Mercury: Supporting Scalable
Multi-Attribute Range Queries

Ashwin R. Bharambe Mukesh Agrawal
Srinivasan Seshan

January 2004
CMU-CS-00-0000O

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

This paper presents the design of Mercury, a scalable protocol for supporting multi-attribute range-
based searches. Mercury differs from previous range-based query systems in that it supports mul-
tiple attributes as well as performs explicit load balancing. Efficient routing and load balancing are
implemented using novel light-weight sampling mechanisms for uniformly sampling random nodes
in a highly dynamic overlay network. Our evaluation shows that Mercury is able to achieve its
goals of logarithmic-hop routing and near-uniform load balancing.

We also show that a publish-subscribe system based on the Mercury protocol can be used to con-
struct a distributed object repository providing efficient and scalable object lookups and updates.
By providing applications a range-based query language to express their subscriptions to object
updates, Mercury considerably simplifies distributed state management. Our experience with the
design and implementation of a simple distributed multiplayer game built on top of this object man-
agement framework shows that indicates that this indeed is a useful building block for distributed
applications.
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1 Introduction

Much recent work on building scalable peer-to-peer (P2P) networks has concentrated on Distributed
Hash Tables or DHTSs [23,24,26]. DHTs offer a number of scalability advantages over previous P2P
systems (e.g., Napster, Gnutella, etc.) including load balancing and logarithmic hop routing with
small local state. However, the hash table or “exact match” interface offered by DHTSs, although
fruitfully used by many systems [5-7], is not flexible enough for many applications. For example, it
is unclear how DHT's could be applied to regain the highly desirable flexibility offered by keyword-
based lookups of file-sharing applications.

The main contribution of this paper is the design and evaluation of Mercury, a scalable routing
protocol, for supporting multi-attribute range queries. In our model, each query is a conjunction
of ranges in one or more attributes. The attributes not present in the query are assumed to be
wildcards. We believe range queries significantly enhance search flexibility in a number of scenarios.
In addition to being useful for answering user queries, we find that range-based queries can also be
useful in the construction of many distributed applications. Using a publish-subscribe system based
on Mercury, we show that an application can flexibly and scalably manage updates and queries to
distributed application state. We also present the design and testbed evaluation of a distributed
multiplayer game built using the above framework.

A number of recent systems [11, 12, 16] have proposed distributed protocols which support
range-based queries. Mercury mainly differs from these systems in that it supports multi-attribute
range-based queries and explicit load balancing.

There are two main components of Mercury’s design. First, Mercury handles multi-attribute
queries by creating a routing hub for each attribute in the application schema. FEach routing
hub is a logical collection of nodes in the system. Queries are passed to exactly one of the hubs
corresponding to the attributes that are queried, while a new data item is sent to all hubs for which
it has an associated attribute. This ensures that queries retrieve all relevant data items present in
the system.

Second, for supporting range queries, Mercury organizes each routing hub into a circular overlay
of nodes and places data contiguously on this ring, i.e., each node is responsible for a range of values
for the particular attribute. While the notion of a circular overlay is similar in spirit to most existing
DHT designs, Mercury cannot use randomizing hash functions for placing data. For supporting
range queries, Mercury requires that data be placed contiguously. This requirement introduces
a fundamental challenge: because Mercury cannot use hash functions, data partitioning among
nodes can become non-uniform (as we explain in Section 3.2) requiring an explicit load-balancing
mechanism. However, the load-balancing mechanism is fundamentally incompatible with many of
the techniques that DHTs use to guarantee routing efficiency.

The solution of the above challenges forms the core contribution of this paper. Some of the
interesting algorithms incorporated in Mercury include:

e A message routing algorithm that supports range-based lookups within each routing hub in
O(log? n/k) when each node maintains k links to other nodes.

e A low-overhead random sampling algorithm that allows each node to create an estimate of
system-wide metrics such as data value and load distribution.

e A load-balancing algorithm (which exploits the random sampling algorithm) that ensures
that routing load is uniformly distributed across all participating nodes.



e An algorithm for reducing query flooding by estimating how selective each of the predicates
in a query are based on past database insertions.

In addition to describing the design of Mercury, we also explore how the added flexibility
provided by range query lookups can simplify the construction of distributed applications, especially
the state management tasks of such applications. We observe that an instance of a distributed
application, at any single point of time, is typically interested ! in a small subset of the entire
application state. Moreover, this subset is typically not random — the objects are related in some
manner. For example, in each instance of a distributed multiplayer game, a player is only interested
in the virtual entities in her room or arena. We show that, using a range query based publish-
subscribe [2, 3] system built on top of Mercury, we can provide efficient and scalable management
of distributed object updates and lookups. We believe that a range query significantly enhances
the application’s ability to accurately express its interests.

As a proof-of-concept system, we have implemented a simple Asteroids-like multi-player dis-
tributed game using the publish-subscribe object repository framework outlined above. Each player
in the game “subscribes” to the region of the game near her ship. As a result, messages that are
needed to update a particular player’s screen are automatically delivered to the host. Our testbed
evaluation indicates that Mercury reduces bandwidth usage by implementing effective filtering and
provides low routing-hop delivery for such applications.

The remainder of the paper is organized as follows. In the next section, we compare Mercury to
prior related work in this area. Section 3 details the basic Mercury protocol for routing data-records
and queries. Section 4 presents enhancements which improve the performance of the basic protocol.
In Section 5, we evaluate the scalability and load-balancing properties of the Mercury system. In
Section 6, we present the design of our publish-subscribe based object repository framework and
proof-of-concept distributed game. Finally, Section 7 concludes.

2 Related Work

In this section, we compare and contrast our approach to implementing range queries with that of
related systems. Our discussion focuses on two fundamental questions:

> Can we use existing DHTs as building blocks to implement range query predicates?

> How is our design different from other systems like SkipNet [11], etc., which also provide
range query support?

Using existing DHTs for range queries

A large number of distributed hash table designs [11,23,24, 26] have been proposed over the past
few years. They provide a hash table interface to the application, viz., insert(key, value) and
lookup(key) primitives. Recent research [4,10] has shown that, in addition to the basic scalable
routing mechanism, DHTs offer much promise in terms of load balancing, proximity-based routing,
static resilience, etc. Hence, it is a natural question to ask if we could implement range queries
using just the insert and lookup abstractions provided by DHTs.

Our analysis, based on analyzing possible strawman designs using DHTSs, indicates that the
abstractions provided by a DHT are not enough for implementing range queries. Fundamental

'We say that an application instance is ’interested’ in an object, if it wishes to keep it in an updated state.



to our argument is the fact that all existing DHT designs use randomizing hash functions for
inserting and looking up keys in the hash table. While hashing is crucial for DHT's in order to get
good load balancing properties, it is also the main barrier in using a DHT for implementing range
queries. This is because the hash of a range is not correlated to the hash of the values within a
range. Hence, it is necessary to create some artificial correlation between ranges and values which
is invariant under hashing.

One natural way to achieve this is to partition the value space into buckets and map values
and ranges to one or more buckets. A bucket forms the lookup key for the hash table. Then, a
range query can be satisfied by simply performing lookups on the corresponding bucket(s) using
the underlying DHT. However, this scheme has several fundamental drawbacks. It requires the
application to a priori perform the partitioning of space. This can be very difficult or even impos-
sible for many applications, e.g., partitioning of file names. Moreover, load balancing and query
performance is highly dependent on the way partitioning is performed. For example, if the number
of buckets is too small, i.e., the partition is too coarse, queries will get mapped to a smaller set of
nodes creating load imbalance. Increasing the number of buckets, on the other hand, will increase
the routing hops required to answer a range query.

