

1

TOWARDS A POWER EFFICIENT PROGRAMMING MODEL FOR AD HOC
NETWORKS

Abstract

In this paper, we describe the design and implementation of a distributed operating system for ad hoc net-
works. The goal of our system is to extend total system lifetime for ad hoc networking applications through
power-aware adaptation. We propose an event-based model for programming ad hoc networking applica-
tions. Our system automatically and transparently partitions applications into components and dynamically
finds a placement of these components on nodes within the network to reduce energy consumption and in-
creases the longevity. This paper describes our programming model, outlines the design and implementation
of our system and examines automatic migration policies for ad hoc networks. We evaluate practical,
power-aware, general-purpose algorithms for component placement and migration, and demonstrate that
they can significantly increase system longevity by effectively distributing energy consumption and avoid-
ing hotspots.

1. Introduction
Ad hoc networks simultaneously promise a radically
new class of applications and pose significant chal-
lenges for application development. Recent advances in
low-power, high-performance processors and medium
to high-speed wireless networking have enabled new
applications for ad hoc and sensor networks, ranging
from large-scale environmental data collection to coor-
dinated battlefront and disaster-relief operations. Ad
hoc networking applications differ from traditional ap-
plications in three fundamental ways. First, ad hoc net-
working applications, as well as the infrastructure on
which they execute, are inherently distributed. Operat-
ing on a distributed platform requires mechanisms for
remote communication, naming, and migration. Sec-
ond, ad hoc networks are typically highly dynamic and
resource-limited. Key performance metrics, such as
bandwidth, may vary through several orders of magni-
tude, and mobile nodes are typically limited in energy.
Consequently, applications need policies for using
available resources efficiently, and sharing them among
competing applications fairly. Finally, ad hoc network-
ing applications are expected to outlast the lifetime of
any one node. Performing long-running computations
in a dynamic environment requires facilities for dy-
namically introducing new functionality and integrating
it with existing computations present in the network.
Current operating systems, however, provide little sup-
port for ad hoc networks. This lack of system support
makes it difficult to develop ad hoc networking appli-
cations and to execute them in a resource-efficient man-
ner.

Current state of the art in developing applications for ad
hoc networks is to treat the network as a system of
systems, that is, a network comprised of independent,
autonomous computers. This programming model
forces applications to provide all of their requisite
mechanisms and policies for their operation them-
selves. Mechanisms, such as those for distributing code
and migrating state, as well as policies, such as how to
react to diminishing battery supply on a given node,
need to then be embedded, independently, in all appli-
cations. Such a limited programming model not only
makes developing ad hoc networking applications tedi-
ous and error-prone, but the lack of a global operating
system that acts as a trusted arbiter between mutually
distrusting applications allows conflicts to emerge be-
tween applications. For instance, in an acoustic sensor
network where the primary application is to detect
submarines and a secondary application is to track
mammals, the system of systems model makes it diffi-
cult to express the relative priorities of the applications.
A low priority application may interfere with higher
priority applications simply by using a more aggressive
migration policy that depletes the power supply of criti-
cal nodes in the system. Critical global properties of the
network, such as system longevity, are dictated by dis-
tributed policies encoded in applications; network op-
erators have little control over the operation of their
systems, as there is no network-wide system layer. This
situation is analogous to the early standalone operating
systems implemented entirely in user-level libraries, in
that assuring global properties of the system requires
whole system analysis, including auditing all applica-
tion code.

2

In this paper, we investigate an alternative program-
ming model for ad hoc networks and outline a distrib-
uted operating system based on this model, called
Flock. We show that the Flock approach can lead to
increased energy efficiency for applications. Unlike
distributed programming on the Internet, where energy
is not a constraint, delay is low, and bandwidth is plen-
tiful, physical limitations of ad hoc networks lead to
some unique requirements. Technology trends indicate
that the primary limitation of mobile ad hoc and sensor
networks is energy consumption, and communication is
the primary energy consumer [Pottie & Kaiser 00].
Consequently, the goals of Flock are as follows:

• Efficient: The system should execute distributed ad
hoc network applications in a manner that conserves
power and extends system lifetime. Policies and
mechanisms used for adaptation in the systems layer
should not require excessive communication or
power consumption.

• Adaptive: The system should respond automatically
to significant changes in network topology, resource
availability, and the communication pattern of the
applications.

• General purpose: The system should support a wide
range of applications and porting an existing central-
ized sensing application to execute efficiently on an
ad hoc network should require little effort. Applica-
tions should be able to direct the adaptation using
application-specific information. The system should
provide effective default adaptation policies for ap-
plications that are not power-aware.

• Extensible: The system should provide facilities for
deploying, managing and modifying executing appli-
cations whose lifetime may exceed those of the net-
work participants.

• Compatible and Platform independent: The sys-
tem should not require mastering a new paradigm in
order to deploy applications. Standard development
tools should continue to work in building applica-
tions for ad hoc networks. The system should enable
applications to execute on ad hoc networks of het-
erogeneous nodes.

Flock meets these goals through an event-based pro-
gramming model. Flock applications are structured as a

set of interconnected, mobile event handlers, specified
statically by the programmer as familiar objects in an
object-oriented system. The Flock runtime, through
application partitioning, distributes these event handlers
to nodes in the ad hoc network, and, through dynamic
migration, finds an energy-efficient placement of han-
dlers within the network. Flock applications are com-
prised of event handlers that communicate with each
other by raising well-typed events. Event signatures
specify the types of the arguments passed with the
event, as well as the return type of the event handler.
By default, all externally visible entry points, such as
methods in a Java object specification, serve as event
declarations, and method bodies constitute the default
handler for that event in the absence of overriding run-
time event bindings. Consequently, the Flock pro-
gramming model closely parallels the Java virtual ma-
chine, providing access to standard Java libraries and
enabling familiar development tools to be used to con-
struct distributed applications.

Our Flock implementation consists of a static applica-
tion partitioning service that resides on border hosts
capable of injecting new code into the network, and a
runtime on each node that performs dynamic monitor-
ing and component migration. The static partitioning
service takes regular Java applications and converts
them into distributed components that communicate via
events by rewriting them at the bytecode level (Figure
1). The code injector then finds a suitable initial layout
of these components and starts the execution of the
application. The runtime monitors the performance of
the application and migrates application components
when doing so would benefit the system.

