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TOWARDS A POWER EFFICIENT PROGRAMMING MODEL FOR AD HOC 
NETWORKS 

 
 

 
Abstract 

 
In this paper, we describe the design and implementation of a distributed operating system for ad hoc net-
works. The goal of our system is to extend total system lifetime for ad hoc networking applications through 
power-aware adaptation. We propose an event-based model for programming ad hoc networking applica-
tions. Our system automatically and transparently partitions applications into components and dynamically 
finds a placement of these components on nodes within the network to reduce energy consumption and in-
creases the longevity. This paper describes our programming model, outlines the design and implementation 
of our system and examines automatic migration policies for ad hoc networks.  We evaluate practical, 
power-aware, general-purpose algorithms for component placement and migration, and demonstrate that 
they can significantly increase system longevity by effectively distributing energy consumption and avoid-
ing hotspots. 

1. Introduction 
Ad hoc networks simultaneously promise a radically 
new class of applications and pose significant chal-
lenges for application development. Recent advances in 
low-power, high-performance processors and medium 
to high-speed wireless networking have enabled new 
applications for ad hoc and sensor networks, ranging 
from large-scale environmental data collection to coor-
dinated battlefront and disaster-relief operations. Ad 
hoc networking applications differ from traditional ap-
plications in three fundamental ways. First, ad hoc net-
working applications, as well as the infrastructure on 
which they execute, are inherently distributed. Operat-
ing on a distributed platform requires mechanisms for 
remote communication, naming, and migration. Sec-
ond, ad hoc networks are typically highly dynamic and 
resource-limited. Key performance metrics, such as 
bandwidth, may vary through several orders of magni-
tude, and mobile nodes are typically limited in energy. 
Consequently, applications need policies for using 
available resources efficiently, and sharing them among 
competing applications fairly. Finally, ad hoc network-
ing applications are expected to outlast the lifetime of 
any one node. Performing long-running computations 
in a dynamic environment requires facilities for dy-
namically introducing new functionality and integrating 
it with existing computations present in the network. 
Current operating systems, however, provide little sup-
port for ad hoc networks. This lack of system support 
makes it difficult to develop ad hoc networking appli-
cations and to execute them in a resource-efficient man-
ner.   

Current state of the art in developing applications for ad 
hoc networks is to  treat the network as a system of 
systems, that is, a network comprised of independent, 
autonomous computers. This programming model 
forces applications to provide all of their requisite 
mechanisms and policies for their operation them-
selves. Mechanisms, such as those for distributing code 
and migrating state, as well as policies, such as how to 
react to diminishing battery supply on a given node, 
need to then be embedded, independently, in all appli-
cations. Such a limited programming model not only 
makes developing ad hoc networking applications tedi-
ous and error-prone, but the lack of a global operating 
system that acts as a trusted arbiter between mutually 
distrusting applications allows conflicts to emerge be-
tween applications. For instance, in an acoustic sensor 
network where the primary application is to detect 
submarines and a secondary application is to track 
mammals, the system of systems model makes it diffi-
cult to express the relative priorities of the applications. 
A low priority application may interfere with higher 
priority applications simply by using a more aggressive 
migration policy that depletes the power supply of criti-
cal nodes in the system. Critical global properties of the 
network, such as system longevity, are dictated by dis-
tributed policies encoded in applications; network op-
erators have little control over the operation of their 
systems, as there is no network-wide system layer. This 
situation is analogous to the early standalone operating 
systems implemented entirely in user-level libraries, in 
that assuring global properties of the system requires 
whole system analysis, including auditing all applica-
tion code.  
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In this paper, we investigate an alternative program-
ming model for ad hoc networks and outline a distrib-
uted operating system based on this model, called 
Flock. We show that the Flock approach can lead to 
increased energy efficiency for applications. Unlike 
distributed programming on the Internet, where energy 
is not a constraint, delay is low, and bandwidth is plen-
tiful, physical limitations of ad hoc networks lead to 
some unique requirements. Technology trends indicate 
that the primary limitation of mobile ad hoc and sensor 
networks is energy consumption, and communication is 
the primary energy consumer [Pottie & Kaiser 00]. 
Consequently, the goals of Flock are as follows: 

• Efficient: The system should execute distributed ad 
hoc network applications in a manner that conserves 
power and extends system lifetime. Policies and 
mechanisms used for adaptation in the systems layer 
should not require excessive communication or 
power consumption. 

• Adaptive: The system should respond automatically 
to significant changes in network topology, resource 
availability, and the communication pattern of the 
applications. 

• General purpose: The system should support a wide 
range of applications and porting an existing central-
ized sensing application to execute efficiently on an 
ad hoc network should require little effort. Applica-
tions should be able to direct the adaptation using 
application-specific information. The system should 
provide effective default adaptation policies for ap-
plications that are not power-aware.  

• Extensible: The system should provide facilities for 
deploying, managing and modifying executing appli-
cations whose lifetime may exceed those of the net-
work participants. 

• Compatible and Platform independent: The sys-
tem should not require mastering a new paradigm in 
order to deploy applications. Standard development 
tools should continue to work in building applica-
tions for ad hoc networks. The system should enable 
applications to execute on ad hoc networks of het-
erogeneous nodes.  

