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Abstract that an object is polluted is final, an will not change over
time. By contrast, peer behavior is dynamic, and so must
This paper describes Credence, a distributed object 184 client’s evaluation of that peer.
utation management scheme for combating content pola|so, because client evaluation depends only on the in-
lution in peer-to-peer filesharing systems. Credence @ffssic properties of each object, we can reasonably make
ables honest peers to assess the authenticity of onlesssumption of universality of the (hidden) evaluation
content by securely tabulating and managing endorggsction used by honest clients. Keep in mind that our
ments from other peers. Credence employs a novel viegiem is meant to determine if an object is polluted or
correlation scheme to weight peer opinions, which givg§ihentic, in a fundamental sense, rather than if a partic-
rise to favorable incentives and system dynamics. \\r client will have a preference for the object, as is the
present simulation results indicating that our systemdsee in typical recommender systems. A reputation sys-

scalable, efficient, and robust. tem relying on client evaluation of the interactions it has
with its peers cannot make any such claim to universal-
1 Introduction ity, since the evaluation is dependent on factors outside

the control of the peer. Namely, network conditions be-

By all measures, peer-to-peer filesharing has becomvgen client and peer, and even the local properties of the
significant feature of the Internet. Many existing neglient itself can often be the underlying cause for a failed
works, however, are rife witpollution in the form of interaction. Whereas it is difficult in practice to ascribe
corrupt or mislabeled content, and recent studies indicBt@me for a failed interaction between peers, there is no
that much of this is deliberate [7]. Pollution makes it difftUch ambiguity when it comes to mislabeled, damaged,
ficult to find sought objects, and can be a major securftyotherwise polluted content.
concern if if the polluted object caries a virus. Finally, object reputations are an efficient and natural
Deployed networks rely on ad-hoc and unreliable meg@mpliment to swarming downloads. Such downloads of
sures, such as the advertised or apparent popularity of g@jf-certifying content is now the norm in many peer to
ject, or concentrate the trust for the entire system in a féger filesharing systems. Item ratings fit naturally with
hand-picked peers. In short, existing systems do not this technique, by helping a client decide up front which
corporate mechanisms that allow diverse groups of peefseveral alternative objects are most likely to be authen-
to evaluate an object’s reputation with confidence. tic. A single such evaluation can validate the entire set of
A number of papers have addressed issues of trust RA@rs offering the same object. Only after this decision
reputation in peer to peer systems. Several key insight®bject authenticity is made might peer reputation be-
set our approach apart from this previous work. Mog@me useful by, for example, introducing a bias in the
fundamentally, we believe that the problem of pollutioselection of the subset of peers from which to perform a
can best be addressed by computing reputationsifer multi-homed download.
jects rather than fopeers The reasons for this belief are In this paper we introduce Credence, a robust and de-
many. Foremost, objects are immutable, and a clientsntralized system for evaluating the reputation of ob-
evaluation of an object depends only on intrinsic profects. Our goal is to enable peers to confidently gauge
erties of the object itself. Thus a client's determinatiarbject authenticitythe degree to which an object’s data



