GeoPeer: A Location-Aware
Peer-to-Peer System

Filipe Araljo
Luis Rodrigues

DI-FCUL TR-03-31

December 19, 2003

Departamento de Informatica
Faculdade de Ciéncias da Universidade de Lisboa

Campo Grande, 1749-016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files
are stored in PDF, with the report number as filename. Alternatively, reports are available
by post from the above address.

GeoPeer: A Location-Aware Peer-to-Peer System

Filipe ARAUJO
University of Lisbon
filipius@di.fc.ul.pt

Abstract— This paper presents a novel peer-to-peer system that
is particularly well suited to support context-aware computing.
The system, called GeoPeer, combines the advantages of general
pur pose peer-to-peer systems with the suitability of geographical
routing for supporting location-constrained queries and informa-
tion dissemination. To achieve this goal, GeoPeer incorporates
sophisticated mechanisms to establish long-range contacts that
permit to achieve a small network diameter. These mechanisms
take explicitly into account the unbalanced distribution of nodes
in the geographical space.

I. INTRODUCTION

The importance of context-aware services has grown sig-
nificantly in the last decade. Context-aware computing focus
on enriching applications with contextual information, like
position, user activity, nearby people and devices, time of day
or weather conditions [1]. In this paper, we are particularly
interested in supporting location-aware services, as location is
one of the most important parameters that can be extracted
from context information.

Examples of location-aware services include querying for
specific resources available in a geographic area (for instance,
looking for a restaurant or a hospital in a given neighborhood),
reading and integrating information collected by sensor nodes
in a given region (for security purposes or environmental
monitoring), and disseminating notifications to all nodes in
a given region (to multicast warnings about natural or human-
induced hazards, such as floods, chemical leaks, etc). Several
other example applications of context-aware computing are
described in [1].

A significant body of work exists on services and infras-
tructures for supporting location-aware mobile applications
[2] but also on location-aware sensor-network services [3].
Most of these architectures rely on the existence of stationary
nodes connected to the wired network infrastructure. This
paper is mainly concerned with the scalability of the network
of stationary nodes that provide support to very large-scale
location-aware services (possibly, in cooperation with mobile
nodes and wireless sensors). To the best of our knowledge,
the scalability, decentralization, and dynamic aspects of the
stationary infrastructure that supports location-aware comput-
ing have been overlooked in the literature.

As we discuss in the related work section, existing peer-to-
peer systems such as Pastry [4], Tapestry [5], Chord [6], D2B
[7], Koorde [8] or Viceroy [9], do not own the characteristics
required to support location-aware services. Systems such as
CAN [10], TOPLUS [11], eCAN [12], and the Delaunay
triangulation proposed by Liebeherr et al. [13], are closer in

Luis RODRIGUES
University of Lisbon
ler @di.fc.ul .pt

spirit to GeoPeer but, as we will discuss later, they also lack
features which are essential to support location-aware services
in an efficient manner.

To address the concerns above, we propose GeoPeer, a novel
peer-to-peer architecture that works as an overlay network on
top of IP. Nodes of GeoPeer arrange themselves to form a
Delaunay triangulation augmented with long range contacts
to achieve small network diameter. Motivated by the works of
Kleinberg [14] and Barriére et al. [15] (that try to model small-
world networks) and the work of Xu and Zhang [12] (that use
long range contacts to extend CAN [10]), we propose and com-
pare a number of light-weight mechanisms for managing these
long range contacts. Moreover, some of these mechanisms
try to overcome an unbalanced use of identification space,
which is of crucial importance in a location-aware system like
GeoPeer.

Unlike most other systems, the use of geographical location
is inherent to GeoPeer. Therefore, GeoPeer owns a number
of interesting properties: it is capable of providing location-
awareness in fundamental operations performed by applica-
tions, such as reads, writes or queries. For instance, inheriting
from the techniques used by Liebeherr et al. in [13], we can
augment multicast messages or flooded queries with scope
information to limit their range, e.g., when raising an alarm
after some accident. Queries containing significant regional
information can also benefit from our system: the collection
of information may be performed by a local proxy on behalf
of the client that may be located far away from the region of
interest to the query. For instance, someone in Lisbon may
be searching for restaurant information in New York: instead
of making all the replies traverse the Atlantic, a proxy in
New York could aggregate all the replies and send back a
single message to the originator of the query. In this paper,
we also discuss additional techniques that can be supported
by our system, like geographical pings, which are capable of
determining the IP address of a node located in some particular
geographical area. These techniques aim to create IP tunnels
that serve as additional long-range contacts of use to specific
applications.

In summary, the paper has two main contributions:

o it proposes a new peer-to-peer system that is particularly
well-suited to support applications requiring location-
aware operations, e.g., queries or broadcasts;

« it proposes and evaluates three light-weight but effec-
tive schemes to manage long-range contacts that aim to
achieve small network diameter.

The remainder of the paper is organized as follows: Sec-

tion Il overviews previous work. The GeoPeer architecture
is described in Section Il and the details of its long range
contacts mechanisms are described and evaluated, respectively
in Sections IV and V. Section VI concludes the paper.

Il. RELATED WORK

There is a significantly wide body of research which is rel-
evant to the GeoPeer architecture, including work on context-
aware computing [16], work on wireless ad hoc networks,
namely location-aware routing schemes [17] and Delaunay
triangulations [18], [19], and work on peer-to-peer systems.
Given the nature of our contributions, we limit ourselves in
the following paragraphs to the discussion of previous work on
peer-to-peer systems and on its suitability to support location-
aware services.

In recent years many peer-to-peer systems providing dis-
tributed hash tables holding (key, value) pairs were proposed
[4]-[12]. Typically, these systems are characterized by a num-
ber of features, like network diameter, node degree or node
congestion. For constant node degree, the best that can be done
is O(logn) network diameter, while for O(log n) node degree,
the network diameter can be reduced to O((logn)/(loglogn))
[8].