Flock meets these goals through an event-based pro-
gramming model. Flock applications are structured as a 

set of interconnected, mobile event handlers, specified 
statically by the programmer as familiar objects in an 
object-oriented system. The Flock runtime, through 
application partitioning, distributes these event handlers 
to nodes in the ad hoc network, and, through dynamic 
migration, finds an energy-efficient placement of han-
dlers within the network.  Flock applications are com-
prised of event handlers that communicate with each 
other by raising well-typed events. Event signatures 
specify the types of the arguments passed with the 
event, as well as the return type of the event handler. 
By default, all externally visible entry points, such as 
methods in a Java object specification, serve as event 
declarations, and method bodies constitute the default 
handler for that event in the absence of overriding run-
time event bindings. Consequently, the Flock pro-
gramming model closely parallels the Java virtual ma-
chine, providing access to standard Java libraries and 
enabling familiar development tools to be used to con-
struct distributed applications.  

Our Flock implementation consists of a static applica-
tion partitioning service that resides on border hosts 
capable of injecting new code into the network, and a 
runtime on each node that performs dynamic monitor-
ing and component migration. The static partitioning 
service takes regular Java applications and converts 
them into distributed components that communicate via 
events by rewriting them at the bytecode level  (Figure 
1). The code injector then finds a suitable initial layout 
of these components and starts the execution of the 
application. The runtime monitors the performance of 
the application and migrates application components 
when doing so would benefit the system. 

Monolithic application 

Static partitioning 

Distributed application 
 

Figure 1: A static partitioning service converts mono-
lithic Java applications into distributed applications that 
can run on an ad hoc network and transparently com-
municate by raising events. 
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The algorithms for event handler placement form the 
core of our system.  We present practical, online algo-
rithms for finding an energy-efficient distribution of 
application components in an ad hoc network.  (Figure 
2).  This paper examines the effectiveness of these al-
gorithms in reducing energy consumption and extend-
ing system lifetime in the context of three application 
benchmarks, and examine their impact on system 
longevity. These algorithms operate by dividing time 
into epochs, monitoring the communication pattern of 
the application components within each epoch, and 
migrating components at the end of the epoch when 
doing so would result in more efficient power 
utilization. We have built a prototype implementation 
that  as well as a prototype implementation that runs on 
x86 laptops, Transmeta tablets, and StrongArm 
PocketPC class devices. We report results from 
simulation studies, which show that the Flock system 
can achieve significant improvement in system longev-
ity over static placement and standard load-balancing 
techniques.  This paper makes three contributions. It proposes an 
event-based programming model for ad hoc networks 
that leverages existing language mechanisms for to 
specify distributed network programs. It describes the 
design and implementation of an operating system for 
ad hoc networks based on this model. This system op-
erates by automatic partitioning applications and trans-
parently migrating event handlers at runtime. Second, 
we propose practical, adaptive, online algorithms for 
finding an energy-efficient placement of application 
components in an ad hoc network. Finally, we demon-
strate that these algorithms achieve high-energy utiliza-
tion, extract low overhead, and improve system longev-
ity. 

In the next section, we describe related work on operat-
ing system support for ad hoc networks and their appli-
cations. Section 3 outlines our system implementation, 

including the code partitioning and distribution tech-
nique. Section 4 presents our network and application 
model, describes our simulation framework and evalu-
ates within this environment. We summarize our con-
tributions in Section 5. 

2. Related Work 
Past work has examined distributed operating systems, 
ad hoc networks, and power management, though few 
systems have examined all three. 

2.1. Distributed Systems 
Data and code migration have been examined exten-
sively in the context of wired networks of workstations. 
Early landmark systems, such as V [Cheriton 88], 
Sprite [Ousterhout et al. 88], Ameoba [Tanenbaum et 
al. 90, Steketee et al. 95], Accent [Rashid & Robertson 
81], and LOCUS [Popek & Walker 85], implemented 
native operating system facilities for migrating proc-
esses between nodes on a tightly coupled cluster. 
Glunix [Ghormley et al. 98] provides facilities for man-
aging applications on networks of workstations. More 
recently, the cJVM [Aridor et al. 99] and JESSICA [Ma 
et al. 99] projects have examined how to extend a Java 
virtual machine-across a high-performance cluster. 
Others, including Condor [Litzkow et al. 97], libckpt 
[Plank et al. 95] and CoCheck [Stellner 96], provide 
user-level mechanisms for checkpointing and process 
migration without operating system support. These pro-
jects target high-performance, well-connected clusters. 
Their main goals are to balance load and achieve high 
performance in a local area network for interactive 
desktop programs or CPU-intensive batch jobs. In con-
trast, Flock targets wireless multi-hop networks, where 
utilizing power effectively and maximizing system lon-
gevity is more important than traditional application 
performance. 

Distributed object systems have examined how to sup-
port distributed computations in the wide area. Emerald 
[Jul et al. 88] provides transparent code migration for 
programs written in the Emerald language, where the 
migration is directed by source-level programmer anno-
tations. Thor [Liskov et al. 93] provides persistent ob-
jects in a language-independent framework. It enables 
caching, replication and migration of objects stored at 
object repositories. These seminal systems differ fun-
damentally from Flock in that they require explicit pro-
grammer control to trigger migration, do not support an 
ad hoc network model and target traditional applica-
tions.  