Monolithic application

Static partitioning

Distributed application

Figure 1: A static partitioning service converts mono-
lithic Java applications into distributed applications that
can run on an ad hoc network and transparently com-
municate by raising events.

3

The algorithms for event handler placement form the
core of our system. We present practical, online algo-
rithms for finding an energy-efficient distribution of
application components in an ad hoc network. (Figure
2). This paper examines the effectiveness of these al-
gorithms in reducing energy consumption and extend-
ing system lifetime in the context of three application
benchmarks, and examine their impact on system
longevity. These algorithms operate by dividing time
into epochs, monitoring the communication pattern of
the application components within each epoch, and
migrating components at the end of the epoch when
doing so would result in more efficient power
utilization. We have built a prototype implementation
that as well as a prototype implementation that runs on
x86 laptops, Transmeta tablets, and StrongArm
PocketPC class devices. We report results from
simulation studies, which show that the Flock system
can achieve significant improvement in system longev-
ity over static placement and standard load-balancing
techniques. This paper makes three contributions. It proposes an
event-based programming model for ad hoc networks
that leverages existing language mechanisms for to
specify distributed network programs. It describes the
design and implementation of an operating system for
ad hoc networks based on this model. This system op-
erates by automatic partitioning applications and trans-
parently migrating event handlers at runtime. Second,
we propose practical, adaptive, online algorithms for
finding an energy-efficient placement of application
components in an ad hoc network. Finally, we demon-
strate that these algorithms achieve high-energy utiliza-
tion, extract low overhead, and improve system longev-
ity.

In the next section, we describe related work on operat-
ing system support for ad hoc networks and their appli-
cations. Section 3 outlines our system implementation,

including the code partitioning and distribution tech-
nique. Section 4 presents our network and application
model, describes our simulation framework and evalu-
ates within this environment. We summarize our con-
tributions in Section 5.

2. Related Work
Past work has examined distributed operating systems,
ad hoc networks, and power management, though few
systems have examined all three.

2.1. Distributed Systems
Data and code migration have been examined exten-
sively in the context of wired networks of workstations.
Early landmark systems, such as V [Cheriton 88],
Sprite [Ousterhout et al. 88], Ameoba [Tanenbaum et
al. 90, Steketee et al. 95], Accent [Rashid & Robertson
81], and LOCUS [Popek & Walker 85], implemented
native operating system facilities for migrating proc-
esses between nodes on a tightly coupled cluster.
Glunix [Ghormley et al. 98] provides facilities for man-
aging applications on networks of workstations. More
recently, the cJVM [Aridor et al. 99] and JESSICA [Ma
et al. 99] projects have examined how to extend a Java
virtual machine-across a high-performance cluster.
Others, including Condor [Litzkow et al. 97], libckpt
[Plank et al. 95] and CoCheck [Stellner 96], provide
user-level mechanisms for checkpointing and process
migration without operating system support. These pro-
jects target high-performance, well-connected clusters.
Their main goals are to balance load and achieve high
performance in a local area network for interactive
desktop programs or CPU-intensive batch jobs. In con-
trast, Flock targets wireless multi-hop networks, where
utilizing power effectively and maximizing system lon-
gevity is more important than traditional application
performance.

Distributed object systems have examined how to sup-
port distributed computations in the wide area. Emerald
[Jul et al. 88] provides transparent code migration for
programs written in the Emerald language, where the
migration is directed by source-level programmer anno-
tations. Thor [Liskov et al. 93] provides persistent ob-
jects in a language-independent framework. It enables
caching, replication and migration of objects stored at
object repositories. These seminal systems differ fun-
damentally from Flock in that they require explicit pro-
grammer control to trigger migration, do not support an
ad hoc network model and target traditional applica-
tions.

The closest approach to ours were some recent systems
that focused on how to partition applications within a
conventional wired network. The Coign system [Hunt

node
data source

event handler
event flow

Figure 2: Migrating components closer to their data
sources in an ad hoc network increases system longev-
ity and decreases power consumption by reducing total
network communication cost.

4

& Scott 99] has examined how to partition COM appli-
cations between two tightly interconnected hosts within
a local-area network. Coign performs static spatial par-
titioning of desktop applications via a two-way mini-
mum cut based on summary application profiles col-
lected on previous runs. The ABACUS system [Amiri
et al. 00] has examined how to migrate functionality in
a storage cluster. Flock shares the same insight as
Coign, in that it also focuses on the automatic reloca-
tion of application components, but differs in that it
dynamically moves application components in response
to changes in the network, instead of computing a static
partitioning from a profile. [Kremer et al. 00] proposes
using static analysis to select tasks that can be executed
remotely to save energy. J-Orchestra [Tilevich &
Smaragdakis 02] performs application partitioning via
rewriting, leaving dynamic migration decisions under
application control. Spectra [Flinn et al. 01] monitors
resource consumption, collects resource usage histories
and uses quality of service (fidelity) information sup-
plied by the application to make resource allocation
decisions. Spectra is invoked prior to operation startup,
and statically determines a location at which to execute
the operation.

Middleware projects have looked at constructing tool-
kits to support mobile applications. The Rover toolkit
[Joseph et al. 95] provides relocation and messaging
services to facilitate the construction of mobile applica-
tions. The Mobiware [Campbell 98] and DOMT [Kunz
and Omar 00] toolkits are targeted specifically for ad
hoc networks and provide an adaptive-QoS program-
ming interface. XMIDDLE [Mascolo 01] assists with
data management and synchronization. Flock takes a
systems approach instead of providing a programmer
driven toolkit and automatically manages the shared
network and energy resources among ad hoc network
applications. This approach unifies the system layer and
ensures that disparate applications, regardless of which
toolkits they use, behave in a cooperative manner.

2.2. Ad hoc Routing Protocols
There has been much prior research on ad hoc routing
algorithms. Proactive, reactive and hybrid routing pro-
tocols seek to pick efficient routes by proactively dis-
seminating or reactively discovering route information,
or both. While some protocols, such as PARO [Gomez
et al. 01] and MBLR [Toh 01], have examined how to
make power-aware routing decisions, all of these rout-
ing algorithms assume that the communication end-
points are fixed. Directed diffusion [Heidemann et al.
01] provides a data-centric programming model for
sensor networks by labeling sensor data using attribute-
value pairs and routing based on a gradient. Flock

complements the routing layer to move application
code around the network, changing the location of the
communication endpoints and radically altering the
communication pattern of the overall application. It
provides increased system and application longevity by
bringing application components closer to the data
sources, which complements the route selection per-
formed by the ad hoc routing protocol.