Systems such as Pastry [4], Tapestry [5], Chord [6], D2B
[7], Koorde [8] or Viceroy [9] are not eligible to efficiently
support location-aware services: they all use unidimensional
random addresses that cannot directly represent a concrete
physical location. Furthermore, the use of geographical loca-
tions as node identifiers would break the uniform distribution
of the name space on which these systems rely to offer
properties such as limited network diameter.

On the other hand, systems like CAN [10], TOPLUS [11] or
the Delaunay triangulation proposed by Liebeherr et al. [13]
could, in principle, be adapted to meet our goals. However,
such adaptations would require significant changes to the orig-
inal algorithms. CAN would have to be converted to use real
geographical positions instead of virtual ones, and that would,
as with the previous systems, break identification and load
balancing. TOPLUS would be even harder to adapt, because
TOPLUS peers are organized into groups of IP addresses and
therefore some additional mechanism to translate IP addresses
into geographical locations would be required. Additionally,
both CAN and Delaunay triangulations, have large network
diameter, which is an important drawback. This inconvenience
can be mitigated with the use of long range contacts. This
approach has been followed in the design of eCAN [12],
which extends the basic CAN architecture with a complex
Long Range Contacts (LRCs) management scheme (in eCAN
LRCs are called “expressways”). However, the basic CAN is
not as efficient as Delaunay triangulations in the support of
multicast, because the average node degree is smaller. More-
over, eCAN embodies a number of sophisticated mechanisms,
not strictly required for location-aware services, that introduce
a significant processing overhead when compared with our
LRC schemes.

Instead of performing a long series of adaptations to pre-
vious works to fully support in an efficient manner location-
aware services, we have opted to design a new peer-to-peer
architecture, called GeoPeer, that captures the positive aspects
of each of the previous systems for the scalable support of
context-aware computing.

I1l. ARCHITECTURE OF GEOPEER
A. Overview

In GeoPeer nodes self-organize into a planar Delaunay tri-
angulation [20]* augmented with carefully selected long range
contacts (LRCs) to significantly reduce network diameter. A
graph based on a Delaunay triangulation has the following de-
sirable characteristics: ¢) expected O(1) node degree, i) good
routing performance and i) simple distributed construction.
In GeoPeer, the identification of a node corresponds to its
physical location. The combination of these features results in
a peer-to-peer system with the following unique advantages:

« by creating a mesh of nodes identified by their physical
location, support for applications that execute location-
aware operations, such as queries or broadcasts, can be
provided by very simple mechanisms;

o when compared to a bi-dimensional CAN-like network,
the node degree in a Delaunay triangulation should be
greater, but still O(1) in expectation (around 6 instead
of 4 in perfectly balanced cases) and, therefore, nearby
routing should be improved,;

o due to the LRCs that augment the Delaunay triangula-
tion, GeoPeer has low network diameter. Moreover, our
LRCs management schemes are elegant, but nevertheless,
adaptive to unbalanced use of physical (and identification)
space.

GeoPeer may also be applied to manage arbitrary objects
by using a one-way hash function to compute keys from
some relevant object attribute. Keys correspond to positions
in space and, therefore, hashing some value representing an
object yields the GeoPeer identification of that object. Since
identification and position are equivalent, the hash function
returns a pseudo-arbitrary position in space. Therefore, loca-
tion information attributes may be used to carefully position
resources in some application dependent way, e.g., by enforc-
ing the use of a hash function that returns some node near the
clients of a service.

B. Main Components

In the following paragraphs, the main components of the
GeoPeer architecture are described in detail. These compo-
nents are:

« An algorithm that creates and maintains the Delaunay tri-
angulations. The algorithm includes the necessary mech-
anisms to preserve the triangulation when nodes join or
leave the system.

LAlternatively, the Delaunay triangulation could be embedded in a sphere
instead of a plane.

Fig. 1. Duality between Voronoi cells and Delaunay triangulation

« An algorithm that ensures that any possible key is held
by exactly one existing node. Note that, as usual in peer-
to-peer systems, occupation of the name space by nodes
is sparse and each node must be made responsible for a
portion of the name space. In GeoPeer, that division of
space is made using geometrical arguments.

o An algorithm that performs routing of messages in the
overlay network. Being based on a Delaunay triangula-
tion, GeoPeer may use a myriad of well-known location-
aware routing algorithms (e.g., see [18], [21]). As we will
see ahead, for simplicity and efficiency reasons we opted
for the greedy routing algorithm.

o A set of mechanisms that establishes LRCs. The discus-
sion of these mechanisms is postponed to Section IV.

C. Notation and Definitions

In the text we will use the following conventions: nodes and
points will be represented by capital letters , e.g., A; edges are
represented by the two nodes that define them, for instance,
AB; a triangle defined by nodes A, B and C' is represented
as AABC; the circumcircle of AABC is represented as
OABC; an angle (< m) between line segments AB and
AC defined at A is interchangeably represented as Z/BAC or
/CAB — the vertex where the angle is measured stays in the
middle, while the position of remaining vertices is arbitrary;

A triangulation of a node set V' is called a Delaunay
triangulation if the circumcircle of each of its triangles does
not contain any node of V' [18], [19]. The Voronoi cell is a
dual concept of the Delaunay triangulation, defined as follows:
the Voronoi cell of node P is the set of points in space that
are closer to P than to any other node. If the Voronoi cells
of two nodes share a common border, then a Delaunay edge
exists between those two nodes. This relation is illustrated in
Figure 1 where borders of Voronoi cells have dashed lines,
while Delaunay edges have solid lines.

D. Creation and Maintenance of Delaunay Triangulations

To create and maintain the Delaunay triangulation, GeoPeer
uses a scheme that is similar to [13]. Note that many construc-
tions proposed for wireless ad hoc networks, such as [18],
[22], are not applicable in this context, since they assume static
settings for triangulation.