The closest approach to ours were some recent systems 
that focused on how to partition applications within a 
conventional wired network. The Coign system [Hunt 

node 
data source 

event handler 
event flow 

 
Figure 2: Migrating components closer to their data 
sources in an ad hoc network increases system longev-
ity and decreases power consumption by reducing total 
network communication cost.
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& Scott 99] has examined how to partition COM appli-
cations between two tightly interconnected hosts within 
a local-area network. Coign performs static spatial par-
titioning of desktop applications via a two-way mini-
mum cut based on summary application profiles col-
lected on previous runs. The ABACUS system [Amiri 
et al. 00] has examined how to migrate functionality in 
a storage cluster. Flock shares the same insight as 
Coign, in that it also focuses on the automatic reloca-
tion of application components, but differs in that it 
dynamically moves application components in response 
to changes in the network, instead of computing a static 
partitioning from a profile. [Kremer et al. 00] proposes 
using static analysis to select tasks that can be executed 
remotely to save energy. J-Orchestra [Tilevich & 
Smaragdakis 02] performs application partitioning via 
rewriting, leaving dynamic migration decisions under 
application control. Spectra [Flinn et al. 01] monitors 
resource consumption, collects resource usage histories 
and uses quality of service (fidelity) information sup-
plied by the application to make resource allocation 
decisions. Spectra is invoked prior to operation startup, 
and statically determines a location at which to execute 
the operation.  

Middleware projects have looked at constructing tool-
kits to support mobile applications. The Rover toolkit 
[Joseph et al. 95] provides relocation and messaging 
services to facilitate the construction of mobile applica-
tions. The Mobiware [Campbell 98] and DOMT [Kunz 
and Omar 00] toolkits are targeted specifically for ad 
hoc networks and provide an adaptive-QoS program-
ming interface. XMIDDLE [Mascolo 01] assists with 
data management and synchronization. Flock takes a 
systems approach instead of providing a programmer 
driven toolkit and automatically manages the shared 
network and energy resources among ad hoc network 
applications. This approach unifies the system layer and 
ensures that disparate applications, regardless of which 
toolkits they use, behave in a cooperative manner.  

2.2. Ad hoc Routing Protocols 
There has been much prior research on ad hoc routing 
algorithms. Proactive, reactive and hybrid routing pro-
tocols seek to pick efficient routes by proactively dis-
seminating or reactively discovering route information, 
or both. While some protocols, such as PARO [Gomez 
et al. 01] and MBLR [Toh 01], have examined how to 
make power-aware routing decisions, all of these rout-
ing algorithms assume that the communication end-
points are fixed. Directed diffusion [Heidemann et al. 
01] provides a data-centric programming model for 
sensor networks by labeling sensor data using attribute-
value pairs and routing based on a gradient. Flock 

complements the routing layer to move application 
code around the network, changing the location of the 
communication endpoints and radically altering the 
communication pattern of the overall application. It  
provides increased system and application longevity by 
bringing application components closer to the data 
sources, which complements the route selection per-
formed by the ad hoc routing protocol. 

2.3. Operating Systems 
Prior work has examined how to construct space-
constrained operating systems for sensor networks.  
TinyOS provides essential OS services for sensor nodes 
with limited hardware protection and small amounts of 
RAM [Hill et al. 00].  Mate [Levis & Culler 02] builds 
on TinyOS to provide a capsule-based programming 
model for in-network processing on sensor nodes.  
Flock is complementary to these stand-alone systems, 
in that its system-wide abstractions can be built on top 
of the services they provide. 

Previous work has also examined how to minimize 
power consumption within an independent host through 
various mechanisms [Pillai & Shin 01, Grunwald et al. 
00, Weiser et al. 94, Douglis et al. 95, Stemm & Katz 
96], including low-power processor modes, disk spin-
down policies, adapting wireless transmission strength 
and selectively turning off unused devices. Our system 
is complementary to this work and opens up further 
opportunities for minimizing power consumption by 
shipping computation out of hosts limited in power to 
less critical nodes.  

3. System Implementation and Distribu-
tion Model 

Flock provides an event-based programming model for 
ad hoc networks in three steps. First, an application is 
specified as a regular Java virtual machine program, 
defining component boundaries as well as well-typed 
event specifications. Next, this monolithic application 
is partitioned by a rewriting engine, distributing its 
functionality across the ad hoc network. The Flock run-
time then coordinates the communication and migration 
of these application segments across the nodes in the 
sensor network in order for the newly distributed appli-
cation to execute in a power-efficient manner. We dis-
cuss the static and dynamic components of the Flock 
runtime in the following sections. 

3.1. Application Partitioning 
The partitioning mechanism of Flock converts Java 
applications written and compiled for a single virtual 
machine into remote event handlers that can be dis-
persed and executed across an ad hoc network. This 
transformation enables the bulk of the application logic 
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to be expressed using familiar Java syntax and seman-
tics. 

Flock partitions applications based on programmer an-
notations, though, in the absence of annotations, object 
boundaries delineate event handlers. Consequently, the 
unit of mobility in Flock is typically a Java object in-
stance, which we use synonymously with event han-
dler. This transformation at class boundaries preserves 
existing object interfaces, and inter-object invocations 
define events in Flock. The entire transformation is 
performed at the byte-code level via binary rewriting, 
without requiring source-code access. 