This indicates that while a DHT-based scheme may not be an impossibility, its implementation
is likely to be awkward and complicated. By avoiding randomizing hash functions, Mercury seeks
to remove this difficulty. At the same time, we also note that the design of Mercury is inspired
from and similar in many respects to existing DHT designs. Hence, we believe that it can easily
build upon recent advances in proximity-based routing and achieving resilience in DHT's [10].

Comparison with systems supporting range queries

In this section, we compare Mercury against recent systems which offer range query support. These
include SkipNet [11], PIER [12] and DIM [16].

The SkipNet DHT organizes peers and data objects according to their lexicographic addresses in
the form of a variant of a probabilistic skip list. It supports logarithmic time range-based lookups
and guarantees path locality. Mercury is more general than SkipNet since it supports range-
based lookups on multiple-attributes. Our use of random sampling to estimate query selectivity
constitutes a novel contribution towards implementing scalable multi-dimensional range queries.
Load balancing is another important way in which Mercury differs from SkipNet. While SkipNet
incorporates a constrained load-balancing mechanism, it is only useful when part of a data name
is hashed, in which case the part is inaccessible for performing a range query. This implies that
SkipNet supports load-balancing or range queries — not both.

One might argue that the query-load imbalance in SkipNet can be corrected by using virtual
servers as suggested in [22]. However, it is unlikely to help in this regard for the following reason:
for effective load-balancing, the number of virtual servers needed must be proportional to the skew
(ratio of maz to min) in the load. The scheme proposed in [22] assumes that the load skew
results from the standard deviation of random hash function distributions, which is typically very
small(O(logn), see [1]). However, in our case, the skew results from differences in query workload,
which can grow quite large. Hence, larger number of virtual servers would be required increasing
routing hops by about log(s) where s is the skew. Moreover, the scheme would fare even worse
for range lookups since it would increase the number of distinct nodes accessed for processing the
query by O(s).

The PIER system is a distributed query engine based on DHTs. However, for all queries except



exact match lookups, it uses a multicast primitive which performs a controlled flood of the query
to all nodes within a particular namespace.

The DIM data structure [16] supports routing multi-dimensional range queries by embedding
them into a two-dimensional space and using a geographic routing algorithm. However, the routing
cost scales only as O(y/n), which while reasonable in a medium-sized sensor network, is quite
expensive for larger scales. Furthermore, the “volume expansion” that occurs while projecting
from higher dimensions onto two-dimensions can be quite large resulting in more flooding of the
query. Also, queries containing wildcards in certain attributes get flooded to all nodes. On the
other hand, Mercury, like most databases, uses query selectivity mechanisms to route through the
attribute hubs of highest selectivity thereby significantly reducing flooding for queries containing
only a few attributes.

All the above systems and recent work on balancing load in such systems [1,22] treat load on
a node as being proportional to the range of identifier values the node is responsible for. In other
words, they assume a uniform data distribution which is sensible for DHT's which use cryptographic
hashes. Mercury, on the other hand, defines load on a node as the number of messages routed or
matched per unit time, and supports explicit and flexible load balancing. We note that Mercury
uses a leave-join style load balancing algorithm that is similar to [22]. Karger and Ruhl [13] have
independently discovered a similar join-leave based load balancing mechanism. However, their
protocol requires communication with logn random nodes in the system. In the face of skewed
node range distributions, sampling nodes uniformly at random is far from trivial. A significant
part of the Mercury protocol is aimed at addressing this difficulty. In general, many approaches to
diffusion-based dynamic load balancing [9] use hard-to-get information about a dynamic distributed
network to make an informed decision. Instead, Mercury uses light-weight sampling mechanisms
to track load distribution within the overlay.

3 Mercury Routing

In this section, we provide an overview of the basic Mercury routing protocol. We note that this
basic routing only works well in a limited set of conditions. Later, in Section 4, we significantly
extend the capabilities of this basic routing to work for a wider set of operating points.

3.1 Data Model

In Mercury, a data item is represented as a list of typed attribute-value pairs, very similar to a
record in a relational database. Each field is a tuple of the form: (type,attribute,value). The
following types are recognized: int, char,float and string.?

A query is a conjunction of predicates which are tuples of the form: (type, attribute, operator, value).
A disjunction is implemented by multiple distinct queries. Mercury supports the following oper-
ators: <, >, <, > and =. For the string type, Mercury also permits prefix and postfix operators.
Figure 1 presents an example.

20ur basic data types are sortable, enabling us to define numeric operations (addition and subtraction) on them.
Care needs to be taken when handling string attributes.



float x=coord = 50 float x—coord < 53
float y—coord = 100 float x—coord > 34
string  player = "john” string  player = "j*"
string team = "topgunz” int score = "*"
int score = 76
- J
Data Query

Figure 1: Example of a data item and a query as represented in the Mercury system.

3.2 Routing Overview

Mercury supports queries over multiple attributes by partitioning the nodes in the system into
groups called attribute hubs. This partition is only logical, i.e., a physical node can be part of
multiple logical hubs. Each of the attribute hubs is responsible for a specific attribute in the overall
schema. Hubs can be thought of as orthogonal dimensions of a multi-dimensional attribute space.
The first routing hop determines which dimension to route through. The rest of the routing is
unidimensional and is based on the values of a single attribute of the data item. We note that this
mechanism does not scale very well as the number of attributes in the schema increase; however,
we believe that the schemas of many applications are likely to be reasonably small.

To simplify the description, we will use the following notation: let A denote the set of attributes
in the overall schema of the application. Ap denotes the set of attributes in a query @. Similarly,
the set of attributes present in a data-record D is denoted by Ap. We use the functions m, to
denote the value (range) of a particular attribute a in a data-record (query).We will denote the
attribute hub for an attribute a by H,.

Nodes within a hub H, are arranged into a circular overlay with each node responsible for a
contiguous range r, of attribute values. A node responsible for the range r, resolves all queries
for which 7,(Q) Nrq # ¢(={}), and it stores all data-records D for which 7, (D) € r,. Ranges are
assigned to nodes during the join process.

Routing Queries and Data-Records

Queries are passed to exactly one of the hubs corresponding to the attributes that are queried.
Specifically, a query @ is delivered to H,, where a is any attribute chosen from Ag. We will see
in Sections 4.3 and 5.4 that although choosing any attribute hub suffices for matching correctness,
substantial savings in network bandwidth can be achieved if the choice is done more intelligently
using query selectivity. Within the chosen hub, the query is delivered and processed at all nodes
that could potentially have matching values.

To guarantee that queries locate all the relevant data-records, a data-record D, while insertion,
is sent to all Hy, where b € Ap. This is necessary because the set of queries which could match D
can arrive in any of these attribute hubs. Within each hub, the data-record is routed to the node
responsible for the record’s value for the hub’s attribute.

Notice also that we could have ensured correctness by sending a data-record to a single hub
in Ap and queries to all hubs in Ag. At first glance, this might appear to be a better choice



since data-records could be much bigger in size than queries and replicating them might be more
expensive. However, recall that a query can get flooded to multiple locations within each hub
depending on its selectivity. This, combined with the fact that many queries may be extremely
non-selective in some attribute (thereby, flooding a particular hub), led us to choose a design with
data-records broadcast to all hubs. Mercury could be easily modified to support a situation where
this problem does not exist.