Messages: To create and maintain the Delaunay trian-
gulations, nodes periodically exchange messages with their
geographic neighbors. The five message types exchanged by
the algorithm are:

o The BEACON message, used by a node to inform its
neighbors that it is still actively participating in the
overlay network.

o The JOIN message, used to add new nodes to the network.

o The FAILURE message, used to disseminate information
about the failure or departure of a node.

o The TRIANGULATE message, used by a node to propose
the setup of a Delaunay triangle with its neighbors.

o The BREAKLINKS message, used to reconfigure the net-
work in response to new joins and leaves.

The purpose and function of each of these message types
will be detailed in the following. The algorithm does not re-
quire channels to be perfect: all messages that are critical to the
convergence are retransmitted periodically, if no appropriate
reply is received.

Seps: The algorithm is decentralized, as it does not rely on
any centralized component. It consists of three logical steps:

1) The neighbor discovery step. Node N initiates this
step to enter the network. To join, node N must use
some out-of-band mean to discover one node already
participating in the network, say P. P will then forward
a special JOIN message on behalf of vV destined to V.
Since N does not yet belong to the network, the JoIN
message will be received by some node X. This node
X will forward the JOIN message to all the Delaunay
neighbors of N that X knows about and will also reply
with another JOIN message to NV with the list of those
Delaunay neighbors.

2) The neighbor maintenance step. In this step, nodes
that belong to the same triangle periodically exchange
BEACON messages to inform their neighbors that they
are alive and actively participating in the network.

3) The Delaunay triangulation step. This is naturally, the
most complex step of the algorithm.

Based on the information collected in the previous
steps, each node P computes a Delaunay triangulation
using its own local knowledge. As a result, P may
find out that there should exist a Delaunay triangle
APN; Ny, between P, N7 and N-. In this case, for
convenience of exposition, we say that the predicate
DelaunayA p(Ny, No) is true at P.

When DelaunayA p(N, N3) holds at P, P broadcasts
a TRIANGULATE APN;N, message to both N; and
N5. When P receives a TRIANGULATE APN; Ny from
Ny, if DelaunayA p(Ny, N3) holds, then P replies to
N7 with another TRIANGULATE message, otherwise, P
replies with a BREAKLINKS message including all nodes
that it believes should triangulate with V.

Therefore, if all neighbors agree on the triangulation,
they will exchange a consistent set of TRIANGULATE
messages and the corresponding Delaunay triangles are

set-up. Otherwise, they update their local information
using the contents of the BREAKLINKS message and
re-execute the local computation. Note that if there
is some node inside (OPN;Na, the predicate Delau-
nayAp(Ny, No) is immediately switched to false. A
very simple way of checking this condition was pre-
sented by Sibson in [23].

Dynamic Aspects of the Algorithm: As noted before, to cope
with a dynamic topology, the algorithm must take into account
the following aspects: i) the failure of nodes; ii) the emergence
of new nodes and, as a consequence, the possibility of nodes
having a different view of the network topology.

Node failures and departures (to simplify the presentation,
we do not distinguish these two events, however departures are
handled in a more gracious way to allow for redistribution of
keys) are detected through the absence of BEACON messages
from that node. When some neighbor of F' detects that node
F failed, it recomputes the Delaunay triangulation and sends a
FAILURE message to all its Delaunay neighbors. All nodes that
are neighbors of F' should resend the FAILURE messages of F.
This ensures that all Delaunay neighbors of ' become aware
of its failure. Since network is asynchronous, nodes must store
information about the failure of F'. Therefore, FAILURE and
BREAKLINKS messages include a (possibly empty in the case
of a BREAKLINKS message) list of nodes that are known to be
failed. If after a TRIANGULATE message from P, N replies
with a BREAKLINKS message, with indication of some node
F, that P knows to be failed, P sends a FAILURE message
and later retries the triangulation.

It is also possible for nodes to enter the graph at any instant.
Assume that P becomes aware of the presence of some new
node @ and, as a result of recalculating the Delaunay triangu-
lation, some triangles, Delaunay/A p (N7, No) commute from
true to false. In such case P sends a BREAKLINKS message to
the vertices of those triangles. If DelaunayA p(Q, N1) is true
for some node Ny, P will again send TRIANGULATE messages
as described before.

Optimizations. For clarity of exposition, we deferred dis-
cussion of the following issue: BREAKLINKS and FAILURE
messages should not carry indefinitely information about all
nodes that failed in the past, as this could become a con-
siderable overhead. Therefore, N only resends information
that F' failed to some peer node A until A acknowledges.
However, even if all the Delaunay neighbors of N are aware
of F’s failure, it is still possible for some other node P,
that was previously not a Delaunay neighbor of A, to try
the triangulation AAPF. This would require N to store
information of F' forever. This problem is overcome in practice
by discarding information of F' after the expiration of a
timeout.

Four or More Co-circular Nodes: If four or more nodes are
co-circular and there is not any other node inside that circle,
Delaunay triangulation is no longer unique. This represents a
challenge to the algorithm, because, even if provided with the
same information, nodes may not agree with each other on
the correct triangulation. This problem is solved as follows. If

node C; is co-circular with n > 3 other nodes C>,...,C, it
considers all these neighbors as its Delaunay neighbors. This
ensures that all co-circular nodes, C;, become aware of each
other’s failures. All we have to do is to ensure that nodes use
the same algorithm to arbitrarily triangulate inside the circle.
Whenever three co-circular nodes agree on some triangle
C;C;Cy, they will exchange TRIANGULATE messages among
themselves. If a node disagrees on some triangle C;C;Cj
it sends a BREAKLINKS message to update information of
the peer, where it includes all the co-circular nodes that
it knows. Theorem A.1l, presented in the Appendix, shows
that the triangulation between co-circular nodes cannot have
overlapping triangles. Therefore, since information increases
at nodes, triangulation of co-circular nodes terminates and is
correct.

E. Soace Division

For each point in space there is one and only one responsible
GeoPeer node. Therefore, the region of responsibility of each
node defines a division of the space into non-overlapping adja-
cent areas. This division is based on the Delaunay triangulation
used to support routing and it ensures that a node can only
be responsible for a point which is inside of the Delaunay
triangle in which it participates.

