
Cornell Technical Report (Revised) cul.cis/TR2005-1980

Thwarting P2P Pollution Using Object Reputation

Kevin Walsh and Emin G̈un Sirer

Department of Computer Science
Cornell University, Ithaca, NY, 14850

Abstract

This paper describes Credence, a distributed object rep-
utation management scheme for combating content pol-
lution in peer-to-peer filesharing systems. Credence en-
ables honest peers to assess the authenticity of online
content by securely tabulating and managing endorse-
ments from other peers. Credence employs a novel voter
correlation scheme to weight peer opinions, which gives
rise to favorable incentives and system dynamics. We
present simulation results indicating that our system is
scalable, efficient, and robust.

1 Introduction

By all measures, peer-to-peer filesharing has become a
significant feature of the Internet. Many existing net-
works, however, are rife withpollution in the form of
corrupt or mislabeled content, and recent studies indicate
that much of this is deliberate [7]. Pollution makes it dif-
ficult to find sought objects, and can be a major security
concern if if the polluted object caries a virus.

Deployed networks rely on ad-hoc and unreliable mea-
sures, such as the advertised or apparent popularity of ob-
ject, or concentrate the trust for the entire system in a few
hand-picked peers. In short, existing systems do not in-
corporate mechanisms that allow diverse groups of peers
to evaluate an object’s reputation with confidence.

A number of papers have addressed issues of trust and
reputation in peer to peer systems. Several key insights
set our approach apart from this previous work. Most
fundamentally, we believe that the problem of pollution
can best be addressed by computing reputations forob-
jects, rather than forpeers. The reasons for this belief are
many. Foremost, objects are immutable, and a client’s
evaluation of an object depends only on intrinsic prop-
erties of the object itself. Thus a client’s determination

that an object is polluted is final, an will not change over
time. By contrast, peer behavior is dynamic, and so must
be a client’s evaluation of that peer.

Also, because client evaluation depends only on the in-
trinsic properties of each object, we can reasonably make
an assumption of universality of the (hidden) evaluation
function used by honest clients. Keep in mind that our
system is meant to determine if an object is polluted or
authentic, in a fundamental sense, rather than if a partic-
ular client will have a preference for the object, as is the
case in typical recommender systems. A reputation sys-
tem relying on client evaluation of the interactions it has
with its peers cannot make any such claim to universal-
ity, since the evaluation is dependent on factors outside
the control of the peer. Namely, network conditions be-
tween client and peer, and even the local properties of the
client itself can often be the underlying cause for a failed
interaction. Whereas it is difficult in practice to ascribe
blame for a failed interaction between peers, there is no
such ambiguity when it comes to mislabeled, damaged,
or otherwise polluted content.

Finally, object reputations are an efficient and natural
compliment to swarming downloads. Such downloads of
self-certifying content is now the norm in many peer to
peer filesharing systems. Item ratings fit naturally with
this technique, by helping a client decide up front which
of several alternative objects are most likely to be authen-
tic. A single such evaluation can validate the entire set of
peers offering the same object. Only after this decision
of object authenticity is made might peer reputation be-
come useful by, for example, introducing a bias in the
selection of the subset of peers from which to perform a
multi-homed download.

In this paper we introduce Credence, a robust and de-
centralized system for evaluating the reputation of ob-
jects. Our goal is to enable peers to confidently gauge
object authenticity, the degree to which an object’s data

1

matches its advertised description. Credence encom-
passes three basic techniques to obtain reliable estimates
of authenticity. First, we employ a simple network-wide
voting scheme, where users contribute positive and neg-
ative evaluations of objects. Second, we enable clients
to weigh votes according to the statistical correlation be-
tween the client and its peers. And third, we allow clients
to extend the scope of their correlations through selective
information sharing. Our system is simple and effective,
and can be deployed incrementally in existing structured
and unstructured filesharing systems.

2 Related Work

Among peer reputation based systems are a number that
share similarities with our system, but from which we
diverge in important ways. Much of this prior work fo-
cuses on thefreeloaderproblem, which arises when some
clients do not contribute a fair share of bandwidth or stor-
age resources, rather than the pollution problem we ad-
dress in this paper.