Within a hub H,, routing is done as follows: for routing a data-record D, we route to the value
(D). For a query @, m,(Q) is a range. Hence, for routing queries, we route to the first value
appearing in the range and then use the contiguity of range values to spread the query along the
circle, as needed.
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%
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Figure 2: Routing of data-records and queries.

Fig 2 illustrates the routing of queries and data-records. It depicts two hubs H, and H, which
may correspond to, for example, X and Y coordinates of objects. The minimum and maximum
values for the x and y attributes are 0 and 320 respectively. Accordingly, the ranges are distributed
to various nodes. The data-record is sent to both H, and H,, where it is stored at nodes b and e,
respectively. The query enters H, at node d and is routed (and processed) at nodes b and c.

This routing places one additional requirement on the connectivity of each node. In addition to
having a link to the predecessor and successor within its own hub, each node must also maintain
a link to each of the other hubs. We expect the number of hubs for a particular system to remain
low, and, therefore, do not expect this to be a significant burden. We discuss the maintenance of
these links later in the section.

Design Rationale

In this section, we discuss some of the promising alternative designs for implementing a distributed
multi-attribute range-based search and comment qualitatively on the trade-offs involved.

Many DHTs [18,26] use a cryptographic hash or random value to give IDs to nodes and data
stored in the DHT. However, Mercury does not use any such cryptographic hashes or random
values. This simpler mapping of data and nodes in the system allows the lookup of range predicates
in subscriptions to a collection of contiguous nodes in a hub. We note that one of the main



purposes of using a cryptographic hash in existing DHTs is to assign data to nodes uniformly
and randomly®. The elimination of this randomness makes load-balancing in Mercury a concern.
Since there are likely to be particular ranges of an attribute that are more popular for publications
and subscriptions, nodes responsible for these ranges from will be unfairly overloaded with both
routing and computation tasks. Mercury performs explicit load balancing (see Section 4.4) by
moving around nodes and changing their responsibilities according to the loads. This enables the
combination of good load-balancing with support for range predicates However, one important side
effect is that the distribution of range sizes is no longer guaranteed to be uniform.

With the removal of cryptographic hashes, we could have used a variety of different DHTs
as the basis for our design. Our design treats the different attributes in an application schema
independently, i.e., routing a data item D within a hub for attribute a is accomplished using only
ma(D). An alternate design would be to route using the values of all attributes present in D, e.g.,
treating each attribute as a CAN dimension [23]. Since each node in such a design is responsible
for a value-range of every attribute, a subscription that contains a wild-card attribute can get
flooded to all nodes. We could have merged dimensions like in the DIM data structure [16] but this
would still have had similar problems for queries covering large areas. By making the attributes
independent, we restrict such flooding to at most one attribute hub. Furthermore, it is quite likely
that some other attribute of the query is more selective and by routing the query to that hub, we
can eliminate flooding altogether.

3.3 Constructing Efficient Routes

Recall that most of the routing in Mercury occurs within an attribute hub (only the first hop
crosses hubs.) Thus, it is essential that the overlay structure for each attribute hub be scalable and
efficient.

Simply using successor or predecessor pointers can result in #(n) routing delays for routing data-
records and queries. Like Symphony [18], the key to Mercury’s route optimization is the selection
of k long-distance links that are maintained in addition to the successor and predecessor links. As
a result, each node has a routing table of size k 4+ 2 including its neighbors along the circle. k is a
configurable parameter here and could be different for different nodes.

The routing algorithm is simple: Let neighbor n; be in-charge of the range [l;,7;). When a
node is asked to route a value v, it chooses the neighbor n; for which d(l;, v) is minimized where d
denotes the clockwise distance or value-distance. Let m, and M, be the minimum and maximum
values for attribute a, respectively.

Then,

b—a ifa <b,
d(a,b) = { (M, —ma) + (b—a) ifa>b

A node n whose value range is [I, ) constructs its long-distance links in the following fashion:
Let I denote the unit interval [0, 1]. For each link, a node draws a number x € I using the harmonic
probability distribution function: py(z) = 1/(nlogz) if z € [1,1]. It contacts a node n’ (using
routing protocol itself) which manages the value r + (M, — m,)x (wrapped around) in its hub.
Finally, it attempts to make n’ as its neighbor. As a practical consideration, we set a fan-in limit
of 2k links per node. We will refer to a network constructed according to the above algorithm as a
ValueLink network.

3Self-certifying names/security are additional valuable properties.



Under the assumption that node ranges are uniform, we can prove (see [18]) that the expected
number of routing hops for routing to any value within a hub is (’)(% log®n). Since inter-hub routing
can take at most one hop, the number of hops taken for routing? is at most O(% log? n) as well.
This guarantee is based upon Kleinberg’s analysis of small-world networks [14].

Unfortunately, the “uniform node ranges” assumption can be easily violated for many reasons.
For example, explicit load-balancing would cause nodes to cluster closely in parts of the ring which
are popular. In the Section 4, we present a novel distributed histogram maintenance scheme based
on light-weight random sampling to provide efficient routing even with highly non-uniform ranges.

Caching

For many applications, there can be significant locality in the generated data-items (incremental
updates, for example) as well as queries (popular searches, for example.) Mercury provides hooks
for the application so that it can insert its own specific caching behavior into the protocol. Essen-
tially, Mercury allows an application to specify additional long-distance links that represent cached
destinations as an addendum to the routing table. When looking for the neighbor closest to the
destination, Mercury also considers nodes present in the cache.

3.4 Node Join and Leave

While the above describes the steady-state behavior of Mercury, it does not address how nodes join
or leave the system. This section describes the detailed protocol used by nodes during join and
departure.

Recall that each node in Mercury needs to construct and maintain the following set of links:
a) successor and predecessor links within the attribute hub, b) k long-distance links for efficient
intra-hub routing and ¢) one cross-hub link per hub for connecting to other hubs. The cross-
hub link implies that each node knows about at least one representative for every hub in the
system. In order to recover during node departures, nodes keep a small number (instead of one) of
successor/predecessor and cross-hub links.

Node Join. Like most other distributed overlays, an incoming Mercury node needs information
about at least one (or at most a few) node(s) already part of the routing system. This information
can be obtained via a match-making server or any other out-of-band means. The incoming node
then queries an existing node and obtains state about the hubs along with a list of representatives
for each hub in the system. Then, it randomly chooses a hub to join and contacts a member m of
that hub. The incoming node installs itself as a predecessor of m, takes charge of half of m’s range
of values and becomes a part of the hub circle.

To start with, the new node copies the routing state of its successor m, including its long-
distance links as well as links to nodes in other hubs. At this point, it initiates two maintenance
processes: firstly, it sets up its own long-distance links by routing to newly sampled values generated
from the harmonic distribution (as described above.) Secondly, it starts random-walks on each of
the other hubs to obtain new cross-hub neighbors distinct from his successor’s. Notice that these
processes are not essential for correctness and only affect the efficiency of the routing protocol.

Node Departure. When nodes depart, the successor/predecessor links, the long-distance links and
the inter-hub links within Mercury must be repaired. To repair successor/predessor links within

4For a query, we count the number of routing hops to reach the first value in the range it covers.



a hub, each node maintains a short list of contiguous nodes further clockwise on the ring than its
immediate successor. When a node’s successor departs, that node is responsible for finding the
next node along the ring and creating a new successor link.

