting up partnerships.
At the onset of a partnership, a node will be unable to retrieve any
stored data. Unfortunately, this restriction is unacceptable for many
applications.

Instead of restricting access to stored data for a grace period,
nodes can grant a grace period for responding to a query. If this
grace period is longer than a conservative estimate to recover a
failed node—on the order of many days to weeks—then honest but
unfortunate peers will not be penalized. This scheme tolerates tran-
sient failure while allowing immediate access to stored data.

Unfortunately, it also leads to a straightforward attack [18]. A
node could choose replicas for grace periods at a time, never stor-
ing anything in return, and select new peers once the grace period
expires. This is easy to do in systems like Pastiche, where nodes
have full discretion in selecting replica sites. It is also possible to
mount this attack in a system that is more constrained in selecting

replica sites. For example, nodes could encrypt their objects under
a rotating key scheduled every grace period. The resulting objects
have the same semantic content as their source, but will have dif-
ferent object identifiers, and will thus be stored on different replica
sets.

The problem with the grace period approach is that it treats the
grace period as an all-or-nothing deadline. Samsara retains the no-
tion of a grace period, but it is a gradated one.

Recall that peer-to-peer storage systems rely on replication to
provide high availability in the face of failure. Samsara uses repli-
cation to punish failed queries probabilistically. The number of
replicas owned by a node should decay as it fails queries. A data
object is lost if all replicas of that object disappear. If a node fails
a single query at all replicas, only one replica should disappear, but
the node should not lose its data. A node should only lose all of its
data if it fails queries for an entire grace period.

Samsara accomplishes this through independent, probabilistic
discards of an unresponsive node’s object. Each node discards with
some probability pi, where pi is chosen based on the number of
failed queries and the normative replication factor, denoted r, of the
system. Probabilistic discard does not prevent nodes from mount-
ing an isolated grace period attack, but it does prevent long-term
abuse. Nodes who perpetually abuse the grace period can expect to
lose data.

Assume that we want an unresponsive node to lose one replica
for each consecutively failed query. For the ith consecutive failed
query, each replica site computes

pi =
1

r − i + 1

If the unresponsive node has n replicas, the expected number of
discarded replicas after failing the first query of each replica site is
D1 = n

r
. More generally, Di =

n−Di−1
r−(i−1)

discards are expected
after failing the ith consecutive query of each site. Thus, Dr =
n − Dr−1, which means that after r consecutive failed queries at
each site, all n replicas should be discarded.

There are two complimentary strategies for defeating probabilis-
tic discard that immediately come to mind. First, as in the original
grace period attack, a cheating node could create a brand new set
of replicas frequently. In addition to this, a node could create many
replicas to increase the expected number of consecutively failed
queries before losing an object. A cheating node would have to
create new replicas fast enough to ensure that there is at least one
copy of each object at all times. As we will see, the bandwidth re-
quired to create enough replicas fast enough is prohibitive for most
nodes.

Our first computation of pi was over-simplified. If p1 were ac-
tually 1

r
, a node with n replicas and one object can expect all n

replica sites to simultaneously discard its object after missing one
query, with probability 1

rn . This means that for r = n = 5, a node
can expect to lose an object after missing a single query at each
replica site on 3,125 separate occasions. This is far too severe, par-
ticularly since nodes are likely to have many more than one object,
and replica sites roll the dice for every object stored when a query
is missed.

A typical Pastiche node will have about 2,000,000 objects, equal
to about 32GB of state. Thus, when r = 5 and

p1 =
1

r

a Pastiche node with five replicas can expect to lose 640 objects
the first time it misses a query at each replica site. This is clearly
inadequate, even if nodes are given a day to respond to each query.

0.000001

10000

1E+14

1E+24

1E+34

1 2 3 4 5

Consecutive Queries Failed

E
xp

ec
te

d
 T

im
es

 M
is

se
d

n=5 n=6 n=7 n=10

This figure graphs query generation versus the expected number of
times a node can miss that many consecutive queries before losing
an object. The normative replication factor for the system is as-
sumed to be five (r = 5), but the adversary populates n replicas.
Each node owns 2,000,000 objects. Each series represents the num-
ber of replicas actually created.

Figure 4: Expected missed queries before object loss.

Instead, failures should be exponentially more harmful as consecu-
tive queries are missed to protect honest nodes while still punishing
cheaters.

One way to refine pi is as follows :

pi = (
1

(r − i + 1)
)(r−i+1)

For r = 5, a node with 2,000,000 objects can expect to lose an
object after missing a query at each replica site 1.49 × 1011 times.
If queries are made on a daily basis, this would require 4.08 × 108

years of always missing a query. The expected number of consec-
utive queries that can be missed before losing an object is graphed
for various replication factors in Figure 4. As the figure shows,
cheating nodes will be punished eventually, even when the replica-
tion factor is doubled.

With n = r = 5, 2,000,000 objects, and our modified pi, a node
can expect to miss three consecutive queries at all replica sites only
seven times before losing an object. Adding an additional replica
raises this number to 194, which is reasonable. Even a behaving
node will occasionally miss three consecutive queries, but it will
happen infrequently because most nodes usually only experience
outages of less than three days [5].

These curves descend quickly, however. The expected number
of lost objects after missing four consecutive query jumps to 488.
Because of this, for the first three days, queries should be sched-
uled everyday, while the fourth query should be scheduled a week
later. Cheating nodes can still expect to eventually lose objects af-
ter just three days because of the number of times they will miss
three consecutive queries.