matches its advertised description. Credence encdampeer network. P2PRep requires peers to rank their in-
passes three basic techniques to obtain reliable estimsgesction with other peers, rather than focusing on ob-
of authenticity. First, we employ a simple network-widgctive evaluation functions such as object reputation. In
voting scheme, where users contribute positive and naddition, like Bouchegger and Boudec’s work, P2PRep
ative evaluations of objects. Second, we enable cliemsorporates a trust rating derived from the reputation
to weigh votes according to the statistical correlation betings. This trust rating is based on a simple threshold-
tween the client and its peers. And third, we allow client@sed agreement count, which can be more vulnerable to
to extend the scope of their correlations through selectimanipulation than pairwise correlation metrics. P2PRep
information sharing. Our system is simple and effectidacks mechanisms for sharing trust evaluations between
and can be deployed incrementally in existing structurpders, and requires peers to be online instead of using
and unstructured filesharing systems. static certificates to defer trust management to other peers
in the network. These features are critical due to the very
sparse nature of the workloads and session lengths ob-
2 Related Work served in typical peer to peer filesharing networks.
Guha et al. examine how both positive and negative
Among peer reputation based systems are a number fyajuations might be propagated through a web of pair-
share similarities with our system, but from which Wgjise observations made by peers in the network [4]. The
diverge in important ways. Much of this prior work forontext of this work is quite different, with a focus on
cuses on threeloaderproblem, which arises when someecommender systems and the subjective preferences of
clients do not contribute a fair share of bandwidth or StQfeers. The filesharing domain is also significantly more
age resources, rather than the pollution problem we agversarial than that of recommender systems. Despite
dress in this paper. these differences, we share a similar model of informa-
Eigentrust [6], for example, performs a distributegon propagation through a web of transitive, pairwise re-
eigenvalue computation to determine for each peer a sitionships. One of the approaches suggested by Guha
gle, network-wide reputation value based on the o al., and adopted by us, is to allow a client to estimate
comes of pairwise peer interactions. Due to the cAgs relation to a distant peer through a chain of peers hav-
sensus requirements of the protocol, Byzantine act@ig§ positive relationships, but disallow such transitivity
can potentially prohibit the eigenvalue computation frofArough negatively related peers, since two such negative
fully converging. The approach also relies on a set @fationships does not necessarily imply a positive rela-
fixed, universally trusted nodes at which to root the cofionship.
putation of trust, a limitation we do not share. By contrast to much prior work, our system does not
Bouchegger and Boudec [1] also advocate a per-pg@tiresses freeloading or peer selection, but rather content
reputation approach, but clearly state the need for a sggtution, a fundamental weakness in open peer-to-peer
aration between peer performance in the underlying filgstworks that is only recently gaining attention. Closely
sharing system, called a “reputation” rating, and perfqglated to this problem are those addressed by recom-
mance in the reputation system itself, termed a “trustiender systems, which filter content based on user rat-
rating. This addresses to some extent the problemjgfs, and ratings systems for online marketplace, which
client perspective and dependence on extrinsic propssek to identify trustworthy vendors and customers. In
ties, discussed earlier, since a client is able to trust h@ctice, however, these systems rely on highly central-
reputation evaluations of a peer regardless of the pegf&d and trusted computation, and are therefore not ap-

filesharing performance. The secondary trust ratings gfable to the peer to peer filesharing problem.
derived as a function of the agreement or disagreement

of the primary reputation ratings. However, these pri-

mary inputs are still subjective, pairwise measuremei@s System M odd

between peers, rather than objective per-object evalua-

tions. We consider peer-to-peer networks in which clients
P2PRep [2] is one of the few systems besides our waarch for objects using queries over meta-data. Here,

that has been implemented in a live, fully distributed pean object consists afata, and an associatatkescriptor
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containing a unique identifier and serving as a pointer3a@2 \Vote Evaluation

the data. The descriptor also contains meta-data to facil- )
itate searching, such as the object name, encoding, RS are collected, evaluated, and aggregating by a

description. A client issues queries to its peers in the ng{€Nt Wishing to estimate the reputation of a given ob-

work in the form of keywords. Peers respond by sendil‘?gft descriptor. _Although votes are generatgd with only
matching object descriptors back to the client. one of two possible values, they provide varying levels of

At this point, the client must make a judgment abodssurance to different clients. Unweighted voting is not

o . . §uﬂ‘|0|ent in this context, since votes may come from un-
the authenticity of each descriptor, before attempting 10 ; .
. trustworthy or unknown peers. Worse, it would provide
fetch the associated data. In many networks, however,. . .
: an'incentive for an attacker to vote dishonestly on all ob-
some of the descriptors may be polluted, and contain, . .
ects since there would be no penalty for dishonesty.

invalid meta-data or point to corrupt or malicious dati ) i i
From a client’s perspective, the weight of a peer’s vote

Lacking any sound basis on which to make a judgment, : ) ) )
the client is often forced to use random selection, or a%e_pends most directly on the relationship between client
d peer, and so the client weighs votes according to

hoc indicators of object popularity, such as the frequen . . ” ;
Ject pop 4 d e observed strength and bias of this relationship. In-

with which each descriptor was encountered. Our sys:. ) ) )
%tlvely, two peers that tend to vote identically (or in-

tem addresses content pollution by enabling the clien | biects should devel i ¢
make an informed decision about which descriptors afdse y) on objects shou €velop over lime a strong

likely authentic, and by providing incentives for peers {?Jositive (or negative) weight for each other’s votes, while
contribute honestly in this evaluation process peers having uncorrelated voting histories should essen-