A node’s departure will break the long-distance links of a set of nodes in the hub. These nodes
establish new long-distance links to replace the failed ones. Nodes which are not directly affected
by this departure do not take any action. The departure of several nodes, however, can distort
the distribution of links of nodes which are not affected directly. To repair the distribution, nodes
periodically re-construct their long-distance links using recent estimates of node counts. Such repair
is initiated only when the number of nodes in the system changes dramatically (by a factor of 2 —
either by addition or departure.)®

Finally, to repair a broken cross-hub link, a node considers the following three choices: a) it uses
a backup cross-hub link for that hub to generate a new cross-hub neighbor (using a random walk
within the desired hub) or b) if such a backup is not available, it queries its successor and predecessor
for their links to the desired hub, or ¢) in the worst case, the node contacts the match-making (or
bootstrap server) to query the address of a node participating in the desired hub.

4 Efficiency in the Face of Non-uniformity

The Mercury protocol we have described thus far is largely a derivative of previous structured
overlay protocols. We have shown that it can provide efficient (logarithmic) routing when the
responsibility of handling various attribute values is uniformly distributed to all nodes within a
hub. However, as alluded to in Section 3.2, the desire to balance routing load can create a highly
non-uniform distribution of ranges.

We begin this section by analyzing why such non-uniform range distributions make the design
of efficient distributed routing protocols hard. We find that Kleinberg’s basic small-world network
result makes certain assumptions which are non-trivial to satisfy in a distributed setting when node
ranges in a network are non-uniform. We then present a novel algorithm which ensures efficient
routing even when the assumptions are violated.

We then tackle non-uniformity in two other dimensions: query selectivity, and data popularity.
We show how the core of the algorithm for efficient routing under non-uniform range distributions
can be re-used to optimize query performance given non-uniformity in query selectivity and data
popularity.

4.1 Small-world Networks

Let G represent a circle on n nodes. Define node-link distance d,(a,b) between two nodes a and b
as the length of the path from a to b in the clockwise direction. The objective is to find “short”
routes between any pair of nodes using distributed algorithms. Kleinberg [14] showed that if each
node, A, in GG constructs one additional “long-link” in a special manner, the number of expected
hops for routing between any pair of nodes becomes (9(log2 n). Each node A constructs its link
using the following rule: A generates an integer = € (0,n) using the harmonic distribution, viz.,
hn(x) = 1/(nlogx), and establishes a link to the node B which is = links away in the clockwise
direction from A. The routing algorithm for each node is to choose the link which takes the packet

SIntuitive justification: routing performance is only sensitive to the logarithm of the number of nodes



closest to the destination with respect to the node-link distance. Symphony [18] extends this result
by showing that creating k such links reduces the routing hop distance (’)(% log®n).

Creating the long-links appears deceptively straight-forward. However, it may be difficult and
expensive (O(z)) for a node A to determine which node, B, is x hops away from it. Contacting
node B would be simpler if we could easily determine what value range B was responsible for. This
would allow the use of any existing long-links to contact this node more efficiently and reduce the
number of routing hops to O(log?n)/k.

In systems like Symphony, this problem is solved by approximating the hop distance of any
node. Since Symphony places nodes randomly along its routing hub, it makes the assumption that
all nodes are responsible for approximately for ranges of the same size, r. By simply multiplying r
by x and adding to the start of the values range of A, Symphony is able to estimate the start of the
range that B is responsible for. Unfortunately, this technique does not work when not all nodes
are responsible for the same range size of values, i.e., when ranges are highly non-uniform in size.

In Mercury, each node maintains an approximate map of hop count to value range. It does this
by sampling nodes throughout the system to determine how large a range that they are responsible
for. We use these samples to create an estimate of the density of nodes in different parts of the
routing hub, i.e., a histogram of the distribution of nodes. This allows us to easily map from the
value x to the start of the value range for B. This mapping, in turn, enables us to construct the
long-distance links of Section 3.3 despite non-uniform node ranges. The next subsection details our
techniques for uniformly sampling nodes in a distributed overlay and how they are used to maintain
approximate histograms.

4.2 Random Sampling

Maintaining state about a uniformly random subset of global participants in a distributed network,
in a scalable, efficient and timely manner is non-trivial. In the context of our system, the naive
approach of routing a sample request message to a randomly generated data-value works well only
if node ranges are uniformly distributed. Unfortunately, as already explained, this assumption is
easily violated.

Another obvious approach is to assign each node a random identifier (by using a cryptographic
hash, for example) and route to a randomly generated identifier to perform sampling. However,
in order for the sampling process to be efficient, we need a routing table for delivering messages
to node identifiers. Another approach is to use protocols like Ransub [15] which are specifically
designed for delivering random subset information. Unfortunately, both these approaches require
incurring the overhead of maintaining a separate overlay — one which may not be well suited for
efficient data-value routing.

Mercury’s approach for sampling is novel — we show that the hub overlay constructed by Mer-
cury in a randomized manner is an ezpander [19] with a high probability. An expander has the
property that random walks over the links of such a network converge very quickly to the stationary
distribution of the random walk. Since the hub overlay graph is regular, the stationary distribution
is the uniform distribution. We state the lemma in a semi-rigorous manner. 6

Lemma. Let G be a circle on n nodes with O(logn) additional links per node generated using
the harmonic probability distribution (as described in Section 4.1). Let Il denote the stationary
distribution of a random walk on G and let 11; denote the distribution generated by the random walk

5The proof is omitted for reasons of space, and will be available in a related tech-report.
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after t steps. Then, with high probability, di(Il;, 1) < € for t > O(log®(n/€)) for small constants
¢, where dy denotes the statistical or Ly distance between two distributions. (See [21] for rigorous
definitions.)

This leads to a very simple algorithm for performing random sampling: send off a sample-request
message with a small (e.g., logn hop) Time-To-Live (TTL). Every node along the path selects a
random neighbor link and forwards it, decrementing the TTL. The node at which the TTL ex-
pires sends back a sample. Notice that this algorithm uses only local information at every stage
in the sampling process and adapts easily to a highly dynamic distributed overlay. In addition,
these messages could be piggy-backed on any existing keep-alive traffic between neighbors to reduce
overhead. Our simulations show that Mercury can indeed perform near-perfect uniform random
sampling using a TTL of logn.

We now describe three important ways in which we utilize random sampling in our system viz.,
to maintain node-count histograms, for estimating the selectivity of queries and for effective load
balancing.

4.2.1 Maintaining Approximate Histograms

This section presents the mechanism used by nodes for maintaining histograms of any system
statistic (e.g., load distribution, node-count distribution”, etc.) The basic idea is to sample the
distribution locally and exchange these estimates throughout the system in an epidemic-style pro-
tocol.

Let N4 denote the “local” d-neighborhood of a node - i.e., the set of all nodes within a distance
d ignoring the long distance links. Each node periodically samples nodes € N4 and produces a local
estimate of the system statistic under consideration. For example, if the node-count distribution
is being measured, a node’s local estimate is (My — ma)|Nal/ (D e, I7k|) Where ry is the range of
a node k and m,, M, are the minimum and maximum attribute values for the attribute a. In our
experiments, we use d = 3.

In addition, a node periodically samples k1 nodes uniformly at random using the sampling
algorithm described in Section 4.2. Each of these nodes reports back its local estimate and the
most recent ko estimates it has received. As time progresses, a node builds a list of tuples of the
form: {node_id,node range,time, estimate}. (The timestamp is used to age out old estimates.)
Each of these tuples represent a point on the required distribution — stitching them together yields
a piecewise linear approximation.

k1 and ko are parameters of the algorithm which trade-off between overhead and accuracy of
the histogram maintenance process. In Section 5, we show through simulations that setting each
of k1 and ko to log(n) is sufficient to give reasonably accurate histograms for sampling population
distribution.