2.3. Operating Systems
Prior work has examined how to construct space-
constrained operating systems for sensor networks.
TinyOS provides essential OS services for sensor nodes
with limited hardware protection and small amounts of
RAM [Hill et al. 00]. Mate [Levis & Culler 02] builds
on TinyOS to provide a capsule-based programming
model for in-network processing on sensor nodes.
Flock is complementary to these stand-alone systems,
in that its system-wide abstractions can be built on top
of the services they provide.

Previous work has also examined how to minimize
power consumption within an independent host through
various mechanisms [Pillai & Shin 01, Grunwald et al.
00, Weiser et al. 94, Douglis et al. 95, Stemm & Katz
96], including low-power processor modes, disk spin-
down policies, adapting wireless transmission strength
and selectively turning off unused devices. Our system
is complementary to this work and opens up further
opportunities for minimizing power consumption by
shipping computation out of hosts limited in power to
less critical nodes.

3. System Implementation and Distribu-
tion Model

Flock provides an event-based programming model for
ad hoc networks in three steps. First, an application is
specified as a regular Java virtual machine program,
defining component boundaries as well as well-typed
event specifications. Next, this monolithic application
is partitioned by a rewriting engine, distributing its
functionality across the ad hoc network. The Flock run-
time then coordinates the communication and migration
of these application segments across the nodes in the
sensor network in order for the newly distributed appli-
cation to execute in a power-efficient manner. We dis-
cuss the static and dynamic components of the Flock
runtime in the following sections.

3.1. Application Partitioning
The partitioning mechanism of Flock converts Java
applications written and compiled for a single virtual
machine into remote event handlers that can be dis-
persed and executed across an ad hoc network. This
transformation enables the bulk of the application logic

5

to be expressed using familiar Java syntax and seman-
tics.

Flock partitions applications based on programmer an-
notations, though, in the absence of annotations, object
boundaries delineate event handlers. Consequently, the
unit of mobility in Flock is typically a Java object in-
stance, which we use synonymously with event han-
dler. This transformation at class boundaries preserves
existing object interfaces, and inter-object invocations
define events in Flock. The entire transformation is
performed at the byte-code level via binary rewriting,
without requiring source-code access.

Our approach to partitioning applications statically is
patterned after distributed virtual machines [Sirer et al.
99]. Static partitioning confers several advantages.
First, the complex partitioning services need only be
supported at code-injection points, and can be per-
formed offline. Second, since the run-time operation of
the system and its integrity do not depend on the parti-
tioning technique, users can partition their applications
into arbitrary components if they so choose. Further,
since applications are verified prior to injection into the
network, individual Flock nodes need not re-run a
costly verifier on application components. Finally, bi-
nary rewriting provides a convenient, default mecha-
nism for transitioning legacy, monolithic applications
to execute over ad hoc networks.

The static partitioning takes original application
classes, and from each class extracts an event handler, a
dispatch handle, an event descriptor, and a set of event
globals associated with the event handler.

An event handler is a modified implementation of the
original class that stores the instance variables of the
corresponding event handler. Each handler is free to
move across nodes in the network. Dispatch handles,
on the other hand, are remote references through which
components can raise events. That is, dispatch handles
are used to invoke procedure calls on remote event han-
dlers residing on other nodes. Event raises through the
dispatch handle are intercepted by the Flock runtime
and converted into RPCs. This indirection enables code
migration. As an event handler moves, the event raises
occurring through the corresponding event dispatch
handles are tracked by the Flock runtime and directed
to the new location of the event handler. Event
descriptors capture the event signatures that the original
code exposes to the rest of the application.

Several modifications to the application binaries are
required for this remote object mechanism to work
seamlessly. First, object creations (new instructions
and matching constructor invocations) are replaced by

calls to the local Flock runtime. The runtime selects an
appropriate node and constructs a new event handler at
that location. This operation returns a corresponding,
properly initialized dispatch handle, which is then used
in subsequent event raises. In addition, Flock converts
remote data accesses into events corresponding to ac-
cessor functions to read and write named locations.
Similarly, it converts lock acquisitions and releases into
centralized operations at the event handler. Finally,
typechecking and synchronization instructions (check-
cast, instanceof, monitorenter and monitorexit in-
structions, and synchronized methods) are rewritten to
trap into the Flock runtime.

The final component created for a class is a set of event
globals. The event globals are static fields shared across
all instances of an event handler. Each event handler
retains pointers to the corresponding instance of event
globals, and can therefore share state with other han-
dlers.

Flock provides a system abstraction similar enough to
Java to facilitate easy programming and migration of
existing applications. However, the Flock runtime is
devoid of notions of threading, because they are ill
suited to distributed computation. The Flock runtime
replaces the notion of threads with an event-based
model. Events in Flock are interruptible, independent
computations. Application components communicate
with each other by raising events. Raising events causes
an event descriptor to be queued at the corresponding
event handler. A set of worker threads at the appropri-
ate node execute these events. The scheme decouples
the description of a serial computation from the notion
of a thread bound to a single processor. A dispatcher
mechanism, similar to [Pardyak & Bershad 96], pro-
vides interposition and late binding.

We designed Flock as an event-based programming
system based on Java for several reasons, each of
which illustrates a conscious tradeoff in the design.
Foremost, we chose Java because it is familiar to pro-
grammers, and allows programmers to easily and com-
pactly express network-wide behavior. In contrast, a
lower-level approach where programmers explicitly
specify policies at the level of individual nodes or
components would be more cumbersome than a system
where such notions were expressed implicitly in the
code. Our event-driven model is a departure from the
traditional Java semantics of threads and concurrent
execution. Threads are ill suited to computation in an
ad hoc network because they explicitly tie computation
to node resources such as stack frames and processors.
An event-based model is efficient because the number
of concurrent event handlers can be adjusted based on

6

the amount of memory and processing power at each
node, without impacting the programming model. In
addition, an event-based model decouples callers from
callees and avoids making inter-node dependencies.

