To appear in Intl. Symp. on Computer Architecture (ISCA), San Diego, CA, June 2007

This is a preliminary draft - please do not distribute.

Core Fusion: Accommodating Software Diversity in Chip
Multiprocessors

Engin ipek Meyrem Kirman Nevin Kirman Jos é F. Martinez

Computer Systems Laboratory
Cornell University
Ithaca, NY 14853 USA

Submitted to ISCA 2007.
DO NOT Distribute.

This paper presentsore fusion a reconfigurable chip multiprocessor (CMP) architecture where groups of
fundamentally independent cores can dynamically morph into a larger CPU, or they can be used as distinct
processing elements, as needed at run time by applications. Core fusion gracefully accommodates software
diversity and incremental parallelization in CMPs. It provides a single execution model across all configura-
tions, requires no additional programming effort or specialized compiler support, maintains ISA compatibility,
and leverages mature micro-architecture technology.

1 INTRODUCTION

Chip multiprocessors (CMPs) hold the prospect of translating Moore’s Law into sustained performance growth by incor-
porating more and more cores on the die. In the short term, on-chip integration of a modest number of relatively powerful
cores may Yyield high utilization when running multiple sequential workloads. However, although sequential codes are
likely to remain important, they alone are not sufficient to sustain long-term performance scalability. Consequently, har-
nessing the full potential of CMPs in the long term makes the widespread adoption of parallel programming inevitable.

Unfortunately, code parallelization constitutes a tedious, time-consuming, and error-prone effort. Historically, pro-
grammers have parallelized code incrementally to amortize programming effort over time. Typically, the most promising
loops or regions in a sequential execution of the program are identified through profiling. A subset of these regions is
then parallelized. Over time, more effort is spent on the remaining code. Already popular programming models (e.g.,
OpenMP [12]) are designed to facilitate incremental parallelization.

As CMPs become ubiquitous, we envision a dynamic and diverse landscape of software products of very different
characteristics and in different stages of development: from purely sequential, to highly parallel, and everything in between.
Moreover, as a result of incremental parallelization, applications will exert very different demands on the hardware across
phases of the same run (e.g., sequential vs. highly parallel code sections within the same program). This diversity is
fundamentally at odds with most CMP designs, whose composition is “set in stone” by the time they are fabricated.

Asymmetric chip multiprocessors (ACMPSs) [3, 24, 25] comprise cores of varying sizes and computational capabilities.
The hope is to match the demands of a variety of sequential and parallel software. Still, the particular die composition is
set at design time. Ultimately, this may constitute a hurdle to high performance. For example, Balakrishnan et al. [3] find
that asymmetry generally hurts parallel application scalability, and renders the applications’ performance less predictable,
unless relatively sophisticated software changes are introduced. Hence, for example, while an ACMP may deliver increased
performance on sequential codes by placing one large core on the die, it may do so at the expense of parallel performance
or programmability.

Instead, we would like a CMP to provide the flexibility to dynamically “synthesize” the right composition, based on
software demands. In this paper, we investigate a novel reconfigurable hardware mechanism thatave feedion It
is an architectural technique that empowers groups of relatively simple and fundamentally independent CMP cores with
the ability to “fuse” into one large CPU on demand. We envision a core fusion CMP as a homogeneous substrate with
conventional memory coherence/consistency support, where groups of up to four adjacent cores and their i- and d-caches
can be fused at run-time into CPUs that have up to four times the fetch, issue, and commit width, and up to four times the
i-cache, d-cache, branch predictor, and BTB size.


martinez
Text Box
To appear in Intl. Symp. on Computer Architecture (ISCA), San Diego, CA, June 2007
This is a preliminary draft - please do not distribute.


Core fusion has the potential to provide a number of highly desirable benefits to CMP design and functionality. Among
them:

e Support for software diversityCMPs may be configured for fine-grain parallelism (by providing many lean cores),
coarse-grain parallelism (by fusing many cores into fewer, but more powerful CPUs), sequential code (by executing
on one fused group), and different levels of multiprogramming (by providing as many fused groups as needed, up to
capacity). In contrast, for example, ACMPs are “stuck” with the mix chosen at design time, which may compromise
performance for parallel codes and/or mismatched multiprogrammed workloads.

e Support for smoother software evolutio@ore fusion would naturally support incremental parallelizationdipy
namicallyproviding the optimal configuration for sequential and parallel regions of a particular code, e.g., one large
fused group during sequential regions, and many small independent cores during parallel regions.

¢ Single-design solutionA fusion group is essentially a modular structure comprising four identical cores, plus the
core fusion fabric. Core fusion CMPs can be designed by tiling as many such groups as desired. In contrast, for
example, ACMPs require the adoption of at least two processor core designs.

e Bottom-up designBase cores in core fusion are fundamentally independent, and can be made relatively simple and
efficient, with the core fusion design effort focused on making them work co-operatively when needed. In contrast,
for example, approaches like SMT are top-down, where a wide-issue core of significant complexity is typically the
departure point, and support for multiple threads is added to increase core resource utilization. (In any case, SMT
support could easily be added to our base cores.)

¢ No interference across base coreBecause of their fundamentally independent nature, base cores can run fully
independently, both internally (branch predictor, i- and d-TLB, renaming structures, etc.), and at the L1 cache level
(i- and d-cache), without suffering from or even needing to address interference across threads at those levels. In
contrast, for example, cross-thread interference is hard to avoid in SMT cores.

¢ Design-bug and hard-fault resiliencé design bug or hard fault in the core fusion hardware need not disable an
entire four-core fusion group, as each core can still operate independently. Similarly, a hard fault in one core still
allows independent operation of the three fault-free cores, and even two-way fusion on the other two cores in the
fusion group. (The mechanisms that would be needed for detection, isolation, and recovery are out of the scope of
this paper.)

At the same time, providing CMPs with the ability to “fuse” cores on demand presents significant design challenges.
Among them:

e Core fusion should not increase software complexity. Specifically, cores should be able to execute programs co-
operatively without changing the execution model, and without resorting to custom ISAs or specialized compiler
support. This alone would set core fusion apart from other proposed reconfigurable architectures, such as TRIPS [38]
or Smart Memories [29], and from speculative architectures such as Multiscalar [39]. (Section 6 conducts a review
of this and other related work.)

e Core fusion hardware should work around the fundamentally independent nature of the base cores. This means pro-
viding complexity-effective solutions to collective fetch, rename, execution, cache access and commit, by leveraging
each core’s existing structures without unduly overprovisioning or significantly restructuring the base cores.

e Dynamic reconfiguration should be efficient, and each core’s hardware structures should work fundamentally the
same way regardless of the configuration.

This paper presents, for the first time, a detailed description of a complete hardware solution to support adaptive
core fusion in CMPs. In the course of formulating our core fusion solution, this paper makes the following additional
contributions over prior art:

e A reconfigurable, distributed front-end and instruction cache organization that can leverage individual cores’ front-
end structures to feed an aggressive fused back-end, with minimal over-provisioning of individual front-ends.

¢ A complexity-effective remote wake-up mechanism that allows operand communication across cores without requir-
ing additional register file ports, wake-up buses, bypass paths, or issue queue ports.

e A reconfigurable, distributed load/store queue and data cache organizatiga)tleaterages the individual cores’
data caches and load/store queues in all configuratiysioes not cause thread interference in L1 caches when
cores run independentlyg) supports conventional coherence when running parallel code, generates zero coherence
traffic within the fusion group when running sequential code in fused mode, and requires minimal changes to each
core’'s CMP subsystenf¢) guarantees correctness without requiring data cache flushes upon runtime configuration
changes; an¢e) enforces memory consistency in both modes.



oibve | ﬂl;\--- . (S 07
Tag i-Cache 0

d-Cache :

eI & - - - . OSSO

i-Cache 1

L2 Cache

- ng I B2z SRS O
i-Cédche i-Cache i-Cache 2-word Subblock i-Cache 2
d-Cache d-Cache | d-Cache

[N ST S

ey T 1l 1 D=

4-issue 2-issue 2-issue i-Cache 3

(a) Independent (b) Fused

Figure 1:Conceptual floorplan of an eight-core CMP with core fuFigure 2:lllustrative example of four i-caches organizgd inde-

sion capability. The figure shows a configuration example comprigendently or(b) fused. In independent mode, four subblocks and

ing two independent cores, a two-core fused group, and a four-ceee tag within each i-cache constitute a cache block. In fused mode,

fused group. The figure is not meant to represent an actual floorplargache block spans four i-caches, each i-cache being responsible for
a subblock and a tag replica.

e Areconfigurable, distributed ROB organization that can fully leverage individual cores’ ROBs to seamlessly support
fusion, without overprovisioning or unnecessarily replicating core ROB structures.
e A quantitative assessment of the incremental parallelization process on CMPs.