Eigentrust [6], for example, performs a distributed
eigenvalue computation to determine for each peer a sin-
gle, network-wide reputation value based on the out-
comes of pairwise peer interactions. Due to the con-
sensus requirements of the protocol, Byzantine actors
can potentially prohibit the eigenvalue computation from
fully converging. The approach also relies on a set of
fixed, universally trusted nodes at which to root the com-
putation of trust, a limitation we do not share.

Bouchegger and Boudec [1] also advocate a per-peer
reputation approach, but clearly state the need for a sep-
aration between peer performance in the underlying file-
sharing system, called a “reputation” rating, and perfor-
mance in the reputation system itself, termed a “trust”
rating. This addresses to some extent the problem of
client perspective and dependence on extrinsic proper-
ties, discussed earlier, since a client is able to trust the
reputation evaluations of a peer regardless of the peer’s
filesharing performance. The secondary trust ratings are
derived as a function of the agreement or disagreement
of the primary reputation ratings. However, these pri-
mary inputs are still subjective, pairwise measurements
between peers, rather than objective per-object evalua-
tions.

P2PRep [2] is one of the few systems besides our work
that has been implemented in a live, fully distributed peer

to peer network. P2PRep requires peers to rank their in-
teraction with other peers, rather than focusing on ob-
jective evaluation functions such as object reputation. In
addition, like Bouchegger and Boudec’s work, P2PRep
incorporates a trust rating derived from the reputation
ratings. This trust rating is based on a simple threshold-
based agreement count, which can be more vulnerable to
manipulation than pairwise correlation metrics. P2PRep
lacks mechanisms for sharing trust evaluations between
peers, and requires peers to be online instead of using
static certificates to defer trust management to other peers
in the network. These features are critical due to the very
sparse nature of the workloads and session lengths ob-
served in typical peer to peer filesharing networks.

Guha et al. examine how both positive and negative
evaluations might be propagated through a web of pair-
wise observations made by peers in the network [4]. The
context of this work is quite different, with a focus on
recommender systems and the subjective preferences of
peers. The filesharing domain is also significantly more
adversarial than that of recommender systems. Despite
these differences, we share a similar model of informa-
tion propagation through a web of transitive, pairwise re-
lationships. One of the approaches suggested by Guha
et al., and adopted by us, is to allow a client to estimate
its relation to a distant peer through a chain of peers hav-
ing positive relationships, but disallow such transitivity
through negatively related peers, since two such negative
relationships does not necessarily imply a positive rela-
tionship.

By contrast to much prior work, our system does not
addresses freeloading or peer selection, but rather content
pollution, a fundamental weakness in open peer-to-peer
networks that is only recently gaining attention. Closely
related to this problem are those addressed by recom-
mender systems, which filter content based on user rat-
ings, and ratings systems for online marketplace, which
seek to identify trustworthy vendors and customers. In
practice, however, these systems rely on highly central-
ized and trusted computation, and are therefore not ap-
plicable to the peer to peer filesharing problem.

3 System Model

We consider peer-to-peer networks in which clients
search for objects using queries over meta-data. Here,
an object consists ofdata, and an associateddescriptor,

2

containing a unique identifier and serving as a pointer to
the data. The descriptor also contains meta-data to facil-
itate searching, such as the object name, encoding, and
description. A client issues queries to its peers in the net-
work in the form of keywords. Peers respond by sending
matching object descriptors back to the client.

At this point, the client must make a judgment about
the authenticity of each descriptor, before attempting to
fetch the associated data. In many networks, however,
some of the descriptors may be polluted, and contain
invalid meta-data or point to corrupt or malicious data.
Lacking any sound basis on which to make a judgment,
the client is often forced to use random selection, or ad-
hoc indicators of object popularity, such as the frequency
with which each descriptor was encountered. Our sys-
tem addresses content pollution by enabling the client to
make an informed decision about which descriptors are
likely authentic, and by providing incentives for peers to
contribute honestly in this evaluation process.

3.1 Endorsements

The basic mechanism in our system is a simple weighted
voting scheme in which any client may vote posi-
tively or negatively on any object. A vote is a pair
(〈ob jectID,value〉K ,certK) containing a cryptographic
signature, under the client’s keyK, of the object identifier
and a vote value from the set{−1,+1}, and a certificate
of authentication for keyK. The object identifier con-
sists of a hash of the object description, that is, the com-
plete set of keywords that are associated with the object
and determine if it matches a particular query, its version
number if there is one, and the hash of the object con-
tents. Client keys and certificates need not be bound to
real-world identities, but instead may rely on anonymous
pseudonyms, such as those employed in many popular
peer-to-peer networks. The certificate and signature al-
low other peers to verify the authenticity and uniqueness
of the vote.