tially disregard each other’s votes.
Statistical correlation captures precisely this notion of
3.1 Endorsements the historical relationship between a pair of peers. We
compute a coefficientag, using the method of Phi cor-
The basic mechanism in our system is a simple weightetation, for two peersA and B as follows. Given a
voting scheme in which any client may vote posbet of n objects on which bothA and B have voted,
tively or negatively on any object. A vote is a paitet A, and B, be the fraction wheréA and B voted
((objectID,value,,cerk) containing a cryptographicpositively, respectively, and similarly IetAB). . be
signature, under the client’s ké; of the object identifier the fraction where both voted positively. Thegs =
and a vote value from the sgt-1,+1}, and a certificate ((AB);+ —A,B;) /\/A,(1—-A,)B,(1-B,) is theco-
of authentication for key<. The object identifier con- efficient of correlationwhich takes on values in the range
sists of a hash of the object description, that is, the cofn-l,1]. Positive values indicate th@ and B tend to
plete set of keywords that are associated with the objagtee, negative that they tend to disagree, |agf < 0.5
and determine if it matches a particular query, its versiiiflicating weak or no correlation.
number if there is one, and the hash of the object con-
tents. Clle'nt ke_y_s and c_ertlflcates need not be boundst'% Voting Protocol
real-world identities, but instead may rely on anonymous
pseudonyms, such as those employed in many popwi#s now describe the protocol a cliehiuses to estimate
peer-to-peer networks. The certificate and signature t@le reputation of a given object. First, cliehtissues a
low other peers to verify the authenticity and uniquenegste-gathemuery to collect votes on the object and, as
of the vote. with regular queries, some number of peers will respond
A client interprets a positive vote as an endorsementadfer inspecting their local state. Each response contains
the object’s authenticity (i.e., that the object data matchesubset of the votes known to the responding peer, po-
its descriptor). Since object descriptors in practice typéentially including the peer's own vote. The impact of
cally contain only factual and easily verifiable informathis query on the network is bounded by having each
tion, we assume that a large fraction of honest clients wikker sub-sample its vote information, rather than send-
generate votes of equal value for a given object. Undeg all known votes. The sub-sampling is biased in favor
this assumption, a client judges the authenticity of an alif-votes having the highest weight (from the peer’s per-
ject by estimating its reputation among the client’s peespective), in order to disseminate the most useful votes
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further in the network. In practice, the vote-gather que8y5 Transitive Correlation
is implemented entirely using the underlying primitives

of the network, and can partially be combined with tfe@mputing correlations directly from the local vote
initial user query in a single round of interactions. ~ database works well for peers having the most overlap

Once clientA has obtained a set of votes for the 06[1 interests, but often fails to discover relationships be-

ject, each is cryptographically verified, stored locally féyyeen peers with little in common. Nor does it a!low a
later use, and then tabulated using a weighted averacé'g.m to leverage work done by other peers, but mste_ad
The weight for a vote from ped is rag, the correlation forces aII' mgmbers of a clos_ely correlated group to dis-
betweenA and B, computed from information gathereci:ov_er pairwise correlatlons_ _|qdepeqqently. Clle_nts can
during earlier rounds of the protocol. The client inteﬁvomI these problems by utilizirgansitive correlations

prets the resulting averageas a personalized estimaté S rlne_chat:usm c?t{)turé—:‘; thec?ono_n tgatas;ongd%osmve
of the reputation, and hence authenticity, of the obj&d'T€'ation betweeA ands, and again betweenandC,

and so can make a more informed decision to accept (é 8u|d be taken as an indication that all three peers tend

fetch) or reject the object. Also, having locally cachdg Voteina correlated manner.

the votes collected during the vote-gather query, client To effect th_is computation, each client maintains a di-
is now able to respond to vote-gather queries for this g¢t€d graph in which nodes represent network peers, and
ject from its peers. Votes are shared regardless of if cliéffirected edgeA, B) with weightrag represents the cor-