Our evaluation pits core fusion against more traditional CMP architectures, such as fine- and coarse-grain homogeneous
cores, as well as ACMPs, and shows that core fusion’s flexibility and run-time reconfigurability makes it an attractive CMP
architecture to support a diverse, evolving software landscape.

2 ARCHITECTURE

Core fusion builds on top of a substrate comprising identical, relatively efficient two-issue out-of-order cores. A bus
connects private L1 i- and d-caches and provides data coherence. On-chip L2 cache and memory controller reside on
the other side of this bus. Cores can execute fully independently if desired. It is also possible to fuse groups of two or
four cores to constitute larger cores. Figure 1 is an illustrative example of a CMP comprising eight two-issue cores with
core fusion capability. The figure shows an (arbitrarily chosen) asymmetric configuration comprising one eight-issue, one
four-issue, and two two-issue CPUs.

We now describe in detail the core fusion support. In the discussion, we assume four-way fusion.

2.1 Front-end
2.1.1 Collective Fetch

A small co-ordinating unit called thietch management unfEMU) facilitates collective fetch. The FMU receives and
re-sends relevant fetch information across cores. The latency from a core into the FMU and out to any other core is two
cycles (Section 4).

Fetch Mechanism and Instruction Cache

Each core fetches two instructions from its own i-cache every cycle, for a total of eight instructions. Fetch is aligned, with
core zero generally responsible for the oldest two instructions. On a taken branch (or misprediction recovery), however, the
target may not be aligned with core zero. In that case, lower-order cores skip fetch, and core-zero-aligned fetch resumes
on the next cycle.

On an i-cache miss, an eight-word block is delivegapto the requesting core if it is operating independently)r
distributed across all four cores in a fused configuration to permit collective fetch. To support these two options, we make
i-caches reconfigurable along the lines of earlier works [29]. Each i-cache has enough tags to organize its data in two-word
subblocks. When running independently, four such subblocks and one tag make up a cache block. When fused, cache
blocks span all four i-caches, with each i-cache holding one subblock and a replica of the cache block’s tag. (How to
dynamically switch from one i-cache mode to the other is explained later in Section 3.) Figure 2 shows an example of
i-cache organization in a fusion group.

During collective fetch, it makes sense to replicate the i-TLB across all cores in a fused configuration. Notice that
this would be accomplished “naturally” as cores miss on their i-TLBs, however taking multiple i-TLB misses for a single
eight-instruction block is unnecessary, since the FMU can be used to refill all i-TLBs upon a first i-TLB miss by a core.
The FMU is used to gang-invalidate i-TLB entries.



ﬂ_.
CICIOIXX S~

OIS —

O EXXE—

CIEICIXIX J+—

@
{___BPred |
E:Q BPred a

Tag (BTB Only)

Core 0 Core 1 Core 2 Core 3

Figure 3: Configuration-oblivious indexing utilized in branch pre-Figure 4. Example of aligned fetch in fused mode. In the fig-
diction and BTB. In the figure; bits are used for indexing and ure, cores squash overfetched instructions as they receive a predict-
for tagging (tagging only meaningful in the BTB). Of coursandt taken notice from Core 2 with a two-cycle delay. The new target
are generally not the same for branch predictor and BTB. Becausestdrts at Core 1, and thus Core 0 skips the first fetch cycle. Notice
aligned fetch, the two tag bits sandwiched between index bits mattte banked branch predictor and BTB, the replicated GHR, and the
the core number in the fused configuration. Core-0-managed RAS.

Branches and Subroutine Calls

Prediction. During collective fetch, each core accesses its own branch predictor and BTB. Because collective fetch is
aligned, each branch instruction always accesses the same branch predictor and BTB. Consequently, the effective branch
predictor and BTB capacity is four times as large. To accomplish maximum utilization while retaining simplicity, branch
predictor and BTB are indexed as shown in Figure 3 regardless of the configuration. We empirically observe no loss in
prediction accuracy when using this “configuration-oblivious” indexing scheme. Notice that branch predictor and BTB
entries remain meaningful across configurations as a result of this indexing scheme.

Each core can handle up to one branch prediction per cycle. PC redirection (predict-taken, mispredictions) is enabled
by the FMU. Each cycle, every core that predicts a taken branch, as well as every core that detects a branch misprediction,
sends the new target PC to the FMU. The FMU selects the correct PC by giving priority to the oldest misprediction-redirect
PC first, and the youngest branch-prediction PC last, and sends the selected PC to all fetch units. Once the transfer of the
new PC is complete, cores use it to fetch from their own i-cache as explained above.

Naturally, on a misprediction, misspeculated instructions are squashed in all cores. This is also the case for instructions
“overfetched” along the not-taken path on a taken branch, since the target PC will arrive with a delay of a few cycles. In
Figure 4, Core 2 predicts branch B to be taken. After two cycles, all cores receive this prediction. They squash overfetched
instructions, and adjust their PC. In the example, the target lands on Core 1, which makes Core 0 skip the initial fetch cycle.

Global History. Because each core is responsible for a subset of the branches in the program, having independent and
unco-ordinated history registers on each core may make it impossible for the branch predictor to learn of their correlation.

To avert this situation, the GHR can be simply replicated across all cores, and updates be co-ordinated through the FMU.
Specifically, upon every branch prediction, each core communicates its prediction—whether taken or not taken—to the FMU.

Additionally, as discussed, the FMU receives nonspeculative updates from every back-end upon branch mispredictions.
The FMU communicates such events to each core, which in turn update their GHR. Upon nonspeculative updates, earlier
(checkpointed) GHR contents are recovered on each core. The fix-up mechanism employed to checkpoint and recover GHR
contents can be along the lines of the outstanding branch queue (OBQ) mechanism in the Alpha 21264 microprocessor [22].

Return Address Stack. As the target PC of a subroutine call is sent to all cores by the FMU (which flags the fact that it

is a subroutine call), core zero pushes the return address into its RAS. When a return instruction is encountered (possibly
by a different core from the one that fetched the subroutine call) and communicated to the FMU, core zero pops its RAS
and communicates the return address back through the FMU. Notice that, since all RAS operations are processed by core
zero, the effective RAS size does not increase when cores are fused. This is reasonable, however, as call depth is a program
property that is independent of whether execution is taking place on an independent core or on a fused configuration.

Handling Fetch Stalls

On a fetch stall by one core (e.g., i-cache miss, i-TLB miss, fetching two branches), all fetch engines must also stall so
that correct fetch alignment is preserved. To accomplish this, cores communicate stalls to the FMU, which in turn informs
the other cores. Because of the latency through the FMU, it is possible that the other cores may overfetch, for example if
(a) on an i-cache or i-TLB miss, one of the other cores does hit in its i-cache or i-TLB (unlikely in practice, given how
fused cores fetch), db) generally in the case of two back-to-back branches fetched by the same core that contend for the
predictor (itself exceedingly unlikely). Fortunately, the FMU latency is deterministic: Once all cores have been informed



RENAME PIPELINE ROB 0 ROB 1 HOB 2 ROB 3

Traverse
XBar Link &
Read Port
P -~ PR P

-3 = @ -— Speculative Head

Wite Port &
rrrrrrrr
XBar Link

Traverse
XBar Link

Traverse
Traverse | yoor ink &
XBar Link | "o et

Wite Port &
Traverse
XBar Link

Steer |Rename

GLOBAL RENAME MAP FREE LISTS STEERING TABLE
co Cc1 c2 c3 cocCi1c2C3

/, \\ \\
E Ro [oo]o]1 . | — | . —
/ \ §
H P2 | R1 1(1 2clk y \ .
R2 11 ] — B -
’ \ h
R3 o1 y D ‘4
R4 1]o
RS 1|1

1
1
1
0 —1 i — — Head
1

Solo|=lo]|=

Figure 5:Rename pipeline (top) and illustrative example of Figure 6: Simplified diagram of core fusion's distributed
SMU organization (bottom). RO has a valid mapping in core ROB. In the figure, ROB 1's head instruction pair is not ready

three, whereas R1 has four valid mappings (one in each core0 commit, which is communicated to the other ROBs. Spec-
Only six architectural registers are shown. ulative and conventional heads are spaced so that the message

arrives just in time (2 clock cycles in the example). Upon
completion of ROB 1's head instruction pair, a similar mes-
sage is propagated, again arriving just in time to retire all four
head instruction pairs in sync.

