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Abstract

Current peer-to-peer lookup algorithms have been de-
signed with the assumption that routing information at
each member node must be kept small, so that the
bookkeeping required to respond to system membership
changes is also small. In this paper, we show that this
assumption is unnecessary, and present a technique that
maintains complete routing tables at each node. The
technique is able to handle frequent membership changes
and scales to large systems having more than a million
nodes. The resulting peer-to-peer system is robust and
can route lookup queries in just one hop, thus enabling
applications that cannot tolerate the delay of multi-hop
routing.

1 Introduction

Structured peer-to-peer overlay networks like CAN [6],
Chord [10], Pastry [8], and Tapestry [11] provide a sub-
strate for building large-scale distributed applications.
These overlays allow applications to locate objects stored
in the system in a limited number of overlay hops.

Peer-to-peer lookup algorithms strive to maintain a
small amount of per-node routing state — typically
O(log N) — because they expect that system membership
changes frequently. This expectation has been confirmed
for successfully deployed systems. A recent study [9]
shows that the average session time in Gnutella is only
2.9 hours. This is equivalent to saying that in a sys-
tem with 100, 000 nodes, there are about 19 membership
change events per second.

Maintaining small tables helps keep the amount of
bookkeeping required to deal with membership changes
small. However, there is a price to pay for having only
a small amount of routing state per node: lookups have
high latency since each lookup requires contacting sev-
eral nodes in sequence.

This paper questions the need to keep routing state
small. We take the position that maintaining full routing
state (i.e., a complete description of system membership)
is viable. We present techniques that show that nodes can
maintain this information accurately, yet the communica-
tion costs are low. The results imply that a peer-to-peer
system can route very efficiently even though the system
is large and membership is changing rapidly.

We present a novel peer-to-peer lookup system that
maintains complete membership information at each
node, and show analytic results that prove that the sys-
tem meets our goals of reasonable accuracy and band-
width usage. It is, of course, easy to achieve these goals
for small systems. Our algorithm is designed to scale to
large systems, e.g., systems with more than 10 nodes.

The rest of the paper is organized as follows: Section 2
describes the organization of our routing subsystem and
Section 3 provides an analysis that shows that the over-
all cost of maintaining complete routing information is
small. Section 4 discusses related work. We conclude
with a discussion of what we have accomplished.

2 System Design

We consider a system of n nodes, where n is a large num-
ber like 10° or 10%. We assume dynamic membership
behavior as in Gnutella, which is representative of an
open Internet environment. From the study of Gnutella
and Napster [9], we deduce that systems of 10° and
10° nodes would show around 20 and 200 membership
changes per second, respectively. We call this rate . We
refer to membership changes as events in the rest of the
paper.

Every node in the overlay is assigned a random 128-
bit node identifier. Identifiers are ordered in an identifier
ring modulo 228, We assume that identifiers are gener-
ated such that the resulting set is uniformly distributed
in the identifier space, for example, by setting a node’s
identifier to be the cryptographic hash of its network ad-
dress. Every node has a predecessor and a successor in
the identifier ring, and it periodically sends keep-alive
messages to these nodes. Similarly, we associate a suc-
cessor node with every 128-bit key key; this is the first
node in the identifier ring clockwise from key. This
mapping from keys to nodes is based on the one used in
Chord [10], but changing our system to use other map-
pings is straightforward.

Clients issue queries that try to reach the successor
node of a particular identifier. We intend our system to
satisfy a large fraction, f, of the queries correctly on the
first attempt. Our goal is to support high values of f, e.g.,
f = 0.99. A query may fail in its first attempt due to a
membership change, if the notification of the change has
not reached the querying node. In such a case, the query



can still be rerouted and succeed in a higher number of
hops. Nevertheless, we define failed queries as those that
are not answered correctly in the first attempt, as our ob-
jective is a one hop lookup.

To achieve this goal, every node in the system must
keep a full routing table containing information about ev-
ery node in the overlay. The actual value of f depends
on the accuracy of this information.

2.1 Membership Changes

To maintain correct full routing tables, a notification of
membership change events, i.e., joins and leaves, must
reach every node in the system within a specified amount
of time (depending on what fraction of failed queries,
i.e., f, is deemed acceptable). Our goal is to do this in
a way that has reasonable bandwidth consumption (since
this is likely to be the scarcest resource in the system)
without increasing notification delay.