3.2. Migration Mechanisms
The Flock runtime provides the dynamic services that
facilitate the distributed execution of componentized
applications across an ad hoc network. Its services in-
clude component creation, inter-component communi-
cation, event handler migration, garbage collection,
naming, and event binding.

In order to create a new instance of an event handler, an
application will contact the local runtime and pass the
requisite type descriptor and parameters for creation.
The runtime then has the option of placing the newly
created handler at a suitable location with little cost. It
may choose to locate the handler on the local node, at a
well-known node or at its best guess of an optimal loca-
tion within the network. In our current implementation,
all new handlers are created locally. We chose this ap-
proach for its simplicity, and rely on our dynamic mi-
gration algorithms to find the optimal placement over
time. Furthermore, short-lived, tightly scoped event
handlers do not travel across the network unnecessarily.
The application binaries, containing all of the construc-
tors, are distributed to all nodes at the time that the ap-
plication is introduced into the network. Once created,
the (remote) runtime simply initializes the handler by
calling its constructor and returns a dispatch handle.

The runtime transparently handles invocations among
the event handlers distributed across the network. Each
runtime keeps a list of local event handlers. Dispatch
handles maintain the current location of the correspond-
ing handler, and process raised events on behalf of ap-
plication invocations by marshalling and unmarshalling
event arguments and results.

The Flock runtime implements a lease-based garbage
collector for remote references to event handlers, with
leases automatically renewed by live dispatch handles.
As in RMI and Network Objects [Birrell et al. 94], our
current implementation does not collect cycles in the
reference graph. Local handlers are collected by the
standard Java garbage runtime.

Flock migrates event handlers at runtime by serializing
handler state and moving it to a new node. Dispatch
handles are informed of the relocation lazily, the next
time they raise an event or renew their leases. This is
accomplished through forwarding references left be-
hind when event handlers migrate. Long chains of for-
warding pointers, if allowed to persist for a long time,
would pose a vulnerability – as nodes die, out-of-date

event references may not be able to trace a path to the
current location of the event handler to which they are
bound. Flock collapses these paths whenever they are
traversed. Periodic lease updates in lease-based garbage
collection requires periodic communication between
dispatch handles and event handlers, which provides an
upper-bound on the amount of time such linear chains
are permitted to form in the network. A broadcast
mechanism is used as a fallback to locate handlers by
the identifier stored in a dispatch handle if the pointer-
chain is broken due to a failure.

The Flock runtime provides an explicit interface by
which application writers can manually direct compo-
nent placement. This interface allows programmers to
establish affinities between event handlers and ad hoc
nodes. We provide two levels of affinity. Specifying a
“strong” affinity between an event handler and a node
effectively anchors the code to that node. This is in-
tended for attaching event handlers like device drivers
to the nodes with the installed device in them. Specify-
ing a “weak” affinity immediately migrates the compo-
nent to the named node, and allows the automated code
placement techniques described in the next section to
adapt to the application’s communication pattern from
the new starting point. Note that today’s manually con-
structed applications correspond to the use of strong
affinity in our system – unless explicitly moved, com-
ponents are bound to nodes. The result of overusing
strong affinity is a fragile system, where unforeseen
communication and mobility patterns can leave an ap-
plication stranded. While we provide these primitives
in order to ensure that Flock applications provide at
least as much control to the programmer as manually
crafted applications, we do not advocate their use.

3.3. Runtime Support for Ad hoc Networks
The ad hoc networking domain places additional con-
straints on the runtime implementation. First, multi-hop
ad hoc networks require an ad hoc routing protocol to
connect non-neighboring nodes. Flock relies on a stan-
dard ad hoc routing protocol below the runtime to pro-
vide message routing. Currently, our system runs on
any platform that supports Java JDK1.4. On Linux, we
use an efficient in-kernel AODV implementation we
developed. On other platforms, we use a user-level ver-
sion of AODV written in Java to provide unicast rout-
ing. The choice of a routing algorithm is independent
from the rest of the runtime, as the runtime makes no
assumptions of the routing layer besides unicast rout-
ing.

Second, standard communication packages such as
Sun’s RMI are designed for infrastructure networks,
and are inadequate when operating on multi-hop ad hoc

7

networks. Frequent changes in network topology and
variance in available bandwidth require Flock to mi-
grate objects, requiring the endpoints of an active con-
nection to be modified dynamically as objects move.
We have built a custom RPC package based on a reli-
able datagram protocol [Hinden & Partridge 90] that
allows us to easily modify the communication end-
points when components move and is responsible for
all communication between dispatch handles and corre-
sponding event handlers.

Finally, the higher-level policies in Flock require in-
formation on component behavior to make intelligent
migration decisions. The runtime assists in this task by
collecting, for each component, information on the
amount of data it exchanges with other components.
The runtime intercepts all communication and records
the source and destination for all incoming and outgo-
ing events. Flock keeps a cumulative sum per compo-
nent per epoch, and periodically informs the migration
policy in the system of the current tally. While this ap-
proach has worst case space requirement that is O(N2),
where N is the number of components in the network,
in practice most components communicate with few
others and the space requirements are typically small.
For instance, in the sensor benchmark examined in Sec-
tion 4, the storage requirements are linear. The next
section describes how Flock uses these statistics to
automatically migrate components.

3.4. Event Handler Placement
In this section, we describe two algorithms, NetPull and
NetCenter, which use the information gathered by the
runtime to migrate components in a manner that in-
creases system longevity.

Both NetPull and NetCenter share the same basic in-
sight. They shorten the mean path length of data pack-
ets by automatically moving communicating objects

closer together. They perform this by profiling the
communication pattern of each application in discrete
time units, called epochs. In each epoch, every runtime
keeps track of the number of incoming and outgoing
packets for every object. At the end of each epoch, the
migration algorithm decides whether to move that ob-
ject, based on its recent pattern of behavior. Under both
algorithms, the decision is made locally, based on in-
formation collected during recent epochs at that node.
NetPull and NetCenter differ in the type of information
they collect and how they pick the destination host.
Depending on the environment, one may be easier to
implement.

