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Abstract

Structured peer-to-peer hash tables provide decentraliza-
tion, self-organization,failure-resilience,andgoodworst-case
lookup performancefor applications,but suffer from high la-
tencies(O(

�������
)) in theaveragecase.Suchhighlatenciespro-

hibit themfrom beingusedin many relevant,demandingappli-
cationssuchasDNS.In thispaper, wepresentaproactiverepli-
cation framework that can achieve O( � ) lookup performance
for commonZipf-lik e querydistributions. This framework is
basedarounda closed-formsolutionthatachievesO( � ) lookup
performancewith low storagerequirements,bandwidthover-
headandnetwork load. Simulationsshow that this replication
framework canrealisticallyachievegoodlatencies,outperform
passivecaching,andadaptefficiently to suddenchangesin ob-
ject popularity, alsoknown asflashcrowds. This framework
providesafeasiblesubstratefor high-performance,low-latency
applications,suchaspeer-to-peerdomainnameservice.

1 Introduction

Peer-to-peer distributed hash tables (DHTs) have recently
emergedasa building-block for distributedapplications.Un-
structured DHTs,suchasFreenetandtheGnutellanetwork [5,
1], offer decentralizationandsimplicity of systemconstruction,
but maytake up to O(N) hopsto performlookupsin networks
of N nodes.Structured DHTs, suchasChord,Pastry, Tapestry
andothers[24, 22, 26, 21, 18, 17, 14], areparticularly well-
suitedfor largescaledistributedapplicationsbecausethey are
self-organizing,resilientagainstdenial-of-serviceattacks,and
provide O(log N) lookup performancein both the worst- and
theaveragecase.However, for large-scale,high-performance,
latency-sensitiveapplications,suchasthedomainnameservice
(DNS) andthe world wide web, this logarithmicperformance
boundtranslatesinto high latencies.Previouswork on serving
DNS usinga peer-to-peerlookup serviceconcludedthat high
average-caselookupcostsrendercurrentstructuredDHTs un-
suitablefor latency-sensitiveapplications,suchasDNS [8].

In this paper, we describehow proactive replicationcanbe
usedto achieve O(1) lookup performanceefficiently on top
of a standardO(log N) peer-to-peerdistributedhashtablefor
certain,commonly-encounteredquerydistributions. It is well-
known that the querydistributionsof several popularapplica-
tions, including DNS and the web, follow a power law dis-
tribution [15, 2]. Sucha well-characterizedquerydistribution
presentsanopportunityto optimizethesystemaccordingto the
expectedquerystream.Thecritical insightin thispaperis that,

for querydistributionsbasedonapowerlaw, proactive (model-
driven)replicationcanenableaDHT systemto achieveasmall
constantlookup latency on average.In contrast,we show that
commontechniquesfor passive (demand-driven) replication,
suchascachingobjectsalonga lookuppath,fail to makeasig-
nificantimpacton theaverage-casebehavior of thesystem.

Weoutlinethedesignof areplicationframework,calledBee-
hive,with thefollowing threegoals:

� High Performance: EnableO(1) average-caselookup
performance,effectively decouplingthe performanceof
peer-to-peerDHT systemsfrom the sizeof the network.
ProvideO(logN) worst-caselookupperformance.

� High Scalability: Minimize thebackgroundtraffic in the
network to reduceaggregatenetwork load and per-node
bandwidthconsumption.Ensurethattheamountof mem-
ory and/ordiskspacerequiredof eachpeerin thenetwork
is keptto a minimum.

� High Adaptivity: Promptlyadjusttheperformanceof the
systemin responseto changesin theaggregatepopularity
distribution of objects. Further, cheaplytrack andmain-
tain the popularityof individual objectsin the systemto
quickly respondwhen a certain object becomeshighly
popular, aswith flashcrowdsandthe“slashdoteffect.”