We achieve this goal by superimposing a well-defined
hierarchy on the system. This hierarchy is used to form
dissemination trees, which are used to propagate event
information.

We impose this hierarchy on a system with dynamic
membership by dividing the 128-bit circular identifier
space into k equal contiguous intervals called slices. The
sth slice contains all nodes currently in the overlay whose
node identifiers lie in the range [i-2128 /K, (i+1)-2128 /k).
Since nodes have uniformly distributed random identi-
fiers, these slices will have about the same number of
nodes at any time. Each slice has a slice leader, which
is chosen dynamically as the node that is the successor
of the mid-point of the slice identifier space. For exam-
ple, the slice leader of the ith slice is the successor node
of the key (i + 1/2) - 2128 /k. When a new node joins
the system it learns about the slice leader from one of its
neighbors along with other information like the data it is
responsible for and its routing table.

Similarly, each slice is divided into equal-sized inter-
vals called units. Each unit has a unit leader, which is
dynamically chosen as the successor of the mid-point of
the unit identifier space.

Figure 1 depicts how information flows in the sys-
tem. Whenever a node (labeled X in Figure 1) detects
a change in membership (its successor failed or it has a
new successor), it sends an event notification message to
its slice leader (1). The slice leader collects all event no-
tifications it receives from its own slice and aggregates
them for ¢,,;, seconds before sending a message to other
slice leaders (2). To spread out bandwidth utilization,
communication with different slice leaders is not syn-
chronized, the slice leader ensures only that it commu-
nicates with each individual slice leader once every ty;,
seconds. Therefore, messages to different slice leaders
are sent at different points in time and contain differ-
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Figure 1: Flow of event notifications in the system

ent sets of events. The slice leaders aggregate messages
they receive for a short time period ¢,,,;; and then dis-
patch the aggregate message to all unit leaders of their
respective slices (3). A unit leader piggybacks this in-
formation on its keep-alive messages to its successor and
predecessor (4). Other nodes propagate this information
in one direction: if they receive information from their
predecessors, they send it to their successors and vice
versa. This information is piggy-backed on keep-alive
messages. In this way, all nodes in the system receive
notification of all events. Nodes at unit boundaries do
not send information to their neighboring nodes outside
their unit. This ensures that there is no redundancy in the
communications: a node will get information only from
its neighbor that is one step closer to its unit leader. This
implies that within a unit, information is always flowing
from the unit leader to the ends of the unit.

The choice of the number of levels in the hierarchy
involves a tradeoff. A large number of levels implies a
larger delay in propagating the information, whereas a
small number of levels generates a large load at the nodes
in the upper levels. We chose a three level hierarchy be-
cause it leads to reasonable bandwidth consumption, as
we will show in Section 3.

We get several benefits from choosing this design.
First, it imposes a structure on the system, with well-
defined event dissemination trees. This structure helps
us ensure that there is no redundancy in communications,
which leads to efficient bandwidth usage.

Second, aggregation of several events into one mes-
sage allows us to avoid small messages. Small messages
represent a problem since the protocol overhead becomes
significant relative to the message size, leading to higher
bandwidth usage.



2.2 Fault Tolerance

If a query fails on its first attempt it does not return an
error to an application. Instead, queries can be rerouted:
if a lookup query from node n; to node n,, fails because
ng IS no longer in the system, ny can retry the query by
sending it to ny’s successor. If the query failed because a
recently joined node, ns, is the new successor for the key
that n is looking up, then ns can reply with the identity
of ng (if it knows about n3), and n; can contact it in a
second routing step.

Since our scheme is dependent on the correct function-
ing of unit leaders and slice leaders, we need to recover
from their failure. Note that since there are relatively
few slice and unit leaders, their failures are less frequent.
Therefore, we do not have to be very aggressive about
replacing them in order to maintain our query success
target. When a slice or unit leader fails, its successor
soon detects the failure and becomes the new leader. The
successor of a failed unit leader will communicate with
its slice leader to obtain recent information. The suc-
cessor of a failed slice leader will communicate with its
unit leaders and other slice leaders to recover information
about the missed events.

2.3 Scalability

Slice leaders have more work to do than other nodes, and
this might be a problem for a poorly provisioned node
with a low bandwidth connection to the Internet. To over-
come this problem we can identify well connected and
well provisioned nodes as “supernodes” on entry into the
system. There can be a parallel ring of supernodes, and
the successor (in the supernode ring) of the midpoint of
the slice identifier space becomes the slice leader. We do
require a sufficient number of supernodes so that we can
expect that there are at least a few per slice.