(including the delinquent core) they all discard at the same time any overfetched instruction (similarly to the handling of
a taken branch before) and resume fetching in sync from the right PC—as if all fetch engines had synchronized through a
“fetch barrier.”

2.1.2 Collective Decode/Rename

After fetch, each core pre-decodes its instructions independently. Subsequently, all instructions in the fetch group need to
be renamed and steered. (As in clustered architectures, steering consumers to the same core as their producers can improve
performance by eliminating communication delays.) Renaming and steering is achieved thetegting management

unit (SMU). The SMU consists of: a globateering tablgo track the mapping of architectural registers to any core; four
free-lists for register allocation (one for each core); four rename maps; and steering/renaming logic (Figure 5). The steering
table and the four rename maps together allow up to four valid mappings of each architectural register, and enable operands
to be replicated across multiple cores. Cores still retain their individual renaming structures, but these are bypassed when
cores are fused.

Figure 5 depicts the high level organization of the rename pipeline. After pre-decode, each core sends up to two
instructions to the SMU through a set of links. In our evaluation, we assume a three-cycle cross-core communication over
a repeated link (Section 4). Three cycles after pre-decode, the SMU receives up to two instructions and six architectural
register specifiers (three per instruction) from each core. After renaming and steering, it uses a second set of links to
dispatch no more than six physical register specifiers, two program instructions, and two copy instructions to each core.
(Copy instructions have a separate, dedicated queue in each core (Section 2.2.1).) Restricting the SMU dispatch bandwidth
in this way keeps the wiring overhead manageable, lowers the number of required rename map ports, and also helps achieve
load balancing. In our evaluation (Section 5), we accurately model the latency of the eight-stage rename pipeline when
running in fused mode, as well as the SMU dispatch bandwidth restrictions.

The SMU uses the incoming architectural register specifiers and the four free lists to steer up to eight instructions every
pipeline cycle. Each instruction is assigned to one of the cores via a modified version of dependence based steering [33]
that guarantees that each core is assigned no more than two instructions. Copy instructions are also created in this cycle.

In the next cycle, instructions are renamed. Since each core receives no more than two instructions and two copy
instructions, each rename map has only six read and eight write ports. The steering table requires eight read and sixteen
write ports (note that each steering table entry contains only a single bit, and thus the overhead of multi-porting this small
table is relatively low). If a copy instruction cannot be sent to a core due to bandwidth restrictions, renaming stops at
the offending instruction that cycle, and starts with the same instruction next cycle, thereby draining crossbar links and
guaranteeing forward progress.

As in existing microprocessors, at commit time, any instruction that renames an architectural register releases the
physical register holding the prior value (now obsolete). This is accomplished in core fusion easily, by having each ROB
send the register specifiers of committing instructions to the SMU. Register replicas, on the other hand, can be disposed
of more aggressively, provided there is no pending consumer instruction in the same core. (Notice that the “true” copy
is readily available in another core.) We employ a well-known mechanism based on pending consumer counts [30, 31].
Naturally, the counters must be backed up on every branch prediction. Luckily, in core fusion these are small: four bits
suffice to cover a core’s entire instruction window (16 entries in our evaluation).



2.2 Back-end

Each core’s back-end is essentially quite typical: separate floating-point and integer issue queues, a physical register file,
functional units, load/store queues, and a ROB. Each core has a private L1 d-cache. L1 d-caches are connected via a
split-transaction bus and are kept coherent via a MESI-based protocol. When cores get fused, back-end structures are
co-ordinated to form a large virtual back-end capable of consuming instructions at a rate of eight instructions per cycle.

2.2.1 Collective Execution
Operand Crossbar

To support operand communication, a copy-out and a copy-in queue are added to each core. Copy instructions wait in the
copy-out queue for their operands to become available, and once issued, they transfer their source operand and destination
physical register specifier to a remote core. The operand crossbar is capable of supporting two copy instructions per core,
per cycle. In addition to copy instructions, loads use the operand crossbar to deliver values to their destination register
(Section 2.2.2). In our evaluation (Section 5), we accurately model latency and contention for the operand crossbar, and
quantify its impact on performance.

Wake-up and Selection

When copy instructions reach the consumer core, they are placed in a FIFO copy-in queue. Each cycle, the scheduler
considers the two copy instructions at the head, along with the instructions in the conventional issue queue. Once issued,
copies wake up their dependent instructions and update the physical register file, just as regular instructions do.

Reorder Buffer and Commit Support

Fused in-order retirement requires co-ordinating four ROBs to commit in lockstep up to eight instructions per cycle.
Instructions allocate ROB entries locally at the end of fetch. If the fetch group contains less than eight instructions, NOPs
are allocated at the appropriate cores to guarantee alignment (Section 5.1.1 quantifies the impact that these “ROB bubbles”
have on performance). Of course, on a pipeline bubble, no ROB entries are allocated.

When commit is not blocked, each core commits two instructions from the oldest fetch group every cycle. When one of
the ROBs is blocked, all other cores must also stop committing on time to ensure that fetch blocks are committed atomically
in order. This is accomplished by exchanging stall/resume signals across ROBs. To accommodate the inevitable (but
deterministic) communication delay, each ROB is extended wsfregulative head pointén addition to the conventional
head and tail pointers 6. Instructions always pass through the speculative ROB head before they reach the actual ROB head
and commit. Instructions that are not ready to commit by the time they reach the speculative ROB head stall immediately,
and send a “stall” signal to all other cores. Later, as they become ready, they move past the speculative ROB head, and send
a “resume” signal to the other cores. The number of ROB entries between the speculative head pointer and the actual head
pointer is enough to cover the communication latency across cores. This guarantees that ROB stall/resume always take
effect in a timely manner, enabling lockstep in-order commit. In our experiments (Section 5), we set the communication
latency to two cycles, and consequently the actual head is separated from the speculative head by four instruction slots on
each core at all times.

2.2.2 Load/Store Queue Organization

Our scheme for handling loads and stores is conceptually similar to clustered architectures [4, 10, 19, 27, 41]. However,
while most proposals in clustered architectures choose a centralized L1 data cache or distribute it based on bank assignment,
we keep the private nature of L1 caches, requiring only minimal modifications to the CMP cache subsystem.

Instead, in fused mode, we adopt a banked-by-address load-store queue (LSQ) implementation. This allows us to keep
data coherent without requiring cache flushes after dynamic reconfiguration, and to support elegantly store forwarding and
speculative loads. The core that issues each load/store to the memory system is determined based on effective addresses.
The two bits that follow the block offset in the effective address are used as the LSQ bank-ID to select one of the four
cores, and enough index bits to cover the L1 cache are allocated from the remaining bits. The rest of the effective address
and the bank-ID are stored as a tag. Making the bank-ID bits part of the tag is important to properly disambiguate cache
lines regardless of the configuration.

Effective addresses for loads and stores are generally not known at the time they are renamed. This raises a problem,
since at rename time memory operations need to allocate LSQ entries from the core that will eventually issue them to the
memory system. We attack this problem through LSQ bank prediction [4, 6]. Upon pre-decoding loads and stores, each
core accesses its bank predictor by using the lower bits of the load/store PC. Bank predictions are sent to the SMU, and
the SMU steers each load and store to the predicted core. Each core allocates load queue entries for the loads it receives.



On stores, the SMU also signals all cores to allocate dummy store queue entries regardless of the bank prediction. Dummy
store queue entries guarantee in-order commit for store instructions by reserving place-holders across all banks for store
bank mispredictions. Upon effective address calculation, remote cores with superfluous store queue dummies are signaled
to discard their entries (recycling these entries requires a collapsing LSQ implementation). If a bank misprediction is
detected, the store is sent to the correct queue. Of course, these messages incur delays, which we model accurately in our
experiments.

In the case of loads, if a bank misprediction is detected, the load queue entry is recycled (LSQ collapse) and the load
is sent to the correct core. There, it allocates a load queue entry and resolves its memory dependences locally. Notice that,
as a consequence of bank mispredictions, loads can allocate entries in the load queues out of program order. Fortunately,
this is not a problem, because load queue entries are typically tagged by instruction age. However, there is a danger of
deadlock in cases where the mispredicted load is older than all other loads in its (correct) bank and the load queue is full at
the time the load arrives at the consumer core. To prevent this situation, loads search the load queue for older instructions
when they cannot allocate entries. If no such entry is found, a replay trap is taken, and the load is steered to the right core.
Otherwise, the load is buffered until a free load queue entry becomes available.