If the system needs to generate an average or histogram of node properties, the collected samples
can be used exactly as they are collected. However, if the desire is to generate an average or
histogram of properties around the routing hub, some minor modifications are needed.

Let us consider our objective of estimating the number of nodes in any part of the hub. Each
sample represents a node density estimate for a point on the hub. However, we must decide
where this estimate is valid. A simple solution would be to say that a sample is valid up to the
location half-way between the sample’s origin point and origin of the next sample along the hub.

"Number of nodes responsible for a given range of values.
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For example in a unit hub, let us consider a situation where we have two samples: one at 0.25
measuring a density of 10 nodes in the system and one at .75 with a 40 node measurement. We
could say that half the hub (range 0.0-0.5) has 5 nodes (10 divided by 2) and the other half has
20, for a total of 25 nodes. However, this introduces a systematic bias against low-density samples
since there are obviously less nodes that produce them.

To correct for this, we make a sample valid up to a mid-point that is weighted by the relative
densities of the neighboring samples. For the above situation, we would say that there is a density
of 10 in the range 0.85-0.65 (wrapping around clockwise), and a density of 40 between 0.65 and
0.85. This would result in a total of 8 (10 * .8) in the low density region and 8 (40 * .2) in the
high density region for a total of 16 nodes. We have performed experiments that show that this
produces a much higher accuracy estimate. Given such a density estimate for different parts of
the hub, we can easily generate the data needed to efficiently contact neighbors for constructing a
small-world graph.

4.3 Query Selectivity

Recall that a query @ is sent to only one of the attribute hubs in Ag. Also a query @ is a conjunction
of its predicates each of which can have varying degree of selectivity. For example, some predicate
might be a wildcard for its attribute while another might be an exact match. Clearly, a wildcard
predicate will get flooded to every node within its attribute hub. Thus, the query @ should be sent
to that hub for which Q is most selective to minimize the number of nodes that must be contacted.

The problem of estimating the selectivity of a query has been very widely studied in the database
community. The established canonical solution is to maintain approximate histograms of the num-
ber of database records per bucket. In our case, we want to know the number of nodes in a particular
bucket. Each node within a hub can easily gather such an histogram for its own hub using the
histogram maintenance mechanism described above. In addition, using its inter-hub links, it can
also gather histograms for other hubs efficiently. These histograms are then used to determine the
selectivity of a subscription for each hub. We see in Section 5.4 that even with a very conservative
workload, this estimation can reduce a significant amount of query flooding.

4.4 Data Popularity and Load Balancing

When a node joins Mercury, it is assigned responsibility for some range of an attribute. Unfortu-
nately, in many applications, a particular range of values may exhibit a much greater popularity in
terms of database insertions or queries than other ranges. This would cause the node responsible
for the popular range to become overloaded. One obvious solution is to determine some way to
partition the ranges in proportion to their popularity. As load patterns change, the system should
also move nodes around as needed.

We leverage our approximate histograms to help implement load-balancing in Mercury. First,
each node can use histograms to determine the average load existing in the system, and, hence, can
determine if it is relatively heavily or lightly loaded. Second, the histograms contain information
about which parts of the overlay are lightly loaded. Using this information, heavily loaded nodes
can send probes to lightly loaded parts of the network. Once the probe encounters a lightly loaded
node, it requests this lightly loaded node to gracefully leave its location in the routing ring and
re-join at the location of the heavily loaded node. This leave and re-join effectively increases the
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load on the neighboring (also likely to be lightly-loaded) nodes and partitions the previous heavy
load across two nodes.

Let the average load in the system be denoted by L. Define the local load of a node as the
average of load of itself, its successor and its predecessor. A node is said to be lightly loaded if the
ratio of its local load to L is less than % and heavily loaded if the ratio is greater than «. This
definition ensures that if a node is lightly loaded, its neighbors will be lightly loaded with a high
probability. If this is not the case (when the ratio of neighbor loads is > «), the lighter neighbor
performs a load balance with the heavier one to equalize their loads. It is easy to show® that
the leave-rejoin protocol described above decreases the variance of the load distribution at each
step and bounds the maximum load imbalance in the converged system by a factor of «, provided
a > /2. By tolerating a small skew, we prevent load oscillations in the system.

Over time, the leaves and re-joins result in a shift in the distribution of nodes to reflect the
distribution of load. However, this shift in node distribution can have significant implications. Many
of the properties of Mercury’s routing and sampling rely on the harmonic distance distribution of
the random long-links. When nodes move to adjust to load, this distribution may be changed.
However, our technique for creating long-links actually takes the node distribution into account
explicitly as stated previously.

We emphasize that this load balancing mechanism (leave-join) is not itself new; similar tech-
niques have been proposed [13,22]. Our novel contribution here is the random sampling mechanism
which enables the use of such techniques in distributed overlays when node range distributions are
skewed.

5 Evaluation

This section presents a detailed evaluation of the Mercury protocol using simulations. We imple-
mented a simple discrete event-based simulator which assigns each application level hop a unit
delay. To reduce overhead and enable the simulation of large networks, the simulator does not
model any queuing delays or packet loss on links. The simplified simulation environment was cho-
sen for two reasons: first, it allows the simulations to scale to a large (up to 50K) number of nodes,
and secondly, this evaluation is not focused on proximity routing. Since our basic design is similar
in spirit to Symphony and Chord, we believe that heuristics for performing proximity-based routing
(as described in [10]) can be adapted easily in Mercury.

Our evaluation centers on two main features of the Mercury system: 1) scalable routing for
queries and data-records, and 2) balancing of routing load throughout the system. We begin with
an evaluation of our core routing mechanisms — random sampling and histogram maintenance.
We then study the impact of these mechanisms on the overall routing performance under various
workloads. Finally, we present results showing the utility of caching and query selectivity estimation
in the context of Mercury.

Except for query selectivity estimation, most of our experiments focus on the routing perfor-
mance of data within a single routing hub. Hence, n will denote the number of nodes within a hub.
Unless stated otherwise, every node establishes & = logn intra-hub long-distance links. For the
rest of the section, we assume without loss of generality that the attribute under consideration is a
float value with range [0, 1]. Each node in our experiments is thus responsible for a value interval

8We omit the proof for reasons of space. The idea is simply that variance reduction ‘near’ the heavier node is
larger than the variance increase ‘near’ the lighter node.
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Figure 3: Accuracy of random-walk based sampling. Figure (a) shows the effect of the degree

of the graph. (n = 10000;logn = 14; Nodelink overlay.) Figure (b) shows the effect of link
structure.

C [0,1].

In what follows, NodeLink denotes the ideal small-world overlay, i.e., long distance links are con-
structed using the harmonic distribution on node-link distance. ValueLink denotes the overlay when
the harmonic distribution on value-distance is used (Section 3.3). HistoLink denotes the scenario
when links are created using node-count histograms (see Section 4.) Note that the performance of
the ValueLink overlay is representative of the performance of a plain DHT (e.g., Chord, Symphony)
under the absence of hashing and in the presence of load balancing algorithms which preserve value
contiguity.