As we will show in Section 3, bandwidth requirements
are small enough to make most participants in the system
potential supernodes in a 10° sized system (slice lead-
ers will require 35 kbps upstream bandwidth). In a mil-
lion node system we may require supernodes to be well-
connected academic or corporate users (the bandwidth
requirements increase to 350 kbps).

3 Analysis and Choice of System Parame-
ters

This section presents an analysis of how to parameter-
ize the system to satisfy our goal of fast propagation.
To achieve our desired success rate, we will need to
propagate information about events within some time pe-
riod ¢;.¢; we show how to compute this quantity in Sec-
tion 3.1. Yet we also require good performance, espe-
cially with respect to bandwidth utilization. Sections 3.2
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Figure 2: Timeline of the worst case situation

and 3.3 show how we satisfy this requirement by control-
ling the number of slices and units.

Our analysis considers only non-failure situations. It
does not take into account overheads of slice and unit
leader failure because these events are rare. It also ig-
nores message loss and delay since this simplifies the
presentation, and the overhead introduced by message
delays and retransmissions is small compared to other
time constants in the system.

Our analysis assumes that query targets are distributed
uniformly throughout the ring. It is based on a worst case
pattern of events, queries, and notifications: we assume
all events happen just after the last slice-leader notifica-
tions, and all queries happen immediately after that, so
that none of the affected routing table entries has been
corrected and all queries targeted at those nodes (i.e.,
the nodes causing the events) fail. In a real deployment,
queries would be interleaved with events and notifica-
tions, so fewer of them would fail.

This scenario is illustrated by the timeline in Figure 2.
Here t,,q4 1S the frequency with which slice leaders com-
municate with their unit leaders, ¢,,,,4:; 1S the time it takes
to propagate information throughout a unit, and t;, is
the time a slice leader waits between communications to
some other slice leader. Within t,,qi; + tsmau Seconds
(point 3), slices in which the events occurred all have cor-
rect entries for nodes affected by the respective events.
After ¢,;, seconds of the events (point 4), slice leaders
notify other slice leaders. Within a further t.,qi; + tsmau
seconds (point 6), all nodes in the system receive notifi-
cation about all events.

ThUS, ttot - tdetact+twait+tsmall+tbig- The quantity
taetect represents the delay between the time an event
occurs and when the leader of that slice first learns about
it.

3.1 Configuration Parameters

The following parameters characterize a system deploy-
ment:

1. fisthe acceptable fraction of queries that fail in the
first routing attempt

2. n is the expected number of nodes in the system



3. ris the expected rate of membership changes in the
system

Given these parameters, we can compute t;.;. Our
assumption that query targets are distributed uniformly
around the ring implies that the fraction of failed queries
is proportional to the expected number of incorrect en-
tries in a querying node’s routing table. Given our worst
case assumption, all the entries concerning events that
occurred in the last ¢;,; seconds are incorrect and there-
fore the fraction of failed queries is Lfl“’t Therefore, to
ensure that no more than a fraction f of queries fail we

need:
fxn

Lot <

For a system with 10° nodes, with a rate of 200
events/s, and f = 1%, we get a time interval as large
as 50s to propagate all information. Note also that if 7 is
linearly proportional to n, then ¢,,, is independent of n.
It is only a function of the desired success rate.

3.2 Slices and Units

Our system performance depends on the number of slices
and units:

1. k is the number of slices the ring is divided into.
2. w is the number of units in a slice.

Parameters k and « determine the expected unit size.
This in turn determines ¢,,,4, the time it takes for in-
formation to propagate from a unit leader to all mem-
bers of a unit, given an assumption about A, the fre-
quency of keep-alive probes. From t,,.; we can de-
termine t5;, from our calculated value for t;,, given
choices of values for ¢4 and tgeiece- (Recall that
tiot = tdetect + tbig + twait + tsmall-)

To simplify the analysis we will choose values for
h, taeteet, and tyei. AS a result our analysis will be
concerned with just two independent variables, & and u,
given a particular choice of values for n, r, and f. We
will use one second for both & and ¢,,4;:. This is a rea-
sonable decision since the amount of data being sent in
probes and messages to unit leaders is large enough to
make the overhead in these messages small (e.g., infor-
mation about 20 events will be sent in a system with 10°
nodes). Note that with this choice of A, ¢4 Will be
half the unit size. We will use three seconds for ¢ ciect
to account for the delay in detecting a missed keep-alive
message and a few probes to confirm the event.