Address banking of the LSQ also facilitates load speculation and store forwarding. Since any load instruction is free of
bank mispredictions at the time it issues to the memory system, loads and stores to the same address are guaranteed to be
processed by the same core.

Moreover, because fetch is aligned in all cases, we can easily leverage per-core load wait tables (LWT) [22] along the
lines of the Alpha 21264. At the time a load is fetched, if the load’'s LWT entry bit is set, the load will be forced to wait
until all older stores in its (final) core have executed (and all older dummy store queue entries in that core have been dealt
with).t

When running parallel applications, memory consistency must be enforced regardless of the configuration. We assume
relaxed consistency models where special primitives like memory fences (weak consistency) or acquire/release operations
(release consistency) enforce ordering constraints on ordinary memory operations. Without loss of generality, we discuss
the operation of memory fences below. Acquire and release operations are handled similarly.

For the correct functioning of synchronization primitives in fused mode, fences must be made visible to all load/store
queues. We achieve this by dispatching these operations to all the queues, but having only the copy in the correct queue
perform the actual synchronization operation. The fence is considered complete once each one of the local fences completes
locally and all memory operations preceding each fence commit. Local fence completion is signaled to all cores through a
one-bit interface in the portion of the operand crossbar that connects the load-store queues.

3 DYNAMIC RECONFIGURATION

Our discussion thus far explains the operation of the cores in a static fashion. This alone may improve performance
significantly, by choosing the CMP configuration most suitable for a particular workload. However, support for dynamic
reconfiguration to respond to software changes (e.g., dynamic multiprogrammed environments or serial/parallel regions in
a partially parallelized application) can greatly improve versatility, and thus performance.

In general, we envision run-time reconfiguration enabled through a simple application interface. The application re-
quests core fusion/split actions through a pailFfSE and SPLIT ISA instructions, respectively. In most cases, these
requests can be readily encapsulated in conventional parallelizing macros or directives. FUSE and SPLIT instructions are
executed conditionally by hardware, based on the value of an OS-visible control register that indicates which cores within a
fusion group are eligible for fusion. To enable core fusion, the OS allocates either two or four of the cores in a fusion group
to the application when the application is context-switched in, and annotates the group’s control register. If, at the time of
a FUSE request, fusion is not possible (e.g., in cases where another application is running on the other cores), the request
is simply ignored. This is possible because core fusion provides the same execution model regardless of the configuration.

We now explain FUSE and SPLIT operations in the context of alternating serial/parallel regions of a partially paral-
lelized application that follows a fork/join model (typical of OpenMP). Other uses of these or other primitives (possibly
involving OS scheduling decisions) are left for future work.

FUSE operation. After completion of a parallel region, the application may request cores to be fused to execute the
upcoming sequential region. (Cores need not get fused on every parallel-to-sequential region boundary: if the sequential
region is not long enough to amortize the cost of fusion, execution can continue without reconfiguration on one of the

IWe prefer LWT’s simplicity over a store set predictor solution [9, 14]. Nevertheless, load speculation in core fusion can also be implemented using
store set predictors [14], with a few changes that we briefly outline here: (1) The predictor's smaller tabhlESTh§L4]) resides in the SMU; the
significantly larger [14] per-core SSITs are effectively “merged,” simply by virtue of aligned fetch. (2) Memory operations predicted dependent on a
store are initially steered to the same core as that store, overriding the bank predictor. To accomplish this, LFST entries provide the bank ID to which
the predicted-dependent instruction should be steered. (3) On a bank misprediction by a store, the LFST entry’s bank ID (assuming it still contains the
store’'sinum[14]) is updated appropriately. A few cycles after sending the update to the LFST (to allow for loads in flight from the SMU to arrive), the
store “liberates” any memory operation that was flagged as dependent and steered to the same core.



Frequency 4.0 GHz Fetch/issue/commit 21212 Integer FUs 1xALU 1 xAGU 1xBr 1xMul/Div

Int/FP issue queues| 16/16 ROB entries 48 Int/FP registers 32+40 / 32+40 (Architectural+Rename)
Floating-point FUs | 1xALU 1xMul/Div Ld/St queue entries 12/12 Bank predictor 2K-entries

Max. br. pred. rate 1 taken/cycle Max. unresolved br. 12 Br. penalty 7 cycles minimum (14 cycles when fused)
Br. predictor Alpha 21264 RAS entries 32 BTB size 512 entries, direct mapped

iL1/dL1 size 16 kB iL1/dL1 block size 32B/32B || iL1/dL1 round-trip 2/3 cycles (uncontended)

iL1/dL1 ports 1/2 iL1/dL1 MSHR entries 8 iL1/dL1 associativity | DM/4-way

Coherence protocol | MESI Memory Disambiguation | Perfect Consistency model Release consistency

Table 1:Baseline two-issue processor parameters.

Shared-memory Subsystem CMP Configuration | Composition (Cores)

System bus transfer rate 32GB/s CoreFusion 8x2-issue

Shared L2 4MB, 64B block size FineGrain-2i 9x2-issue

Shared L2 associativity| 8-way CoarseGrain-4i 4x4-issue

Shared L2 banks 16 CoarseGrain-6i 2x6-issue

L2 MSHR entries 16/bank Asymmetric-4i 1x4-issue + 6x2-issue
L2 round-trip 32 cycles (uncontended)|| Asymmetric-6i 1x6-issue + 4x2-issue
Memory round-trip 320 cycles (uncontended

Table 2:Composition of the evaluated CMP architectures (right) and parameters of the shared-memory subsystem (left).

small cores.) If fusion is not allowed at this time, the FUSE instruction is turned into a NOP, and execution continues
uninterrupted. Otherwise, all instructions following the FUSE instruction are flushed; the FMU, SMU, and the i-caches
are configured; and the rename map on the core that commits the FUSE instruction is transferred to the SMU. Data caches
do not need any special actions to be taken upon reconfigurations: the coherence protocol naturally ensures correctness
across configuration changes. Finally, the FMU signals the i-caches to start fetching in fused mode from the instruction
that follows the FUSE instruction in program order.

SPLIT operation. The application advises the fused group of an upcoming parallel region using a SPLIT instruction.
When the SPLIT instruction commits, in-flight instructions are allowed to drain, and enough copy instructions are generated
to gather the architectural state into core zero’s physical register file. When the transfer is complete, the FMU and SMU are
reconfigured, and core zero starts fetching from the instruction that follows the SPLIT in program order. The other cores
remain available to the application (although the OS may re-allocate them at any time after this point).

4 EXPERIMENTAL SETUP
4.1 Architecture

We evaluate the performance potential of core fusion by comparing it against five static homogeneous and asymmetric
CMP architectures. As building blocks for these systems, we use two-, four-, and six-issue out-of-order cores. Table 1
shows the microarchitectural configuration of the two-issue cores in our experiments. Four- and six-issue cores have two
and three times the amount of resources as each one of the two-issue cores, respectively, except that first level caches,
branch predictor, and BTB are four times as large in the six-issue core (the sizes of these structures are typically powers
of two). Across different configurations, we always maintain the same parameters for the shared portion of the memory
subsystem (system bus and lower levels of the memory hierarchy). All configurations are clocked at the same speed
(this mainly favors the wide-issue cores). Our experiments are conducted using a detailed, heavily modified version of
the SESC [36] simulator. Contention and latency are modeled at all levels. In fused mode, this includes two-cycle wire
delays for cross-core communication across fetch, operand and commit wiring, the additional latency due to the eight-
stage rename pipeline, and contention for SMU dispatch ports. (We explain later how we derive cross-core communication
latencies.)

Since we explore an inherently area-constrained design space, choosing the right number of large and small cores
requires estimating their relative areas. Prior work [25, 24, 32, 33] shows that the area overheads of key microarchitectural
resources scale superlinearly with respect to issue width in monolithic cores. Burns et al. [8] estimate the area requirements
of out-of-order processors by inspecting layout from the MIPS R10000 and from custom layout blocks, finding that four-
and six-issue cores require roughly 1.9 and 3.5 times the area of a two-issue core, respectively, even when assuming
clustered register files, issue queues, and rename maps, which greatly reduce the area penalty of implementing large
SRAM arrays’> Recall also that our six-issue baseline’s first level caches and branch predictor are four times as large as
those of a two issue core. Consequently, we model the area requirements of our four- and six-issue baselines to be two and
four times higher than a two-issue core, respectively.