NetPull collects information about the communication
pattern of the application at the physical link level, and
migrates components over physical links one hop at a
time. This requires very little support from the network;
namely, the runtime needs to be able to examine the
link level packet headers to determine the last or next
hop for incoming and outgoing packets, respectively.
For every object, we keep a count of the messages sent
to and from each neighboring node. At the end of an
epoch, the runtime examines all of these links and the
object is moved one hop along the link with greatest
communication.

NetCenter operates at the network level, and migrates
components multiple hops at a time. In each epoch,
NetCenter examines the network source addresses of all
incoming messages, and the destination addresses of
outgoing messages for each object. This information is
part of the transmitted packet, and requires no addi-
tional burden on the network. At the end of an epoch,
NetCenter finds the host with which a given object
communicates the most and migrates the object directly
to that host.

Both of these algorithms improve system longevity by
using the available power within the network more ef-
fectively. By migrating communicating components
closer to each other, they reduce the total distance
packets travel, and thereby reduce the overall power
consumption. Further, moving application components
from node to node helps avoid hot spots and balances
out the communication load in the network. As a result,
both algorithms can significantly improve the total sys-
tem longevity for an energy-constrained ad hoc net-
work.

4. Evaluation
In this section, we examine the power efficiency of
automatic migration strategies in Flock. We first evalu-
ate the core automatic migration algorithms, NetPull
and NetCenter, in three different benchmarks, and show

node

data source

event handler

event flow

1 - NetPull
2 - NetCenter

1 2

Figure 3: NetPull moves one hop towards the source of
data whereas NetCenter moves directly to the source of
most packets.

8

that they achieve good energy utilization, improve sys-
tem longevity, and are thus suitable for use in general-
purpose, automatic migration systems. Next, we report
results from microbenchmarks to show that automati-
cally partitioning applications does not extract a large
performance cost. Finally, we present evidence show-
ing that the memory costs of a specially tuned Java vir-
tual machine is within the resource-budget of next gen-
eration ad hoc nodes.

4.1. Benchmarks and Workload
We evaluated the performance and efficiency of Flock
event handler migration strategies in three representa-
tive applications, each with a unique communication
pattern and application workload. The applications
were chosen to span a wide range of possible deploy-
ment environments. We first describe the setup and
workload for each application, then examine their per-
formance under Flock.

4.1.1. SenseNet
We first examine a generic, reconfigurable sensing
benchmark we developed named SenseNet. This appli-
cation consists of sensors, condensers and displays.
Sensors are fixed at particular ad hoc nodes, where they
monitor events within their sensing radius and send a
packet to a condenser in response to an event. Con-
densers can reside on any node, where they process and
aggregate sensor events and filter noise. The display
runs on a well-equipped central node, extracts high-
level data on events from the condensers, and sends
results to an external wired network.

The application is run on a 14 by 14 grid of sensors,
each placed 140 meters apart with a jitter of ± 50 me-
ters. The communication and sensing radius is 250 me-
ters. The grid is partitioned into four quadrants, and a
single condenser is assigned to aggregate and process
data for each quadrant. The workload consists of three
bodies that move through the sensor grid in randomly
chosen directions. We measure the total remaining en-
ergy across all nodes, sensor coverage, number of
drained sensor nodes, number of nodes not reachable
by the display, and overall system longevity. We define
system failure as the point when half of the field is no
longer being sensed by the display node.
4.1.2. Publish-Subscribe
Our second application consists of a basic publish-
subscribe system. The application provides a channel
abstraction to which clients can subscribe and publish.
Channels act as mobile rendezvous points by accepting
incoming messages and relaying them to each of the
clients subscribed to the channel.

For this application, we generate a workload resem-
bling a disaster recovery application. The workload
consists of ten channels each with four subscribers. The
four subscribers publish messages approximately every
10, 20, 30, and 40 seconds, respectively. We run the
application on the same 14 by 14 network layout as
SenseNet. We measure total system throughput
smoothed over 20 second intervals, number of nodes
drained, and total remaining energy in the network. We
stop the simulations when total throughput drops to
zero during a 20 second interval.

4.1.3. FileSystem
Lastly, our final application is a network file system
that may be used in mobile ad hoc scenarios. This ap-
plication consists of clients and files. Client objects are
assigned to mobile devices, and access files over the
network according to an external trace. File objects can
reside on any node, and independently receive and
process requests from clients.

This application is run on a randomly generated net-
work with 196 mobile nodes, with approximately the
same density as in SenseNet. The nodes move accord-
ing to the random waypoint mobility model with a
maximum node speed of 5 meters per second. The
benchmark workload is based on the 1994 Auspex file
system trace [Dahlin et al. 94]. To compensate for the
relatively limited capabilities of wireless nodes, we
slow the trace by a factor of four. We measure the same
statistics, and use the same stopping condition, as for
the Publish-Subscribe application.

4.2. Simulation Methodology
We implemented a significant part of the Flock system
in Sns [Walsh & Sirer 03], a scalable version of the Ns-
2 network simulator. In order to accurately account for
packet-level costs, we implemented a detailed energy
model using parameters obtained from measurements
of 802.11b wireless cards [Feeney & Nilsson 01].
Computation costs are assumed to be negligible. We
use the AODV protocol for wireless ad hoc routing,
which includes support for both mobile and static node
placements, and include the cost for route discovery,
maintenance, and repair in our energy model. In all, we
run each application with 16 scenarios each by varying
the workload and network layout, averaging the results
to obtain estimates of expected application behavior.
For each application and scenario, we consider the fol-
lowing object placement and migration strategies:

• Static Centralized corresponds to a static,
fixed assignment of all movable objects to a
single, central node in the network. All mov-

9

able components remain at the home node for
the entire duration of the simulation.

• Static Distributed corresponds to a static, fixed
assignment of objects to nodes within the net-
work. Movable objects are randomly assigned
to nodes, and remain at those nodes for the en-
tire duration of the simulation.

• Random selects a random neighbor as destina-
tion for each movable object at each epoch. It
corresponds to a simple load-balancing algo-
rithm, designed to avoid network hotspots.

• NetPull moves objects one hop along the most
active adjacent communication link at each
epoch to the most active neighbor.

• NetCenter moves objects directly to the node
with which it communicated the most in the
previous epoch.