Beehive achieves these goals through efficient proactive
replication. By proactive replication,we meanactively prop-
agatingcopiesof objectsamongthenodesparticipatingin the
network. Thereis a fundamentaltradeoff betweenreplication
andresourceconsumption:morecopiesof anobjectwill gen-
erally improve lookupperformanceat thecostof space,band-
width and aggregatenetwork load. In the limit, proactively
copying all objectsin the DHT to all nodeswould enableev-
ery queryto besatisfiedin constanttime. However, this would
not scaleto large systemssince it would requireprohibitive
amountsof spaceon eachnode,the network would be over-
loadedduringreplicacreation,andchangesto mutableobjects
wouldrequireO(N) updates.In contrast,Beehiveperformsthis
tradeoff throughan analyticalmodel that provides a closed-
form, optimalsolutionthatachievesO(1) lookupperformance
for power law querydistributionswhile minimizing the num-
ber of object copies,and hencereducingstorage,bandwidth
andload,in thenetwork.

Beehive relies on cheap,local measurementsand efficient
lease-basedprotocolsfor replica coordination. Eachnodein
Beehivecontinuallyperformslocalmeasurementsto determine
the relative popularityof the objectsin the system,aswell as
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to estimateglobalpropertiesof theaggregatequerydistribution
function.Beehivenodesdecidehow many replicasof eachob-
ject shouldbepropagatedby combiningtheclosed-formsolu-
tionsfrom theanalyticalmodelwith their measurementsof the
aggregatequery distribution function and estimatesof object
rank. This estimationis performedindependentlyandperiod-
ically at eachnode,while a replicamanagementprotocoleffi-
cientlypropagatesor removescachedobjectswithoutexcessive
messaging,globalsynchronizationor agreement.

Objectsin Beehive may be modifieddynamically. In gen-
eral, mutableobjectsposecache-coherency problemsfor any
replicationtechnique,asolder, out-of-datecopiesof anobject
mayremaincachedthroughouta systemandkeepclientsfrom
accessingmore recentversions. To provide up to dateviews
in thepresenceof updates,a systemneedsto trackall replicas
of an objectandeither invalidateold copiesor propagatethe
changeswhentheobjectis modified.In Beehive,thestructured
natureof theunderlyingDHT allows thesystemto keeptrack
of theplacementof all replicaswith a singleinteger. This en-
ablesBeehive to efficiently find andupdateall replicaswhen
an object is modified. Consequently, objectsmay be updated
at any time in Beehive,andlookupsperformedafteranupdate
hascompletedwill returnthelatestcopy of theobject.

While this paperdescribestheBeehive proactive replication
framework in its generalform, we usethe domainnamesys-
tem asa target application,performour evaluationwith DNS
data,anddemonstratethat servingDNS lookupswith a peer-
to-peerdistributedhashtableis feasible.Severalshortcomings
of thecurrent,hierarchicalstructureof DNS makesit an ideal
applicationcandidatefor Beehive. First,DNSis highly latency-
sensitive, andposesa significantchallengeto serve efficiently.
Second,thehierarchicalorganizationof DNSleadsto adispro-
portionateamountof load beingplacedat the higherlevelsof
the hierarchy. Third, the highernodesin the DNS hierarchy
serve as easytargets for distributed denial-of-serviceattacks
andform a securityvulnerabilityfor theentiresystem.Finally,
nameserversrequiredfor the internal leavesof the DNS hier-
archyincur expensive administrative costs,asthey needto be
manuallyadministered,secureandconstantlyonline. Peer-to-
peerDHTs addressall but the first critical problem;we show
in this paperthatBeehive’s replicationstrategy canaddressthe
first.

We have implementeda prototype Beehive-basedDNS
server layeredon topof thePastrypeer-to-peerhashtable[22].
Ourprototypeimplementationis compatiblewith currentclient
resolver libraries deployed aroundthe Internet. We envision
thattheDNSnameserversthatarecurrentlyusedto servesmall,
dedicatedportionsof thenaminghierarchywould form a Bee-
hive network and collectively managethe entire namespace.
Our implementationsupportsthe existing namingschemeby
falling backon legacy DNS whenBeehive-DNSlookupsfail.
Unlike legacy DNS, which relieson cachetimeoutsfor loose
coherency andincursongoingcacheexpirationandrefill over-
heads,Beehive-DNSenablesresourcerecordsto beupdatedat
any time. While weuseDNSasaguidingapplicationfor evalu-
atingoursystem,wenotethatafull treatmentof theimplemen-
tationof analternative peer-to-peerDNS systemis beyondthe

scopeof this paper, andfocus insteadon the general-purpose
Beehive framework for proactive replication. The framework
is sufficiently generalto achieve O(1) lookup performancein
other settings, including web caching, where the aggregate
querydistribution followsa power law, similar to DNS.