2Note that, when all resources are scaled linearly, monolithic register files growua &herew is the issue width. This is due to the increase in
the number of bit lines and word lines per SRAM cell, times the increase in physical register count.
3We also experimented with an eight-issue clustered core (optimistically assumed to be area-equivalent to the six-issue core), but found its performance



Splash2 Description Problem size Data Mining Description Problem size
BARNES Evolution of galaxies 16k particles BSOM Self-organizing map 2,048 rec., 100 epochs
FMM N-body problem 16k particles BLAST Protein matching 12.3k sequences
RAYTRACE 3D ray tracing car KMEANS K-means clustering 18k pts., 18 attributes
SCALPARC Decision Tree 125k pts., 32 attributes
FIMI Itemset Mining 1M transactions, 1.3% support
SPEC OpenMP NAS OpenMP
SWIM-OMP Shallow water model| MinneSpec-Large MG Multigrid Solver Class A
EQUAKE-OMP Earthquake model | MinneSpec-Large| CG Conjugate Gradient Class A

Table 3:Simulated parallel applications and their input sizes.

We estimate the area overhead of core fusion additions conservatively, assuming that no logic is laid out under the
metal layer for cross-core wiring. Specifically, we use the wiring area estimation methodology described in [26], assuming
a 65nm technology and Metal-4 wiring with a 280nm wire pitch [17]. Accordingly, we find the area for fetch wiring (74
bits/link) to be 0.30mr#, the area for rename wiring (244 bits/link) to be 1.56fand the area for the operand crossbar
(76 bits / link) to be 1.46mm The area of the commit wiring is negligible, as it is two bits wide. This yields a total
area overhead of 3.32ninfor fusing a group of four cores, or 6.64rrfor our eight-core CMP. Using CACTI 3.2, we
also estimate the total area overhead of the SMU and bank predictors (4 bank predictors, one per core) to be 0.13 and
0.72mn#, respectively, for a total of 1.7mifor the entire chip. Adding these to the wiring estimates, we find the total
area overhead of core fusion to be 8.34ti@ven for a non-reticle-limited, 200ntndlie that devotes half of the area to the
implementation of the cores, this overhead represents roughly two thirds of the area of one core. Hence, we conservatively
assume the area overhead to be equal to one core.

We estimate the latency of our cross-core wiring additions conservatively, assuming that cores are laid out in a worst-
case organization that maximizes cross-core communication delays. We assume that each group of four cores in our eight-
core CMP must communicate over a distance equal to one half of the chip edge length. Assuming a 65nm technology,
a 4GHz clock, and 48ps/mm delay for a buffered global wire [21], we find that it is possible to propagate signals over a
distance of 5.2mm in one cycle. Even for a reticle-limited, 40Gndie with a worst-case floorplan, this represents a two-
cycle cross-core communication latency. While these delays are likely to be lower for a carefully organized floorplan [26]
or for smaller dice, we conservatively model fetch, operand, and commit communication latencies to be equal to two
cycles, and due to its wider links, we set the latency of the rename communication to three cycles (which makes the
rename pipeline add up to eight cycles) .

Table 2 details the number and type of cores used in our studies for all architectures we model. Our core-fusion-enabled
CMP consists of eight two-issue cores. Two groups of four cores can each be fused to synthesize two large cores on demand.
For our coarse-grain CMP baselines, we experiment with a CMP consisting of two six-issue cores (CoarseGrain-6i) and
another coarse-grain CMP consisting of four four-issue cores (CoarseGrain-4i). We also model an asymmetric CMP with
one six-issue and four two-issue cores (Asymmetric-6i), and another asymmetric CMP with one four-issue and six two-
issue cores (Asymmetric-4i). Finally, we model a fine-grain CMP wittetwo-issue cores (FineGrain-2i). The ninth core
is added to compensate for any optimism in the area estimates for six- and four-issue cores, and for the area overhead of
core fusion. We have verified that all the parallel applications in the paper use this ninth core effectively.

4.2 Applications

We evaluate our proposal by conducting simulations on parallel, evolving parallel, and sequential workloads. Our par-
allel workloads represent a mix of scalable scientific applications (three applications from the Splash-2 suite [40], two
applications from the SPEC OpenMP suite [2], plus two parallel NAS benchmarks), and five parallelized data mining
applications [1, 28, 35]. The input sets we use are listed in Table 3.

Our sequential workloads comprise nine integer and eight floating point applications from the SPEC2000 suite [20]. We
use the MinneSpec reduced input sets [23]. In all cases, we skip the initialization parts and then simulate the applications
to completiort:

We derive our evolving workloads from existing applications by following a methodology that aims at mimicking an
actual incremental parallelization process. Specifically, we use Swim-OMP and Equake-OMP from the SPEC OpenMP
suite, and MG from the OpenMP version of the NAS benchmarks to synthesize our evolving workloads. These applications
contain multiple parallel regions that exploit loop-level parallelism [2]. We emulate the incremental parallelization process
by gradually transforming sequential regions into parallel regions, obtaining more mature versions of the code at each turn.
To do this, we first run each application in single-threaded mode and profile the run times of all regions in the program.
We then create an initial version of the application by turning on the parallelization for the most significant region while

to be inferior. Consequently, we chose the six-issue monolithic core as our baseline.
40ur simulation infrastructure currently does not support the other SPEC benchmarks.



Speedup Over Two-issue

Sequential Application Performance (SPECINT) Sequential Application Performance (SPECFP)

2.224
Il Two-isue Il Two-isue
Il Four-issue
_| I CoreFusion
[ ISix-issue

N
o

[l Four-issue
,,,,,,,,,,,,, [ CoreFusion|_._ _ . _._._._ _._ || __________._
[_ISix-issue

3
a
3
a

[l
o

IS
a
I

N
&
Speedup Over Two-issue

- _ - - - - - - - F-ml - L- - - - -
bzip2 crafty gce mcf parser  perlbmk twolf vortex vpr g-mean applu apsi art equake mesa mgrid swim wupwise  g-mean

Figure 7:Speedup over FineGrain-2i when executing SPECINT (left) and SPECFP (right) benchmarks.

[_IPipeline stall 90|~ . - . - . {JPipeline stall|
| ERwrong path = sl - - - - - | E3wrong path

F 80

< - - - - - - L | B MU stal I < ol - . - - - EFVU stall
50| - - - - - L | I True fetch 8 oo~ - - - - - | I True fetch
0/~ - - - -] - - 1 5 Y- - ” ” - N | - =
30|~ - - -- —— -- - —— 3 90— Bl W - —— —— . - - - -
20|~ -~ - -- - -- - 1 N - - | - - - - - - =
10]- - - - - - - - - - - - - el

6 R I 6 R I 6 R I _6R I &R I &R I &R | &R | &R I 7% R 6 R I 6 R | 6 R | 6 R | 6 R | 6 R I 6 R |

bzip2 crafty gce mcf parser perlbmk twolf vortex vpr applu apsi art equake mesa mgrid swim wupwise

Fetch Cycles

Figure 8:Distribution of fetch cycles on SPECINT (left) and SPECFP (right) benchmarks. 6i, R, and | denote our six-issue monolithic
baseline, a realistic fused front-end with a two-cycle FMU delay, and an idealized fused front-end with no FMU delay, respectively.

keeping all other regions sequential. We repeat this process until we reach the fully parallelized version, turning on the
parallelization of the next significant region at each step along the process.

5 EVALUATION
5.1 Sequential Application Performance

Figure 7 shows speedups with respect to FineGrain-2i on SPEC 2000 applications. As expected, the results indicate that
wide-issue cores have significant performance advantages on sequential codes. Configurations with a six-issue monolithic
core obtain average speedups of 73% and 47% on floating-point and integer benchmarks. (Speedups on floating-point
benchmarks are typically higher due to higher levels of ILP present in these applications.) Configurations that employ a
four-issue core observe average speedups of 35% and 27% on floating-point and integer-benchmarks, respectively. Core
fusion improves performance over the fine-grain CMP by up to 81% on floating-point applications, with an average of
50%. On integer applications, up to 79% speedup improvements are obtained, with an average speedup of 30%.

In summary, the monolithic six-issue core performs best when running sequential applications, followed by CoreFu-
sion’s fused core. FineGrain-2i is the worst architecture for this class of workloads. While core fusion enjoys a high core
count to extract TLP, it can aggressively exploit ILP on single-threaded applications by adopting a fused configuration.

5.1.1 Performance Analysis

In this section, we analyze and quantify the performance overhead of cross-core communication delays. We also investigate
the efficacy of our distributed ROB and LSQ implementations.