Still, as alluded to earlier, a cheating node might be able to defeat
probabilistic discard by creating many replicas and then replacing
them before it expects to lose an object. A node with seven replicas
can expect to lose an object after missing three consecutive queries
5,230 times. This is fairly risky. However, a node with ten replicas
can expect to miss three consecutive queries over 100 million times
before losing an object. For this node, missing three consecutive
queries is probably safe, even if it expects to lose two objects if it
fails four consecutive queries. Fortunately, the bandwidth required
to create seven new replicas every three days or ten new replicas
every ten days is prohibitive for most nodes.

Figure 5 shows the continuous outbound bandwidth required for
various combinations of replication factors and days to create those
replicas. Assume that a cheating node has 2,000,000 objects and
32GB of state. For a node with five replicas, it will need to create
approximately five replacement replicas within three days to avoid

0

2

4

6

8

5 replicas,
3 days

6 replicas,
3 days

7 replicas,
3 days

7 replicas,
10 days

10 replicas,
10 days

M
b

/s
ec

This figure shows the continuous outbound bandwidth required to
create five, six, seven, or ten replicas every three or ten days. Nodes
are assumed to have 32GB of state and a normative replication factor
of five.

Figure 5: Required bandwidth to create replicas.

losing an object. To create five new replicas within three days a
node to ship 160GB of data, for a continuous outbound bandwidth
of approximately 5Mb/s. If the node tries to maintain six replicas,
the bandwidth requirement is about 6Mb/s. Even a node with ten
replicas, who is unlikely to ever lose any objects after missing three
consecutive queries, needs over 2Mb/s to recreate ten replicas over
ten days.

Bandwidth between arbitrary points on the Internet is unlikely
to approach these levels anytime soon [19]. Furthermore, network
bandwidth is a far scarcer, and thus more valuable, resource than
storage. Paying for remote storage with bandwidth instead of stor-
age isn’t cost effective.

However, while bandwidth constraints will likely keep nodes
with data sets of 32GB or larger from cheating, this might not be
enough to prevent nodes with only a few objects from cheating.
The less data a node needs to replicate, the less bandwidth it needs
to create new replicas every three or ten days. While this is true,
nodes with smaller data sets are, by definition, unlikely to consume
large amounts of storage.

Nonetheless, if nodes with smaller data sets become a problem,
one could imagine further refining pi. One strategy is to identify
which nodes are capable of cheating. By using the state size and
observed bandwidth, nodes could approximate the maximum num-
ber of replicas that another node is capable of creating before it
expects to lose an object. The discard rate could then be set higher
for nodes with enough resources to cheat. Of course, simply being
capable of cheating does not mean that a node will. We plan to
explore this technique more in the future.

3.4 Reducing Claim Overhead
When node A stores data for node B and B stores for A, we

say that B is downstream of A; claims always move downstream.
The exchange between A and B represents an exchange of stor-
age rights. Each node is entitled to store anything it chooses on
the remote disk blocks of the other. A can replace its object with
anything and B can replace its claims with anything. Replacement
does not affect equal exchange since all nodes still consume and
contribute equally.

To authenticate replacement, the two nodes negotiate a Diffie-
Hellman key [9] during initial exchange. This is an unauthenticated
exchange because we do not assume that nodes have certified iden-
tities. It is therefore subject to man-in-the-middle attacks. How-
ever, if the initial exchange is not intercepted, future replacement
requests can be checked for authenticity. Samsara decreases the
likelihood of interception by routing negotiation messages via IP
rather than the overlay.

In the simple case where nodes never replace the claims they cre-
ate, the storage overhead of Samsara is equal to the data stored in

B

a1 γ1

C

b1

A

β1

(a) A simple data storage network

B

a1

A

γ1

C

b1

(b) Forwarded claim

B

a1

A

c1

C

b1

(c) Claim cycle

This figure illustrates how a claim is forwarded in a simple three
node storage network. Arrows represent query lines. Objects are
boxes and claims have rounded corners. Node C is storing object
b1 for node B. B is storing claim γ1 for C in exchange. B is also
storing object a1 for node A, who is in turn storing claim β1 for
B. Because B wants to free up space so that it can create a second
replica of b1, it replaces β1 on A with γ1 and forwards any queries
or storage requests for γ1 from C to A. Say that C wants to create
a replica of object c1 on A. This allows A to replace whatever new
claim it would have returned to C in exchange with claim γ1, which
removes γ1.

Figure 6: Forwarding claims.

the peer-to-peer storage system, doubling global storage require-
ments. When storage becomes scarce, however, nodes can use the
storage rights they have gained by creating claims. They do this by
replacing the remotely stored claims they have created with locally
stored claims. Moving claims further downstream is called claims
forwarding; forwarding frees local storage.

Consider the network shown in Figure 6(a). Node A stores its
object a1 on node B, which in turn stores claim β1 on A. B
also stores object b1 on node C, which in turn stores claim γ1 on
B. B only has space for two blocks—both of which are currently
occupied—but wants to create a second replica of b1. Creating a
second replica is possible only if B has enough space to store an-
other node’s claims. Thus, B needs to free a block of storage.
B can free a block by using the storage rights it received for

storing a1, so B replaces β1 with γ1. B no longer needs to query
for β1. Whenever C queries B for γ1, B will simply forward the
query to A. This network is shown in Figure 6(b).

Allowing nodes to transfer claims does not enable the Sybil at-
tack [10]. Suppose a dishonest node creates an alias for itself.
When it receives a claim, it can “forward” the claim to its alias,
but the node gains no advantage. It must still produce the claim
when asked, and must therefore still store it.
B was able to eliminate one claim, but another claim, γ1, still

exists. Now say that C wants to create a replica of its object c1 on
A. A first stores c1 for C and returns claim γ1 to C, rather than
creating a new claim. When γ1 is forwarded back to its owner, C,

a cycle is created, and γ1 can be removed. This network is shown
in Figure 6(c).