Our approach to partitioning applications statically is 
patterned after distributed virtual machines [Sirer et al. 
99]. Static partitioning confers several advantages. 
First, the complex partitioning services need only be 
supported at code-injection points, and can be per-
formed offline. Second, since the run-time operation of 
the system and its integrity do not depend on the parti-
tioning technique, users can partition their applications 
into arbitrary components if they so choose. Further, 
since applications are verified prior to injection into the 
network, individual Flock nodes need not re-run a 
costly verifier on application components. Finally, bi-
nary rewriting provides a convenient, default mecha-
nism for transitioning legacy, monolithic applications 
to execute over ad hoc networks. 

The static partitioning takes original application 
classes, and from each class extracts an event handler, a 
dispatch handle, an event descriptor, and a set of event 
globals associated with the event handler. 

An event handler is a modified implementation of the 
original class that stores the instance variables of the 
corresponding event handler. Each handler is free to 
move across nodes in the network. Dispatch handles, 
on the other hand, are remote references through which 
components can raise events. That is, dispatch handles 
are used to invoke procedure calls on remote event han-
dlers residing on other nodes. Event raises through the 
dispatch handle are intercepted by the Flock runtime 
and converted into RPCs. This indirection enables code 
migration. As an event handler moves, the event raises 
occurring through the corresponding event dispatch 
handles are tracked by the Flock runtime and directed 
to the new location of the event handler. Event 
descriptors capture the event signatures that the original 
code exposes to the rest of the application. 

Several modifications to the application binaries are 
required for this remote object mechanism to work 
seamlessly. First, object creations (new instructions 
and matching constructor invocations) are replaced by 

calls to the local Flock runtime. The runtime selects an 
appropriate node and constructs a new event handler at 
that location. This operation returns a corresponding, 
properly initialized dispatch handle, which is then used 
in subsequent event raises. In addition, Flock converts 
remote data accesses into events corresponding to ac-
cessor functions to read and write named locations. 
Similarly, it converts lock acquisitions and releases into 
centralized operations at the event handler. Finally, 
typechecking and synchronization instructions (check-
cast, instanceof, monitorenter and monitorexit in-
structions, and synchronized methods) are rewritten to 
trap into the Flock runtime. 

The final component created for a class is a set of event 
globals. The event globals are static fields shared across 
all instances of an event handler. Each event handler 
retains pointers to the corresponding instance of event 
globals, and can therefore share state with other han-
dlers. 

Flock provides a system abstraction similar enough to 
Java to facilitate easy programming and migration of 
existing applications. However, the Flock runtime is 
devoid of notions of threading, because they are ill 
suited to distributed computation. The Flock runtime 
replaces the notion of threads with an event-based 
model. Events in Flock are interruptible, independent 
computations. Application components communicate 
with each other by raising events. Raising events causes 
an event descriptor to be queued at the corresponding 
event handler. A set of worker threads at the appropri-
ate node execute these events. The scheme decouples 
the description of a serial computation from the notion 
of a thread bound to a single processor. A dispatcher 
mechanism, similar to [Pardyak & Bershad 96], pro-
vides interposition and late binding. 

We designed Flock as an event-based programming 
system based on Java for several reasons, each of 
which illustrates a conscious tradeoff in the design. 
Foremost, we chose Java because it is familiar to pro-
grammers, and allows programmers to easily and com-
pactly express network-wide behavior. In contrast, a 
lower-level approach where programmers explicitly 
specify policies at the level of individual nodes or 
components would be more cumbersome than a system 
where such notions were expressed implicitly in the 
code. Our event-driven model is a departure from the 
traditional Java semantics of threads and concurrent 
execution. Threads are ill suited to computation in an 
ad hoc network because they explicitly tie computation 
to node resources such as stack frames and processors. 
An event-based model is efficient because the number 
of concurrent event handlers can be adjusted based on 
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the amount of memory and processing power at each 
node, without impacting the programming model. In 
addition, an event-based model decouples callers from 
callees and avoids making inter-node dependencies. 

3.2. Migration Mechanisms 
The Flock runtime provides the dynamic services that 
facilitate the distributed execution of componentized 
applications across an ad hoc network. Its services in-
clude component creation, inter-component communi-
cation, event handler migration, garbage collection, 
naming, and event binding. 

In order to create a new instance of an event handler, an 
application will contact the local runtime and pass the 
requisite type descriptor and parameters for creation. 
The runtime then has the option of placing the newly 
created handler at a suitable location with little cost. It 
may choose to locate the handler on the local node, at a 
well-known node or at its best guess of an optimal loca-
tion within the network. In our current implementation, 
all new handlers are created locally. We chose this ap-
proach for its simplicity, and rely on our dynamic mi-
gration algorithms to find the optimal placement over 
time. Furthermore, short-lived, tightly scoped event 
handlers do not travel across the network unnecessarily. 
The application binaries, containing all of the construc-
tors, are distributed to all nodes at the time that the ap-
plication is introduced into the network. Once created, 
the (remote) runtime simply initializes the handler by 
calling its constructor and returns a dispatch handle. 