Overall, this paper describesthe design of a replication
framework thatenablesO(1) lookupperformancein structured
DHTs for common query distributions, applies it to a P2P
DNS implementation,andmakesthe following contributions.
First, it proposesproactive replicationof objectsandprovides
a closedform analytical solution for the numberof replicas
neededto achieve constant-timelookupperformancewith low
costs.Thestorage,bandwidthandloadplacedon thenetwork
by this schemearemodest. In contrast,we show that simple
cachingstrategiesbasedon passive replicationincur largeon-
going costs.Second,it outlinesthe designof a completesys-
tembasedaroundthis analyticalmodel.Thissystemis layered
on top of Pastry, anexisting peer-to-peersubstrate.It includes
techniquesfor estimatingthe requisiteinputs for the analyti-
cal model, mechanismsfor replica propagationand deletion,
anda strategy for mappingbetweenthecontinuoussolutionin
theanalyticalmodelandthediscreteimplementationin Pastry.
Finally, it presentsresultsfrom a prototypeimplementationof
a peer-to-peerDNS serviceto show that the systemachieves
goodperformance,haslow overhead,andcanadaptquickly to
flashcrowds. In turn, theseapproachesenablethe benefitsof
P2Psystems,suchas self-organizationand resilienceagainst
denialof serviceattacks,to beappliedto latency-sensitive ap-
plications,suchasDNS.

Therestof this paperis organizedasfollows. Section2 pro-
videsa broadoverview of our approachanddescribesthestor-
ageandbandwidth-efficientreplicationcomponentsof Beehive
in detail. Section3 describesour implementationof Beehive
over Pastry. Section4 presentsthe resultsandexpectedben-
efits of using Beehive to serve DNS queries. Section5 sur-
veys differentDHT systemsandsummarizesotherapproaches
to cachingand replication in peer-to-peersystemsSection6
describesfuturework andSection7 summarizesour contribu-
tions.

2 The Beehive System

Beehive is a generalreplicationframework thatcanbeapplied
to structuredDHTsbasedonprefix-routing[19], suchasChord,
Pastry, Tapestry, and Kademlia. TheseDHTs operatein the
following manner. Eachnodehasa uniquerandomlyassigned
identifier in a circular identifier space. Eachobject also has
a uniquerandomlyselectedidentifier assignedfrom the same
spaceandis storedat the closestnode,calledthe home node.
Routingis performedby successively matchinga prefix of the
object identifier againstnodeidentifiers. Generally, eachstep
in thequeryprocessingtakesthe queryto a nodethathasone
morematchingprefixthanthepreviousnode.A querytraveling	

hopsreachesa nodethat has
	

matchingprefixes
 . Since�
Strictly speaking,thenodesencounteredtowardstheendof thequeryrout-

ing processin asparselypopulatedDHT maynotshareprogressively morepre-
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Figure1: Thisfigureillustratesthelevelsof replicationin Bee-
hive. A query for object 0124 takes 3 hopsfrom nodeQ to
nodeE, thehomenodeof theobject.By replicatingtheobject
at level 2, that is at D andF, thequerylatency canbereduced
to 2 hops.In general,anobjectreplicatedat level � incursat the
most� hopsfor a lookup.

the searchspaceis reducedexponentially, this query routing
approachprovidesO(

������
��
) lookup performanceon average,

where
�

is thenumberof nodesin theDHT and � is thebase,
or fanout,usedin thesystem.