For evaluating the effect of non-uniform node ranges on our protocol, we assign each node
a range width which is inversely proportional to its popularity in the load distribution. Such a
choice is reasonable since load balancing would produce precisely such a distribution — more nodes
would participate in a region where load is high. The ranges are actually assigned using a Zipf
distribution. In particular, data values near 0.0 are most popular and hence a large number of nodes
share responsibility for this region, each taking care of a very small node range. For reference, in
our simulator setup, these are also the nodes with lowest numeric IDs.

5.1 Random-Walk Based Sampling

The goal of our random-walk based sampling algorithm is to produce a uniform random sample of
the nodes in the system. We measure the performance of our algorithm in terms of the statistical
distance (alternatively called L; distance) of the perfect uniform distribution from the distribution
obtained via the random walks. For these experiments, nodes are assigned ranges using a highly-
skewed Zipf distribution. In each sampling experiment, we pick a node at random and record the
distribution of the samples taken by kn random walks starting from this node. If our sampling
algorithm is good, the random walks should hit each node roughly k times. Note that the parameter
k is just for evaluating the distribution obtained — the protocol does not use it in any manner.

Figure 3(a) plots the accuracy of the sampling process as the degree of the graph and the
TTL for the random-walks is varied. The underlying overlay we consider is a perfect small-world
network (NodeLink). We find that, over a certain threshold (logn), the TTL of the random-walks
does not influence sampling accuracy. Also, the sampled distribution is almost perfectly random for
graph degrees clogn, where c is a small constant. In practice, we found that, for routing purposes,
sufficiently accurate histograms are obtained even for ¢ = 1.
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Figure 4: Distribution of long-distance links. The Y-axis plots the ID of the k = logn neighbors
for each node on the X-axis. Nodes are consecutively arranged on the hub circle. Number of
nodes = 10000. For HistoLink, [k : ko] means k; nodes were queried per round each giving ko
estimate reports; 5 exchange rounds were performed.

Figure 3(b) shows how the construction of the underlying network affects sampling accuracy.
We see that the NodeLink and HistoLink overlays perform much better than the ValueLink (a vanilla
DHT without hashing and in the presence of load balancing) overlay. These effects are explained
using Figure 4 which plots the distribution of long-distance links. As described earlier, in our
experiments, nodes with the lowest identifiers (responsible for values near 0.0) are the most popular
while nodes at the other end of the value range are the least popular.

Recall that, in a ValuelLink overlay, nodes construct their links by routing to wvalues generated
using a harmonic distribution. However, in this case node ranges are not uniformly distributed — in
particular, nodes near the value 1.0 (i.e., nodes with higher IDs) are less popular, they are in charge
of larger range values. Hence, the long-distance links they create tend to skip over less nodes than
appropriate. This causes all the links (and correspondingly, the random walks) to crowd towards
the least popular end of the circle. The HistoLink overlay offsets this effect via the maintained
histograms and achieves sampling accuracy close to that achieved by the optimal NodeLink overlay.

Each sample-request message travels for TTL hops and hence obtaining one random sample
generates TTL additional messages in the overall system. However, all these messages are sent over
existing long-distance links. Thus, they can be easily multiplexed and piggy-backed (by simply
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average histogram error. Figure (c) shows effect of changing parameters on overall routing
performance.

appending the IP address of the requesting node) over the regular keep-alive pings that might be
sent between neighbors. Also, if the samples are uniformly distributed over all nodes, each node
receives O(1) sample requests per sampling period. Hence, we conclude that the overhead of the
sampling method is very small.

5.2 Node-Count Histograms

In this section, we evaluate the accuracy of the node-count histograms obtained by nodes using
the mechanism described in Section 4.2. These histograms, introduced in Section 4.2.1, provide an
estimate of the total number of nodes in the system and help in establishing the long-distance links
correctly.

We measure the accuracy of the obtained histogram in terms of its distance from the “true”
histogram under the L; norm. Figure 5(a) plots the average accuracy of the histogram (the average
is taken over all nodes) as the parameters for the histogram maintenance process are varied. In this
experiment, 10 rounds of exchanges were performed. We see that the error is consistently small and
decreases rapidly as the number of the nodes queried per round increases.” Although not obvious
from the graph, the same pattern is observed when the number of reports queried from each node

9The graph does show some fluctuations, but their magnitudes are tiny (result of experimental variations).
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Figure 6: Performance of the basic Mercury protocol for various workloads.

is increased. These effects are expected, since the number of samples received by each node per
round grows linearly with either of these parameters.

Figure 5(b) plots the overall node-count estimates produced by each node in a system of n =
10000 nodes. The experiment was run for 10 exchange rounds, with k1 = ko = logn. We see that
the estimates are very tightly clustered around the actual node-count value of 10000.

During each round of the histogram maintenance process, each node queries k1 randomly sam-
pled nodes and receives ko estimate samples from each node. The messaging overhead per round
per node is thus proportional to kiks.

5.3 Routing Performance

We now present an evaluation of the overall routing performance of Mercury. This factors in the ef-
fects of the random sampling and histogram maintenance strategies. We present the performance of
the basic protocol with caching optimizations, discuss the effect of skewed node-range distributions
and validate our claim that the protocol using histograms achieves near-optimal routing delays. As
before, we concentrate on routing within a single hub. In each of the following experiments, nodes
establish k£ = logn long-distance links within a hub.

We experiment with two different data workloads — uniform and Zipf. The Zipf workload is
high-skewed and is generated using the distribution 7% where o = 0.95. Notice that this means
that the attribute values near 0.0 are the most popular and those around 1.0 are the least popular.
We also show the performance of two types of caching policies, viz., LRU replacement and a
direct-mapped cache.'% Our objective here is not to find the best possible policy for our workload.
Rather, our aim is to show the ease with which application-specific caching can co-exist fruitfully
with Mercury routing. In our caching experiments, each node keeps a cache of logn entries.

Figure 6 shows the performance of Mercury when node ranges are uniformly distributed. The
Y-axis shows the average number of hops taken by a data-item to reach its destination (node where
it is stored) in the hub. Although these graphs show results for HistoLink overlay, the performance
of NodeLink and ValueLink is very similar, as expected.

We see that, for uniform node ranges, the number of routing hops scales logarithmically (with
very low constant factors) as the number of nodes increases, irrespective of the workload used.

0For an n-entry cache, there is one entry for each of the (1/n)th region of the attribute space.
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Thus, Mercury can provide low end-to-end routing delays to applications even for a large number
of nodes. With caching enabled, there is a significant reduction in hop count. While this is easy
to see for a skewed workload, the reduction for a uniform workload results from the fact that a
cache effectively increases Mercury’s routing table size. We believe that caching is an important
optimization which Mercury can easily incorporate into its basic protocol.

Effect of Non-Uniform Ranges
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Figure 7: Effect of non-uniform node ranges on the average number of routing hops. As
workload, we use the Zipf distribution with o = 0.95.

Figure 7 compares the performance of the protocol with and without approximate histograms
to guide the selection of the long-distance links. In this experiment, the node-range distribution
and the data distribution are Zipf-skewed. For histogram maintenance in this experiment, we used
5 exchange rounds, where each node queried logn nodes per round asking each for logn estimate
reports.

As explained in Section 5.1, the naive ValueLink overlay (vanilla DHT in the presence of load
balancing) creates links which skip the crowded and popular region (see Figure 4.) Hence, packets
destined to these nodes take circuitous routes along the circle rather than taking short cuts provided
by the long-distance links. Although caching ameliorates the effect, the performance is still much
worse as compared to the optimal NodeLink overlay.