A ultimately accepts or rejects the object, and regardi€§iation between a cliemd and its peeB. Initially, a

of whetherA's vote, if any, agrees or disagrees with tHgl€nt populates its graph with the correlations it com-
votes gathered. We next describe how this caching taR&&es directly from its local vote database. The remain-

place, and detail the state each client maintains in ord&f Of the graph is built by periodically selecting peers
to execute the voting protocol. in the network and requesting their known correlations,

as illustrated in Figure 1. This selection is random, but

biased towards peers for which a strong positive correla-
3.4 Client Local State tion is already known, preferentially expanding the parts

of the graph that will be of most use.
Conceptually, each client maintainyate databaseon- A client computes transitive correlations by multiply-
taining votes it has encountered. This database selimgsweights along paths in the correlation graph. One
both as a store of information from which to respond t@ay to view this computation is that votes from distant
vote-gather queries, and as a dataset from which to cgeers in the correlation graph are propagated back to-
pute peer correlations. The database consists of, for eaends the client using weighted voting at each step of the
object, a row for containing a timestamp, the client’s owgrocess. As a simplification and optimization, instead of
vote, if any, and a list all other votes encountered for therforming a computationally expensive graph flow com-
object. Each time the client issues a vote-gather qugmytation, each client pre-computes only the max-path
the entire set of collected votes is cached in the vdtem itself to every other node in the graph, and stores
database. The size of a client’s local state is boundeddny strong results found in its regular correlation table.
retaining only the most recent additions to the databaseTrust is a concern whenever information is collected
and by subsampling during vote collection. from an untrusted, anonymous peer. Here, the peer may

Peer correlations are stored in a sepacateelation lie about its correlations in an attempt to manipulate the

table which is periodically updated by scanning the votdient's correlation results. Our system employs two
database. For each peer in the vote database, the cBaategies to minimize the effect of such actions. First,
determines the set of objects for which it knows both tiige client can request a full or partial audit of the cor-
peer’s vote and its own. These votes are then used torédations gathered from each peer it contacts for graph
rive a peer correlation value, with weak correlations inedge updates. The audit consists of those votes that
mediately discarded. Any strong correlations discoverée peer originally used to compute the edge weights.
are cached in the correlation table for use later, both finis is made possible by having each peer share only
weighing votes during estimation and for selecting whidwrrelations it has directly computed from its local vote
votes to send in response to vote-gather queries. database. Second, the correlation graph itself can be au-
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Figure 1: lllustration of clienA building its correlation graph, obtaining data in turn from peRrg, andD.

100 ——— T T T T 5475 objects per year.

T = It is not possible to derive from [5] the behavior of in-
dividual clients. Intuitively we would not expect clients
to behave uniformly, but rather thatustersof clients

80
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Fraction of queries (%)

wh =T RN i will share similar interest in objects. For example, recent
- o studies find a high degree of clustering in the eDonkey
20 (upper bound) correct classification -------- i . . . .
" (upper bound) correct pcg!;!evc;giggggggg};gg - filesharing network [3]. We model this effect by parti-
e °°;r:°‘p°§;t've°3iss' "’j‘g’” - tioning the objects into 2@enresand randomly assigning
Client age (days) clients to 4 genres each, such that the popularity of gen-

Figure 2: Probe client classification success rate. res, both in terms of object and assigned clients, follows
a Zipf(1.0) distribution. Within a genre, object popularity
dited for inconsistencies, since it will typically contaifiollows a Zipf(1.0) distribution. A client makes a query
significant redundancies. For instance, the two edges bgselecting first a genre, then drawing without repeats an
tween a pair of peers should be approximately equal, aigject from the genre. Our measurements indicate that
cliques of strongly correlated nodes should be internallye overall query popularity distribution matches that re-
consistent. ported in [5].

The remainder of this paper presents simulation resultdwo factors help model noise in the system. First, a
detailing the dynamic behavior of our system in a highgjient that has computed a reputation estimewdll ac-
polluted network. cept and fetch the object with probability 1vf= 1.0,

with probability 0 ifv= —1.0, and with a linearly vary-

) ing probability otherwise. Second, clients generate votes

4 Evaluation on all objects that are accepted, but vote correctly with

only 90% probability, and randomly the rest of the time.
We evaluate our object reputation system in a custompie model a highly polluted network, where approx-
discrete-event simulator written in Java. We model thﬁately half the objects are tagged as pollution, and the
system as a growing set of objects, and a fixed sety@fainder tagged as authentic. The remaining simulation
clients following a synthetic workload and implementingarameters are set with reasonable values to bound the
the voting, correlation, and transitive correlations protgandwidth and storage costs associated with the reputa-

cols. We use a simple randomized topology with a fixg@n management system, and to ensure that correlations
search width to model the underlying peer-to-peer ngke robust to statistical variation.

work. In the next sections, we briefly describe the work-

load and client behaviors driving our simulations. . . )
9 4.2 Overall Success in Estimation