Unfortunately, a simple division in Voronoi cells does not
satisfy the previous constraint, because Voronoi cells may
cross triangle borders and this would make nodes responsible
for points outside their triangles as depicted in Figure 2a.
Therefore, the following algorithm is used to divide the space
in GeoPeer: nodes must determine the circumcircle and the
perpendicular bisectors for each of its Delaunay triangles, as
depicted in Figure 2b. In “well behaved” triangles, where
the point O lies inside the triangles, division of the space
is straightforward and is done according to the figure. Areas
Ay, A and Ac cover the entire triangle and define the set
of points that are, respectively, closer to A, B and C. If
the point O lies outside the triangle, such a division is still
possible. However, in this case, two of the areas will not
share a common border. Trivial tie-breaking mechanisms, not
involving any communication, are used to define to which node
belong the points in the perpendicular bisectors and points
dividing two different triangles.

A problem occurs near the borders of the plane, where
no further triangulations are possible. In this case we use a
proximity criterion to determine the areas of responsibility of
the nodes. Figure 2c depicts this division.

F. Routing

Routing between GeoPeer nodes (not considering LRCs)
resumes to routing in a Delaunay triangulation. A myriad
of routing algorithms that are typically used in the context
of wireless ad hoc networks can be used in a Delaunay
triangulation, namely compass, randomized compass, greedy
or Voronoi [17], [21]. Figure 3 depicts an example of routing
from source node S to destination node D. Greedy algo-
rithm will select the neighbor of S closest to D, which is

B
a) b)

Fig. 2.

Fig. 3.

Routing algorithms

Py, compass algorithm will select P,, because Z/P,SD is
the smallest angle possible, defined by SD (in the figure,
/P,SD = 230, while ZP;SD = 300), randomized compass
will select either P, or P, and Voronoi algorithm will select
P, first and Pj afterward. Note that these routing algorithms
also work if start and end points do not correspond to nodes,
but to arbitrary points in space, because these points must
have some responsible node that will either send or receive a
message on their behalf. In GeoPeer, we have opted to use the
greedy algorithm to route messages. The following paragraph
explains the rationale for this decision.

Bose et al. present in [21] a number of relevant results
on routing in triangulations: They proved that greedy algo-
rithm is not defeated by any Delaunay triangulation; compass
algorithm is not defeated by any regular triangulation?; and
randomized compass is not defeated by any triangulation;
Voronoi routing algorithm is also not defeated by any Delau-
nay triangulation. Therefore, all these algorithms work in a De-
launay triangulation. Unfortunately, none of these algorithms
is competitive. Informally, a routing scheme is competitive if
for any pair of source and destination nodes the scheme always
finds some path within a constant of the best possible path.
In the same work [21] Bose et al. presented a competitive
algorithm called parallel Voronoi. However, despite not being
competitive in some particular cases, experimental results

2See [20] for a definition of regular triangulations. Delaunay triangulation
is a particular case of a regular triangulation.

Outside areas 1

/c)

a) Voronoi cells (dashed lines) cross triangle boundaries, b) Circumcircle, c¢) Outside areas

show that greedy and compass algorithms achieve very good
results in general [18]. Additionally, parallel Voronoi algorithm
consists of going back and forth along faces of triangles and
does not seem very promising in practice. Therefore, we prefer
the simpler not competitive, but efficient in practice, greedy
algorithm.

G. Applications of GeoPeer

GeoPeer may, as any other decentralized peer-to-peer sys-
tem, be used to support any sort of application that benefits
from a scalable implementation of a distributed hash table,
such as, for instance, decentralized storage services [24]-[26].
However, some of the characteristics of GeoPeer, like location-
awareness and uneven distribution of nodes, make it specially
fit for the support of location-aware services. We now illustrate
the benefits of the architecture by giving some examples of
context-aware services that can be trivially implemented on
top of GeoPeer.

« Geographically-scoped multicast. This service consists in
disseminating a notification to all nodes located inside
a given geographic region. This service can be used,
for instance, to disseminate an alarm about some natural
disaster such as a storm, flood or fire. The service can
be easily implemented by routing a notification to the
GeoPeer nodes responsible for the center of that area
which will, in turn, initiate a scoped-broadcast of the noti-
fication, using the technique proposed in [13]. It should be
noted that, with the exception of a bi-dimensional CAN
(and variations like eCAN) no other peer-to-peer system
would directly support this service. Furthermore, the use
of Delaunay triangulations make GeoPeer more efficient
than CAN or eCAN.

« Geographically-scoped queries. This service is the coun-
terpart of the previous service. It is used to collect
information from nodes located inside a given geographic
region. This service can be used for environmental or
security monitoring of geographical areas by connection
the relevant sensors to the GeoPeer nodes. It can also
be used to collect more mundane information, such as
the location of cinemas or bars in the vicinity of a
given location. The service works by having the node

responsible for the center of the region of interest acting
as an ambassador of the client. This node can efficiently
query all nodes in a given diameter, collect all the
replies, and send the consolidated information back to
the client in a single message. If needed, the proxy can
also perform data fusion services (such as computing
averages, selecting the lowest or highest values, etc).

o Other location-aware services. GeoPeer also opens new
less obvious possibilities for applications that need to
determine location of critical resources, like a rendezvous
point in a core-based multicast tree [27] or in publish-
subscribe applications [28], [29]. However a complete
exploration and evaluation of such solutions is beyond
the scope of this paper.

H. Challenges

If routing in GeoPeer was based exclusively on the use of
a greedy algorithm, the resulting network operation would be
inefficient due to the large network diameter of the under-
lying Delaunay triangulation; namely, communication in the
GeoPeer network would have a very large latency. Therefore,
we need to enhance GeoPeer with mechanisms capable of
reducing the network diameter.

A simple solution to the previous problem consists in using
a method that we have dubbed geographical ping. This method
works as follows. When some node N wants to repeatedly
send a message to some point of GeoPeer, say P, it sends a
ping to P that should be replied by the node responsible for P,
say M. Then N may set up and periodically refresh a tunnel
to M directly using IP, thus bypassing a number of GeoPeer
nodes. Of course, this solution only works if the number of
messages exchanged is worthwhile the initial ping effort.

