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Abstract

The current domain name system (DNS) couples own-
ership of domains with the responsibility of serving data
for them. The DNS security extensions (DNSSEC) allow
verificaton of records obtained by alternate means, open-
ing exploration of alternative storage systems for DNS
records. We explore one such alternative using DHash, a
peer-to-peer distributed hash table built on top of Chord.
Our system inherits Chord’s fault-tolerance and load bal-
ance properties, at the same time eliminating many ad-
ministrative problems with the current DNS. Still, our
system has significantly higher latencies and other disad-
vantages in comparison with conventional DNS. We use
this comparison to draw conclusions about general issues
that still need to be addressed in peer-to-peer systems and
distributed hash tables in particular.

1 Introduction and Related Work

In the beginnings of the Internet, host names were kept
in a centrally-administered text file, hosts.txt, main-
tained at the SRI Network Information Center. By the
early 1980s the host database had become too large to
disseminate in a cost-effective manner. In response,
Mockapetris and others began the design and implemen-
tation of a distributed database that we now know as the
Internet domain name system (DNS) [8, 9].

Looking back at DNS in 1988, Mockapetris and Dun-
lap [9] listed what they believed to be the surprises,
successes, and shortcomings of the system. Of the six
successes, three (variable depth hierarchy, organizational
structure of names, and mail address cooperation) relate
directly to the adoption of an administrative hierarchy for
the names. The administrative hierarchy of DNS is re-
flected in the structure of DNS servers: in typical usage,
an entity is responsible not only for maintaining name
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information about its hosts but also for the serving that
information.

The fact that service structure mirrored administra-
tive hierarchy provided a modicum of authentication for
the returned data. Unfortunately, IP addresses can be
forged and thus it is possible for malicious people to im-
personate DNS servers. In response to concerns about
this and other attacks, the DNS Security Extensions [5]
(DNSSEC) were developed in the late 1990s. DNSSEC
provides a stronger mechanism for clients to verify that
the records they retrieve are authentic.

DNSSEC effectively separates the authentication of
data from the service of that data. This observation en-
ables the exploration of alternate service structures to
achieve desirable properties not possible with conven-
tional DNS. In this paper, we explore one alternate ser-
vice structure based on Chord [10], a peer-to-peer lookup
service.

Rethinking the service structure allows us to address
some of the current shortcomings in the current DNS.
The most obvious one is that it requires significant exper-
tise to administer. In their book on running DNS servers
using BIND, Albitz and Liu [1] note that many of the
most common name server problems are configuration
errors. Name servers are difficult and time-consuming
to administer; ordinary people typically rely on ISPs to
serve their name data. Our approach solves this problem
by separating service from authority — clients can enter
their data into the Internet-wide Chord storage ring and
not worry about needing an ISP to be online and to have
properly configured its name server.

DNS performance studies have confirmed this folk-
lore. In 1992, Danzig et al. [4] found that most DNS
traffic was caused by misconfiguration and faulty imple-
mentation of the name servers. They also found that one
third of the DNS traffic that traversed the NSFNet was
directed to one of the seven root name servers. In 2000,
Jung et al. [6] found that approximately 35% of DNS
queries never receive an answer or receive a negative an-
swer, and attributed many of these failures to improperly
configured name servers or incorrect name server (NS)



records. The study also reported that as much as 18% of
DNS traffic is destined for the root servers.

Serving DNS data over Chord eliminates the need to
have every system administrator be an expert in running
name servers. It provides better load balance, since the
concept of root server is eliminated completely. Finally,
it provides robustness against denial-of-service attacks
since disabling even a sizable number of hosts in the
Chord network will not prevent data from being served.

2 Design and Implementation

We have implemented a prototype of our system, which
we call DDNS.

Our system handles lookups at the granularity of re-
source record sets (RRSets), as in conventional DNS.
An RRSet is a list of all the records matching a given
domain name and resource type. For example, at
the time of writing, www.nytimes.com has three ad-
dress (A) records: 208.48.26.245, 64.94.185.200, and
208.48.26.200. These three answers compose the RRSet
for (www.nytimes.com, A).