The runtime transparently handles invocations among 
the event handlers distributed across the network. Each 
runtime keeps a list of local event handlers. Dispatch 
handles maintain the current location of the correspond-
ing handler, and process raised events on behalf of ap-
plication invocations by marshalling and unmarshalling 
event arguments and results. 

The Flock runtime implements a lease-based garbage 
collector for remote references to event handlers, with 
leases automatically renewed by live dispatch handles. 
As in RMI and Network Objects [Birrell et al. 94], our 
current implementation does not collect cycles in the 
reference graph. Local handlers are collected by the 
standard Java garbage runtime. 

Flock migrates event handlers at runtime by serializing 
handler state and moving it to a new node. Dispatch 
handles are informed of the relocation lazily, the next 
time they raise an event or renew their leases. This is 
accomplished through forwarding references left be-
hind when event handlers migrate. Long chains of for-
warding pointers, if allowed to persist for a long time, 
would pose a vulnerability – as nodes die, out-of-date 

event references may not be able to trace a path to the 
current location of the event handler to which they are 
bound. Flock collapses these paths whenever they are 
traversed. Periodic lease updates in lease-based garbage 
collection requires periodic communication between 
dispatch handles and event handlers, which provides an 
upper-bound on the amount of time such linear chains 
are permitted to form in the network. A broadcast 
mechanism is used as a fallback to locate handlers by 
the identifier stored in a dispatch handle if the pointer-
chain is broken due to a failure. 

The Flock runtime provides an explicit interface by 
which application writers can manually direct compo-
nent placement. This interface allows programmers to 
establish affinities between event handlers and ad hoc 
nodes. We provide two levels of affinity. Specifying a 
“strong” affinity between an event handler and a node 
effectively anchors the code to that node. This is in-
tended for attaching event handlers like device drivers 
to the nodes with the installed device in them. Specify-
ing a “weak” affinity immediately migrates the compo-
nent to the named node, and allows the automated code 
placement techniques described in the next section to 
adapt to the application’s communication pattern from 
the new starting point. Note that today’s manually con-
structed applications correspond to the use of strong 
affinity in our system – unless explicitly moved, com-
ponents are bound to nodes. The result of overusing 
strong affinity is a fragile system, where unforeseen 
communication and mobility patterns can leave an ap-
plication stranded. While we provide these primitives 
in order to ensure that Flock applications provide at 
least as much control to the programmer as manually 
crafted applications, we do not advocate their use. 

3.3. Runtime Support for Ad hoc Networks 
The ad hoc networking domain places additional con-
straints on the runtime implementation. First, multi-hop 
ad hoc networks require an ad hoc routing protocol to 
connect non-neighboring nodes. Flock relies on a stan-
dard ad hoc routing protocol below the runtime to pro-
vide message routing. Currently, our system runs on 
any platform that supports Java JDK1.4. On Linux, we 
use an efficient in-kernel AODV implementation we 
developed. On other platforms, we use a user-level ver-
sion of AODV written in Java to provide unicast rout-
ing. The choice of a routing algorithm is independent 
from the rest of the runtime, as the runtime makes no 
assumptions of the routing layer besides unicast rout-
ing. 

Second, standard communication packages such as 
Sun’s RMI are designed for infrastructure networks, 
and are inadequate when operating on multi-hop ad hoc 
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networks. Frequent changes in network topology and 
variance in available bandwidth require Flock to mi-
grate objects, requiring the endpoints of an active con-
nection to be modified dynamically as objects move. 
We have built a custom RPC package based on a reli-
able datagram protocol [Hinden & Partridge 90] that 
allows us to easily modify the communication end-
points when components move and is responsible for 
all communication between dispatch handles and corre-
sponding event handlers. 

Finally, the higher-level policies in Flock require in-
formation on component behavior to make intelligent 
migration decisions. The runtime assists in this task by 
collecting, for each component, information on the 
amount of data it exchanges with other components. 
The runtime intercepts all communication and records 
the source and destination for all incoming and outgo-
ing events. Flock keeps a cumulative sum per compo-
nent per epoch, and periodically informs the migration 
policy in the system of the current tally. While this ap-
proach has worst case space requirement that is O(N2), 
where N is the number of components in the network, 
in practice most components communicate with few 
others and the space requirements are typically small. 
For instance, in the sensor benchmark examined in Sec-
tion 4, the storage requirements are linear. The next 
section describes how Flock uses these statistics to 
automatically migrate components. 

3.4. Event Handler Placement 
In this section, we describe two algorithms, NetPull and 
NetCenter, which use the information gathered by the 
runtime to migrate components in a manner that in-
creases system longevity. 

Both NetPull and NetCenter share the same basic in-
sight. They shorten the mean path length of data pack-
ets by automatically moving communicating objects 

closer together. They perform this by profiling the 
communication pattern of each application in discrete 
time units, called epochs. In each epoch, every runtime 
keeps track of the number of incoming and outgoing 
packets for every object. At the end of each epoch, the 
migration algorithm decides whether to move that ob-
ject, based on its recent pattern of behavior. Under both 
algorithms, the decision is made locally, based on in-
formation collected during recent epochs at that node. 
NetPull and NetCenter differ in the type of information 
they collect and how they pick the destination host. 
Depending on the environment, one may be easier to 
implement. 