4.1 Clients, Objects, and Workload We evaluate the convergence and accuracy of our ap-
proach by tracking 20 probe clients inserted into the
We follow the abstract model of the Kazaa filesharimgetwork starting on day 50. We first measure the to-
network described in [5]. The network consists of 10@8l fraction of correct classifications across these probe
clients initiating 5 queries per day on average for 1@lients. A correct classification is when a client com-
days. Each client draws queries from a population jpfites a strong positive estimate- 0.5 for an authentic
40000 objects, with new objects introduced at a ratealjject, or a strong negative estimate: —0.5 for a pol-

5



1000 1400

300 cliénts -
1200 1000 clients ———- - 1
2000 clients — - — - s
1000 a N
800 . - B
600 [ AT g
400 e e
.
200 | e i

(2]
o
o
T
L
Peer correlations discovered
\
\

Peer correlations discovered
a
o
o
T
L

0 20 40 60 80 100
Day

0 ! ! ! ! ! ! ! !

0 5 10 15 2 25 3 3 40 45 50 Figure 4: Average number of entries in initial client cor-

Client age (days) .
. o : relation tables.
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relation tables, with standard deviations.

so that the probe nodes have discovered 500 strong cor-
relations on average after 16 days. As will be illustrated

luted object. . : e )
) ) . in the next section, the 1000 initial clients’ tables grow
Figure 2 shows how the success rate varies as the probe

. - . much more smoothly and slowly, reachin ize of
clients participate in the system. Also shown are u uch more smoothly and slowly, reaching a size of 500

per bounds, the values that would have been attalngé](ij at day 40. This highlights the key role played by

. ransitiv rrelations in th ick convergen f th

had the clients shared complete global knowledge oftaﬂ sitive co e'a_lt'o S the quick convergence of the

) system. The initial clients do not have the advantage
past votes on each object. The upper bound does notgp-". . i .

. . of existing peers from which to gather correlation data,

proach 100%, because a fraction of queries are for never- . .
. .whereas a probe client’s table grows fast by taking ad-
before-seen content, which cannot be correctly classifie L .
. . . vantage of the work done by earlier joining clients.
even using global information. By day 15, our scheme_l_h initial lag ti ¢ imatel q h
achieves a high rate of success, maintaining roughly 8(t)ﬁ/o € initiatlag 'Tet_o atppl;:oxmaeysgven ays_,v; ent
correct classification. e average correlation table size remains zero, is due to

Of the queries not classified correctly, almost all a]; Ie IZCk O]; 'OC?‘"V corlﬁputtgblfhcorrela’ilotr_ws. Rec;;ll thatt
instances where no estimate is obtained at all, and on edges leaving a client in the correlation graph mus

few due to misclassification. These cases are split eve computed by the cllgnt itself using only its _Iocal vote
. . }abase. In effect, until a newly introduced client estab-
between authentic and polluted objects, and less thanI 0 ting hist it it cannot directl
are for the 2000 most popular objects. This implies that <> s'c:'mel voting t'S ory OI It's own,.tlh Ci Oeerse'(lz'hys
our system gives very accurate estimates for the mBE{ranS' Vely compute correations with any p N

popular objects, and rarely misclassifies even the Ie'glé?al delay can easny“be ellml?at_ed n practlc_e with the
popular. use of a semi-trusted “sponsor” client from which the lo-

cal correlation table can be initialized.

4.3 Correlation Table Behavior

_ o 4.4 Scaling
To explain the factors driving the overall success rate,

we turn our attention to the clients’ correlation tablet order to assess the scalability of our protocol as the
If a client has discovered few or no strong correlationsize of the network varies, we ran the simulations with
then the votes it collects during vote-gather queries am®portionally larger and smaller networks. Figure 4
of no immediate use, but rather only aid in building upshows the average correlation table size of the initial
database from which to later compute peer correlationkents for each network. The total convergence time ap-
Conversely, a client with many entries in its correlatiqmears to grow approximately linearly in the size of the
table will be able to use more of the votes it gathers, aneétwork when measured in terms of the time needed to
S0 obtain more robust and accurate object reputation ésrive correlations for half of the clients. However, note
timates. Figure 3 shows the average size of clients’ ctirat the overall success rate grows quickly as soon as
relation tables, which can be seen to closely match @ients discover a few strong correlations, and that in
overall success rate observed earlier in Figure 2. practice a limited number of entries is likely to be suffi-

After an initial period with an empty correlation tablegient to compute robust estimates, due to the high degree
the rate of discovery of peer correlations quickly risesf clustering of client interests expected in practice.
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4.5 Dynamic Behavior but do not alter the overall trends seen above.