ThecentralobservationbehindBeehive is that the lengthof
the averagequery path will be reducedby one hop when an
objectis proactively replicatedat all nodeslogically preceding
that nodeon all querypaths. We canapply this iteratively to
disseminateobjectswidely throughoutthe system. Replicat-
ing anobjectat all nodes

	
hopsor lesserfrom thehomenode

will reducethe lookup latency by
	

hops. The Beehive repli-
cationmechanismis a generalextensionof this observationto
find theappropriateamountof replicationfor eachobjectbased
on its popularity. Beehivestrivesto createtheminimalnumber
of replicassuchthat the expectednumberof nodestraversed
during a querywill matcha targetedconstant,� . It usesan
analyticalmodel to derive the numberof replicasrequiredto
achieve O(1) lookup performancewhile minimizing per node
storage,bandwidthrequirementsandnetwork load. We note,
however, that the model is driven by estimatesof objectpop-
ularity and,in a real implementationlike theonewe describe,
maydeviatefrom theoptimaldueto samplingerrors.

Beehive controlsthe extent of replicationin the systemby
assigninga replication level to eachobject.An objectat level �
is replicatedon all nodesthathave at least� matchingprefixes
with theobject. Queriesto objectsreplicatedat level � incur a
lookup latency of at most � hops. Objectsstoredonly at their
homenodesareat level

������
��
, while objectsreplicatedat level�

arecachedat all thenodesin thesystem.Figure1 illustrates

fixeswith theobject,but remainnumericallyclose.This detaildoesnot signif-
icantly impacteitherthetime complexity of standardDHT’s or our replication
algorithm.Section3 discussestheissuein moredetail.

theconceptof replicationlevels.
Thegoalof Beehive’s replicationstrategy is to find themin-

imal replication level for eachobject such that the average
lookup performancefor the systemis a constantnumberof
hops.Naturally, theoptimalstrategy involvesreplicatingmore
popularobjectsatlowerlevels(onmorenodes)andlesspopular
objectsathigherlevels.By judiciouslychoosingthereplication
level for eachobject,wecanachieveconstantlookuptimewith
minimalstorageandbandwidthoverhead.

Beehive employs several mechanismsandprotocolsto find
and maintainappropriatelevels of replicationfor its objects.
First, an analyticalmodelprovidesBeehive with closedform
optimal solutionsindicating the appropriatelevels of replica-
tion for eachobject. Second,a monitoringprotocolbasedon
local measurementsandlimited aggregationestimatesrelative
objectpopularity, andtheglobalpropertiesof thequerydistri-
bution. Theseestimatesareused,independentlyandin a dis-
tributedfashion,asinputsto theanalyticalmodelwhich yields
thelocally desiredlevel of replicationfor eachobject.Finally,
a replicationprotocolproactively makescopiesof the desired
objectsaroundthe network. The restof this sectiondescribes
eachof thesecomponentsin detail.

2.1 Analytical Model

In this section, we provide a model that analyzesZipf-lik e
querydistributionsandprovidesclosedform optimal replica-
tion levels for the objectsin orderto achieve constantaverage
lookupperformancewith low storageandbandwidthoverhead.

In Zipf-lik e, or power law, querydistributions, the number
of queriesto the ����� mostpopularobjectis proportionalto ����� ,
where � is theparameterof thedistribution. Thequerydistri-
bution hasa heavier tail for smallervaluesof theparameter� .
A Zipf distribution with parameter

�
correspondsto a uniform

distribution. The total numberof queriesto the mostpopular� objects, � � �"! , is approximately #%$'&)( �*

��+� for �-,. � , and�/� �0!21 �43 � �0! for � . � .
Usingtheaboveestimatefor thenumberof queriesreceived

by objects,we posean optimizationproblemto minimize the
total numberof replicaswith the constraintthat the average
lookuplatency is aconstant� .