Another more versatile solution that we explore in this paper
is the use of long range contacts (LRCs). Clearly, LRCs play
a critical role in GeoPeer as they can significantly reduce
network diameter, thus improving performance. In the next
section we propose and compare a number of mechanisms
that manage LRCs.

IV. LONG RANGE CONTACTS (LRCs)

The goal of establishing LRCs is to reduce the network
diameter, that is typically too high both in networks like
CAN and in networks based on Delaunay triangulations. By
carefully selecting LRCs, it is possible to effectively reduce
network diameter, while, at the same time, maintaining a
limited expected node degree (constant or at worst logarithmic
with respect to the maximum number of nodes). Hopefully, it
should be possible to establish and maintain LRCs in a simple
and expedite way, to reduce the overhead caused by these
mechanisms. Greedy routing using LRC is a simple extension
of the basic Delaunay triangulation: all Delaunay neighbors
and all LRC are eligible to be the next hop. The neighbor or
LRC closest to destination is chosen.

GeoPeer improves previous work [12] by supporting three
new schemes, plus a scheme derived from eCAN, to es-
tablish and maintain LRCs that are suitable to be used in

a) b)
L I
t L]
L LI e JE]
L L LA
(/ / | oo
| e
/ [
A\Q*' L, o o
c) d)
Fig. 4. LRC mechanisms: a) Hop level, b) Hit count, c) Small-world, d)
eCAN-like

networks with heterogenous node density and in networks
based on geographical identifiers. As it will be seen, our LRCs
mechanisms obtain highly efficient results with considerable
less computational overhead than previous work. The LRCs
schemes supported by GeoPeer, which are described in the
next paragraphs, are: a hop level mechanism, a hit count
balancing mechanism, a small-world mechanism and a eCAN-
like mechanism (for comparison).

A. Hop Level Mechanism

In the hop level mechanism, nodes try to avoid doing more
than a predefined number of hops, say b hops. For instance,
if some node A, is forwarding a message from N and if A
is the b-th hop of the message, N should create a LRC to
A;. To do this, A; sends a message prompting N to create
a LRC to itself. The process is repeated, this time starting
at A,: if after b hops, message reaches Ay, A; will create
a LRC to A,, and so on. Now suppose that the following
series of b LRC is created: NAq, A1As, ..., Ap_1A4s. In this
case, a new LRC from NV to A, would be created. This new
LRC would be one level above of the others, i.e., while LRC
NA;, A1A2, ..., Ap_1A, are of level 1, LRC N A4, is of
level 2. The creation of LRC, possibly with increasing levels,
is recursively repeated until message reaches its destination.
Figure 4a illustrates the main idea. Hence, no more than b—1
hops are allowed in each of the levels, without raising the
creation of a LRC in the next upper level. The creation of
LRC is done according to the following property: the level
of each LRC is determined by powers of base b, such that a
LRC of level I jumps over b hops. Last possible level L is
selected in a way such that b+ is the smallest power beyond

the greatest possible number of hops existing in the space (i.e.,
greater than the number of existing identifications). In practice
no more than a small number of levels is used. For instance,
in our simulations with 50000 nodes and with b = 4, no more
than 5 levels were ever used.

To implement hop level LRC scheme, messages must carry
two variables per level: the number of hops and the first node
of that level. Initially, all values are clear. The jumps of level
[and the creation of a LRC of level [trigger the following
actions: (i) reset the message hop-count of all inferior levels <
1, (i7) set the forwarding node as the originator of the message
for all inferior levels and (ii7) increment the hop-count of level
[(this step may raise the creation of a new LRC). For instance,
if b = 4 and node N is the 4-th hop of level 3 (order of 43
hops) and node S is the origin of the first level 3 hop, S
creates a LRC of level 4 to N. Further, to send the message,
N resets the number of hops for levels 0, 1, 2 and 3, marks
itself as the origin of the paths of those levels and increments
the number of hops for level 4.

Finally, we need to limit the number of LRC per node,
because the previously described mechanism would lead to
an unbounded increase of LRCs. Moreover, since the system
is dynamic, some nodes that are LRCs may fail and new
nodes may emerge. Therefore, nodes continuously refresh their
LRC lists, by adding new contacts as they are identified and
discarding least recently used contacts, whenever needed.

B. Hit Count Balancing Mechanism

In the Hit Count Balancing method, nodes start by arbitrar-
ily selecting a predetermined number of LRCs in a way that
evenly spreads those LRCs by the existing space. LRCs have
hit counters, initially set to 0, that serve to count the number
of times they were referenced. For instance, when routing
algorithm uses one LRC, say to node L, the hit counter of
LRC L, is incremented. Periodically, nodes will check which
LRCs are used more often and which ones are rarely used.
LRCs with many references are split, while LRC with few
references are discarded. The goal is to keep the hit counters
of all LRCs balanced, to achieve the best possible utilization of
these LRCs. In fact, most often used LRCs should correspond
to densely populated zones, or more precisely to zones with
many contacts, while least often used LRCs should correspond
to zones with fewer nodes or contacts. To ensure that hit
counters do not diverge their value is periodically halved?.

To determine which LRCs are to be eliminated and which
ones are to be split we use the following algorithm. First,
each node classifies its LRCs according to the values of the
corresponding hit counters. This classification uses as a refer-
ence value the average of all LRCs’ hit counters and considers
four different levels: values above the twice the average are
classified as “veryhigh” while values above the average but
below this threshold are considered “high”; similarly, values
below half the average are classified “verylow” while values
below the average but above this threshold are deemed “low”.

3Since >-52,1/2% = 2, counters will not diverge.