Even when a cycle is created, each node’s storage rights remain
intact. C still has the right to a block on B, B still has the right to
a block on A and A has the right to a block on C. In a cycle, every
node can forward a replacement request to a downstream node until
the request comes back to the node that originally made it.

The cycle example, as presented, uses the simple optimization
of telling nodes where their claims are physically stored. Without
the optimization, C would initially receive a brand new claim, α2,
from A. C would then use its storage rights on B to forward α2. B
would in turn forward α2 to A, who does not need to store the claim
because it can compute it. The result is the same—all claims are re-
moved. When C knows that A is storing γ1, all of this forwarding
can be eliminated. C can simply tell A to return γ1 instead of cre-
ating new claim α2. This optimization has the additional benefit of
eliminating query forwarding since nodes can query claim storers
directly.

3.5 Forwarding and Reliability
When a node forwards a claim downstream, it remains responsi-

ble for it. Without authenticated identities, nodes cannot prove to
the claim owner that the claim was forwarded. To see why, con-
sider a dishonest node that can create aliases for itself. Every claim
received by this dishonest node could be “forwarded” to one of its
fictitious identities. If other nodes believed these assertions, the
dishonest node would never be held accountable for discarding the
claims it should have been storing.

Samsara assumes that nodes respect the storage rights they have
promised other nodes when their own data depends on it. In the
case where claims are never forwarded, dealing with failure is easy.
Whichever node’s query failed must be storing data owned by the
failed node. The querying node simply discards the failed node’s
data.

When claims are forwarded, however, the node that detects the
failure might not be storing any data owned by the failed node.
Consider the five node dependency chain in Figure 7(a). In this
network, a dependency chain exists via claim ε1. Node A is down-
stream of node B, B is downstream of node C, C is downstream
of node D, and D is downstream of node E.

Suppose that C fails B’s query. B is not storing c1, so it cannot
discard C’s data. However, B still has storage rights on A, so it
uses those rights to replace ε1 with its own claim, β1. A must
replace ε1 with β1 to protect its object, a1.

Meanwhile, E holds D responsible for ε1. When E queries D
for ε1, the query fails. E then discards D’s object, d1. In response,
D attempts to use its storage rights at C to replace ε1 with a claim
of its own. When this request fails, D discards C’s object, c1. The
resulting network is shown in Figure 7(b). All data upstream of the
failure is lost, but downstream data is preserved.

In our example, even though D did not fail, it lost d1 as a re-
sult of C’s failure. Forwarding a claim makes the data exchanged
for that claim only as reliable as the weakest downstream node.
The longer the dependency chain, the less reliable each upstream
node’s data becomes. For this reason, Samsara nodes only forward
claims when absolutely necessary—when a node’s storage is near
capacity. This creates a strong incentive for nodes to add storage.
The more storage nodes dedicate, the less likely they are to for-
ward claims, and the more reliable their remote state will be. Even
though dependency chains weaken reliability, as we show in Sec-
tion 5.4, object loss is still rare, unless both the permanent failure
rate and storage utilization are very high. Under normal conditions,
we expect most failures to be transient and storage utilization to be
moderate.

C

b1

A

ε1

B

a1

D

c1

E

d1

(a) before failure

A

β1

B

a1

D E

(b) after failure

This figure illustrates a five-node dependency chain of claims, both
before and after the middle node fails. Arrows represent query
lines. Objects are boxes and claims have rounded corners. Upstream
nodes lose all data, while downstream nodes retain it.

Figure 7: Failure in dependency chains.

Surprisingly, while dependency chains weaken reliability, cycles
actually restore it. This is because each node in a cycle has storage
rights on another node in the cycle. In a dependency chain, the
node farthest downstream does not have any storage rights. When
the farthest node does have storage rights, data can “wrap around”
any failure. Consider the five node dependency cycle in Figure 8(a).
In this network, a cycle exists where node A is downstream of node
B, B is downstream of node C, C is downstream of node D, D is
downstream of node E, and E is downstream of A. Suppose, as
before, that C fails B’s query. B again uses its storage rights to
store claim β1 on A.

Before, A replaced ε1 with β1. Now, however, A has storage
rights on E, because A is storing E’s object e1. A can use those
rights to forward β1 to E. E has storage rights on D and thus for-
wards β1 to D. D has storage rights on C and attempts to store β1

on C. This fails, so D discards C’s object, c1. However, because
D wants to protect its object, d1, on E, it stores β1. The resulting
network is shown in Figure 8(b). This time all data upstream and
downstream of the failure remains intact.

This puts Samsara in a strange predicament. Forwarding weak-
ens data reliability as long as the claim remains active in the sys-
tem, but if the claim can be retired to create a cycle, reliability is
restored. It is thus in nodes’ interest to create cycles, but not chains.
It is unclear how Samsara can induce cycles without constraining
replica choice or creating chains, but it presents an interesting di-
rection for future work.

3.6 Limitations
There are a number of issues facing peer-to-peer storage that

Samsara does not solve. First, our target is greedy users, not ar-
bitrarily malicious ones, because we believe that greedy users are
far more common. The benefits of being greedy are tangible while
the benefits of being malicious are not. Thus, Samsara does not
stop nodes who promise to store data and then immediately discard
it. Similarly, Samsara cannot prevent a Pastiche node from refusing
service once it detects that a restore is in progress.

A more important limitation of Samsara is that while it solves the
problem of unchecked consumption, it does not necessarily solve
the problem of contribution. Nodes are forced to provide storage,
in the form of claims, equal to the storage they consume. However,

C

b1

A B

a1

D

c1

E

d1e1

(a) before failure

D E

d1

A

β1

B

a1e1

(b) after failure

This figure illustrates a five-node dependency cycle of claims, both
before and after the middle node fails. Arrows represent query lines.
Objects are boxes and claims have rounded corners. Upstream and
downstream nodes retain all data.