A client interprets a positive vote as an endorsement of
the object’s authenticity (i.e., that the object data matches
its descriptor). Since object descriptors in practice typi-
cally contain only factual and easily verifiable informa-
tion, we assume that a large fraction of honest clients will
generate votes of equal value for a given object. Under
this assumption, a client judges the authenticity of an ob-
ject by estimating its reputation among the client’s peers.

3.2 Vote Evaluation

Votes are collected, evaluated, and aggregating by a
client wishing to estimate the reputation of a given ob-
ject descriptor. Although votes are generated with only
one of two possible values, they provide varying levels of
assurance to different clients. Unweighted voting is not
sufficient in this context, since votes may come from un-
trustworthy or unknown peers. Worse, it would provide
an incentive for an attacker to vote dishonestly on all ob-
jects since there would be no penalty for dishonesty.

From a client’s perspective, the weight of a peer’s vote
depends most directly on the relationship between client
and peer, and so the client weighs votes according to
the observed strength and bias of this relationship. In-
tuitively, two peers that tend to vote identically (or in-
versely) on objects should develop over time a strong
positive (or negative) weight for each other’s votes, while
peers having uncorrelated voting histories should essen-
tially disregard each other’s votes.

Statistical correlation captures precisely this notion of
the historical relationship between a pair of peers. We
compute a coefficientrAB, using the method of Phi cor-
relation, for two peersA and B as follows. Given a
set of n objects on which bothA and B have voted,
let A+ and B+ be the fraction whereA and B voted
positively, respectively, and similarly let(AB)++ be
the fraction where both voted positively. ThenrAB =
((AB)++−A+B+)/

√

A+(1−A+)B+(1−B+) is theco-
efficient of correlation, which takes on values in the range
[−1,1]. Positive values indicate thatA and B tend to
agree, negative that they tend to disagree, and|rAB|< 0.5
indicating weak or no correlation.

3.3 Voting Protocol

We now describe the protocol a clientA uses to estimate
the reputation of a given object. First, clientA issues a
vote-gatherquery to collect votes on the object and, as
with regular queries, some number of peers will respond
after inspecting their local state. Each response contains
a subset of the votes known to the responding peer, po-
tentially including the peer’s own vote. The impact of
this query on the network is bounded by having each
peer sub-sample its vote information, rather than send-
ing all known votes. The sub-sampling is biased in favor
of votes having the highest weight (from the peer’s per-
spective), in order to disseminate the most useful votes

3

further in the network. In practice, the vote-gather query
is implemented entirely using the underlying primitives
of the network, and can partially be combined with the
initial user query in a single round of interactions.

Once clientA has obtained a set of votes for the ob-
ject, each is cryptographically verified, stored locally for
later use, and then tabulated using a weighted average.
The weight for a vote from peerB is rAB, the correlation
betweenA andB, computed from information gathered
during earlier rounds of the protocol. The client inter-
prets the resulting averagev as a personalized estimate
of the reputation, and hence authenticity, of the object
and so can make a more informed decision to accept (and
fetch) or reject the object. Also, having locally cached
the votes collected during the vote-gather query, clientA
is now able to respond to vote-gather queries for this ob-
ject from its peers. Votes are shared regardless of if client
A ultimately accepts or rejects the object, and regardless
of whetherA’s vote, if any, agrees or disagrees with the
votes gathered. We next describe how this caching takes
place, and detail the state each client maintains in order
to execute the voting protocol.

3.4 Client Local State

Conceptually, each client maintains avote databasecon-
taining votes it has encountered. This database serves
both as a store of information from which to respond to
vote-gather queries, and as a dataset from which to com-
pute peer correlations. The database consists of, for each
object, a row for containing a timestamp, the client’s own
vote, if any, and a list all other votes encountered for the
object. Each time the client issues a vote-gather query,
the entire set of collected votes is cached in the vote
database. The size of a client’s local state is bounded by
retaining only the most recent additions to the database,
and by subsampling during vote collection.