DNSSEC uses public key cryptography to sign re-
source record sets. When we retrieve an RRSet from
an arbitrary server, we need to verify the signature (in-
cluded as a signature (SIG) record). To find the public
key that should have signed the RRSet, we need to ex-
ecute another DNS lookup, this time for a public key
(KEY) RRSet. This RRSet is in turn signed with the
public key for the enclosing domain. For example, the
(www.nytimes.com, A) RRSet should be signed with a
key listed in the (www.nytimes.com, KEY) RRSet. The
latter RRSet should be signed with a key listed in the
(nytimes.com, KEY) RRSet, and so on to the hierarchy
root, which has a well-known public key.

DDNS stores and retrieves resource record sets using
DHash [3], a Chord-based distributed hash table. DHash
has two properties useful for this discussion: load bal-
ance and robustness.

DHash uses consistent hashing to allocate keys to
nodes evenly. Further, as each block is retrieved, it is
cached along the lookup path. If a particular record is
looked up n times in succession starting at random loca-
tions in a Chord ring of m nodes, then with high prob-
ability each server transfers a given record only log m
times total before every server has the record cached.

DHash is also robust: as servers come and go, DHash
automatically moves data so that it is always stored on
a fixed number of replicas (typically six). Because the
replicas that store a block are chosen in a pseudo-random

fashion, a very large number of servers must fail simul-
taneously before data loss occurs.

To create or update a DDNS RRSet, the owner
prepares the RRSet, signs it, and inserts it into
DHash. The key for the RRSet is the SHA1 hash
of the domain name and the RRSet query type (e.g.,
SHA1(www.nytimes.com, A)). DHash verifies the signa-
ture before accepting the data. When a client retrieves
the RRSet, it also checks the signature before using the
data.

Naively verifying a DNS RRSet for a name with n path
elements requires n KEY lookups. We address this prob-
lem by allowing the owner to present additional relevant
KEYs in the RRSet. To avoid inflating the responses, we
can omit KEY RRSets for popular names. For example,
the record containing the (www.nytimes.com, A) RRSet
might also include the (www.nytimes.com, KEY) RRSet
and the (nytimes.com, KEY) RRSet but omit the (.com,
KEY) RRSet on the assumption that it would be widely
cached. The key for the root of the hierarchy is assumed
to be known by all DDNS servers, just as the IP addresses
of the root servers are known in the current DNS.

To ease transition from conventional DNS to our sys-
tem, a simple loopback server listening on 127.1 could
accept conventional DNS queries, perform the appropri-
ate Chord lookup, and then send a conventional response.
Then systems could simply be configured to point at
127.1 as their name server.

3 Evaluation

To evaluate the use of Chord to serve DNS data, we used
data from the study by Jung et al. on a simulated net-
work with 1000 DDNS nodes. For the test, we turned
off replication of records. We did not simulate node fail-
ures, so the only effect of replication would be to serve
as a priori caching. Since the network is a fair amount
smaller than the expected size of a real Chord ring, repli-
cation would bias the results in our favor because of the
increased caching.

We first inserted answers to all the successful queries
into the Chord network and then ran a day’s worth of suc-
cessful queries (approximately 260,000 queries), mea-
suring storage balance, load balance while answering
queries, and the number of RPCs required to perform
each lookup. The distribution of names in the day’s
queries is heavy tailed.

To simulate failed DNS queries, we started a sim-
ilar network, did not insert any data, and executed
a day’s worth of unresolved queries (approximately
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220,000 queries), measuring load balance and RPC
counts. These queries were distributed similarly to the
successful queries.

Finally, to simulate popular entries, we ran what we
called the “slashdot test,” inserting one record and then
fetching it a hundred thousand times.

All three tests began each lookup at a random node in
the Chord network.
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Figure 1: Storage balance for 120,000 records. The graph
shows a cumulative distribution for the number of records
stored on each node. Perfect balance would place the same
number of records on each node, making the cumulative dis-
tribution a vertical line around 120.