Figure 8: Failure in dependency cycles.

Message Arguments Return Value
store pathname, objectid, location, sync error

retrieve objectid, location, sync pathname
query location error

callback pathname, event id
(a) samsarad messages.

Event Description
store req a remote node requests storage

retrieve req a remote node requests data
query res a query succeeds or fails

(b) Callback events.

This table shows the messages that can be passed to the samsarad
daemon by higher level peer-to-peer storage systems, like Pastiche.
Each message is passed to samsarad via Unix domain sockets.
The callback message allows other processes to register a socket
to be notified when an event occurs. The events that can be regis-
tered for are listed and described in the bottom table.

Figure 9: Samara interface.

Samsara cannot force nodes to store data for others. If all nodes
refuse to store anything other than the claims they receive, data will
never be stored. Nonetheless, storing others’ data can be a way to
temporarily access remote storage when it is difficult to find. If a
node has trouble finding replica sites, it can accept storage requests
from other nodes and replace its claims with actual data until it
finds satisfactory sites.

Finally, the technique of creating and verifying resource place-
holders appears to only be applicable to non-renewable resources
like storage and memory. It is difficult to imagine how one would
create placeholders for renewable resources like bandwidth and
processor cycles. Even if a placeholder could be created, moni-
toring its maintenance would consume the resource itself.

4. IMPLEMENTATION
We have built a prototype of Samsara, written in C, called sam-

sarad. The daemon is composed of three layers—a messaging
layer, a replica manager, and a storage layer.

The messaging layer is responsible for sending and receiving all
network and local messages. Local messages are passed via Unix
domain sockets. This is how Pastiche communicates with Samsara.

There are four messages that can be sent to samsarad—store,
retrieve, query, and callback. The arguments and return
values for these messages are summarized in Figure 9. All network
communication uses the RPC2 package [25].

Once the messaging layer receives a message, it forwards the
request to the replica manager. The replica manager is responsible
for authentication and maintaining replica locations. We used the
openssl0.9.7 library for all authentication including a 2048-bit
Diffie-Hellman key exchange with SHA1 hashes.

The storage layer is responsible for knowing who owns any stored
data and where that data lies; it also handles claims generation, us-
ing a claim size of 4096 bytes.

For expediency, the storage space is a single, flat file, stored in
the underlying ext2 file system. The storage layer maintains two
persistent free lists to help place new data—one for unused storage
and one for storage occupied by claims. These lists are currently
only linearly searched, single-level lists. We do not currently deal
with fragmentation or make any attempt to optimize data place-
ment. We simply choose the first free location that is large enough
to hold whatever we are trying to store.

All object locations are stored in a database that maps object
identifiers to a size and offset within the storage space. Addition-
ally, all stores are whole-object grained. In the future, we plan
to break objects into claims-sized blocks to better facilitate claims
transfer.

5. EVALUATION
In evaluating Samsara, we set out to answer the following ques-

tions:
• What are the data transfer and query performance of the pro-

totype?
• How much processor and disk overhead does querying in-

duce?
• How does storage utilization affect the need to forward?
• How often do dependency cycles arise naturally?
• How long do dependency chains get as utilization increases?
• How do dependency chains affect reliability?

5.1 Prototype Micro-benchmarks
We were interested in measuring two aspects of our prototype,

samsarad. We wanted to know what its data transfer and query-
ing performance were and we wanted to characterize the load of
responding to and verifying queries. To explore both questions, we
used two representative data loads. The first load, referred to as the
“tree” load, consisted of 1676 files totaling 13MB. The other load,
referred to as the “archive” load, consisted of a single 13MB file.
We chose these two loads to examine the effect of transferring and
querying many objects versus just one. The data used for both was
taken from the openssl-0.9.7a source tree. The tree load was
all regular files in this source tree, while the archive load was all
regular files concatenated into a single file.

All experiments were run on machines with a 550 MHz Pentium
III Xeon processor, 256MB of memory, and a 10k RPM SCSI Ultra
wide disk. The disk has an average 4.7 ms seek time, 3.0 ms ro-
tational latency, and 41 MB/s peak throughput. Testbed machines
are connected by a switched, 100Mb/s Ethernet fabric.

We first measured data transfer performance. How does sam-
sarad perform relative to the commonly-used secure copy utility
scp? In this experiment, samsarad first copied data to a replica
site. It then retrieved and stored the claims exchanged for that data.
We ran ten trials per experiment with both samsarad and scp,
being careful to flush the system’s buffer cache between trials. The
performance results are in Figure 10.

0

10

20

30

40

50

60

samsarad scp

S
ec

o
n

d
s

Storedata Fetchclaims Storeclaims

(a) Time to complete tree benchmark.

0

10

20

30

40

50

60

samsarad scp

S
ec

o
n

d
s

Storedata Fetchclaims Storeclaims

(b) Time to complete archive benchmark.

This figure shows the time to transfer both the tree and archive loads
for samsarad and the copying utility scp. The Samsara prototype
requires three phases to complete the transfer—storing the data at a
replica site, receiving claims in return, and then storing those claims.

Figure 10: Data transfer performance.

0

10

20

30

40

50

60

Archive data Archive
claims

Tree data Tree claims

S
ec

o
n

d
s

Compute Query Verify Query

This figure shows the time to compute and verify a query under both
the tree and archive loads. Times to compute and verify queries for
both the data and the claims exchanged are shown.