Let � bethebaseof theunderlyingDHT system,5 thenum-
berof objects,and

�
thenumberof nodesin thesystem.Ini-

tially, all the 5 objectsin the systemarestoredonly at their
homenodes,thatis, they arereplicatedat level

	 . ������
�� . Let687 denotethe fraction of objectsreplicatedat level � or lower.
From this definition, 6�9 is � , sinceall objectsare replicated
at level

	
. 5 6): mostpopularobjectsarereplicatedat all the

nodesin thesystem.
Eachobject replicatedat level � is cachedin

�<; � 7 nodes.5 6 7�= 5 6 7 �>
 objectsarereplicatedonnodesthathaveexactly� matchingprefixes. Therefore,theaveragenumberof objects
replicatedat eachnodeis givenby 5 6?:%@BADCFE $ � E�GIH
 @KJ�J�JL@
AMCNE�O � E�O &�$ H
 O . Simplifying thisexpression,theaveragepernode
storagerequirementfor replicationis:

3



5QPR��� = � � ! � 6 : @
6 
� @SJ�J�JT@

6 9 �*
� 9 �*
 !>@
�
� 9?U (1)

The fraction of queries, �/�V5 6 7 ! , that arrive for the most

popular 5 687 objects is approximately CFA EXWNH $'&)( �>
A $R&)( �>
 . The
number of objects that are replicatedat level � is 5 687 =5 6�7 �>
�Y �BZ �0[ 	

. Therefore,the numberof queriesthat
travel � hops is �/�V5 687\! = �/�V5 687 �*
 ! Y �]Z �^[ 	

. The
averagelookup latency of the entire systemcan be given by97N_ 
 ���I�/�V5 6 7 ! = �/�V5 6 7 �*
 !\! . The constrainton the aver-
agelatency is

97F_ 
 ���I�/�V5 6 7 ! = �/�V5 6 7 �*
 !�! [`� , where �
is the requiredconstantlookup performance.After substitut-
ing the approximationfor �/� �"! andsimplifying, we arrive at
following optimizationproblem.

Minimize 6?:a@ 6 
� @SJ�J�JT@
6 9 �>
� 9 �>
 , suchthat (2)

6 
����: @M6 
��+�
 @"J�J�J�@M6 
��+�9 �>
 b
	 = �c�\� = �

5 
��+� ! (3)

and6 : [ 6 
 [ J�J�J [ 6�9 �*
 [d� (4)

Notethatthesecondconstrainteffectively reducesto 6 9 �*
 [� , since any optimal solution to the problem with just con-
straint3 wouldsatisfy6): [ 6 
 [ J�J�J [ 6 9 �*
 .

WecanusetheLagrangemultiplier techniqueto find anana-
lytical closed-formoptimalsolutionto theaboveproblemwith
justconstraint3, sinceit definesaconvex feasiblespace.How-
ever, the resultingsolutionmaynot guaranteethesecondcon-
straint 6�9 �*
 [e� . If the obtainedsolutionviolatesthe second
constraint,wecanforce 6�9 �>
 to 1 andapplytheLagrangemul-
tiplier techniqueto the modifiedproblem. We canobtain the
optimal solutionby repeatingthis processiteratively until the
secondconstraintis satisfied.However, thesymmetricproperty
of thefirst constraintfacilitatesaneasieranalyticalapproachto
solve theoptimizationproblemwithout iterations.

Assumethat in the optimal solution to the problem, 6?: [6 
 [ J�J�J [ 6 9�f �>
 Z � , for some
	hg [ 	 , and 6 9�f . 6 9�fNi 
 .J�J�J . 6 9 . � . Thenwe canrestatetheoptimizationproblem

asfollows:

Minimize 6 : @ 6 
� @SJ�J�JT@
6 9 f �>
� 9 f �*
 , suchthat (5)

6 
����: @j6 
����
 @SJ�J�JX@j6 
����9 f �>
 b
	 g = � g Y (6)

where � g . �c��� = �
5 
���� !

Using the Lagrangemultiplier techniqueto solve this opti-
mizationproblem,wegetthefollowing closedform solution:

6lk7 . P
m 7 � 	hg = � g !

� @ m @SJ�J�JX@ m 9 f �>
 U $$'&)(�Y\n
� [o� Z 	 g (7)

6 k7 . � YIn 	 g [p�q[ 	 (8)

where
m . � $'&)((

Wecanderivethevalueof
	Xg

by satisfyingtheconditionthat6 9 f �*
 Z � , thatis, r O
f &�$ C 9 f ��s f H
 i r iut4t4t i r O f &�$

Z � .