For the successful queries test, we inserted approx-
imately 120,000 records to serve as answers to the
260,000 queries. Figure 1 shows that the median num-
ber of records stored per node is about 120, as expected.
The distribution is exponential in both directions because
Chord nodes are randomly placed on a circle and store
data in proportion to the distance to their next neighbor
clockwise around the circle. Irregularities in the random
placement cause some nodes to store more data than oth-
ers. The two nodes that stored in excess of 800 records
(824 and 827) were both responsible for approximately
0.8% of the circle, as compared with an expected respon-
sibility of 0.1%. Even so, this irregularity drops off ex-
ponentially in both directions, and can be partially ad-
dressed by having servers run multiple nodes in propor-
tion to their storage capacities. We conclude that DDNS
does an adequate job of balancing storage among the
peers.

Even though storage is balanced well, some records
are orders of magnitude more popular than others. Since
records are distributed randomly, we need to make sure
that nodes that happen to be responsible for popu-
lar records are not required to serve a disproportion-
ate amount of RPCs. DHash’s block caching helped
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Figure 2: Load balance. The graph shows a cumulative distri-
bution for the number of RPCs served per lookup by each node
during the test. Since there are a thousand nodes, ideal behav-
ior would be involving each node in n/1000 RPCs, where n

is the median number of RPCs executed per lookup (see Fig-
ure 3).

provide load balance as measured by RPCs served per
lookup per node. As shown in Figure 2, in the success-
ful query test, nodes served RPCs in approximate pro-
portion to the number of records they stored. Specifi-
cally, each node serves each of its popular blocks about
ten (log2 1000) times; after that, the block is cached at
enough other nodes that queries will find a cached copy
instead of reaching the responsible server. A similar ar-
gument shows that very quickly every node has a copy
of incredibly popular blocks, as evidenced by the Slash-
dot test: after the first few thousand requests, virtually
every node in the system has the record cached, so that
subsequent requests never leave the originating node.

For the unsuccessful query test, nodes served RPCs
in proportion to the number of queries that expected the
desired record to reside on that node. This does a worse
job of load balancing since there is no negative caching.

The graphs shows that the loads are similar for both
successful and unsuccessful queries, unlike in the current
DNS, where unresponsive queries might result in spuri-
ous retransmissions of requests.

Figure 3 shows the number of RPCs required by a
client for various lookups. Successful queries and un-
successful queries have the same approximately random
distribution of hop counts, except that successful queries
usually end earlier due to finding a cached copy of the
block. Since the slashdot record got cached everywhere
very quickly, virtually all lookups never left the request-
ing node.

We would like to be able to compare the latency for
DNS over Chord with the latency for conventional DNS.
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Figure 3: Client load to perform lookups.
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Figure 4: Lookup latency distribution for successful one-
server queries over conventional DNS in the Jung. et al. data.
Of the 260,000 successful lookups, approximately 220,000
only queried one server.

This is made difficult by the fact that we do not have
an Internet-wide Chord ring serving DNS records. To
compensate, we took the latency distribution measured in
the Jung. et al. study and used it to compute the expected
latencies of DNS over Chord in a similar environment.

Figure 4 shows the distribution of latency for success-
ful lookups in the Jung. et al. one-day DNS trace. Be-
cause we don’t have individual latencies for requests that
contacted multiple servers, only requests completed in
one round trip are plotted. The tail of the graph goes out
all the way to sixty seconds; such slow servers would not
be used in the Chord network, since timeouts would iden-
tify them as having gone off the network. Since such a
small fraction of nodes have such long timeouts, we cut
the largest 2.5% of latencies from the traces in order to
use them for our calculations. To be fair, we also cut the
smallest 2.5% of the latencies from the traces, leaving the
middle 95%.

Figure 5 shows the correlation between hops per
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Figure 5: Hops per lookup in the simulation of the Jung. et
al. traces over Chord.

lookup and expected latency. For each hop count h,
we randomly selected and summed h latencies from the
Jung. et al. distribution. Each point in the graph is the av-
erage of 1000 random sums; the bars show the standard
deviations in each direction.
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Figure 6: Imaginary latency to perform DNS lookups over
Chord, assuming the latency distribution from the Jung. et al.
trace plotted in Figure 4

Figure 6 displays the expected latency in another way.
Here, for each query with hop count h, we chose a ran-
dom latency (the sum of h random latencies from the
Jung. et al. distribution) and used that as the query la-
tency. The cumulative distribution of these query laten-
cies is plotted.