Figure 11: Query performance.

samsarad outperformed scp for both loads during the store
data phase, with scp performing much worse under the tree load.
Storing claims, however, is quite slow, taking nearly 10 seconds
to complete. The reason for this is that samsarad needs to store
each claim, and then update the claim’s entry in the storage location
database. While slow, this performance is still reasonable since
most peer-to-peer storage systems ship data asynchronously.

We evaluated query performance and overhead next. We queried
the data and claims associated with the tree and archive loads. This
involves two phases—the query response computation and verifi-
cation. The results are shown in Figure 11. These measurements
were taken after the data had been copied and the buffer caches at
both machines had been flushed.

For both data queries, the time to compute the response was the
same as the time to verify it. This is because both the querying

0

20

40

60

80

100

Archive data Archive
claims

Tree data Tree claims

P
er

ce
n

t
C

P
U

 U
sa

g
e

Compute Query (user cpu) Compute Query (sys cpu)
Verify Query (user cpu) Verify Query (sys cpu)

(a) CPU load during querying.

0

10000

20000

30000

40000

50000

Archive data Archive
claims

Tree data Tree claims

D
is

k
O

p
er

at
io

n
s

Compute Query (read ops) Compute Query (write ops)
Verify Query (read ops) Verify Query (write ops)

(b) Disk operations during querying.

This figure shows processor and disk load during query computation
and verification.

Figure 12: Query processor and disk load.

and storing node performed the same tasks. Each needed to read
the data from disk to compute the response. It took much more
time to compute and verify the tree data, because it required more
disk reads. For claims queries, the time to compute a response took
much longer than the time to verify. This is because verifying a
claims query is done entirely in memory, which is much faster than
reading from disk.

The processor and disk loads of computing and verifying queries
are shown in Figure 12. The processor and disk loads of the query-
ing and responding nodes are the same for data, but the overhead
of responding to a claims query is very different from verifying it.
The responding node uses many more disk operations to read the
claims from disk, while the querying node requires more processor
time to recompute the claims.

5.2 Space Overhead
In the worst case, when nodes never transfer claims, Samsara

doubles the global storage burden. This could be problematic when
storage utilization is high. To explore how effectively Samsara can
reduce its overhead under high utilization, we built a Samsara sim-
ulator on top of SimPastry. We populated our simulator with 5,000
nodes, and set the replication factor to four. Each node was as-
sumed to have one object that was equal in size to a claim.

We were also interested in the relationship between replication
strategy and overhead. Objects can be replicated as individual ob-
jects in a distributed hash table (DHT), or can be replicated as
collections on nearby nodes. The former strategy is employed by
CFS [8] and PAST [23], while latter strategy is similar to that used
by cooperative backup systems [7, 18]. For both replication strate-
gies, we varied system-wide space utilization from 50% to 100%.
In each experiment objects were forwarded to other nearby nodes,
as determined by replication strategy, if their “natural” replication
sites were full. Each experiment continued until all objects were
placed or storage was exhausted.

Collection-based replication
50% 57% 67% 80% 100%

replicas 20000 20000 20000 20000 19997
claims 13626 11488 8619 4740 3
cycles 86 129 173 180 152

forwards 6326 8528 11942 18913 131360
DHT replication

50% 57% 67% 80% 100%
replicas 20000 20000 20000 20000 19998

claims 15207 12753 9168 9168 2
cycles 5 7 4 6 37

forwards 4788 7269 11332 18050 119833

This table shows the storage overhead in two simulated Samsara
networks of 5000 nodes, each needing four replicas. Each column
represents the percent of global storage needed to store all replicas.

Figure 13: Simulated space overhead.

The results are in Figure 13. Nodes were almost always able
to replicate their objects, even at 100% storage utilization. In the
100% utilization case, both collection-based and DHT replication
reduced claim overhead to less than 0.02% of global storage.

Even though collection-based and DHT replication pursue very
different strategies, claim overhead can be effectively reduced in
both. The biggest difference between collection-based and DHT
replication is that collection-based generated more cycles than DHT.
The reason for this is that collection-based nodes are more likely to
choose one another. The collection-based strategy targets replica
sites that are close in the network, which is generally symmet-
ric. This leads to clustering of nodes that are close to each other,
and makes cycles more likely. In DHT replication, nodes replicate
along a random range of the nodeid space. The randomness makes
it highly unlikely that nodes within a range of the nodeid space will
choose to replicate their own objects on reciprocal peers.

Still, for both replication strategies, we observed very few cy-
cles. Because chains rarely become cycles, forwarding claims will
almost always weaken data reliability.

5.3 Chain Length Analysis
Samsara can remove enough claims to ensure that all nodes are

able to create replicas, no matter the storage availability. However,
there is a tension between the length of the transfer chains needed
to clear storage and the reliability of the replicas created along that
chain. How long did these chains actually grow? Figure 14 shows
the distribution of chain lengths under both collection-based and
DHT replication. These results are summarized in tabular form in
Figure 15.

Chain lengths grow beyond eight only when approaching 100%
utilization. In the 100% utilization case, 69% of chain lengths are
less than four and 79% are less than eight. Interestingly, chains can
become extremely long when utilization requirements are 100%. In
one experiment, for example, we witnessed a chain that was 3,822
nodes long out of 5,000.

We must know two things to explain why this happens—how and
under what circumstances chains become longer. When a claim
is forwarded, its chain lengthens by the size of the chain it re-
places. The sum of all chain lengths increases when claims are
introduced, remains unchanged when claims are forwarded, and
declines through cycles.

Few new claims are introduced beyond a certain point, cycles
are rare, and storage is cleared almost exclusively by forwarding
claims. What this means is that the sum of all chain lengths among
active claims remains relatively constant. Because this sum re-

1

10

100

1000

10000

1 10 100 1000 10000

Chain Length

N
u

m
b

er
 o

f
C

h
ai

n
s

50% 80% 100%

(a) Distribution of chain lengths for collection-based replication.