As an example,considera DHT with basevTw , � . ��x y
,� � Y �T�X� nodes,and � Y �T�X� Y �X�T� objects. Applying this analyt-

ical methodto achieve an averagelookup time, � , of � hop,
we obtain

	hg . w and the solution: 6 : . ��x �X� �X� � w , 6 
 .�+x �Tz � y , and6?{ . � . Thus, the most popular �X� � w objects
would be replicatedat level

�
, the next most popular

zT�X| ��}
objectswouldbereplicatedat level � , andall theremainingob-
jectsat level w . The averageper nodestoragerequirementof
this systemwouldbe v?~ �X� objects.

Theoptimalsolutionobtainedby this modelappliesonly to
the case � Z � . For ����� , the closed-formsolution will
yield a level of replicationthat will achieve the target lookup
performance,but theamountof replicationmaynotbeoptimal,
becausethe feasiblespaceis no longerconvex. For � . � ,
we canobtaintheoptimalsolutionby usingtheapproximation�/� �0! .^�'� � andapplyingthe sametechnique.Theoptimal
solutionfor thecase� . � is asfollows:

6�k7 . 5 &?�O f � 7� O f &�$� Y\n � [p� Z 	 g (9)

6 k7 . � YIn 	 g [o��[ 	 (10)	Xg
givenby 6 k9�f �>
 Z �

This analyticalsolutionhasthreepropertiesthat areuseful
for guiding the extent of proactive replication. First, the ana-
lytical modelprovidesa solution to achieve any desiredcon-
stantlookupperformance.Thesystemcanbetailored,andthe
amountof overallreplicationcontrolled,for any levelof perfor-
manceby adjustingC overacontinuousrange.Sincestructured
DHTs preferentiallykeepphysicallynearbyhostsin their top-
level routingtables,andsincethey consequentlypaythehighest
per-hop latency costsasthey get closerto the homenode,se-
lecting even a large target valuefor C candramaticallyspeed
up end-to-endquery latencies[4]. Second,for a large class
of querydistributions ( ��[�� ), the solutionprovided by this
modelachievestheoptimalnumberof objectreplicasrequired
to provide the desiredperformance.Minimizing the number
of replicasreducesper-nodestoragerequirements,bandwidth
consumptionand aggregateload on the network. Finally,

	hg
servesasanupperboundfor theworstcaselookuptimefor any
successfulquery, sinceall objectsarereplicatedat leastin level	hg

.
We make two assumptionsin the analyticalmodel: all ob-

jects incur similar costs for replication, and objectsdo not
changevery frequently. For applicationssuchasDNS, which
have essentiallyhomogeneousobjectsizesandwhoseupdate-
driventraffic isaverysmallfractionof thereplicationoverhead,
the analyticalmodelprovidesan efficient solution. Applying
the Beehive approachto applicationssuchas the web, which
hasa wide rangeof objectsizesandfrequentobjectupdates,
mayrequireanextensionof themodelto incorporatesizeand
updatefrequency informationfor eachobject.

2.2 Popularity and Zipf-Parameter Estimation

Theanalyticalmodeldescribedin theprevioussectionrequires
theknowledgeof theparameter� of thequerydistributionand
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therelative popularitiesof theobjects.In orderto obtainaccu-
rateestimatesof thepopularityof objectsandtheparameterof
the querydistribution, Beehive needsefficient mechanismsto
continuouslymonitortheaccessfrequency of theobjects.Bee-
hive employs a combinationof local measurementandlimited
aggregationto keeptrackof thechangingparametersandadapt
thereplicationappropriately.

Eachnodelocally measuresthe numberof queriesreceived
by anobjectreplicatedat thatnodein orderto estimateits rel-
ative popularity. If objectsare replicatedonly at their home
nodes,all thequeriesfor anobjectareroutedto thehomenode,
andlocalmeasurementof accessfrequency is sufficient to esti-
matetherelativepopularity. However, if theobjectis replicated
at level � , the queriesfor that objectaredistributedacrossap-
proximately

�<; � 7 nodesin a base � DHT with
�

nodes. In
order to estimatethe relative popularity with the sameaccu-
racy, we needan

�<; � 7 fold increasein the measurementin-
terval. But, this preventsthe systemfrom reactingquickly to
changesin thepopularityof theobjects.Beehiveperformslim-
ited aggregationin orderto alleviatethis problemandimprove
theresponsivenessof thesystem.