On the other hand, we see that the performance of the HistoLink overlay is nearly the same
as that of the optimal NodeLink overlay. Again, looking at Figure 4, we find that node-count
histograms enable nodes to establish a correct link distribution (corresponding to the NodeLink
overlay) quickly using very low overheads.

Figure 5(c) shows the effect of histogram accuracy on the overall routing performance. We
see that as the parameters ki and ko in the histogram maintenance process increase, the routing
performance improves as expected. We note that this influence is limited (note the scale of the
graph) since it is directly dependent on the accuracy of the obtained histograms (see Figure 5(a).)

5.4 Estimating Query Selectivity

To evaluate the usefulness of forwarding queries to the most selective attribute hubs, we set up an
experiment with 3 attribute hubs. Our workload is motivated by the distributed multi-player game
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Figure 8: Network bandwidth consumption for forwarding queries.

application we describe in Section 6. The attribute hubs correspond to three dimensions of virtual
space. Each query contained 3 range predicates — one for each attribute. Such a query specifies a
cuboid region of the virtual space. The range-size of each predicate was Gaussian-distributed, while
the range position within the attribute space was Zipf-distributed. The node-range distribution
within each hub is skewed.

Figure 8 plots the average number of nodes processing the query as the number of nodes grows.
As the number of nodes grows, the range of values each node is responsible for decreases. Hence,
each query tends to get more flooded within each hub. The plot shows that, even within this
conservative setting, selecting a hub based on the selectivity estimates results in up to 25-30%
reduction in the degree of flooding of a query. With workloads exhibiting wildcards, much higher
reductions would be expected.

5.5 Load Balancing
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Figure 9: Graph showing rounds taken to achieve load balance as a function of the initial skew
of the load. A is the degree of load balance sought.

For evaluating the efficiency of load balancing achieved by Mercury’s load balancing algorithm,
we conduct the following experiment: In a system of 1000 nodes, we assign load to each node using
a Zipf distribution with varying values of the initial skew (Zipf parameter). The system is said to
be load-balanced when % < load/avg_load < A holds for all nodes in the system.
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In the experiment, we run multiple rounds of the load balancing algorithm, until the system is
load-balanced. Each round consists of the following steps:

1. Each node samples its neighbors, to determine the local node-count. This requires one round-
trip.

2. Each node runs one round of the histogram maintenance algorithm. (Recall that a round of
the histogram maintenance algorithm involves sending log n probes in parallel, each of which
must traverse 1 + logn hops.)

3. Nodes check their histograms to determine if they are heavily loaded. If a node is heavily
loaded, it sends a probe to a lightly loaded node. This probe must traverse logn hops.

4. Lightly loaded nodes leave and re-join the network. To re-join, the lightly loaded nodes
must establish new long links. The link establishment messages traverse 1 + logn hops, in
expectation.

Figure 9 plots the number of rounds of load-balancing required to achieve load balance. We see
that Mercury can load-balance to within a factor of A = 2 within 100 rounds despite heavy skews
in the workload (Zipf with o = 0.95). In practical terms, consider an overlay with 10000 nodes, and
a 50 ms delay between nodes. The time to complete one round of load-balancing is the product of
the number of hops traversed by messages in the load balancing algorithm ', and the inter-node
delay. Thus the time to complete one round is 50 (4 + 3logn) ms. The time to load-balance the
entire overlay is then 100 * 50 % (4 + 3logn) ms, or about 220 seconds.

6 Distributed Object Management

Previous sections have demonstrated that Mercury provides scalable range-query based lookups
under a variety of workloads. In this section, we describe how Mercury can also be used as a building
block for many distributed applications. We present a distributed object management framework
based on Mercury, followed by the design and testbed evaluation of a distributed multiplayer game
called Caduceus built on top of this framework.

6.1 Modeling Object Interactions

One of the challenges of distributed application design is managing distributed state, which includes
code objects and functions, partitioned across multiple, perhaps physically distributed, machines. In
such an environment, performing object lookups, updates and maintaining consistency in a scalable
manner is difficult.

We observe that, in many applications, each instance is typically interested in only a small subset
of the entire application state. Moreover, the objects belonging to this subset are related to each
other in an application-specific manner. This observation enables the following publish-subscribe [3]
architecture: each application instance registers a “subscription” describing the objects which it
wishes to keep updated. When an object is updated, these updates act as “publications” and are
delivered to the interested instances.

Since the messages in step 2 are sent in parallel, we count the number of hops once, rather than multiplying by
the number of messages. Similarly for step 4
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A key requirement in this design is a flexible subscription language which allows the application
to express its object-interests precisely. At the same time, the language should also permit a
scalable implementation for the underlying publish-subscribe routing infrastructure. By providing
scalable routing for a multi-attribute range-query based subscription language, Mercury fits in this
need very well.

While the previous sections have demonstrated Mercury’s desirable performance characteristics,
a high performance system is not useful unless it meets the needs of real applications. Thus, to
illustrate the usefulness of Mercury, we have implemented the Mercury publish-subscribe system
as a C++ library, and used this library (libmercury) to build a distributed multiplayer game
(Caduceus).

Given that we focus on a single application, a natural question is how well our system gener-
alizes. As we have not yet implemented other applications, we cannot provide empirical evidence
of generalizability. However, we believe our system provides a general API that will be suitable for
many applications.

6.2 Caduceus

Caduceus is a two-dimensional, multi-player, shooter game. Each player in the game has a ship and
a supply of missiles. Players pursue each other around the two-dimensional space, and fire missiles
when their opponents are in range. The goal is simply to kill as many opponents are possible.
Figure 10 presents a screenshot of the game. At any given time, a player sees the other ships in
her immediate vicinity, as defined by the game window. The virtual game world is larger than the
window. Thus there might, for example, be opponents located beyond any of the edges of the game
window.

The state of the game is represented using two kinds of objects: ships and missiles. A ship
consists of a location, velocity, and ancillary information such as fuel level. A missile is created
whenever a ship fires shots. A missile consists of a location, velocity, and owner information 2.
The main loop of Caduceus, shown in Figure 11, is relatively simple.

6.3 Messaging Architectures for Distributed Games

In multiplayer games, such as Caduceus, multiple users exist in a single game “world”. The world
contains a number of objects, such as people, ships, weapons, obstacles, etc. A central problem in
distributed multiplayer gaming is ensuring that all nodes have consistent views of the game world.
To provide this consistency, nodes send updates to other nodes whenever the world’s state has
changed. To date, most games have used either broadcast messaging, or a centralized server, to
deliver these updates.

In broadcast based games (such as Doom and MiMaze [8]), each node broadcasts every change
in the state of the game world (such as a player moving from one position to another) to all other
nodes. Broadcasting limits scalability in two ways. First, it imposes high load on the network.
Second, it forces nodes to process updates that may be irrelevant to them (e.g., movements in a
distant part of the world).

Centralized designs (e.g., Quakeforge [20]) improve upon broadcast messaging by filtering up-
dates at a game server. In these designs, every node sends changes in the world state to a central
server. The game server sends only relevant updates (e.g. movements of players in the immediate

12The owner is used to credit the appropriate player when an opponent is killed.
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Figure 10: Caduceus screenshot

void GameApp::timerEvent(QTimerEvent *) {
m_Renderer—>Render();
m_GameEngine—>RunFrame(); // read keyboard events,
// Tun physics
updateSubs();
m_StateManager—>UpdateState(); // publish dirty objects,
// receive pubs
m_StateManager—>CollectGarbage(); // delete useless objects

Figure 11: Main loop of Caduceus

vicinity) to each node. These designs suffer, however, from high network and computational loads
at the central server.