Distributed Fetch. Our fused front-end communicates taken branches across the FMU. Consequently, while a monolithic
core could redirect fetch in the cycle following a predicted-taken branch, core fusion takes two additional cycles. Figure 9
shows the speedups obtained when the fused front-end is idealized by setting the FMU communication latency to zero. The
performance impact of the FMU delay is less than 3% on all benchmarks except vpr, indicating that there is significant slack
between the fused front- and back-ends. Figure 8 illustrates this point by showing a breakdown of front-end activity for
realistic (R) and idealized (l) FMU delays, as well as our six-issue monolithic baseline (6i). On memory-intensive floating-
point applications, the fused front-end spends 35-95% of its time waiting for the back-end to catch up, and less than 5%
of its time communicating through the FMU. On integer codes, 10-60% of the front-end time is spent communicating
through the FMU, but removing this delay does not necessarily help performance: once the FMU delay is removed, the
idealized front-end simply spends a commensurately higher portion of its total time waiting for the fused back-end. Overall,
performance is relatively insensitive to the FMU delay.

SMU and the Rename Pipeline Figure 9 shows the speedups obtained when pipeline depth and the SMU are idealized
(by reducing the eight-stage rename pipe to a single stage, and allowing the SMU to dispatch an arbitrary number of
instructions to each core, respectively). Depending on the application, the longer rename pipeline results in performance
losses under 5%, with an average of less than 1%. While fusion increases the branch misprediction penalty from seven to
fourteen cycles, both the branch predictor and the BTB are four times as large in fused mode, decreasing misprediction
rates and lowering sensitivity to pipe depth. The performance impact of restricted SMU bandwidth is more pronounced,
and ranges from 0-7%, with an average of 3%. However, considering the wiring overheads involved, and the impact on the

10



Speedup Over FineGrain-2i

" | CoreFusion I CoreFusion 1455
1.35(| IEMCF with Ideal FMU | = m mm oo o e e 1.35|| IEMCF with Ideal FMU - mmmmm e
[ CF with Ideal Pipe Depth < [ CF with Ideal Pipe Depth
1.3|| EEICF with Ideal Dispatch BW | = = = = = = = = oo oo s s s S 1.3||EEECF with Ideal Dispatch BW |~ = = = == = == ——— o oo m s e s s
[C_]CF with Ideal Operand Xbar 3 [CICF with Ideal Operand Xbar

1.25{ __ICF with Centralized ROB & LSQS} = = === = === = == = == oo o oo oo 'S 1.25|| C_ICF with Centralized ROB & LSQs

Speedup Over CoreFusion
a

o
&

0.95

bzip2 crafty gcc mcf parser  perlbmk twolf vortex vpr g-mean ’ applu apsi art equake mesa mgrid swim wupwise  g-mean

Figure 9: Speedups obtained when the FMU latency, rename pipeline depth, SMU dispatch bandwidth, operand crossbar delay, or the
distributed ROB/LSQ are idealized.

»

>

Speedup Over FineGrain-2i
b =

barnes fmm  rayrace equake  swim cg mg blast bsom fimi kmeans scalparc  g-mean art/equake  art/swim  art/twolf equake/bzip2 mf/bzip2 swim/equake swim/parser twolf/bzip2 twolf/parser  g-mean

Figure 10:Speedup over single-thread run on FineGrain-2i whefrigure 11:Speedup over FineGrain-2i when executing two sequen-
executing parallel applications. tial applications simultaneously.

two-issue base cores, these performance improvements do not warrant an implementation with higher dispatch bandwidth.
Operand Crossbar. Figure 9 shows the speedups achieved by an idealized operand crossbar with zero-cycle latency.
Unlike communication delays incurred in the front-end of the machine, the latency of the operand crossbar affects perfor-
mance noticably, resulting in up to 18% performance losses, with averages of 13% and 9% on integer and floating point
applications, respectively. Sensitivity is higher on integer codes compared to floating-point codes: the latter are typically
characterized by high levels of ILP, which helps hide the latency of operand communication by executing instructions from
different dependence chains.

Distributed ROB and LSQ. Inevitably, core fusion’s distributed ROB and LSQ organizations suffer from inefficiencies
that would be absent from a monolithic implementation (e.g., NOP insertion for aligned ROB allocation, and dummy
entry allocation in the LSQ). Figure 9 show that eliminating these inefficiencies improves performance by 7 and 23% over
core fusion on integer and floating point codes, respectively. Along with the latency of the operand communication, this
reduction in effective LSQ and ROB sizes has the highest impact on core fusion’s performance.

5.1.2 Desktop Workload Performance

One potential shortcoming of ACMP designs is that they may not accommodate well more sequential codes than the
number of large cores on the die. For example: In a desktop environment, Asymmetric-4i and -6i will readily accommodate
onesequential program on the large core. However, if the desktoptwmsuch programs, Asymmetric-4i and -6i will
necessarily have to allocate a weak core to one of the programs. In contrast, CoreFusion will be able to synthesize two large
cores to accommodate both programs in this environment. (In environments with a relatively large number of concurrent
programs, we expect the relative performance of the different CMP designs to be along the lines of the results for parallel
software (Section 5.2).

We would like to assess how Asymmetric-4i and -6i would stack up against CoreFusion’s hardware flexibility in this
environment. Intuitively, we expect Asymmetric-6i to perform competitively, since the monolithic 6-issue core generally
outperforms CoreFusion’s largest core configuration (Section 5.1).

We derive our desktop workloads from the SPEC2000 suite [20]. We classify applications as high- and low-ILP
benchmarks based on how much speedup they obtain in going from a two-issue core to four- and six-issue cores. We
then use these classifications to guide our workload construction process. We set the degree of multiprogramming to
two applications, and we form a total of nine workloads with different ILP characteristics: high-ILP workloads, low-ILP
workloads, and mixed (both high and low ILP) workloads. We conduct preliminary experiments using a static oracle
scheduler, as well as a published dynamic scheduler [25], and find the static scheduler to perform equally well or better for
all our desktop workloads. Thus, we use the oracle scheduler in our evaluation.

Figure 11 shows the results. Once again, CoreFusion is closest in performance to the optimum static CMP configuration
for this type of workload (CoarseGrain-6i). And indeed, Asymmetric-6i's performance is closely behind CoreFusion’s.
We will see shortly, however, that CoreFusion beats Asymmetric-6i comfortably in the experiments with parallel and
evolving software (Section 5.2 and 5.3, respectively). This is indicative of CoreFusion’s overall superior flexibility across
a diverse set of workload environments. Finally, the results for Asymmetric-4i indicate that the ACMP is clearly inferior

11



Speedup Over Stage Zero Run on FineGrain-2i

Evolving Application Performance (MG) Evolving Application Performance (SWIM-OMP) Evolving Application Performance (EQUAKE-OMP)

O FineGrain-2i
—— Core Fusion
=%~ CoarseGrain—4ij - — - = =~ — = === mmmm T

O FineGrain-2i
—+— Core Fusion
=%~ CoarseGrain-4i

@

-x- CoarseGrain-6j
> Asymmetric-4i
O Asymmetric-6i |~ — = = == === === == R

-x- CoarseGrain-6i|
> Asymmetric-4i
O Asymmetric=6i |- == = === === === S

~

4

)

o

N

[

n
\

Speedup Over Stage Zero Run on FineGrain-2i
Speedup Over Stage Zero Run on FineGrain-2i

w7 o

1hgu 1 1te:
stage0 stage1 stage2 stage3 stage0 stage1 stage2 stage3 stage4 stage0 stage1 stage2 stage3

Figure 12:Speedup over stage zero run on FineGrain-2i.

to CoreFusion’s ability to synthesize two large eight-issue cores to accommodate both programs.
5.2 Parallel Application Performance

Figure 10 compares the performance of core fusion against our baseline CMP configurations on parallel workloads. Results
are normalized to the performance of single-threaded runs on FineGrain-2i. As expected, on scalable parallel applications,
maximizing the number of cores leads to significant performance improvements. The fine-grain CMP performs best on this
class of applications due to its higher number of cores that allows it to aggressively harness TLP. FineGrain-2i is followed
closely by CoreFusion, which has one fewer core due to its area overheads. Coarse-grain and asymmetric designs sacrifice
parallel application performance significantly to improve single-thread performance. These architectures are forced to
trade off TLP for ILP by their static nature, while CoreFusion aimssimthesizehe right ILP/TLP balance based on
workload needs.

5.3 Evolving Application Performance

Figure 12 compares the performance of all six CMP configurations on our evolving workloads. Each graph shows the
speedups obtained by each architecture as applications evolve from sequential (stage zero) to highly parallel (last stage).
When running on the asymmetric CMPs, we schedule the master thread on the large core so that sequential regions are
sped up. Parallel regions are executed on all cols.evaluate our proposal by applying dynamic core fusion to fuse/split
cores when running sequential/parallel regions, respectively.