3.3 Cost Analysis

Our goal is to choose values for k& and « in a way that
reduces bandwidth utilization. In particular we are con-
cerned with minimizing bandwidth use at the slice lead-
ers, since they have the most work to do in our approach.

Bandwidth is consumed both to propagate the actual
data, and because of the message overhead. m bytes will
be required to describe an event, and the overhead per
message will be v.

There are four types of communication in our system.

1. Keep-alive messages: Keep-alive messages form

the base level communication between a node and
its predecessor and successor. These messages in-
clude information about recent events. As described
in Section 2, our system avoids sending redundant
information in these messages by controlling the di-
rection of information flow (from unit leader to unit
members) and by not sending information across
unit boundaries.

Since keep-alive messages are sent every second,
every node that is not on the edge of a unit will send
and acknowledge an aggregate message containing,
on average, r events. The size of this message is
therefore r - m + v and the size of the acknowledge-
ment is v.

2. Event notification to slice leaders: Whenever a
node detects an event, it sends a notification to its
slice leader. The expected number of events per sec-
ond in aslice is 7. The downstream bandwidth uti-
lization on slice leaders is therefore %k*”) Since
each message must be acknowledged, the upstream
utilization is 2.

3. Messages exchanged between slice leaders: Each
message sent from one slice leader to another
batches together events that occurred in the last ¢,
seconds in the slice. The typical message size is,
therefore, £ - tyiy - m + v bytes. During any ¢y,
period, a slice leader sends this message to all other
slice leaders (k — 1 of them), and receives an ac-
knowledgement from each of them. Since each slice
leader receives as much as it gets on average, the
upstream and downstream use of bandwidth is sym-
metric. Therefore, the bandwidth utilization (both
upstream and downstream) is

r-m 2-v
+ (k=1
( k tbig ) ( )

4. Messages from slice leaders to unit leaders: Mes-
sages received by a slice leader are batched for one
second and then forwarded to unit leaders. In one
second, r events happen and therefore the aggregate

message size is (r - m + v) and the bandwidth uti-
lization is

(r-m+v)-u

Table 1 summarizes the net bandwidth use on each
node. To clarify the presentation, we have removed in-
significant terms from the expressions.
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Figure 3: Bandwidth use on a slice leader with r oc n.

Upstream Downstream
Slice Leader | r-m - (u+2) + 2% | r-m+ 528
UnitLeader | 2-7r-m+3-v r-m+2-v
Othernodes | r-m +2- v r-m+2-v

Table 1: Summary of bandwidth use

Using these formulas we can compute the load on non-
slice leaders in a particular configuration. In this compu-
tations we use m = 20 bytes and v = 40 bytes. In a sys-
tem with 10 nodes, we see that the load on an ordinary
node is 3.84 kbps and the load on a unit leader is 7.36
kbps upstream and 3.84 kbps downstream. For a system
with 106 nodes, these numbers become 38.4 kbps, 73.6
kbps, and 38.4 kbps respectively.

From the table it is clear that the upstream bandwidth
required for a slice leader is likely to be the dominating
and limiting term. Therefore, we shall choose parameters
that minimize this bandwidth. By simplifying the expres-
sion and using the interrelationship between « and t;4
(explained in Section 3.2) we get a function that depends
on two independent variables & and . By analyzing the
function, we deduce that the minimum is achieved for the
following values:

r-m-n

k =
4-v

4-v-n

\/7’ “m - (tiot — twait — detect)?

These formulas allow us to compute values for k& and
u. For example in a system of 10° nodes we want
roughly 500 slices each containing 5 units. In a system of
105 nodes, we still have 5 units per slice, but now there
are 5000 slices.