Our system contains subtle feedback loops that give rise

to resilience against attack, and help explain the systef’s Conclusion and Future Work

overall dynamics. For instance, an authentic object tends

to follow an exponential increase in reputation, since cdr® object reputation system presented here is robust to

rect positive votes induce a positive feedback cycle: E&{fgck and converges quickly, on the order of a few tens

such vote increases the object's reputation among coftequeries for clients joining the system. However, we are

lated clients. This in turn leads to more likely acceptan8¥Ploring several approaches that could further improve

and retrieval, and thus to additional positive votes. An &fie effectiveness and decrease the costs of our system.

tacker voting negatively on this same object, however, Y& are experimenting with a randomized algorithm for

duces a damped response, since a lowering of percei/@§-Set compression, which allows clients to store and

value will not result in more negative results, but insted@nsmit more votes, resulting in more responsive and

will simply lower slightly the rate of acceptance. more statistically robust peer correlation estimates. At
For an object on which honest clients tend to vote nd§€ Same time, we are exploring the use of recent cryp-

atively, but an attacker votes positively, the system wiffgraphic techniques that may allow clients to more effi-

react strongly against the attacker. Each positive v&igNtlY verify large numbers of signatures.

in this case raises the expectations of the honest clients,

leading eventually to an increase in correct negative volgeferences

which counteracts the initial, incorrect vote. Additior’ﬁ] Sonja Buchegger and Jean-Yves Le Boudec. A robust répntsystem

ally, the attacker will see a decrease in its correlation val- for P2P and mobile ad-hoc networks. Workshop on the Economics of

ues with honest clients. The net effect is a disincentive Peer-to-Peer Systemitine 2004.

for an attacker to be dishonest too often. [2] Fabrizio Cornelli, Emesto Damiani, Sabrina De CabitdnVimercati,
Stefano Paraboschi, and Pierangela Samarati. Choosintabépser-
vents in a P2P network. Imternational World Wide Web Conference

4.6 Attacks May 2002.

) ) ) ] [3] Fabrice Le Fessant, Sidath Handurukande, Anne-Marienderec, and
We have investigated the impact of several simple attacksLaurent Massoudi. Clustering in peer-to-peer file sharing workloads. In

on our system, both analytically and through simulation. International Workshop on Peer-to-Peer SysteRebruary 2004.
Due to the dynamic effects discussed above, we can {m-R. Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew TosnKirop-
mediately see that several attacks that are quite eﬁeCtiveggiti(i\;iaszti)uoszi and distrust. lmternational World Wide Web Confer-
in existing systems have little effect and, in many cases, oy S
actually provide a tangible benefit to the system. For dX- Krishna P. Gummadi, Richard J. Dur_m, Stefan Saroiu, St@eﬁr_ib—
. . . .. ble, Henry M. Levy, and John Zahorjan. Measurement, modetng,

ample, apeer that ConS|Stent|y lies about the aUthenUC'tyanalysis of a peer-to-peer file-sharing workload AlM Symposium on
of objects is just as useful as a peer that consistently gen-Operating Systems PrincipleSctober 2003.
erates honest votes, since in the former case the votes Wilkepandar b. Kamvar, Mario T. Schiosser, and Hector Gavtgtina. The
simply be multiplied by a negative Weight_ Voting ran- EigenTrust algorithm for reputation management in P2P nddsvoiin
domly, however, will lead to the votes being essentially "Memational World Wide Web Conferendeay 2003.
discarded as peer correlation values will converge to zgnoJian Liang, Rakesh Kumar, Yongjian Xi, and Keith W. RosslI@ion in
in this case. A rational attacker, then, has an incentive to P2P file sharing systems. IBEE INFOCOM 2005.
vote honestly in order to keep from approaching either of
these extremes, and so must carefully balance the amount
of information leaked to the network.

Similarly, an attacker that deviates from the normal
protocol by gathering and disseminating only incorrect
votes is actually beneficial to honest clients. Indeed, it
typically allows an honest client to more quickly identify
those peers with which it is less correlated. Other similar
attacks can slow down the rate of information diffusion,