NetPull collects information about the communication 
pattern of the application at the physical link level, and 
migrates components over physical links one hop at a 
time. This requires very little support from the network; 
namely, the runtime needs to be able to examine the 
link level packet headers to determine the last or next 
hop for incoming and outgoing packets, respectively. 
For every object, we keep a count of the messages sent 
to and from each neighboring node. At the end of an 
epoch, the runtime examines all of these links and the 
object is moved one hop along the link with greatest 
communication. 

NetCenter operates at the network level, and migrates 
components multiple hops at a time. In each epoch, 
NetCenter examines the network source addresses of all 
incoming messages, and the destination addresses of 
outgoing messages for each object. This information is 
part of the transmitted packet, and requires no addi-
tional burden on the network. At the end of an epoch, 
NetCenter finds the host with which a given object 
communicates the most and migrates the object directly 
to that host. 

Both of these algorithms improve system longevity by 
using the available power within the network more ef-
fectively. By migrating communicating components 
closer to each other, they reduce the total distance 
packets travel, and thereby reduce the overall power 
consumption. Further, moving application components 
from node to node helps avoid hot spots and balances 
out the communication load in the network. As a result, 
both algorithms can significantly improve the total sys-
tem longevity for an energy-constrained ad hoc net-
work. 

4. Evaluation 
In this section, we examine the power efficiency of 
automatic migration strategies in Flock. We first evalu-
ate the core automatic migration algorithms, NetPull 
and NetCenter, in three different benchmarks, and show 

node 

data source 

event handler 

event flow 

1 - NetPull 
2 - NetCenter 

1  2 

Figure 3: NetPull moves one hop towards the source of 
data whereas NetCenter moves directly to the source of 
most packets. 
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that they achieve good energy utilization, improve sys-
tem longevity, and are thus suitable for use in general-
purpose, automatic migration systems. Next, we report 
results from microbenchmarks to show that automati-
cally partitioning applications does not extract a large 
performance cost. Finally, we present evidence show-
ing that the memory costs of a specially tuned Java vir-
tual machine is within the resource-budget of next gen-
eration ad hoc nodes. 

4.1. Benchmarks and Workload 
We evaluated the performance and efficiency of Flock 
event handler migration strategies in three representa-
tive applications, each with a unique communication 
pattern and application workload. The applications 
were chosen to span a wide range of possible deploy-
ment environments. We first describe the setup and 
workload for each application, then examine their per-
formance under Flock. 

4.1.1. SenseNet 
We first examine a generic, reconfigurable sensing 
benchmark we developed named SenseNet. This appli-
cation consists of sensors, condensers and displays. 
Sensors are fixed at particular ad hoc nodes, where they 
monitor events within their sensing radius and send a 
packet to a condenser in response to an event. Con-
densers can reside on any node, where they process and 
aggregate sensor events and filter noise. The display 
runs on a well-equipped central node, extracts high-
level data on events from the condensers, and sends 
results to an external wired network. 

The application is run on a 14 by 14 grid of sensors, 
each placed 140 meters apart with a jitter of ± 50 me-
ters. The communication and sensing radius is 250 me-
ters. The grid is partitioned into four quadrants, and a 
single condenser is assigned to aggregate and process 
data for each quadrant. The workload consists of three 
bodies that move through the sensor grid in randomly 
chosen directions. We measure the total remaining en-
ergy across all nodes, sensor coverage, number of 
drained sensor nodes, number of nodes not reachable 
by the display, and overall system longevity. We define 
system failure as the point when half of the field is no 
longer being sensed by the display node. 
4.1.2. Publish-Subscribe 
Our second application consists of a basic publish-
subscribe system. The application provides a channel 
abstraction to which clients can subscribe and publish. 
Channels act as mobile rendezvous points by accepting 
incoming messages and relaying them to each of the 
clients subscribed to the channel. 

For this application, we generate a workload resem-
bling a disaster recovery application. The workload 
consists of ten channels each with four subscribers. The 
four subscribers publish messages approximately every 
10, 20, 30, and 40 seconds, respectively. We run the 
application on the same 14 by 14 network layout as 
SenseNet. We measure total system throughput 
smoothed over 20 second intervals, number of nodes 
drained, and total remaining energy in the network. We 
stop the simulations when total throughput drops to 
zero during a 20 second interval. 

4.1.3. FileSystem 
Lastly, our final application is a network file system 
that may be used in mobile ad hoc scenarios. This ap-
plication consists of clients and files. Client objects are 
assigned to mobile devices, and access files over the 
network according to an external trace. File objects can 
reside on any node, and independently receive and 
process requests from clients. 

This application is run on a randomly generated net-
work with 196 mobile nodes, with approximately the 
same density as in SenseNet. The nodes move accord-
ing to the random waypoint mobility model with a 
maximum node speed of 5 meters per second. The 
benchmark workload is based on the 1994 Auspex file 
system trace [Dahlin et al. 94]. To compensate for the 
relatively limited capabilities of wireless nodes, we 
slow the trace by a factor of four. We measure the same 
statistics, and use the same stopping condition, as for 
the Publish-Subscribe application. 