In addition to simulation-based evaluation, we imple-
mented these benchmarks on top of our prototype sys-
tem that supports x86/Windows and Stron-
gArm/PocketPC platforms. The base system includes
adaptive object placement policies, AODV ad hoc
wireless routing, and automatic partitioning using Java
bytecode rewriting.

4.3. Results and Discussion
In the following sections, we examine each application
benchmark in turn. The benchmarks represent a wide
spectrum of different applications and communication
models, and thus the relative performance of static and
intelligent object migration policies varies with the ap-
plication. Overall, these benchmarks show that the
adaptive algorithms described above avoid hotspots in
the network by moving objects intelligently. In addi-
tion, we find that the details of application communica-
tion and workload patterns impact the relative perform-
ance of different migration strategies, confirming the
need for automatic and system-wide placement policies.

Figure 4: SenseNet application: 4a. Automatic migration significantly extends system lifetime. Bars represent 25th
and 75th quartiles. 4b, c, and d show that adaptive algorithms extract more energy out of the field and increase the
field coverage and node availability.

10

4.3.1. SenseNet
The SenseNet benchmark shows the clearest gains for
the adaptive algorithms described above. Figure 4a
shows that automatic migration increases system lon-
gevity by a factor of 3. This gain is achieved generally
by moving objects away from hotspots and reducing
mean packet distances.

The energy graph in Figure 4b shows that the energy
curves for NetCenter and NetPull are more shallow

than those for the Random and Static cases, which are
steep and linear in the time of the simulation. Static
suffers because of the energy bottleneck it creates
around the fixed locations it has for system compo-
nents. Random, a standard approach to distribute load,
actually hurts energy performance by paying too much
in migration costs. This benefit comes from the opti-
mizing nature of the adaptive algorithms, which con-
tinuously try to find good placements.

Figure 5: Publish-Subscribe benchmark. 5a, b, and c
show that NetCenter and NetPull increase the longevity
of nodes, the energy utilization, and the throughput.

Figure 6: FileSystem benchmark. 6a, b, and c show how
NetCenter and NetPull compare to static and random
approaches.

11

The unreachable nodes and coverage graphs (Figure 4c
and 4d) show two separate performance metrics with
similar insights. Adaptive placement and migration
save energy and distribute load, which extends node
lifetimes and increases longevity for the network.

4.3.2. Publish-Subscribe
The Publish-Subscribe application differs substantially
from the SenseNet application. It consists of a rela-
tively small number of rendezvous points, each
commu-nicating with a stable set of clients. This en-
ables route discovery costs, incurred when objects are
migrated, to be amortized over a large number of ac-
cesses.

Figure 5a shows that the Centralized approach fails
very early because of the large hotspot in client ac-
cesses around the center of the network. We can see in
each of the graphs that this approach initially achieves
as high throughput as dynamic migration strategies, but
it ter-minates early then it uses up the energy in the
center of the network. The Random approach shows
that ran-domizing the location of objects fails to
achieve any savings or avoid hotspots, as it incurs the
migration cost without the benefits of intelligently plac-
ing objects in the network.

The Distributed Static approach performs well, because
it both avoids hotspots and does not incur object mobil-
ity costs. Adaptive policies do even better, since they
place the rendezvous points near clients that access
them frequently, reducing the ongoing cost of publish-
subscribe operations.

4.3.3. FileSystem
In our file system benchmark, we discovered that the
centralized algorithm performs better than any non-
centralized one. This difference can be explained by
the costs that each algorithm must pay to achieve the
same level of availability. First, hotspots near the cen-
tralized server are mitigated because of node move-
ment. Further, the centralized algorithm only has a sin-
gle destination for all data flows. This layout is an op-
timal case for the AODV routing layer. All the distrib-
uted cases, by definition, have individual files which
are located at many different points in the net-work.
This leads to nearly 200 different destinations, a load
which significantly more expensive for AODV to com-
pute and maintain.

Among the non-centralized protocols, performance is
dependent on and almost entirely determined by the
cost of maintaining routes, since the per-file workload
is typically very light. Many files, for example, are ac-
cessed only once every 60 seconds. The overhead asso-
ciated with moving a file from one node to another, and

the resultant cost of updating client routes to the file,
outweighs the benefit of better placement in the net-
work. This effect is exaggerated in proportion to the
frequency of object movement. Figure 6a shows that
policies that change object positions infrequently, such
as Static Distributed, achieve better performance than
those that perform frequent movement, such as Ran-
dom. The adaptive algorithms do not perform as well
in this context, since the highest costs are those of route
maintenance. Figure 6c similarly shows that the energy
costs of object mobility are not recompensed in this
scenario. The only benefit of using an adaptive algo-
rithm is seen in the number of nodes drained (Figure
6b), where NetCenter manages to spread the drain more
evenly over the nodes of the network. The Static and
Random algorithms cannot do so intelligently, and so
have steep cliffs at which time many of the nodes die at
once.

This benchmark shows that the value of the adaptive
algorithms is seen in applications with relatively high
load, and that when the application is simple, a static
distribution of objects suffices. The long tails of the
graphs are results of object motion: a node accesses a
particular file frequently, and so the file is moved to
that node. The communication between file and client
can then proceed despite loss of connectivity.

4.4. Space and Time Overhead
An automatic approach to application partitioning and
transparent object migration would be untenable if the
performance of automatically partitioned applications
suffered significantly. In the micro-benchmark below,
we compare the overhead of our RPC implementation
to that of remote invocations performed via Java RMI,
on a 1.7 GHz P4 with 256 MB of RAM JDK 1.4 on
Linux 2.4.17 with AODV. On all micro-benchmarks,
automatically decomposed applications are competitive
with manually coded, equivalent RMI implementations,
due partly to tight integration of system code with ap-
plication code through binary rewriting.

Remote call Java RMI Flock
Null 430 ± 16 172 ± 6
Int 446 ± 9 180 ± 8
Obj. w/ 32ints 991 ± 35 174 ± 4
Obj. w/ 4int, 2obj 844 ± 21 177 ± 7

all times in µs, average of 1000 calls.

Table 1: Remote method invocation comparison.