1

10

100

1000

10000

100000

1 10 100 1000 10000

Chain Length

N
u

m
b

er
 o

f
C

h
ai

n
s

50% 80% 100%

(b) Distribution of chain lengths for DHT replication.

This figure shows the distribution of chain lengths for networks us-
ing collection-based and DHT replication. Each series represents a
percent storage utilization required to create all replicas.

Figure 14: Chain length distributions for claims transfer.

Collection-based replication
80% 50% 100%

total claims 14971 10671 9098
% with length ≤4 1 .88 .68
% with length ≤8 1 .97 .79

DHT replication
80% 50% 100%

total claims 16529 11126 9775
% with length ≤4 1 .81 .62
% with length ≤8 1 .98 .80

Figure 15: Chain length distributions.

mains stable, the fewer active claims there are, the longer their
chains necessarily become. In addition, when storage utilization is
100%, there are between four and five times more forward opera-
tions then when utilization is 80%. Forwarding reduces the number
of claims without changing the sum of all lengths, which leads to
longer chains.

5.4 Reliability
Chain length is important because it has implications for relia-

bility. The reliability of data stored along a transfer chain depends
on downstream nodes not failing. Because of this, it is important to
explore the relationship between storage utilization, chain length,
and data reliability.

To evaluate reliability in the face of permanent node failure, we
constructed a 5000-node network using DHT replication. Once
constructed, we assumed that nodes permanently and simultane-
ously failed with some probability. This eliminated the failed nodes’
objects along with any objects stored on other nodes in exchange.
If any lost objects were forwarded claims, all upstream data was

0%

20%

40%

60%

80%

1% 2% 4% 8% 16%

Failure Rate

P
er

ce
n

t
L

o
st

 R
ep

lic
as

1 2 4 8 unlim

0%

2%

4%

6%

8%

10%

1% 2% 4% 8% 16%

Failure Rate

P
er

ce
n

t
L

o
st

 O
b

je
ct

s

1 2 4 8 unlim

This figure shows the percent of lost replicas and objects when chain
lengths are capped using aggressive claims transfer. An object is lost
only when all of its replicas are.

Figure 16: Reliability of data with capped chain lengths.

lost, as described in Section 3.5.
Our first set of experiments isolated the effect of chain length on

reliability. To do this, we gave nodes unlimited storage capacity
and transferred claims aggressively, up to a limit on the number
times claims could be forwarded. The results of these experiments
are in Figure 16. It shows both the fraction of lost replicas and the
fraction of lost objects; an object is lost only when all of its replicas
are.

We are interested in the percent of lost replicas beyond those lost
in the base case, where transfers are capped at one. The number of
lost replicas for the base case reflects both the objects stored at the
failed node and the objects stored in exchange for the claims stored
at the failed node.

There is a significant drop in reliability between chains of length
four and eight. For a permanent failure rate of 8%, when chain
lengths are limited to four, only 0.13% of objects are lost, whereas
when chain lengths are capped at eight, 0.30% of objects are lost.
When the permanent failure rate is 16%, 1.1% of objects are lost
when chain lengths are four or less, while 3.3% are lost when chain
lengths are eight or less. Because forwarding claims only when
necessary keeps almost all chain lengths below four, it will be reli-
able even with widespread failure.

Our second set of experiments focused on the effect of storage
utilization on reliability. When storage utilization is low, nodes
hold onto all claims they receive, rather than endanger their data
by transferring them. When storage utilization is high, nodes are
forced to transfer them. To understand this interaction, we exam-
ined a range of failure rates for storage utilizations of 50% and
80% and transferred claims both conservatively and aggressively.
The conservative trials represent expected reliability, while the ag-
gressive trials represent worst-case reliability. The results are in
Figure 17.

These figures show that nodes should always forward claims
conservatively. Transferring claims aggressively is no more effec-
tive at clearing space for replicas at high utilizations, but increases

0%

20%

40%

60%

80%

1% 2% 4% 8% 16%

Failure Rate

P
er

ce
n

t
L

o
st

 R
ep

lic
as

50% (Cons) 80% (Cons) 50% (Aggr) 80% (Aggr)

0%

2%

4%

6%

8%

10%

1% 2% 4% 8% 16%

Failure Rate

P
er

ce
n

t
L

o
st

 O
b

je
ct

s

50% (Cons) 80% (Cons) 50% (Aggr) 80% (Aggr)

This figure shows the percent of lost replicas and objects for utiliza-
tions of 50% and 80%, paired with both aggressive and conservative
claims transfer schemes.

Figure 17: Reliability of data under various storage utiliza-
tions.

the probability that an object will be lost several-fold. The fig-
ures also show that excess storage can be adaptively occupied to
increase reliability, or cleared to create space for more replicas.
When utilization is at 50%, transferring claims conservatively and
using that excess space to store claims keeps object loss rates low
for all failure rates. Even when 16% of all nodes permanently fail,
only 0.28% of objects are lost. The effect of utilization on reli-
ability gives individual users an incentive to dedicate more local
storage to the system.

It should be noted that our simulations are pessimistic. We have
assumed that all failures are permanent, because we provide mech-
anisms for preserving data in the face of transient ones. Studies
have shown that while transient failures are common, permanent
ones happen far less frequently [5]. It is unlikely that even 1% of a
large population of nodes would all permanently fail in such a short
period of time that the affected nodes are unable to find replacement
replica sites.

6. RELATED WORK
The problem of fairness in peer-to-peer systems is an instance

of the tragedy of the commons [15]. In short, the benefit of using
the system accrues individually, but the costs are shared. A rational
participant concludes that it is in his best interest to consume as
much as possible without contributing, allowing others to pay his
way. Any such system is not sustainable in the long term.