These experiments show that lookups in DDNS take
longer than lookups in conventional DNS: our median re-
sponse time is 350ms while conventional DNS’s is about
43ms. We have increased the median in favor of remov-
ing the large tail: lookups taking 60s simply cannot hap-
pen in our system.
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4 Why (not) Cooperative DNS?

Serving DNS data using peer-to-peer systems frees the
domain owners from having to configure or administer
name servers. Anyone who wants to publish a domain
only needs the higher-level domain to sign her public
key. DDNS takes care of storing, serving, replicating,
and caching of her DNS records. Below, we discuss var-
ious issues in the current DNS, and the extent to which
DDNS solves them.

4.1 DNS Administration

In their 1988 retrospective [9], Mockapetris and Dunlap
listed “distribution of control vs. distribution of exper-
tise or responsibility” as one of the shortcomings of their
system, lamenting:

Distributing authority for a database does not dis-
tribute corresponding amounts of expertise. Main-
tainers fix things until they work, rather than until
they work well, and want to use, not understand,
the systems they are provided. Systems design-
ers should anticipate this, and try to compensate by
technical means.

To justify their point, they cited three failures: they did
not require proof that administrators had set up truly re-
dundant name servers without a single point of failure;
in the documentation, they used hour-long TTLs in the
examples but suggested day-long TTLs in the text, with
the result that everyone used hour-long TTLs; debugging
was made difficult by not requiring servers to identify
their server version and type in an automated way. DDNS
eliminates much of the need for expertise by automati-
cally providing a routing infrastructure for finding name
information, automatically avoiding single points of fail-
ure.

In their handbook for the Berkeley DNS server, BIND,
Albitz and Liu [1] listed what they believed to be thir-
teen of the most common problems in configuring a name
server. Our system addresses six of them.

Slave server cannot load zone data. DDNS solves this
by automatically handling replication via the DHash pro-
tocol. There are no slave servers.

Loss of network connectivity. DDNS is robust against
server failure or disconnection. Unfortunately, it suffers
from network partitions. For example, if a backhoe cuts
MIT from the rest of the Internet, even though hosts on
the Internet will not see a disruption in any part of the
name space (not even MIT’s names), hosts at MIT may

not even be able to look up their own names! This prob-
lem is not new, since a client machine with no knowl-
edge of MIT will require access to the root name servers
to get started. Both systems partially avoid this problem
with caching: popular DNS data about local machines is
likely to be cached and thus available even after the parti-
tion. DDNS actually works better in this situation, since
the remaining nodes will form a smaller Chord network
and pool their caches. If proximity routing is deployed in
Chord, then DDNS can use that make some probabilistic
guarantee that each record for a domain name gets stored
on at least one node close to the record owner.

Missing subdomain delegation. In conventional DNS,
a domain is not usable until its parent has created the
appropriate NS and glue records and propagated them.
DDNS partially eliminates this problem, since there are
no NS records. In their place, the domain’s parent would
have to sign the domain’s public key RRSet. At the least,
this eliminates the propagation delay: once the parent
signs a domain’s public key, it is up to the domain’s ad-
ministrator to publish it.

Incorrect subdomain delegation. In conventional
DNS, if the parent is not notified when name servers or
IP addresses of a domain change, clients will eventually
not be able to find the domain’s name servers. The ana-
logue in DDNS would be a domain changing its public
key but forgetting to get its parent to sign the new key.
Without getting the signature, though, inserts of records
signed with the new key would fail. This would alert the
administrator to the problem immediately. (In conven-
tional DNS, the problem can go undetected since the lo-
cal name server does not check to see whether the parent
domain correctly points at it.)

On a similar note, Jung et al. [6] reported 23% of
DNS lookups failed to elicit any response, partially due
to loops in name server resolution. 13% of lookups result
in a negative response, many of which are caused by NS
records that point to non-existent or inappropriate hosts.

Conventional DNS requires that domain owners man-
age two types of information: data about hosts (e.g., A
records) and data about name service routing (e.g., NS
records). The latter requires close coordination among
servers in order to maintain consistency; in practice this
coordination often does not happen, resulting in broken
name service. DDNS completely eliminates the need to
maintain name service routing data: routing information
is automatically maintained and updated by Chord with-
out any human intervention.