Aggregationin Beehive takesplaceperiodically, onceevery
aggregation interval. Eachnode � sendsto node � in the �����
level of its routing table, an aggregation message containing
theaccessfrequency of eachobjectreplicatedatlevel � or lower
andhaving � @ � matchingprefixeswith � . Node � receivesthe
aggregationmessagesfrom � aswell asothernodesat level �
with which it shares� prefixes.It thenaggregatestheestimates
for accessfrequenciesreceivedfrom thesenodeswith its own
localestimate,andsendstheaggregatedaccessfrequency to all
nodesin the �'� @ � ! ��� level of its routingtableduringthenext
roundof aggregation. After

�����)� = � roundsof aggregation,the
homenodeof anobjectreplicatedat level � obtainsanaccurate
estimateof theaccessfrequency.

In Beehive,eachnodeis responsiblefor replicatinganobject
atmostonelevel lower. Thatis, nodesat level � @ � arerespon-
siblefor replicatinganobjectat level � . Thenodesat level � @ �
needto get the aggregatedaccessfrequenciesof objectsrepli-
catedat level � from the homenodes. We enablethis reverse
informationflow by sendingtheaggregatedaccessfrequencies
in responseto aggregationmessages.Thehomenodeof anob-
jectsendsthelatestaggregatedestimateof theaccessfrequency
in responseto an aggregationmessagefrom a node � . When
node � receivesanaggregationmessagefrom � , it sendsa re-
ply containingthe aggregatedaccessfrequency of the objects
listed in the aggregationmessage.In this manner, the access
frequency of anobjectis aggregatedat thehomenodeandthe
aggregatedestimateis disseminatedto all thenodescontaining
areplicaof theobject.For anobjectreplicatedatlevel � , it takesw?� ������� = � ! roundsof aggregationto completetheinformation
flow.

In addition to the popularity of the objects,the analytical
modelneedsan estimateof the parameterof the querydistri-
bution. The Zipf-parameter, � , is also estimatedusing local
measurementandlimited aggregation.Eachnodelocally com-
putes� usingtheaggregatedaccessfrequency for differentob-
jectsreplicatedat thenode.We estimate� usinglinearregres-

sion techniquesto computethe slopeof thebestfit line, since
aZipf-lik epopularitydistribution is a straightline in log-scale.
Sincethis local estimateis basedon a small subsetof the ob-
jectsin thesystem,theestimateis refinedby aggregatingit with
thelocal estimatesof othernodesit communicateswith during
aggregation.

Therewill be fluctuationsin the estimationof accessfre-
quency andtheZipf parameterdueto randomnessin thequery
distribution. In order to avoid large discontinuouschanges
to theseestimates,we age them as follows: �����V� �p� ����� .�����V� �o� ����� �*
q�<� @ 3 �\� � � �4� � � �\� = � ! , with � . ��x z .
2.3 Replication Protocol

Beehive requiresa protocolto replicateobjectsat the levelsof
computedby the analyticalmodel. In order to be deployable
in wide areanetworks,thereplicationprotocolshouldbeasyn-
chronousandnot requireexpensive mechanismssuchasdis-
tributedconsensusor agreement.In this section,we develop
an efficient protocol that enablesBeehive to replicateobjects
acrossa DHT.