The algorithm tries to split all the LRCs that are “very-
high” as long as there are enough “low” LRCs, which
gives min {veryhigh,low} top LRCs to be split and the
same number of lowest hit counter LRCs to be eliminated.
The symmetric procedure is applied to “verylow” LRCs: we
eliminate them as long as there are enough “high” LRCs
to be split, which gives min {high, verylow} LRCs. Hence,
the total number of LRCs to be split from the top of the
list and the total number of LRCs to be eliminated from
the bottom of the list is given by the following formula:
max{min {veryhigh, low} , min {high, verylow}}.

Determining the location of a newly created LRC obtained
after splitting is also an interesting problem that we solve in
a simple but efficient way. We start by dividing the space in
Voronoi cells of the existing LRC. Then we split LRC L; as
follows: the original pointer L, remains in the same place;
the newly created pointer L,, goes to one of the vertexes of
the Voronoi cell of L, say a vertex defined by the borders
of the Voronoi cells of L;, L, and L,. This algorithm is
illustrated in Figure 4b. Note that this vertex maximizes the
minimum distance of L,, to L, L, and L,. From the several
possible vertexes of the Voronoi cell of L; we select one that
is simultaneously (¢) distant from L, and (i) has LRC L,
and L,, with high hit counters. This process is not too different
from choosing a location for opening a new branch of the same
company, e.g., a restaurant: the restaurant should be located
as far as possible from the others in a densely populated zone.
Finally, to conclude the splitting process, hit counter of L is
evenly divided by L; and L,,.

C. Small-World Mechanism

Small-worlds [14], [30] have some interesting properties,
like constant node degree and squared logarithmic network
diameter. In the small-world mechanism, nodes have some
previously set limit for the number of LRCs, say ¢, that
are selected as follows. First, the entire space is divided
into n squares (assuming that the space is itself a square),
whose centers are the points eligible to be the LRC for that
square. Since ¢ < n we need to use a random process that
outcomes centers of squares as LRC. Hence, we make q trials
to determine the LRCs. To determine the probability of each
one of the possible outcomes we adapt the utilization of the
r-harmonic probability distribution of Equation 1, p,.(U, V),
used in the work of Kleinberg [14]. Here, U is the node
selecting the LRC, while V is the center of a square. Note
that, the probability of selecting center V' to be a LRC of U
decreases exponentially with the distance of U to V. Note
also that the term >y, d(U,W)~" is used to normalize
the probability distribution p,.(U, V). Drawing from the con-
clusions of Kleinberg we will set » to 2. Barriére et al. [15]
also use this distribution, but to build a small-world model by
augmenting a ring.

P V) = 2OV

B Ywzy AU W)™ @

Note that unlike previous work we do not assume a well-
behaved network, like a mesh or a ring, where nodes have
access to global information, e.g. the existing number of nodes,
because it would not be reasonable in a peer-to-peer system.
This kind of knowledge allowed other authors to use the
harmonic distribution directly on peer nodes. Since we cannot
do that, we circumvented the problem by dividing the space
into squares. Of course, this raises an additional problem:
the centers of the squares will probably not correspond to
any existing node. Therefore, the node responsible for the
center point serves as the de facto LRC. Note that this
LRC management scheme does not adapt to unbalanced use
of identification space. Figure 4c illustrates the small-world
scheme.

D. eCAN-like Mechanism

To enable a comparison with eCAN, we use a mechanism
that builds LRC in a way that closely resembles the express-
ways of eCAN. We must emphasize that this mechanism
is an extremely simplified version of the complete eCAN
solution, that only captures the fundamental impact of the
expressway mechanism in routing, and does not attempt to
reproduce other features of eCAN (such as the mechanisms
that provide support for complex interaction schemes like pub-
lish/subscribe). In spite of these simplifications, we believe that
our implementation of expressways mimics the eCAN LRC
mechanism with enough accuracy to allow a fair comparison.

Hence, the idea is to make a first level division of the entire
space in four big squares. Each node keeps LRC to two of
these four squares: one to some node that is in the square
above/below, the other to some node that is in the square at
right/left. Then, the four big squares are further divided in
other four smaller squares. This time, some of the squares
in the middle may have a total number of four LRC (above,
below, right and left). This process is repeated for as many
levels as wanted. Figure 4d illustrates the eCAN-like LRC
scheme. In our context we set the number of LRC to some
predetermined level and stop creating new LRC as well as
new subdivisions as soon as that number is reached. Since
we select random points inside the squares we must proceed
in a way similar to the small-world mechanism. Hence, the
effective long range contact is the node responsible for the
point that was randomly selected.

V. EVALUATION

In this section we experimentally evaluate GeoPeer through
simulation. More precisely, we compare the average number
of hops needed by the greedy routing algorithm under the
different LRC schemes (pure Delaunay triangulation, hop level
LRC, hit count LRC and small-world LRC) to route a message
between two arbitrary nodes, under the following variables
conditions: (¢) 100, 500, 1000, 5000, 10000 and 50000 nodes;
(47) 10, 20 and 30 contacts; and (:¢7) balanced distribution of
nodes, vs. unbalanced distribution. In the unbalanced distri-
bution, nodes are more likely to be near the four corners of
the square than anywhere else. We experimented more than

120 -

100 -

-+ log

80 1 -=--log"2

—— Delaunay
60 —=— Hop level
—— Hit count
~---Small-world
—=—eCAN-like

Hops

40

20 A

100 500 1000 5000 10000 50000

Nodes

Fig. 5. Number of hops with 10 LRC - balanced scenario

--=--log

..... log"2

—— Delaunay
—a—Hop level
—— Hit count
----Small-world
—+—eCAN-like

Hops
N
(53]

100 500 1000 5000
Nodes

10000

Fig. 6. Number of hops with 30 LRC - balanced scenario

120 test scenarios. To let adaptive LRC schemes converge
we never included in the figures more than the final 5% of
the paths in each test scenario. Due to space constraints, it
is impossible to present in the paper the results from all the
test scenarios identified above. Therefore, we present only the
most representative and omit those that show similar results.