This is not merely of academic interest. A study of Gnutella [1]
found that two thirds of the participants benefited from the system
without contributing to it. Furthermore, the most generous 1% of
hosts serviced nearly half of all requests. A later study of Gnutella
and Napster [24] confirms this general trend, though with a less
dramatic fraction of non-cooperative nodes. This study also found
that almost one third of all Napster users under-reported their avail-
able bandwidth to avoid being selected as a site from which others
would download files.

Some mechanism is required to enforce fairness amongst peers—
that they contribute in proportion to what they consume. To the best
of our knowledge, Samsara is the only system that enforces fairness
in peer-to-peer storage without requiring trusted third parties, sym-
metric storage relationships, monetary payment, or certified identi-
ties.

Several peer-to-peer storage systems have considered the prob-
lem of enforcing storage quotas in some way. Two of the first to do
so were CFS [8] and PAST [23].

In CFS, each storage node limits any individual peer to a fixed
fraction of its space. These quotas are independent of the peer’s
space contribution. CFS uses IP addresses to identify peers, and re-
quires peers to respond to a nonce message to confirm a request for
storage, preventing simple forgery. This does not defend against
malicious parties who have the authority to assign multiple IP ad-
dresses within a block, and may fail in the presence of network
renumbering [12].

PAST provides quota enforcement that relies on a smartcard at
each peer [23]. The smartcard is issued by a trusted third party,
and contains a certified copy of the node’s public key along with a
storage quota. The quota could be determined based on the amount
of storage the peer contributes, as verified by the certification au-
thority. The smartcard is involved in each storage and reclamation
event, and so can track the peer’s usage over time.

The grace period attack is discussed by Lillibridge et al [18] in
the context of a cooperative backup system. This system provides
for challenges between peers, but requires symmetric storage rela-
tionships, restricting data placement. They propose two solutions
to the grace period attack. In the first, the system must prove itself
reliable by storing random data for some time before benefiting
from the system. In the second, a centralized third party is used to
impose a storage “fine” immediately after a restore request.

FARSITE [2] and Pastiche [7] both identify the need to ensure
that peers consume only as much space as they contribute. FAR-
SITE lists quota enforcement as future work. Pastiche lists three
potential mechanisms—symmetric storage, solving puzzles [17] to
pay for space, and micropayments [4]—but rejects each of them as
undesirable.

In addition to these specific storage systems, there have been sev-
eral efforts to produce a general framework that might be applied
to peer-to-peer storage. Fileteller [16] proposes the use of micro-
payments to account for storage contributed and consumed. Such
micropayments can provide the proper incentives for good behav-
ior [14], but must be provisioned and cleared by a third party and
require secure identities. Cooper [6] proposes data trading, the ex-
change of equal amounts of data, as a way to ensure fairness and
discourage free-loading. However, since all exchanges are of actual
data, this requires symmetric storage relationships.

Ngan [21] has proposed a distributed accounting infrastructure.
Each peer maintains a signed record of every data object it stores,
and every object stored on its behalf elsewhere. Each node periodi-
cally chooses another random node to audit. For each file the node
claims to hold for some other peer, the auditor retrieves the corre-
sponding peer’s record, and compares the two. If the auditor finds
a node claiming an object it doesn’t actually have, that node can be
ejected from the system. This framework differs from Samsara in
several ways. First, it requires certified identities to prevent false
accusations and to ensure that aliases cannot claim to occupy stor-
age on a node. Second, it tracks only actual usage, not capacity;
it detects inflated claims of capacity only when the storage sys-
tem is nearly fully utilized. Samsara detects inflated claims by any
individual node as soon as it exceeds its contribution. Finally, a
random audit may catch a cheater, but it is unlikely that the perpe-

trator claims the auditor itself as a victim. In other words, random
audits benefit the group as a whole, but cost the auditor directly.
One could argue that this too is a tragedy of the commons, but on
a smaller scale. In contrast, Samsara nodes need to check only that
they themselves are not victims; they receive direct benefit by doing
so.

Finally, the problem of decentralized resource allocation is be-
ginning to receive significant attention. SHARP [13] is a frame-
work for the secure, distributed allocation and consumption of re-
sources. Like Samsara, SHARP assumes no globally certified iden-
tities. However, the mechanisms in SHARP require principals that
exchange resource rights to first authenticate one another off-line to
establish faith in one another’s public keys. Furthermore, resource
exchanges in SHARP may be asymmetric, and potentially rely on
non-local means to detect and punish nodes that advertise and later
withhold services.

7. CONCLUSION
Peer-to-peer storage systems rely on their users to provide coop-

erative storage. Unfortunately users of these systems are likely to
behave selfishly when left to their own devices, storing their own
data in the system without providing storage for others. Prior so-
lutions to this problem require mechanisms that run counter to the
peer-to-peer ideal: a fully decentralized, self-organizing system im-
posing little or no administrative overhead.

Samsara enforces fairness in peer-to-peer storage systems with-
out requiring trusted third parties, symmetric storage relationships,
monetary payment, or certified identities. Samsara nodes accom-
plish this by charging peers storage space—via the claims mecha-
nism—in proportion to their consumption. After an exchange, each
peer checks the other periodically to ensure that both correctly store
the data.

Unresponsive nodes are punished probabilistically. Nodes that
suffer transient failures have only to restore a handful of replicas
from surviving copies in the system. However, dishonest or chron-
ically unavailable nodes will find that they cannot maintain their
data.