Peer correlations are stored in a separatecorrelation
table, which is periodically updated by scanning the vote
database. For each peer in the vote database, the client
determines the set of objects for which it knows both the
peer’s vote and its own. These votes are then used to de-
rive a peer correlation value, with weak correlations im-
mediately discarded. Any strong correlations discovered
are cached in the correlation table for use later, both for
weighing votes during estimation and for selecting which
votes to send in response to vote-gather queries.

3.5 Transitive Correlation

Computing correlations directly from the local vote
database works well for peers having the most overlap
in interests, but often fails to discover relationships be-
tween peers with little in common. Nor does it allow a
client to leverage work done by other peers, but instead
forces all members of a closely correlated group to dis-
cover pairwise correlations independently. Clients can
avoid these problems by utilizingtransitive correlations.
This mechanism captures the notion that a strong positive
correlation betweenA andB, and again betweenB andC,
should be taken as an indication that all three peers tend
to vote in a correlated manner.

To effect this computation, each client maintains a di-
rected graph in which nodes represent network peers, and
a directed edge(A,B) with weightrAB represents the cor-
relation between a clientA and its peerB. Initially, a
client populates its graph with the correlations it com-
putes directly from its local vote database. The remain-
der of the graph is built by periodically selecting peers
in the network and requesting their known correlations,
as illustrated in Figure 1. This selection is random, but
biased towards peers for which a strong positive correla-
tion is already known, preferentially expanding the parts
of the graph that will be of most use.

A client computes transitive correlations by multiply-
ing weights along paths in the correlation graph. One
way to view this computation is that votes from distant
peers in the correlation graph are propagated back to-
wards the client using weighted voting at each step of the
process. As a simplification and optimization, instead of
performing a computationally expensive graph flow com-
putation, each client pre-computes only the max-path
from itself to every other node in the graph, and stores
any strong results found in its regular correlation table.

Trust is a concern whenever information is collected
from an untrusted, anonymous peer. Here, the peer may
lie about its correlations in an attempt to manipulate the
client’s correlation results. Our system employs two
strategies to minimize the effect of such actions. First,
the client can request a full or partial audit of the cor-
relations gathered from each peer it contacts for graph
edge updates. The audit consists of those votes that
the peer originally used to compute the edge weights.
This is made possible by having each peer share only
correlations it has directly computed from its local vote
database. Second, the correlation graph itself can be au-

4

+.9

-.7

+.95

+.9

-.7

+.95

+.9

-.8
+.8

+.9

-.7

+.95

+.9

-.8
+.8

-.9 +.8

+.8 +.9

-.7

+.95

+.9

-.8
+.8

-.9 +.8

+.8

+.8

+.8
A B

A A A
C

D

Figure 1: Illustration of clientA building its correlation graph, obtaining data in turn from peersB, C, andD.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

F
ra

ct
io

n
of

 q
ue

rie
s

(%
)

Client age (days)

(upper bound) correct classification
correct classification

(upper bound) correct positive classification
correct positive classification

Figure 2: Probe client classification success rate.

dited for inconsistencies, since it will typically contain
significant redundancies. For instance, the two edges be-
tween a pair of peers should be approximately equal, and
cliques of strongly correlated nodes should be internally
consistent.

The remainder of this paper presents simulation results
detailing the dynamic behavior of our system in a highly
polluted network.

4 Evaluation

We evaluate our object reputation system in a custom
discrete-event simulator written in Java. We model the
system as a growing set of objects, and a fixed set of
clients following a synthetic workload and implementing
the voting, correlation, and transitive correlations proto-
cols. We use a simple randomized topology with a fixed
search width to model the underlying peer-to-peer net-
work. In the next sections, we briefly describe the work-
load and client behaviors driving our simulations.

4.1 Clients, Objects, and Workload

We follow the abstract model of the Kazaa filesharing
network described in [5]. The network consists of 1000
clients initiating 5 queries per day on average for 100
days. Each client draws queries from a population of
40000 objects, with new objects introduced at a rate of

5475 objects per year.
It is not possible to derive from [5] the behavior of in-

dividual clients. Intuitively we would not expect clients
to behave uniformly, but rather thatclustersof clients
will share similar interest in objects. For example, recent
studies find a high degree of clustering in the eDonkey
filesharing network [3]. We model this effect by parti-
tioning the objects into 20genresand randomly assigning
clients to 4 genres each, such that the popularity of gen-
res, both in terms of object and assigned clients, follows
a Zipf(1.0) distribution. Within a genre, object popularity
follows a Zipf(1.0) distribution. A client makes a query
by selecting first a genre, then drawing without repeats an
object from the genre. Our measurements indicate that
the overall query popularity distribution matches that re-
ported in [5].