Figures 5 and 6 present the number of hops for each
of the routing schemes, including the log(n) and log?®(n)
functions, for a balanced distribution of nodes. Figures 7 and
8 present the same metrics, but for a more realistic network,
with an unbalanced distribution of nodes. Then, in Figure 9,
we compare hit count, small-world schemes and eCAN-like
against themselves in the balanced distribution, when the
number of LRC is limited to 10 and 30. For the sake of
readability, figures for 20 LRCs are omitted, because they fall
between figures for 10 and 30 LRCs. We did not depict values
for the hop level scheme in this figure because it is insensitive
to this configuration parameter: this is due to the fact that
for the network sizes we tested, most nodes in this scheme
never collect more than a few LRCs (typically less than 10).
Finally, in Figures 10 and 11 we, respectively, compare the
performance of the hop level LRC scheme in the balanced vs.
unbalanced scenario and then the same figures for hit count,
small-world and eCAN-like schemes, with 10 LRCs.

From the graphics we can draw the following conclusions:

« in our experiments, the number of hops in all LRC
management schemes were between log(n) and log®(n).

120 ~

100 -

-+ log

80 - -=--log"2

—— Delaunay
60 - —=— Hop level
—— Hit count
~---Small-world
—=—eCAN-like

Hops

40

20

100 500 1000 5000

Nodes

10000 50000

Fig. 7. Number of hops with 10 LRC - unbalanced scenario

60

50 4

--+--log
--=--logh2

—— Delaunay
—=—Hop level
—— Hit count
—-—-Small-world

20
// - —— eCAN-like

10000

40 -

o
w
S

100 500 1000 5000
Nodes

Fig. 8. Number of hops with 30 LRC - unbalanced scenario

Nevertheless, graphs show that, at least hit count and
small-world are closer to log®(n) when n grows, while
the growth of hop level and eCAN-like is clearly more
moderate;

o the number of LRCs per node did not emerge as an
important factor, except for eCAN-like mechanism, that
improves considerably with the increase in the number of
LRC. Our interpretation of this fact is that performance
of this mechanism is largely dependent of the size of the
network. Either this size is accurately approximated, or,
if the size of the network is underestimated, performance
is likely to degrade;

« the distribution of the nodes in space matters. Clearly, it
is essential to take into account the uneven distribution
of nodes in space in peer-to-peer systems based on
geographical location. From the experiments, the hop
level scheme emerges as the less affected by an uneven
distributions of nodes;

« of all the LRC management schemes we compared, hop
level is the one that presents best results with a small
number of LRC as the network size increases, while
eCAN-like benefits more from a large number of LRC.
Hence, hop level demonstrates to be quite immune to
the selected number of LRC or to node distribution, thus
precluding the need to any kind of a priori configuration.
Additionally, hop level does not need any initial setup,
because nodes establish LRCs on the fly. Therefore, while

[N
o
\

--+-- Hit count 10
e —=— Small-world 10
) -+--eCAN-like 10
--m-- Hit count 30
—— Small-world 30
--<--eCAN-like 30

Hops

o P N W A OO N ® ©
L T

100 500 1000 5000
Nodes

10000

Fig. 9. Comparison of hit count, small-world and eCAN-like limited to 10
and 30 LRC
9 .
8 .
7 .
6
g 5 ~-+--Bal. hop level
Iy et —=— Unbal. hop level
3 f//
2
1
0 ‘ ‘ ‘
100 500 1000 5000 10000 50000
Nodes
Fig. 10. Hop level LRC scheme in balanced vs. unbalanced distribution

in static scenarios, where the node distribution in space in
known beforehand, the eCAN-like scheme exhibits some
advantages provided appropriate configuration is given to
nodes, hop level is a preferable choice, if the environment
is unknown.

As a final remark, these experimental results show the
validity of our LRC solutions, in particular the use of the hop
level mechanism. Unlike eCAN, that mixes in a single solution
the support for LRCs with the support for complex interaction
schemes such as publish/subscribe, the mechanisms proposed
in this paper are light-weight, but, nevertheless, efficient. In
particular, our novel hop level mechanism achieves excellent
results even in scenarios with unbalanced distribution of nodes.

V1. CONCLUSIONS

This paper makes two major contributions: 3) it defines a
peer-to-peer architecture called GeoPeer, intended to support
location-aware applications; and i7) it defines and compares
three different algorithms to manage Long Range Contacts
(LRGCs). In spite of being studied in the context of GeoPeer,
these LRC mechanisms are more general and can be applied
to other systems as well.

GeoPeer is a peer-to-peer system that can be used to
provide services to location-aware applications. These services
include geographically-scoped multicasts or geographically-
scoped queries, which can be used by applications willing

18 A n
16
14 - -+~ Bal. hit count
12 4 —=— Bal. small-world
é’_ 104 ----Bal. eCAN-like
T -m-- Unbal. hit count
8 1 —— Unbal. small-world
64 ----Unbal. eCAN-like
4 4
2
0 ! ! |
100 500 1000 5000 10000 50000
Nodes
Fig. 11. Hit count, small-world and eCAN-like in balanced vs. unbalanced
distribution

to spread some alarm within a limited region or applications
searching for local facilities, like restaurants or cinemas, for
instance. Additionally, location properties offered by GeoPeer
can be explored by other more complex applications, like core-
based multicast trees or publish-subscribe systems, to improve
location of critical resources.

The fundamental core that supports location-aware routing
in GeoPeer is a Delaunay triangulation of nodes. However, if
exclusively based on a Delaunay triangulation, performance
of GeoPeer would be seriously compromised by a very large
network diameter. Therefore, we proposed and validated exper-
imentally three light-weight but effective schemes to augment
the Delaunay triangulation with LRCs. As can be drawn by
these experimental results, the best LRC schemes achieve
results between log(n) and log®(n) even in the presence of
unbalanced node distribution, a fundamental characteristic of
location-aware peer-to-peer systems.

Acknowledgements

The authors are thankful to Patrick Eugster and Rachid Guerraoui
for their comments on earlier versions of this paper.