The applicability of a Java-based system is limited by
the ability of ad hoc network nodes to support the req-
uisite services of a Java VM. Traditional virtual ma-

12

chines, such as Sun Java JDK 1.4 support many fea-
tures and are not optimized for space. Consequently,
they require large amounts of memory and are not suit-
able for ad hoc networks. For Flock, we have devel-
oped our own JVM for x86 laptops, and Pock-
etPC/StrongArm devices. This JVM performs space
optimizations including lazy class loading, constant
pool sharing, stack and memory compression, and ag-
gressive class unloading. Consequently, we reduce the
minimum required memory to run Flock to approxi-
mately 1350 KB from over 9 MB. This is well within
the memory budget of existing mobile devices, and
within a few years’ Moore’s Law growth of sensor
nodes.

4.5. Summary
In this section, we examined three benchmarks built
under our event-based model, and evaluated the per-
formance of automatic migration strategies for energy-
efficient execution. Flock reduces energy consump-
tion by actively moving communication endpoints and
shortening the path packets traverse through the net-
work. In turn, this reduces hotspots, increases energy
utilization and extends system longevity. Flock uses
simple local metrics to make informed object placement
decisions. In settings which exhibit locality, where
active migration would shorten mean packet distances
and yield energy savings, NetCenter, a local automatic
migration policy, can adapt quickly, and find a good
placement for objects.

5. Conclusion
In this paper, we present the design and implementation
of a event-based operating system for ad hoc networks.
Our system implements a parallel, event processing
engine on top of a collection of ad hoc nodes. An ap-
plication partitioning tool takes monolithic Java appli-
cations and converts them into distributed, componen-
tized applications. A small runtime on each node is
responsible for event handler creation, invocation and
migration. We rely on a transparent RPC for node-
independent communication between components. This
distributed system defines a convenient programming
model for ad hoc networks. This model provides the
system with sufficient freedom to transparently move
components in order to find an energy-efficient con-
figuration.

We evaluate simple, local algorithms for automatically
determining where to locate application components in
the network in order to minimize energy consumption.
Combined, these algorithms enable Flock to find an
assignment of components to nodes that yields good
utilization of available energy in the network. These

algorithms are practical, entail low overhead and are
easy to implement because they rely only on local in-
formation that is readily available. In benchmarks with
moderate to high locality of communication, automated
migration can conserve power and achieve significant
improvements in system longevity.

Ad hoc networking is a rapidly emerging area with few
established mechanisms, policies and services. We
hope that high-level abstractions, such as an event-
based programming model, combined with system sup-
port for automatic migration, will create a familiar and
power-efficient programming environment, thereby
enabling rapid development of platform-independent,
power-adaptive applications for ad hoc networks.

References
[Amiri et al. 00] Khalil Amiri, David Petrou, Greg

Ganager and Garth Gibson. Dynamic Function
Placement in Active Storage Clusters. USENIX
Annual Technical Conference, San Diego, CA,
June 2000.

[Aridor et al. 99] Yariv Aridor, Michael Factor and Avi
Teperman. cJVM: a Single System Image of a
JVM on a Cluster. IEEE International Conference
on Parallel Processing, September 1999.

[Birrell & Nelson 84] A. D. Birrell and B. J. Nelson.
Implementing remote procedure calls. ACM Trans-
actions on Computer Systems, 2(1):39--59, Febru-
ary 1984.

[Birrell et al. 94] Andrew Birrell, Greg Nelson, Susan
Owicki, and Edward Wobber. Network Objects.
SRC Tech Report 115, Feb 1994.

[Cheriton 88] David Cheriton. The V Distributed Sys-
tem. Communications of the ACM, 31(3), March
1988, pp.314-333.

[Dahlin et al. 94] Michael D. Dahlin, Clifford J.
Mather, Randolph Y. Yang, Thomas E. Anderson,
and David A. Patterson. A quantitative analysis of
cache policies for scalable network file systems.
ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems. 150–160.
Nashville, Tennessee, 1994.

[Douglis et al. 95] Fred Douglis, P. Krishnan and Brian
Bershad. Adaptive Disk Spin-down Policies for
Mobile Computers. In 2nd USENIX Symposium
on Mobile and Location-Independent Computing,
April 1995.

[Feeney & Nilsson 01] Laura Marie Feeney and Martin
Nilsson. Investigating the Energy Consumption of
a Wireless Network Interface in an Ad Hoc Net-
work-ing Environment. IEEE InfoCom. Anchor-
age, Alaska, 2001.

13

[Flinn 01] Jason Flinn, Dushyanth, Narayanan, and M.
Satyanarayanan. Self-Tuned Remote Execution for
Pervasive Computing. In Proceedings of the 8th
Workshop on Hot Topics in Operating Systems
(HotOS-VIII), Schloss Elmau, Germany, May
2001.

[Ghormley et al. 98] D.P. Ghormley, D. Petrou, S. H.
Rodrigues, A.M. Vahdat, T.E. Anderson. GLUnix:
a Global Layer Unix for a Network of Worksta-
tions. Software-Practice and Experience, 9 (28),
1998, pp. 929-961.

[Gomez et al. 01] J. Gomez, A. T. Campbell, M.
Naghshineh and C. Bisdikian. PARO: Conserving
Transmission Power in Wireless Ad hoc Networks.
In Proceedings of the 9th International Conference
on Network Protocols, Riverside, California, No-
vember 2001.

[Grunwald et al. 00] Dirk Grunwald, Philip Levis,
Keith I. Farkas, Charles B. Morrey III and Michael
Neufeld. Policies for Dynamic Clock Scheduling.
In Proceedings of the Fourth OSDI, San Diego,
California, October 2000.

[Harold 00] Harold, E. R. Java Network Programming.
O'Reilly & Associates, Aug 2000.

[Hill et al. 00] Jason Hill, Robert Szewczyk, Alec Woo,
Seth Hollar, David Culler, Kristofer Pister. System
architecture directions for network sensors, AS-
PLOS 2000, Cambridge, November 2000.

[Hinden & Partridge 90] B. Hinden and C. Partridge,
"Version 2 of the reliable data protocol (RDP),"
RFC 1151, IETF, Apr 1990.

[Hunt & Scott 99] Galen C. Hunt and Michael L. Scott.
The Coign Automatic Distributed Partitioning Sys-
tem. In Proceedings of the Third Symposium on
Operating System Design and Implementation, pp.
187-200. New Orleans, Louisiana, February 1999.