Given values for k£ and u we can compute the unit size

% overhead
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Figure 4. Aggregate bandwidth overhead of the scheme as a
percentage of the theoretical optimum

and this in turn allows us to compute ¢ ,qu and ty;. We
find that we use least bandwidth when

tsmall = tbig

Thus, we choose 23 seconds for ¢;,;, and 23 seconds for
tsmall-

Given these values and the formulas given in Table 1,
we can plot the bandwidth usage per slice leader in sys-
tems of various sizes. The results of this calculation are
shown in Figure 3. Note that the load increases only lin-
early with the size of the system. The load is quite mod-
est in a system with 10° nodes (35 kbps upstream band-
width), and therefore even nodes behind cable modems
can act as slice leaders in such a system. In a system
with 10° nodes the upstream bandwidth required at a
slice leader is approximately 350 kbps. Here it would
be more appropriate to limit slice leaders to being ma-
chines on reasonably provisioned local area networks.
For larger networks, the bandwidth increases to a point
where a slice leader would need to be a well-provisioned
node.

Figure 4 shows the percentage overhead of this scheme
in terms of aggregate bandwidth used in the system with
respect to the hypothetical optimum scheme with zero
overhead. In such a scheme scheme, the cost is just the
total bandwidth used in sending » events to every node
in the system every second, i.e., r - n - m. Note that the
overhead in our system comes from the per-message pro-
tocol overhead. The scheme itself does not propagate any
redundant information. We note that the overhead is ap-
proximately 20% for a 10° sized system and goes down
to 2% for 10° sized system. This result is reasonable be-
cause messages get larger and the overhead becomes less
significant as system size increases.



4 Related Work

Rodrigues et al. [7] proposed a single hop distributed
hash table but they assumed a much smaller peer dynam-
ics, like that in a corporate environment, and therefore
did not have to deal with the difficulties of rapidly han-
dling a large number of membership changes with effi-
cient bandwidth usage. Douceur et al. [2] present a sys-
tem that routes in a constant number of hops, but that
design assumes smaller peer dynamics and searches can
be lossy.

Kelips [3] uses +/n sized tables per node and a gossip
mechanism to propagate event notifications to provide
constant time lookups. Their lookups, however, are con-
stant time only when the routing table entries are reason-
ably accurate. As seen before, these systems are highly
dynamic and the accuracy of the tables depends on how
long it takes for the system to converge after an event.
The expected convergence time for an event in Kelips is
O(y/n x log®(n)). While this will be tens of seconds for
small systems of around a 1000 nodes, for systems hav-
ing 10° to 10° nodes, it takes over an hour for an event
to be propagated through the system. At this rate, a large
fraction of the routing entries in each table are likely to
be stale, and a correspondingly large fraction of queries
would fail on their first attempt.

Mahajan et al. [5] also derive analytic models for the
cost of maintaining reliability in the Pastry [8] peer-to-
peer routing algorithm in a dynamic setting. This work
differs substantially from ours in that the nature of the
routing algorithms is quite different — Pastry uses only
O(log N) state but requires O(log N) hops per lookup —
and they focus their work on techniques to reduce their
(already low) maintenance cost.

Liben-Nowell et al. [4] provide a lower-bound on the
cost of maintaining routing information in peer-to-peer
networks that try to maintain topological structure. We
are designing a system that requires significantly larger
bandwidth than in the lower bound because we aim to
achieve a much lower lookup latency.

5 Conclusion

This paper shows that maintaining only a small amount
of routing state at each node is not necessary in a dy-
namic peer-to-peer system. We present a design for a
system that maintains complete membership information
with reasonable bandwidth requirements.

Currently deployed and proposed systems vary greatly
in size and membership behavior. Corporate and aca-
demic environments have far fewer configuration events;
e.g., half of 64,610 machines probed in a software com-
pany are up over 95% of the time [1]. If we design our
system to deal with these relatively stable environments,
we will have much lower bandwidth requirements.

For systems of size much greater than a million nodes,
routing tables become large and it may not be desirable to
keep them completely in primary memory. In such a de-
ployment scenario, we may want to use a two-hop rout-
ing scheme instead: The querying node contacts a node
in the slice containing the target node. That node then
redirects the query to the target node. In such a scheme,
the querying node needs to be aware of only a few nodes
of other slices, leading to smaller routing tables. It is not
difficult to adapt our approach to such a scheme, with
large savings in bandwidth because very little inter-slice
information needs to be propagated.

Currently peer-to-peer storage systems have high
lookup latency and are therefore only well-suited for
applications that do not mind high-latency store and
retrieve operations (e.g., backups) or that store and
retrieve massive amounts of data (e.g., a source tree
distribution). Moving to more efficient routing removes
this constraint. This way we can enable a much larger
class of applications for peer-to-peer systems.
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