In summary, we believe that using a peer-to-peer sys-
tem for storing DNS records eliminates many common
administrative problems, providing a much simpler way
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to serve DNS information.

4.2 Dynamically generated records

Our system requires that all queries can be antici-
pated in advance and their answers stored. Since the
hosts.txt approach required this property and the
original DNS papers are silent on the topic, it seems
likely that this requirement was never explicitly intended
to be relaxed. However, the conventional DNS did re-
lax the requirement: since domains serve their own data,
all possible queries need not be anticipated in advance as
long as there is some algorithm implemented in the server
for responding to queries. For example, to avoid the
need to publish internal host names, the name server for
cs.bell-labs.com will return a valid mail exchanger (MX)
record for any host name ending in .cs.bell-labs.com,
even those that do not exist.

Additionally, responses can be tailored according to
factors other than the actual query. For example, it is
standard practice to randomly order the results of a query
to provide approximate load balancing [2]. As another
example, content distribution networks like Akamai use
custom DNS responses both for real-time load balancing
and to route clients to nearby servers [7].

The system we have described can provide none of
these capabilities, which depend on the coupling of the
administrative hierarchy and the service structure. If
some features were determined to be particularly desir-
able, they could be implemented by the clients instead of
the servers.

4.3 Denial of Service

DDNS has better fault-tolerance due to denial-of-service
attacks over the current DNS. Because there is no name
server hierarchy, the attacker has to take down a diverse
set of servers before data loss becomes apparent.

Another type of denial of service is caused by a do-
main name owner inserting a large number of DNS
records, using up space in the Chord network. We can
address this problem by enforcing a quota on how much
data each organization can insert depending on how
much storage the organization is contributing to DDNS.

5 Conclusions

Separating DNS record verification from the lookup al-
gorithm allows the exploration of alternate lookup al-
gorithms. We presented DDNS, which uses a peer-to-
peer distributed hash table to serve DNS records. In our

judgement, using DDNS would prove a worse solution
for serving DNS data than the current DNS. We believe
that the lessons we draw from comparing the two have
wider applicability to peer-to-peer systems in general and
distributed hash tables in particular.

DDNS eliminates painful name server administration
and inherits good load balancing and fault tolerance from
the peer-to-peer layer. The self-organizing and adap-
tive nature of peer-to-peer systems is a definite advantage
here, something that conventional manually administered
systems cannot easily provide.

DDNS has much higher latencies than conventional
DNS. The main problem is that peer-to-peer systems typ-
ically require O(logb n) RPCs per lookup. Chord uses
b = 2, requiring 20 RPCs for a million node network.
Systems such as Pastry and Kademlia use b = 16, re-
quiring only 5 RPCs for a million node network. Our
experiments show that using even 5 RPCs results in a
significant increase in latency, and of course the prob-
lem becomes worse as the peer-to-peer network grows.
By contrast, conventional DNS typically needs 2 RPCs;
it achieves its very low latency by putting an enormous
branching factor at the top of the search tree — the root
name servers know about millions of domains. It is easy
to hide this problem in the big-O notation, but if peer-
to-peer systems are to support low-latency applications,
we need to find ways to reduce the number of RPCs per
lookup.

DDNS has all the functionality of a distributed
hosts.txt, but nothing more. Conventional DNS aug-
ments this functionality with a number of important fea-
tures implemented using server-side computation. Dis-
tributed hash tables aren’t sufficient for serving DNS be-
cause they require features to be client-implemented. It
is cumbersome to update all clients every time a new fea-
ture is desired. At the same time, in a peer-to-peer set-
ting, it is cumbersome to update all servers every time
a new feature is desired. This is one case where the
enormous size of peer-to-peer networks is not offset by
the self-organizing behavior of the network. Perhaps we
should be considering “active” peer-to-peer networks, so
that new server functionality can be distributed as neces-
sary.

Finally, DDNS requires people publishing names to
rely on other people’s servers to serve those names. This
is a problem for many peer-to-peer systems: there is no
incentive to run a peer-to-peer server rather than just use
the servers run by others. We need to find models in
which people have incentives to run servers rather than
just take free rides on others’ servers.
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