[Joseph et al. 95] Anthony D. Joseph, Alan F. De
Lespinasse, Joshua A. Tauber, David K. Gifford,
and M. Frans Kaashoek., Rover: A Toolkit for
Mobile Information Access. In Proceedings of the
Fifteenth SOSP, Dec 1995.

[Jul et al. 88] Eric Jul, Henry Levy, Norman Hutchin-
son, Andrew Black. Fine-Grained Mobility in the
Emerald System. ACM TOCS, 6(1), Feb. 1988, pp.
109-133.

[Kremer et al. 00] U. Kremer, J. Hicks, and J. Rehg.
Compiler-directed remote task execution for power
management: A case study. Workshop on Compil-
ers and Operating Systems for Low Power, PA,
October 2000.

[Kunz & Omar 00] T. Kunz and S. Omar. A Mobile
Code Toolkit for Adaptive Mobile Applications.

IEEE Workshop on Mobile Comp. Syst. and Apps,
Monterey, CA Dec 2000.

[Levis & Culler 02] Philip Levis, David Culler. Mate:
A Tiny Virtual Machine for Sensor Networks. AS-
PLOS, 2002.

[Liskov et al. 92] Barbara Liskov and Mark Day and
Liuba Shrira. Distributed Object Management in
Thor. In Proc. of the International Workshop on
Distributed Object Management, 1992, pp. 79-91.

[Litzkow et al. 97] Michael Litzkow, Todd Tan-
nenbaum, Jim Basney, and Miron Livny. Check-
point and migration of UNIX processes in the Con-
dor distributed processing system. Technical
Report #1346, University of Wisconsin-Madison,
April 1997.

[Lorch & Smith 98] Jacob R. Lorch and Alan Jay
Smith. Software Strategies for Portable Computer
Energy Management. IEEE Personal
Communications Magazine, 5(3), June 1998.

[Ma et al. 99] Matchy J. M. Ma, Cho-Li Wang, Francis
C. M. Lau and Zhiwei Xu. JESSICA: Java-Enabled
Single System Image Computing Architecture. The
International Conference on Parallel and Distrib-
uted Processing Techniques and Applications, June
1999.

[Mascolo 01] Cecilia Mascolo, Licia Capra and Wolf-
gang Emmerich. XMIDDLE - A Middleware of
Ad hoc Networks. UCL-CS Research Note 00/54,
2001.

 [Ousterhout et al. 88] J. Ousterhout, A. Cherenson, F.
Douglis, M. Nelson, and B. Welch. The Sprite
network operating system. IEEE Computer,
21(2):23--36, February 1988.

[Pardyak & Bershad 96] P. Pardyak and B. Bershad.
Dynamic binding for an extensible system. In Pro-
ceedings of OSDI. Seattle, WA, October, 1996.

[Pillai & Shin 01] Padmanabhan Pillai and Kang G.
Shin. Real-Time Dynamic Voltage Scaling for
Low-Power Embedded Operating Systems. SOSP
2001, pp. 89-102.

[Plank et al. 95] James S. Plank, Micah Beck, Gerry
Kingsley and Kai Li. Libckpt: Transparent Check-
pointing under Unix. Usenix Winter 1995 Techni-
cal Conference, New Orleans, LA, January 1995.

[Popek & Walker 85] G. Popek and B. Walker, eds.
The LOCUS Distributed System Architecture. MIT
Press, Cambridge, MA 1985.

[Pottie & Kaiser 00] G.J. Pottie and W.J. Kaiser. Wire-
less integrated network sensors. Communications
of the ACM, 43(5):51--58, May 2000.

[Rashid & Robertson 81] Rashid, R.F., Robertson, G.G.
Accent: A Communication Oriented Network Op-
erating System Kernel. 8th ACM SOSP. Pacific
Grove, California, 1981.

14

[Sirer et al. 99] Emin Gün Sirer, Robert Grimm, Arthur
J. Gregory and Brian N. Bershad. Design and Im-
plementation of a Distributed Virtual Machine for
Networked Computers. 17th SOSP, South Caro-
lina, December 1999.

[Steketee et al. 95] Chris Steketee, Piotr Socko, Bartosz
Kiepuszewski. Experiences with the Implementa-
tion of a Process Migration Mechanism for
Amoeba. In Proceedings of the 19th Australasian
Computer Science Conference, January 1995, pp.
213-224.

[Stellner 96] Georg Stellner. CoCheck: Checkpointing
and Process Migration for MPI. International Par-
allel Processing Symposium, pp. 526--531, Hono-
lulu, HI, April 1996.

[Stemm & Katz 96] Mark Stemm and Randy Katz.
Measuring and Reducing Energy Consumption of
Network Interfaces in Hand-held Devices. 3rd In-
ternational Workshop on Mobile Multimedia
Communications, Sept. 1996.

[Tanenbaum et al. 90] Tanenbaum, A.S., Renesse, R.
van, Staveren, H. van., Sharp, G.J., Mullender,
S.J., Jansen, A.J., and Rossum, G. van: Experi-
ences with the Amoeba Distributed Operating Sys-
tem, Commun. ACM, vol. 33, pp. 46-63, Dec.
1990.

[Tennenhouse & Wetherall 96] D. L. Tennenhouse and
D. Wetherall. Towards an Active Network Archi-
tecture. In Multimedia Computing and Network-
ing, San Jose, California, January 1996.

[Tilevich & Smaragdakis 02] E. Tilevich and Y.
Smaragdakis. J-Orchestra: Automatic Java Appli-
cation Partitioning. European Conference on Ob-
ject-Oriented Programming, 2002.

[Toh 01] C.K. Toh. Maximum Battery Life Routing to
Support Ubiquitous Mobile Computing in Wireless
Ad hoc Networks. IEEE Communications, June
2001.

[Walsh & Sirer 03] Kevin Walsh and Emin Gün Sirer.
Staged Simulation for Improving the Scale and
Performance of Wireless Network Simulations.
Winter Simulation Conference. New Orleans, Lou-
isiana, 2003.

[Weiser et al. 94] Mark Weiser, Brent Welch, Alan
Demers, and Scott Shenker. Scheduling for re-
duced CPU energy. In Proc. of the First OSDI,
Monterey, California, November 1994.