When applications are not parallelized (stage zero), exploiting ILP is crucial to obtaining high performance. As a result,
coarse-grain CMPs, asymmetric CMPs and CoreFusion all enjoy speedups over the fine-grain CMP. In this regime, per-
formance is strictly a function of the largest core on the chip. CoreFusion outperforms all but the six-issue configurations,
due to its ability to exploit high levels of ILP.

In the intermediate stages, significant portions of the applications are still sequential, and exploiting ILP is still crucial
for getting optimum performance. Asymmetric-6i's monolithic core marginally outperforms CoreFusion’s fused core, but
as a result of dynamic fusion and fission, CoreFusion enjoys a higher core count on parallel regions, thereby exploiting
higher levels of TLP. Asymmetric-4i has two more cores than Asymmetric-6i, but the application does not yet support
enough TLP to cover the performance hit with respect to Asymmetric-6i’s six-issue core on sequential regions. Because of
the scarcity of TLP in this evolutionary stage, FineGrain-2i performs worst among all architectures.

Eventually, enough effort is expended in parallelization to convert each program into a highly parallel application. In
MG, performance is determined strictly by core count. FineGrain-2i obtains the best speedup (6.7), followed immediately
by CoreFusion (6.5). Architectures that invest in ILP (Asymmetric-6i and CoarseGrain-6i) take a significant performance
hit (speedups of 4.5 and 2.7, respectively). In Swim-OMP and Equake-OMP, CoreFusion still performs the best, followed
closely by the fine-grain CMP. This is because these applications, even at this parallelization stage, have sequential regions,
on which CoreFusion outperforms FineGrain-2i through dynamic fusion. Note, however, that statically allocating a large
core to obtain speedup on these regions does not pay off, as evidenced by the lower performance of Asymmetric-4i and -6i
compared to CoreFusion. Attempting to exploit ILP in these regions is worthwhile only if it does not adversely affect the
exploitation of TLP.

In summary, performance differences between the best and the worst architectures at any parallelization stage are
high, and moreover, the best architecture at one end of the evolutionary spectrum performs worst at the other end. As
applications evolve through the incremental parallelization process, performance improves on all applications. Throughout
this evolution, CoreFusion is the only architecture that consistently performs the best or rides close to the best configuration.

5We also experimented with running parallel regions on small cores only, but found that the results were inferior.

12



Performance Potential Throughput Modularity Reconfigurability

Architecture Sequential Parallel Potential FE BE | Caches| FE | BE | Caches
Collins et al. [15] Low High High Yes! Yes No No | Yes No
El-Moursy et al. [16](Shared Banks) High Low Low Partial | Yes Yes No | Yes No
El-Moursy et al. [16](Private Banks) Low Not Supported High Partial | Yes Yes No | Yes No
Latorre et al. [27] (Fewer, large FES) High Low Low Partial | Yes Yes No | Yes Yes
Latorre et al. [27](More, small FEs) Low High High Yes! Yes Yes No | Yes Yes
Parcerisa [34] High Not Supported| Not Supported| Yes? Yes No No | Yes No
Core Fusion High High High Yes Yes Yes Yes | Yes Yes

TModules cannot collectively support one thread
2Modules do not support more than one thread

Table 4:Comparison to recent proposals for clustered processors. FE and BE stand for front- and back-end, respectively.

While all static architectures get “stuck” at some (different) point along the incremental parallelization process, core fusion
adapts to the changing demands of the evolving application and obtains significantly higher overall performance.

6 RELATED WORK
6.1 Reconfigurable Architectures

Smart memories [29] is a reconfigurable architecture capable of merging in-order RISC cores to form a VLIW machine.
The two configurations are not ISA-compatible, and the VLIW configuration requires specialized compiler support. In
contrast, core fusion merges out-of-order cores while remaining transparent to the ISA, and it does not require specialized
compiler support.

TRIPS [38] is a pioneer reconfigurable computing paradigm that aims to meet the demands of a diverse set of applica-
tions by splitting ultra-large cores. TRIPS and core fusion represent two very different visions toward achieving a similar
goal. In particular, TRIPS opts to implement a custom ISA and microarchitecture, and relies heavily on compiler sup-
port for scheduling instructions to extract ILP. Core fusion, on the other hand, favors leveraging mature microarchitecture
technology and existing ISAs, and does not require specialized compiler support.

6.2 Clustered Architectures

Core fusion borrows from some of the mechanisms developed in the context of clustered architectures [4, 5, 7, 10, 11, 13,
18, 33, 41]. Our proposal is closest to the recent thrust in clustered multithreaded processors (CMT) [15, 16, 27]. In this

section, we give an overview of the designs that are most relevant to our work, and highlight the limitations that preclude

these earlier proposals from supporting workload diversity effectively. Table 4 provides an outline of our discussion.

El-Moursy et al. [16] consider several alternatives for partitioning multithreaded processors. Among them, the closest
one to our proposal is a CMP that comprises multiple clustered multithreaded cores (CMP-CMT). The authors evaluate
this design with both shared and private L1 data cache banks, finding that restricting the sharing of banks is critical for
obtaining high performance with multiple independent threads. However, the memory system is not reconfigurable; in
particular, there is no mechanism for merging independent cache banks when running sequential code. Consequently,
sequential regions/applications can exploit only a fraction of the L1 data cache and load/store queues on a given core.
Similarly, each thread is assigned its own ROB, and these ROBs cannot be merged. Finally, neither coherence nor memory
consistency issues are considered. Hence, the lack of reconfigurability in the memory system and the front-end, coupled
with the lack of coherence and consistency support makes this architecture inadequate for supporting workload diversity.

Latorre et al. [27] propose a CMT design with multiple front- and back-ends, where the number of back-ends assigned
to each front-end can be changed at runtime. Each front-end can fetch from only a single thread, and front-ends cannot be
merged or reconfigured. When running a single thread, only one of these front-ends is active. As aresult, each front-end has
to be large enough to support multiple (potentially all) back-ends, and this replication results in significant area overheads
(eachfront-end supports four-wide fetch, has a 512-entry ROB, a 32k-entry branch predictor, a 1k-entry i-TLB and a trace
cache with 32k micro-ops). Stores allocate entries on all back-ends, and these entries are not recycled. This requires the
store queue in each back-end to be large enough to accomnatdidef¢he thread’s uncommitted stores. Inevitably, these
inefficiencies limit the total number of threads that can be supported on the same die, thereby prohibiting the exploitation
of high levels of TLP and making this architecture inadequate for supporting workload diversity.

Collins et al. [15] explore four alternatives for clustering SMT processors. Among them, the most relevant to our
work is a processor with clustered front-ends, execution units, and register files. Each front-end is capable of fetching
from multiple threads, but the front-ends are not reconfigurable, and multiple front-ends cannot be merged when running
a single thread. As the authors explain, the reduced fetch/rename bandwidth of each front-end can severely affect single-
thread performance. Hence, this architecture is also inadequate for supporting workload diversity.

Parcerisa [34] partitions the front-end of a conventional clustered architecture to improve clock frequency. The front-
end is designed to fetch from a single thread: parallel, evolving, or multiprogrammed workloads are not discussed and

13



reconfiguration is not considered. The branch predictor is interleaved on high-order bits, which may result in underutilized
space. Mechanisms for keeping consistent global history across different branch predictor banks are not discussed.

Chaparro et al. [13] distribute the rename map and the ROB to obtain temperature reductions. Fetch and steering are
centralized. Their distributed ROB expands each entry with a pointer to the ROB entry (possibly remote) of the next
dynamic instruction in program order. Committing involves pointer chasing across multiple ROBs. In core fusion, we also
fully distribute our ROB, but without requiring expensive pointer chasing mechanisms across cores.

6.3 Other Related Work

Trace Processors [37] overcome the complexity limitations of monolithic processors by distributing instructions to process-
ing units at the granularity of traces. The goal is the complexity-effective exploitation of ILP in sequential applications.
Other types of workloads (e.g., parallel codes) are not supported. MultiScalar processors [39] rely on compiler support
to exploit ILP with distributed processing elements. The involvement of the compiler is prevalent in this approach (e.g.,
for register communication, task extraction, and marking potential successors of a task). On the contrary, core fusion does
not require specialized compiler support. Neither multiscalar nor trace processors address the issue of accommodating
software diversity in CMPs or facilitating incremental software parallelization, which is a key focus of our work.