To improve scalability, researchers have proposed area-of-interest filtering [17,25] schemes. In
these schemes, the game world is divided into a fixed set of regions (such as tiles of a two-dimensional
space). The regions are then mapped to IP multicast groups. Such approaches improve scalability
by distributing the message filtering throughout the network. However, the fixed regions result
either in the delivery of a large number of irrelevant updates to clients, or in the maintenance of a
large number of IP multicast groups at routers.

In contrast, Mercury’s subscription language is ideal for implementing area of interest filtering.
In particular, the subscription language makes it easy to describe arbitrary physical regions. As
an example, Figure 12 shows two nodes expressing their interests in the rectangular regions near
them. Of interest is the fact that the regions do not, for example, need to fit a pre-defined tiling of
the space. Note that while tiling the space, and assigning these tiles to different channels, would be
possible for a simple two-dimensional game, it becomes far more difficult in games with irregular
spaces, such as corridors, or which have to deal with visibility constraints such as horizons. It is, of
course, also difficult for channel-based schemes to support arbitrary interests such as “the location
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Figure 12: Example subscriptions for Caduceus

of all my teammates”.

As shown in Figure 6(b), Mercury is able to handle 10000 nodes while keeping the number of
routing hops below 8. Assuming that the average-case, one-way delay between nodes is about 20ms
(e.g., they are all well connected and within the U.S. west coast), this results in an end-to-end delay
of less 160ms. We believe that game-specific caching algorithms could further improve the routing
performance, making Mercury-based games scalable to thousands of nodes.

6.4 Managing Distributed Objects

As noted in Sec. 6.3, a distributed game must ensure that all nodes have consistent views of the
game world. Mercury provides a solution for two aspects of that problem — specifying the areas of
interest for game nodes, and efficiently routing world state updates to the relevant nodes. However,
a complete solution requires additional support. In particular, the game requires facilities for
applying state updates to its local state, for creating update messages that reflect local changes,
for enumerating the local state, and for managing update conflicts.

Having identified these needs, we now describe our object management framework, which bridges
the gap between the services provided by Mercury, and the services required by distributed games.
The object management framework, implemented as a C++ library (libframework), interfaces
with our game application via one fundamental data structure, several API calls, and two upcalls.
We describe these in turn.

The fundamental data structure of the framework is the object registry. The object registry is
a collection of all the objects relevant to the local view of the game. The framework ensures that
any remote changes to objects in the registry are reflected locally, and vice versa. Objects to be
placed in the registry must inherit from RNObject, which is defined in libframework.

The API provides calls for interest management (expressing and cancelling interests), object
management (adding and removing objects from the registry), and object updating (a method
to mark objects as dirty, and a method to synchronize the local state with global state). The
framework requires the application to provide three upcalls (via virtual methods of RNObject).
These upcalls, which all relate to serialization, are: a constructor (to create local copies of remote
objects), an update method, which updates a local object’s state based on publications, and a
serialization method.
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The API calls and upcalls are sufficient to handle all the application needs we enumerated,
except for update conflicts. Given that multiple nodes may have copies of the same object, it
is possible that multiple nodes modify the object. To ensure that object state does not become
inconsistent, the framework permits only a single writer for each object. The framework maintains
a replica tag for each object, signifying whether the object was created locally, or was received
from the network. When the application calls the synchronization method, the framework does not
generate updates for objects that have the replica tag set. While we believe the simplicity of this
model is valuable, we acknowledge that we may need to support alternate consistency models in
the future.

6.5 API Evaluation

We evaluate the framework’s API by the number of lines of code in Caduceus that relate to the
functionality provided by libframework. We divide the costs into five groups: Interest Manage-
ment, Object Management, Object Updates, Serialization, and Write Conflicts. For each group,
we give the number of lines required to call the corresponding functions, as well as to prepare
the relevant arguments. As an example, “Interest Management” includes the calls to the interest
management method, and the code required to compute the game’s current area of interest. As a
point of reference, the entire Caduceus code is 3043 lines. Table 1 gives the results.

‘ Function Group ‘ Lines ‘
Interest Management 289
Object Management 12
Object Updates 10
Serialization 170
Write Conflicts 0

Table 1: Lines of code required to use libframework

The most significant costs are those for interest management, and serialization. The interest
management costs are due primarily to the logic of determining the application’s area of inter-
est, and would thus be required for any non-broadcast system. Broadcast systems clearly have
lower programming complexity with respect to interest management. With respect to serialization
code, we note that serialization code is an inherent cost of distributed applications'®. Moreover,
toolkits are available to ease the programming burden of serialization. The unique costs of using
libframework (to interface with its object management, object update, and conflict management
facilities), are quite modest. Thus, the object management framework and Mercury are indeed
appropriate building blocks for a distributed game such as Caduceus.

6.6 Performance Evaluation

We evaluate the performance of our system with two metrics: hop count, and message count. We run
a varying number of players. The players move through the world according to a random waypoint
model, with a motion time chosen uniformly at random from (1, 10) seconds, a destination chosen
uniformly at random, and a speed chosen uniformly at random from (0, 360) pixels per second. The

131t is possible to architect the game so that it sends updates which describe the changed fields, rather than
serializing the entire object. However, it is not clear that doing so would reduce code complexity.
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size of the game world is scaled according to the number of players. The dimensions are 640n x 480n,
where n is the number of players. All results are based on the average of 3 experiments, with each
experiment lasting 60 seconds. The experiments include the benefit of a logn sized LRU cache at
each node, but do not include the benefits of any long pointers.

Table 2 summarizes the results. With respect to hop count, we find that the hop count increases
only slightly as we double the number of nodes. To evaluate Mercury’s messaging efficiency, we
compare it to two alternatives. In the “broadcast messages” column of the table, we report the
number of messages that would have been transmitted if every update were sent to every node (as
was done in first-generation distributed games). In the “optimal messages” column, we report the
number of messages required to exactly satisfy each node’s interests, without any control message
overhead. We find that Mercury performs substantially better than a broadcast scheme (43% as
many messages transmitted for 20 nodes), and that this performance difference increases when we
increase the number of nodes, with Mercury using only 29% as many messages as broadcast for 40
nodes.

#  of | Average | Broadcast | Mercury Optimal
Players | Hops Messages | Messages | Messages
20 4.44 170000 74295 28154

40 4.61 695240 199076 58644

Table 2: Mercury routing overheads for Caduceus, without long pointers.

7 Conclusion

In this paper, we have described the design and implementation of Mercury, a scalable protocol for
routing multi-attribute range-based queries. Our contributions as compared to previous systems
include support for multiple attributes and explicit load balancing. Mercury incorporates novel
techniques to support the random sampling of nodes within the system. This random sampling
enables a number of light-weight approaches to performing load-balancing, node count estimation
and selectivity estimation. Our evaluation clearly shows that Mercury scales well, has low lookup
latency and provides good load balancing.

In addition to providing high query-routing performance, Mercury provides an easy-to-use fa-
cility for the maintenance of a distributed object database. In particular, an application using
our system needs only compute its interests, provide methods for serialization and deserialization,
register objects, and set a dirty tag on any modified object. By providing a range-based query
language, Mercury allows applications to express their interests in a more flexible manner. While
we have only directly shown the ease-of-use of Mercury for distributed games, we believe that the
classes of applications that will benefit from our system include collaborative applications, such as
shared whiteboards, distributed inventories and possibly sensing applications as well.
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