The costs of exchange are comparable to current tools for secure
file transfer. Space overhead can be reduced if necessary eliminated
through claims forwarding. Forwarding increases the exposure to
the risk of failure, but such risk is modest under reasonable assump-
tions of utilization and simultaneous, permanent failure.

Acknowledgments
The authors wish to thank Amin Vahdat for his many insightful
observations. We also wish to thank Jason Flinn for suggesting how
to compute claims in Section 3.1. Lastly, we would like to thank
Mark Corner, Jessica Gronsky, Minkyong Kim, James Mickens and
the anonymous reviewers for their helpful comments.

8. REFERENCES
[1] E. Adar and B. A. Huberman. Free riding on Gnutella. First

Monday, 5(10), October 2000.
[2] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken,

J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P.
Wattenhofer. FARSITE: Federated, available, and reliable
storage for an incompletely trusted environment. In
Proceedings of the 5th Symposium on Operating Systems
Design and Implementation, pages 1–14, Boston, MA,
December 2002.

[3] G. Banga, P. Druschel, and J. C. Mogul. Resource
containers: A new facility for resource management in server
systems. In Proceedings of the 3rd Symposium on Operating
Systems Design and Implementation, pages 45–58, New
Orleans, LA, February 1999.

[4] M. Blaze, J. Ioannidis, and A. Keromytis. Offline
micropayments without trusted hardware. In Proceedings of
the Fifth Annual Conference on Financial Cryptography,
pages 21–40, Cayman Islands, BWI, February 2001.

[5] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer.
Feasibility of a serverless distributed file system deployed on
an existing set of desktop PCs. In Proceedings of the
International Conference on Measurement and Modeling of
Computer Systems, pages 34–43, Santa Clara, CA, June
2000.

[6] B. F. Cooper and H. Garcia-Molina. Peer-to-peer resource
trading in a reliable distributed system. In Proceedings of the
First International Workshop on Peer-to-Peer Systems, pages
319–327, Cambridge, MA, March 2002.

[7] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: Making
backup cheap and easy. In Proceedings of the 5th Symposium
on Operating Systems Design and Implementation, pages
285–298, Boston, MA, December 2002.

[8] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
Proceedings of the 18th ACM Symposium on Operating
Systems Principles, pages 202–215, Banff, Canada, October
2001.

[9] W. Diffie and M. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–54,
November 1976.

[10] J. R. Douceur. The Sybil attack. In Proceedings of the First
International Workshop on Peer-to-Peer Systems, pages
251–260, Cambridge, MA, March 2002.

[11] J. R. Douceur and W. J. Bolosky. Progress-based regulation
of low-importance processes. In Proceedings of the 17th
ACM Symposium on Operating Systems Principles, pages
247–260, Kiawah Island Resort, SC, December 1999.

[12] P. Ferguson and H. Berkowitz. Network renumbering
overview: Why would i want it and what is it anyway?
Internet RFC 2071, January 1997.

[13] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat.
SHARP: An architecture for secure resource peering. In
Proceedings of the 19th ACM Symposium on Operating
Systems Principles, Bolton Landing, NY, October 2003.

[14] P. Golle, K. Leyton-Brown, and I. Mironov. Incentives for
sharing in peer-to-peer networks. In Proceedings of the Third
ACM Conference on Electronic Commerce, pages 264–267,
Tampa, FL, October 2001.

[15] G. Hardin. The tragedy of the commons. Science,
162:1243–1248, 1968.

[16] J. Ioannidis, S. Ioannidis, A. D. Keromytis, and
V. Prevelakis. Fileteller: Paying and getting paid for file
storage. In Proceedings of the Sixth Annual Conference on
Financial Cryptography, pages 282–299, Bermuda, March
2002.

[17] A. Juels and J. Brainard. Client puzzles: A cryptographic
countermeasure against connection depletion attacks. In
Proceedings of the Network and Distributed System Security
Symposium, pages 151–165, San Diego, CA, February 1999.

[18] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and
M. Isard. A cooperative Internet backup scheme. In
Proceedings of the USENIX Annual Technical Conference,
pages 29–42, San Antonio, TX, June 2003.

[19] S. Low, F. Paganini, J. Wang, S. Adlakha, and J. Doyle.
Dynamics of TCP/RED and a scalable control. In
Proceedings of IEEE/INFOCOM’02, New York, NY, June
2002.

[20] C. Lumb, J. Schindler, and G. R. Ganger. Freeblock
scheduling outside of disk firmware. In Proceedings of the
USENIX Conference on File and Storage Technologies,
pages 117–129, Monterey, CA, January 2002.

[21] T.-W. J. Ngan, D. S. Wallach, and P. Druschel. Enforcing fair
sharing of peer-to-peer resources. In Proceedings of the
Second International Workshop on Peer-to-Peer Systems,
Berkeley, CA, February 2003.

[22] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems. In IFIP/ACM International Conference on
Distributed Systems Platforms, pages 329–350, Heidelberg,
Germany, November 2001.

[23] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer
storage utility. In Proceedings of the 18th ACM Symposium
on Operating Systems Principles, pages 188–201, Banff,
Canada, October 2001.

[24] S. Saroiu, G. P. Krishna, and S. D. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proceedings of
the SPIE Conference on Multimedia Computing and
Networking, pages 156–170, San Jose, CA, January 2002.

[25] M. Satyanarayanan. RPC2 User Guide and Reference
Manual. School of Computer Science, Carnegie Mellon
University, October 1991.

[26] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for Internet applications. In Proceedings of the ACM
SIGCOMM 2001 Conference, pages 149–160, San Diego,
CA, August 2001.

[27] T. Ylonen. SSH—Secure login connections over the Internet.
In Proceedings of the 6th USENIX Security Symposium,
pages 37–42, San Jose, CA, July 1996.