REFERENCES

[1] G. Chen and D. Kotz, “A survey of context-aware mobile computing
research,” Dept. of Computer Science, Dartmouth College, Tech. Rep.
TR2000-381, November 2000.

[2] H. Maass, “Location-aware mobile applications based on directory
services,” Mobile Networks and Applications, vol. 3, no. 2, pp. 157-
173, 1998.

[3] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava,
“Coverage problems in wireless ad-hoc sensor networks,” in INFOCOM,
2001, pp. 1380-1387.

[4] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” Lecture Notes
in Computer Science, vol. 2218, pp. 329-350, 2001.

[5] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An
infrastructure for fault-tolerant wide-area location and routing,” UC
Berkeley, Tech. Rep. UCB/CSD-01-1141, Apr. 2001.

[6] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable Peer-To-Peer lookup service for internet applica-
tions,” in ACM SSGCOMM, San Diego, August 2001.

[7] P. Fraigniaud and P. Gauron, “The content-addressable network D2B,”
LRI, Univ. Paris-Sud, France, Tech. Rep. 1349, Jan 2003.

[8] F. Kaashoek and D. R. Karger, “Koorde: A simple degree-optimal
distributed hash table,” 2003.

[9]1 D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: A scalable and
dynamic emulation of the butterfly,” in Twenty-First ACM Symposium
on Principles of Distributed Computing (PODC 2002), Monterey, Cali-
fornia, July 2002.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A
scalable content-addressable network,” in Conference on applications,
technologies, architectures, and protocols for computer communications.
ACM Press, 2001, pp. 161-172.

L. Garcés-Erice, K. Ross, E. Biersack, P. Felber, and G. Urvoy-Keller,
“Topology-centric look-up service,” in COST264/ACM Fifth Interna-
tional Workshop on Networked Group Communications (NGC), Munich,
Germany, 2003.

Z. Xu and Z. Zhang, “Building low-maintenance expressways for p2p
systems,” HP, Tech. Rep. HPL-2002-41, 2002.

J. Liebeherr, M. Nahas, and W. Si, “Application-layer multicasting with
Delaunay triangulation overlays,” University of Virginia, Department of
Computer Science, Tech. Rep. CS-2001-26, 5 2001.

J. Kleinberg, “The Small-World Phenomenon: An Algorithmic Per-
spective,” in Proceedings of the 32nd ACM Symposium on Theory of
Computing, 2000.

L. Barriere, P. Fraigniaud, E. Kranakis, and D. Krizanc, “Efficient
routing in networks with long range contacts (extended abstract),” in
15th Internation Conference on Distributed Computing, ser. Lecture
Notes in Computer Science, J. Welch, Ed., no. LNCS 2180. Lishon,
Portugal: Springer, October 2001.

J. Hightower and G. Borriella, “Location systems for ubiquitous com-
puting,” |EEE Computer, vol. 34, no. 8, pp. 57-66, 2001.

I. Stojmenovic, “Position-based routing in ad hoc networks,” IEEE
Communications Magazine, July 2002.

X.-Y. Li, G. Calinescu, and P.-J. Wan, “Distributed construction of a
planar spanner and routing for ad hoc wireless networks,” in The 21st
Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), 2002.

L. Lan and H. Wen-Jing, “Localized delaunay triangulation for topo-
logical construction and routing on manets,” in 2nd ACM Workshop on
Principles of Mobile Computing (POMC’02), 2002.

G. M. Ziegler, Lectures on Polytopes, ser. Graduate Texts in Mathemat-
ics. New York: Springer-Verlag, 1994, no. 154.

P. Bose and P. Morin, “Online routing in triangulations,” in 10th Annual
Internation Symposium on Algorithms and Computation (1SAAC), 1999.
J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zhu, “Geometric
spanners for routing in mobile networks,” in 2nd ACM Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc 01), 2001.

R. Sibson, “Locally equiangular triangulations,” The Computer Journal,
vol. 21, no. 3, pp. 243-245, 1977.

J. Douceur and R. Wattenhofer, “Optimizing file availability in a secure
serverless distributed file system,” in Proceedings of 20th IEEE SRDS
2001, pp. 4-13.

P. Druschel and A. Rowstron, “Past: A large-scale, persistent peer-to-
peer storage utility,” in HotOS VI11, Schoss Elmau, Germany, May 2001.
S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and
J. Kubiatowicz, “Maintenance-free global data storage,” IEEE Internet
Computing, vol. 5, no. 5, pp. 40-49, 2001.

A. Ballardie, “Core based trees (cbt version 2) multicast routing,”
Request for Comments 2189, September 1997.

P. Pietzuch and J. Bacon, “Hermes: A distributed event-based mid-
dleware architecture,” in 22nd |EEE International Conference on Dis-
tributed Computing Systems Workshops (DEBS ' 02), 2002.

M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, “SCRIBE: A
large-scale and decentralized application-level multicast infrastructure,”
IEEE Journal on Selected Areas in communications (JSAC), 2002.

D. Watts and S. Strogatz, “Collective dynamics of small-world net-
works,” Nature, no. 393, pp. 440-442, June 1998.

Appendix

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]
[29]

(30]

A. PROOFS
Theorem A.1 Triangulation between co-circular nodes can-
not have overlapping triangles.

Proof: We assume that the remaining triangulation
(outside the circle) is correct. This implies that nodes that

are consecutive in the circle line are Delaunay neighbors.
If there are two overlapping triangles there are at least two
crossing edges, say C;C; and C,,,C,,. Now consider all the
consecutive nodes between C; and C,, in the circle line,
C; = Cp,Cpt1,...,Cppq = Cpy. Consider without loss
of generality that C), is at the right of edge C;C;. Since
Cp41 triangulates with Cj, triangles of Cp1 must also be
at right of C;C;. Additionally, C,» triangulates with C,14
and, therefore, triangles of C,1o must also be at the right of
the triangle defined by C; and C),; and by majority of reason
at the right of C;C;. Hence, by induction, C,,,C,, is at the right
of C;C;, which is impossible, and therefore, no overlapping
is possible.]