4.2. Simulation Methodology 
We implemented a significant part of the Flock system 
in Sns [Walsh & Sirer 03], a scalable version of the Ns-
2 network simulator. In order to accurately account for 
packet-level costs, we implemented a detailed energy 
model using parameters obtained from measurements 
of 802.11b wireless cards [Feeney & Nilsson 01]. 
Computation costs are assumed to be negligible. We 
use the AODV protocol for wireless ad hoc routing, 
which includes support for both mobile and static node 
placements, and include the cost for route discovery, 
maintenance, and repair in our energy model. In all, we 
run each application with 16 scenarios each by varying 
the workload and network layout, averaging the results 
to obtain estimates of expected application behavior. 
For each application and scenario, we consider the fol-
lowing object placement and migration strategies: 

• Static Centralized corresponds to a static, 
fixed assignment of all movable objects to a 
single, central node in the network. All mov-
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able components remain at the home node for 
the entire duration of the simulation. 

• Static Distributed corresponds to a static, fixed 
assignment of objects to nodes within the net-
work. Movable objects are randomly assigned 
to nodes, and remain at those nodes for the en-
tire duration of the simulation. 

• Random selects a random neighbor as destina-
tion for each movable object at each epoch. It 
corresponds to a simple load-balancing algo-
rithm, designed to avoid network hotspots. 

• NetPull moves objects one hop along the most 
active adjacent communication link at each 
epoch to the most active neighbor. 

• NetCenter moves objects directly to the node 
with which it communicated the most in the 
previous epoch. 

In addition to simulation-based evaluation, we imple-
mented these benchmarks on top of our prototype sys-
tem that supports x86/Windows and Stron-
gArm/PocketPC platforms. The base system includes 
adaptive object placement policies, AODV ad hoc 
wireless routing, and automatic partitioning using Java 
bytecode rewriting. 

4.3. Results and Discussion 
In the following sections, we examine each application 
benchmark in turn.  The benchmarks represent a wide 
spectrum of different applications and communication 
models, and thus the relative performance of static and 
intelligent object migration policies varies with the ap-
plication. Overall, these benchmarks show that the 
adaptive algorithms described above avoid hotspots in 
the network by moving objects intelligently. In addi-
tion, we find that the details of application communica-
tion and workload patterns impact the relative perform-
ance of different migration strategies, confirming the 
need for automatic and system-wide placement policies. 

Figure 4: SenseNet application:  4a. Automatic migration significantly extends system lifetime.  Bars represent 25th 
and 75th quartiles.  4b, c, and d show that adaptive algorithms extract more energy out of the field and increase the 
field coverage and node availability. 
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4.3.1. SenseNet 
The SenseNet benchmark shows the clearest gains for 
the adaptive algorithms described above.  Figure 4a 
shows that automatic migration increases system lon-
gevity by a factor of 3.  This gain is achieved generally 
by moving objects away from hotspots and reducing 
mean packet distances.   

The energy graph in Figure 4b shows that the energy 
curves for NetCenter and NetPull are more shallow 

than those for the Random and Static cases, which are 
steep and linear in the time of the simulation.  Static 
suffers because of the energy bottleneck it creates 
around the fixed locations it has for system compo-
nents.  Random, a standard approach to distribute load, 
actually hurts energy performance by paying too much 
in migration costs.  This benefit comes from the opti-
mizing nature of the adaptive algorithms, which con-
tinuously try to find good placements.   

Figure 5: Publish-Subscribe benchmark.  5a, b, and c 
show that NetCenter and NetPull increase the longevity 
of nodes, the energy utilization, and the throughput.

Figure 6: FileSystem benchmark.  6a, b, and c show how 
NetCenter and NetPull compare to static and random 
approaches.
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The unreachable nodes and coverage graphs (Figure 4c 
and 4d) show two separate performance metrics with 
similar insights.  Adaptive placement and migration 
save energy and distribute load, which extends node 
lifetimes and increases longevity for the network. 

4.3.2. Publish-Subscribe 
The Publish-Subscribe application differs substantially 
from the SenseNet application.  It consists of a rela-
tively small number of rendezvous points, each 
commu-nicating with a stable set of clients.  This en-
ables route discovery costs, incurred when objects are 
migrated, to be amortized over a large number of ac-
cesses. 

Figure 5a shows that the Centralized approach fails 
very early because of the large hotspot in client ac-
cesses around the center of the network.  We can see in 
each of the graphs that this approach initially achieves 
as high throughput as dynamic migration strategies, but 
it ter-minates early then it uses up the energy in the 
center of the network.  The Random approach shows 
that ran-domizing the location of objects fails to 
achieve any savings or avoid hotspots, as it incurs the 
migration cost without the benefits of intelligently plac-
ing objects in the network. 

The Distributed Static approach performs well, because 
it both avoids hotspots and does not incur object mobil-
ity costs. Adaptive policies do even better, since they 
place the rendezvous points near clients that access 
them frequently, reducing the ongoing cost of publish-
subscribe operations.  

4.3.3. FileSystem 
In our file system benchmark, we discovered that the 
centralized algorithm performs better than any non-
centralized one.  This difference can be explained by 
the costs that each algorithm must pay to achieve the 
same level of availability.  First, hotspots near the cen-
tralized server are mitigated because of node move-
ment.  Further, the centralized algorithm only has a sin-
gle destination for all data flows. This layout is an op-
timal case for the AODV routing layer. All the distrib-
uted cases, by definition, have individual files which 
are located at many different points in the net-work. 
This leads to nearly 200 different destinations, a load 
which significantly more expensive for AODV to com-
pute and maintain.  