7 CONCLUSIONS

In this paper, we have introduced a novel reconfigurable CMP architecture that weredllision which allows relatively

simple CMP cores to dynamically fuse into larger, more powerful processors. The goal is to accommodate software di-
versity gracefully, and to dynamically adapt to changing demands by workloads. We have presented a complete hardware
solution to support core fusion. In particular, we have described complexity-effective solutions for collective fetch, rename,
execution, cache access, and commit, that respect the fundamentally independent nature of the base cores. The result is
a flexible CMP architecture that can adapt to a diverse collection of software, and that rewards incremental paralleliza-
tion with higher performance along the development curve. It does so without requiring higher software complexity, a
customized ISA, or specialized compiler support.

Through detailed simulations, we have identified and quantified the degree to which core fusion’s major components
impact performance. Specifically, we have observed that the cross-core operand communication cost and core fusion’s
ROB/LSQ allocation inefficiencies have the most impact on performance. We have also pitted core fusion against several
static CMP designs, and confirmed that core fusion’s versatility across a diverse software spectrum makes it a promising
design approach for future CMPs.

REFERENCES

[1] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic local alignment search Joolrnal of Molecular Biologypages 403-410, 1990.

[2] V. Aslot and R. Eigenmann. Quantitative performance analysis of the SPEC OMPM2001 benchBxiekgific Programmingl1(2):105-124,
2003.

[3] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The impact of performance asymmetry in emerging multicore architectatesSylmp. on
Computer Architecturgpages 506-517, Madison, Wisconsin, June 2005.

[4] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi. Dynamically managing the communication-parallelism trade-off in future clustered
processors. lintl. Symp. on Computer Architectyqgages 275-287, San Diego, CA, June 2003.

[5] A. Baniasadi and A. Moshovos. Instruction distribution heuristics for quad-cluster, dynamically-scheduled, superscalar procésso8ynip.
on Microarchitecture pages 337-347, Monterey, CA, December 2000.

[6] M. Bekerman, S. Jourdan, R. Ronen, G. Kirshenboim, L. Rappoport, A. Yoaz, and U. Weiser. Correlated load-address pretfidtdgmip. on
Computer Architecturepages 54—63, Atlanta, GA, May 1999.

[7] R. Bhargava and L. K. John. Improving dynamic cluster assignment for clustered trace cache processthrSymp. on Computer Architectyre
pages 264-274, San Diego, CA, June 2003.

[8] J. Burns and J.-L. Gaudiot. Area and system clock effects on SMT/CMP processdrgl. @onf. on Parallel Architectures and Compilation
Techniquespage 211, Barcelona, Spain, September 2001.

[9] B. Calder and G. Reinman. A comparative survey of load speculation architecloresal of Instruction-Level Parallelisn2, May 2000.

[10] R. Canal, J.-M. Parcerisa, and A. Gaiez. A cost-effective clustered architecture. Imtl. Conf. on Parallel Architectures and Compilation
Techniguespages 160-168, Newport Beach, CA, October 1999.

[11] R. Canal, J.-M. Parcerisa, and A. Gaiez. Dynamic cluster assignment mechanismsntinSymp. on High-Performance Computer Architecture
pages 132-142, Toulouse, France, January 2000.

[12] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. MeRarallel Programming in OpenMPMorgan Kaufmann, San Francisco,
CA, 2001.

[13] P. Chaparro, G. Magklis, J. Goalez, and A. Goralez. Distributing the frontend for temperature reductioninth Symp. on High-Performance
Computer Architecturgpages 61-70, San Francisco, CA, February 2005.

14



[14]
(15]
[16]
(17]
(18]
(19]

(20]
[21]
[22]
(23]

(24]
(25]
(26]
(27]
(28]
[29]
(30]
(31]
(32]
(33]

(34]
(35]

(36]
(37]
(38]
(39]
[40]

[41]

G. Chrysos and J. Emer. Memory dependence prediction using store sétsl. 8ymp. on Computer Architectyneages 142—-153, Barcelona,
Spain, June—July 1998.

J. D. Collins and D. M. Tullsen. Clustered multithreaded architectures - pursuing both ipc and cycle timlePhrallel and Distributed Processing
Symp, Santa Fe, New Mexico, April 2004.

A. E.-Moursy, R. Garg, D. H. Albonesi, and S. Dwarkadas. Partitioning multi-threaded processors with a large number of thhethdSyrimp.
on Performance Analysis of Systems and Softwsages 112—-123, Austin, TX, March 2005.

P. Bai et al. A 65nm logic technology featuring 35nm gate length, enhanced channel strain, 8 cu interconnect layers, low-k ilgieartdsOaii
cell. InIEEE Intl. Electron Devices MeetingVashington, DC, December 2005.

K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The Multicluster architecture: Reducing cycle time through partitiohitigSymp. on
Microarchitecture pages 149-159, Research Triangle Park, NC, December 1997.

J. Gonalez, F. Latorre, and A. Goalez. Cache organizations for clustered microarchitecturéa/ohikshop on Memory Performance Issyssges
46-55, Munich, Germany, June 2004.

J. L. Henning. SPEC CPU2000: Measuring CPU performance in the new millentiilt&. Computer33(7):28-35, July 2000.
R. Ho, K. Mai, and M. Horowitz. The future of wires. Proceedings of the IEEpages 89(4):490-504, April 2001.
R. E. Kessler. The Alpha 21264 microprocessBEE Micro, 9(2):24—-36, March 1999.

A. KleinOsowski and D. Lilja. MinneSPEC: A new SPEC benchmark workload for simulation-based computer architecture r€&smamiter
Architecture Lettersl, June 2002.

R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen. Single-ISA heterogeneous multi-core architectures: The potential for
processor power reduction. Intl. Symp. on Microarchitecturgpages 81-92, San Diego, CA, December 2003.

R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. |. Farkas. Single-ISA heterogeneous multi-core architectures for multithreaded
workload performance. Imtl. Symp. on Computer Architectyqgages 64—75, Bhchen, Germany, June 2004.

R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in multi-core architectures: Understanding mechanisms, overheads andisthling. In
Symp. on Computer Architectymgages 408—419, Madison, Wisconsin, June 2005.

F. Latorre, J. Goriez, and A. Gonalez. Back-end assignment schemes for clustered multithreaded processails Clonf. on Supercomputing
pages 316-325, Malo, France, June-July 2004.

R. Lawrence, G. Almasi, and H. Rushmeier. A scalable parallel algorithm for self-organizing maps with applications to sparse data mining problems.
Technical report, IBM, January 1998.

K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. Smart Memories: a modular reconfigurable architelcttir&ymp. on
Computer Architecturgpages 161-171, Vancouver, Canada, June 2000.

J. F. Martnez, J. Renau, M. C. Huang, M. Prvulovic, and J. Torrellas. Cherry: Checkpointed early resource recycling in out-of-order microproces-
sors. Inintl. Symp. on Microarchitecturdstanbul, Turkey, November 2002.

M. Moudgill, K. Pingali, and S. Vassiliadis. Register renaming and dynamic speculation: An alternative apprdathSymp. on Microarchitec-
ture, pages 202-213, Austin, TX, December 1993.

K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case for a single-chip multiprocessotl. @onf. on Architectural
Support for Programming Languages and Operating Systpages 2—11, Cambridge, MA, October 1996.

S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective superscalar proceskatsSymp. on Computer Architectyrgages 206-218,
Denver, CO, June 1997.

J.-M. ParcesiraDesign of Clustered Superscalar Microarchitectur®.D. dissertation, Univ. Paditnica de Catalunya, April 2004.

J. Pisharath, Y. Liu, W.-K. Liao, A. Choudhary, G. Memik, and J. Parhi. NU-MineBench 2.0. Technical Report CUCIS-2005-08-01, Center for
Ultra-Scale Computing and Information Security, Northwestern University, August 2005.

J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, S. Sarangi, P. Sack, K. Strauss, and P. Montesinos.
http://sesc.sourceforge.net

E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. E. Smith. Trace processattsSimp. on Microarchitecturgpages 138-148, Research Triangle
Park, NC, December 1997.

K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler, and C. R. Moore. Exploiting ILP, TLP, and DLP with the
polymorphous TRIPS architecture. lintl. Symp. on Computer Architectyurgages 422—-433, San Diego, CA, June 2003.

G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processolistllriSymp. on Computer Architectymgages 414-425, Santa Margherita
Ligure, Italy, June 1995.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs: Characterization and methodological considdrations. In
Symp. on Computer Architectymgages 24—36, Santa Margherita Ligure, Italy, June 1995.

V. V. Zyuban and P. M. Kogge. Inherently lower-power high-performance superscalar architetffieslransactions on Computeis0(3):268—
285, March 2001.

15