Two factors help model noise in the system. First, a
client that has computed a reputation estimatev will ac-
cept and fetch the object with probability 1 ifv = 1.0,
with probability 0 if v = −1.0, and with a linearly vary-
ing probability otherwise. Second, clients generate votes
on all objects that are accepted, but vote correctly with
only 90% probability, and randomly the rest of the time.

We model a highly polluted network, where approx-
imately half the objects are tagged as pollution, and the
remainder tagged as authentic. The remaining simulation
parameters are set with reasonable values to bound the
bandwidth and storage costs associated with the reputa-
tion management system, and to ensure that correlations
are robust to statistical variation.

4.2 Overall Success in Estimation

We evaluate the convergence and accuracy of our ap-
proach by tracking 20 probe clients inserted into the
network starting on day 50. We first measure the to-
tal fraction of correct classifications across these probe
clients. A correct classification is when a client com-
putes a strong positive estimatev > 0.5 for an authentic
object, or a strong negative estimatev < −0.5 for a pol-

5

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35 40 45 50

P
ee

r
co

rr
el

at
io

ns
 d

is
co

ve
re

d

Client age (days)

Figure 3: Average number of entries in probe client cor-
relation tables, with standard deviations.

luted object.
Figure 2 shows how the success rate varies as the probe

clients participate in the system. Also shown are up-
per bounds, the values that would have been attained
had the clients shared complete global knowledge of all
past votes on each object. The upper bound does not ap-
proach 100%, because a fraction of queries are for never-
before-seen content, which cannot be correctly classified
even using global information. By day 15, our scheme
achieves a high rate of success, maintaining roughly 80%
correct classification.

Of the queries not classified correctly, almost all are
instances where no estimate is obtained at all, and only a
few due to misclassification. These cases are split evenly
between authentic and polluted objects, and less than 9%
are for the 2000 most popular objects. This implies that
our system gives very accurate estimates for the most
popular objects, and rarely misclassifies even the least
popular.

4.3 Correlation Table Behavior

To explain the factors driving the overall success rate,
we turn our attention to the clients’ correlation tables.
If a client has discovered few or no strong correlations,
then the votes it collects during vote-gather queries are
of no immediate use, but rather only aid in building up a
database from which to later compute peer correlations.
Conversely, a client with many entries in its correlation
table will be able to use more of the votes it gathers, and
so obtain more robust and accurate object reputation es-
timates. Figure 3 shows the average size of clients’ cor-
relation tables, which can be seen to closely match the
overall success rate observed earlier in Figure 2.

After an initial period with an empty correlation table,
the rate of discovery of peer correlations quickly rises,

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

P
ee

r
co

rr
el

at
io

ns
 d

is
co

ve
re

d

Day

300 clients
1000 clients
2000 clients

Figure 4: Average number of entries in initial client cor-
relation tables.

so that the probe nodes have discovered 500 strong cor-
relations on average after 16 days. As will be illustrated
in the next section, the 1000 initial clients’ tables grow
much more smoothly and slowly, reaching a size of 500
only at day 40. This highlights the key role played by
transitive correlations in the quick convergence of the
system. The initial clients do not have the advantage
of existing peers from which to gather correlation data,
whereas a probe client’s table grows fast by taking ad-
vantage of the work done by earlier joining clients.

The initial lag time of approximately seven days, when
the average correlation table size remains zero, is due to
the lack of locally computable correlations. Recall that
all edges leaving a client in the correlation graph must
be computed by the client itself using only its local vote
database. In effect, until a newly introduced client estab-
lishes some voting history of its own, it cannot directly
or transitively compute correlations with any peers. This
initial delay can easily be eliminated in practice with the
use of a semi-trusted “sponsor” client from which the lo-
cal correlation table can be initialized.