Among the non-centralized protocols, performance is 
dependent on and almost entirely determined by the 
cost of maintaining routes, since the per-file workload 
is typically very light. Many files, for example, are ac-
cessed only once every 60 seconds. The overhead asso-
ciated with moving a file from one node to another, and 

the resultant cost of updating client routes to the file, 
outweighs the benefit of better placement in the net-
work. This effect is exaggerated in proportion to the 
frequency of object movement.  Figure 6a shows that 
policies that change object positions infrequently, such 
as Static Distributed, achieve better performance than 
those that perform frequent movement, such as Ran-
dom.  The adaptive algorithms do not perform as well 
in this context, since the highest costs are those of route 
maintenance.  Figure 6c similarly shows that the energy 
costs of object mobility are not recompensed in this 
scenario.  The only benefit of using an adaptive algo-
rithm is seen in the number of nodes drained (Figure 
6b), where NetCenter manages to spread the drain more 
evenly over the nodes of the network.  The Static and 
Random algorithms cannot do so intelligently, and so 
have steep cliffs at which time many of the nodes die at 
once. 

This benchmark shows that the value of the adaptive 
algorithms is seen in applications with relatively high 
load, and that when the application is simple, a static 
distribution of objects suffices.  The long tails of the 
graphs are results of object motion: a node accesses a 
particular file frequently, and so the file is moved to 
that node.  The communication between file and client 
can then proceed despite loss of connectivity. 

4.4. Space and Time Overhead 
An automatic approach to application partitioning and 
transparent object migration would be untenable if the 
performance of automatically partitioned applications 
suffered significantly. In the micro-benchmark below, 
we compare the overhead of our RPC implementation 
to that of remote invocations performed via Java RMI, 
on a 1.7 GHz P4 with 256 MB of RAM JDK 1.4 on 
Linux 2.4.17 with AODV. On all micro-benchmarks, 
automatically decomposed applications are competitive 
with manually coded, equivalent RMI implementations, 
due partly to tight integration of system code with ap-
plication code through binary rewriting. 

Remote call Java RMI Flock 
Null 430 ± 16 172 ± 6 
Int 446 ±   9 180 ± 8 
Obj. w/ 32ints 991 ± 35 174 ± 4 
Obj. w/ 4int, 2obj 844 ± 21 177 ± 7 

all times in µs, average of 1000 calls.

Table 1: Remote method invocation comparison. 

The applicability of a Java-based system is limited by 
the ability of ad hoc network nodes to support the req-
uisite services of a Java VM. Traditional virtual ma-
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chines, such as Sun Java JDK 1.4 support many fea-
tures and are not optimized for space. Consequently, 
they require large amounts of memory and are not suit-
able for ad hoc networks. For Flock, we have devel-
oped our own JVM for x86 laptops, and Pock-
etPC/StrongArm devices. This JVM performs space 
optimizations including lazy class loading, constant 
pool sharing, stack and memory compression, and ag-
gressive class unloading. Consequently, we reduce the 
minimum required memory to run Flock to approxi-
mately 1350 KB from over 9 MB. This is well within 
the memory budget of existing mobile devices, and 
within a few years’ Moore’s Law growth of sensor 
nodes. 

4.5. Summary 
In this section, we examined three benchmarks built 
under our event-based model, and evaluated the per-
formance of automatic migration strategies for energy-
efficient execution.   Flock reduces energy consump-
tion by actively moving communication endpoints and 
shortening the path packets traverse through the net-
work.  In turn, this reduces hotspots, increases energy 
utilization and extends system longevity.  Flock uses 
simple local metrics to make informed object placement 
decisions.  In settings which exhibit locality, where 
active migration would shorten mean packet distances 
and yield energy savings, NetCenter, a local automatic 
migration policy, can adapt quickly, and find a good 
placement for objects. 

5. Conclusion 
In this paper, we present the design and implementation 
of a event-based operating system for ad hoc networks. 
Our system implements a parallel, event processing 
engine on top of a collection of ad hoc nodes.   An ap-
plication partitioning tool takes monolithic Java appli-
cations and converts them into distributed, componen-
tized applications. A small runtime on each node is 
responsible for event handler creation, invocation and 
migration. We rely on a transparent RPC for node-
independent communication between components. This 
distributed system defines a convenient programming 
model for ad hoc networks.  This model provides the 
system with sufficient freedom to transparently move 
components in order to find an energy-efficient con-
figuration. 

We evaluate simple, local algorithms for automatically 
determining where to locate application components in 
the network in order to minimize energy consumption. 
Combined, these algorithms enable Flock to find an 
assignment of components to nodes that yields good 
utilization of available energy in the network. These 

algorithms are practical, entail low overhead and are 
easy to implement because they rely only on local in-
formation that is readily available. In benchmarks with 
moderate to high locality of communication, automated 
migration can conserve power and achieve significant 
improvements in system longevity. 

Ad hoc networking is a rapidly emerging area with few 
established mechanisms, policies and services. We 
hope that high-level abstractions, such as an event-
based programming model, combined with system sup-
port for automatic migration, will create a familiar and 
power-efficient programming environment, thereby 
enabling rapid development of platform-independent, 
power-adaptive applications for ad hoc networks. 
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