4.4 Scaling

In order to assess the scalability of our protocol as the
size of the network varies, we ran the simulations with
proportionally larger and smaller networks. Figure 4
shows the average correlation table size of the initial
clients for each network. The total convergence time ap-
pears to grow approximately linearly in the size of the
network when measured in terms of the time needed to
derive correlations for half of the clients. However, note
that the overall success rate grows quickly as soon as
clients discover a few strong correlations, and that in
practice a limited number of entries is likely to be suffi-
cient to compute robust estimates, due to the high degree
of clustering of client interests expected in practice.

6

4.5 Dynamic Behavior

Our system contains subtle feedback loops that give rise
to resilience against attack, and help explain the system’s
overall dynamics. For instance, an authentic object tends
to follow an exponential increase in reputation, since cor-
rect positive votes induce a positive feedback cycle: Each
such vote increases the object’s reputation among corre-
lated clients. This in turn leads to more likely acceptance
and retrieval, and thus to additional positive votes. An at-
tacker voting negatively on this same object, however, in-
duces a damped response, since a lowering of perceived
value will not result in more negative results, but instead
will simply lower slightly the rate of acceptance.

For an object on which honest clients tend to vote neg-
atively, but an attacker votes positively, the system will
react strongly against the attacker. Each positive vote
in this case raises the expectations of the honest clients,
leading eventually to an increase in correct negative votes
which counteracts the initial, incorrect vote. Addition-
ally, the attacker will see a decrease in its correlation val-
ues with honest clients. The net effect is a disincentive
for an attacker to be dishonest too often.

4.6 Attacks

We have investigated the impact of several simple attacks
on our system, both analytically and through simulation.
Due to the dynamic effects discussed above, we can im-
mediately see that several attacks that are quite effective
in existing systems have little effect and, in many cases,
actually provide a tangible benefit to the system. For ex-
ample, a peer that consistently lies about the authenticity
of objects is just as useful as a peer that consistently gen-
erates honest votes, since in the former case the votes will
simply be multiplied by a negative weight. Voting ran-
domly, however, will lead to the votes being essentially
discarded as peer correlation values will converge to zero
in this case. A rational attacker, then, has an incentive to
vote honestly in order to keep from approaching either of
these extremes, and so must carefully balance the amount
of information leaked to the network.

Similarly, an attacker that deviates from the normal
protocol by gathering and disseminating only incorrect
votes is actually beneficial to honest clients. Indeed, it
typically allows an honest client to more quickly identify
those peers with which it is less correlated. Other similar
attacks can slow down the rate of information diffusion,

but do not alter the overall trends seen above.

5 Conclusion and Future Work

The object reputation system presented here is robust to
attack and converges quickly, on the order of a few tens
of queries for clients joining the system. However, we are
exploring several approaches that could further improve
the effectiveness and decrease the costs of our system.
We are experimenting with a randomized algorithm for
vote-set compression, which allows clients to store and
transmit more votes, resulting in more responsive and
more statistically robust peer correlation estimates. At
the same time, we are exploring the use of recent cryp-
tographic techniques that may allow clients to more effi-
ciently verify large numbers of signatures.

References
[1] Sonja Buchegger and Jean-Yves Le Boudec. A robust reputation system

for P2P and mobile ad-hoc networks. InWorkshop on the Economics of
Peer-to-Peer Systems, June 2004.

[2] Fabrizio Cornelli, Ernesto Damiani, Sabrina De Cabitanidi Vimercati,
Stefano Paraboschi, and Pierangela Samarati. Choosing reputable ser-
vents in a P2P network. InInternational World Wide Web Conference,
May 2002.

[3] Fabrice Le Fessant, Sidath Handurukande, Anne-Marie Kermarrec, and
Laurent Massoulíe. Clustering in peer-to-peer file sharing workloads. In
International Workshop on Peer-to-Peer Systems, February 2004.

[4] R. Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins. Prop-
agation of trust and distrust. InInternational World Wide Web Confer-
ence, May 2004.

[5] Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu, StevenD. Grib-
ble, Henry M. Levy, and John Zahorjan. Measurement, modeling,and
analysis of a peer-to-peer file-sharing workload. InACM Symposium on
Operating Systems Principles, October 2003.

[6] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The
EigenTrust algorithm for reputation management in P2P networks. In
International World Wide Web Conference, May 2003.

[7] Jian Liang, Rakesh Kumar, Yongjian Xi, and Keith W. Ross. Pollution in
P2P file sharing systems. InIEEE INFOCOM, 2005.

7