Beehive’sreplicationprotocolusesanasynchronousanddis-
tributedalgorithmto implementtheoptimal solutionprovided
by theanalyticalmodel. Eachnodeis responsiblefor replicat-
ing anobjecton othernodesat mostonehopaway from itself;
thatis, atnodesthatshareonelessprefix thanthecurrentnode.
Initially, eachobject is replicatedonly at the homenodeat a
level

	 . ������
�� , whereN is thenumberof nodesin thesystem
andb is thebaseof theDHT, andshares

	
prefixeswith theob-

ject. If anobjectneedsto bereplicatedat thenext level
	 = � ,

thehomenodepushestheobjectto all nodesthatshareoneless
prefix with the homenode. Eachof the level

	 = � nodesat
which theobjectis currentlyreplicatedmayindependentlyde-
cideto replicatetheobjectfurther, andpushtheobjectto other
nodesthat shareone lessprefix with it. Nodescontinuethe
processof independentanddistributedreplicationuntil all the
objectsarereplicatedat appropriatelevels. In this algorithm,
nodesthat share� @ � prefixeswith an objectareresponsible
for replicatingthat objectat level � , andarecalled � level de-
ciding nodes for thatobject.For eachobjectreplicatedat level� at somenode � , the � level decidingnodeis thatnodein its
routingtableat level � thathasmatching� @ � prefixeswith the
object.For someobjects,thedecidingnodemaybethenode �
itself.

This distributed replicationalgorithm is illustrated in Fig-
ure 2. Initially, an objectwith identifier 0124 is replicatedat
its homenode � at level v andsharesv prefixeswith it. If the
analyticalmodelindicatesthat this objectshouldbereplicated
at level w , node � pushesthe objectsto nodes� and � with
which it sharesw prefixes.Node � is thelevel w decidingnode
for the objectat nodes� , � , and � . Basedon the popularity
of theobject,thelevel w nodes� , � , and� mayindependently
decideto replicatetheobjectat level � . If node� decidesto do
so,it pushesa copy of theobjectto nodes� and � with which
it shares� prefixandbecomesthelevel � decidingnodefor the
objectat nodes� , � , and � . Similarly, node � mayreplicate
theobjectat level � by pushinga copy to nodes� and � , and
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Figure2: Thisfigureillustrateshow theobject0124at its home
nodeE is replicatedto level 1. For nodesA throughI, thenum-
bersindicatetheprefixesthatmatchtheobjectidentifierat dif-
ferent levels. Eachnodepushesthe object independentlyto
nodeswith onelessmatchingdigit.

node� to � and � .
Our replicationalgorithmdoesnot requireany agreementin

theestimationof relative popularityamongthenodes.Conse-
quently, someobjectsmaybereplicatedpartially dueto small
variationsin theestimateof the relative popularity. For exam-
ple in Figure2, node � might decidenot to pushobject

� ��wT}
to level � . We toleratethis inaccuracy to keepthe replication
protocolefficient andpractical. In the evaluationsection,we
show that this inaccuracy in the replicationprotocoldoesnot
produceany noticeabledifferencein performance.

Beehive implementsthis distributedreplicationalgorithmin
two phases,ananalysis phase andareplicate phase, thatfollow
the aggregationphase. During the analysisphase,eachnode
usestheanalyticalmodelandthe latestknown estimateof the
Zipf-parameter� to obtaina new solution.Eachnodethenlo-
cally changesthereplicationlevelsof theobjectsaccordingto
the solution. The solutionspecifiesfor eachlevel � , the frac-
tion of objects,6 7 thatneedto bereplicatedat level � or lower.
Hence, E WEXW � $ fractionof objectsreplicatedat level � @ � or lower
shouldbe replicatedat level � or lower. Basedon the current
popularity, eachnodesortsall theobjectsat level � @ � or lower
for which it is the � level decidingnode. It choosesthe most
popular EXWE W � $ fraction of theseobjectsandlocally changesthe
replicationlevel of thechosenobjectsto � , if theircurrentrepli-
cation level is � @ � . The nodealso changesthe replication
level of theobjectsthatarenot chosento � @ � , if their current
replicationlevel is � or lower.

After the analysisphase,the replicationlevel of someob-
jectscouldincreaseor decrease,sincethepopularityof objects
changeswith time. If thereplicationlevelof anobjectdecreases
from level � @ � to � , it needsto bereplicatedin nodesthatshare
onelessprefix with it. If the replicationlevel of an objectin-
creasesfrom level � to � @ � , the nodeswith only � matching
prefixesneedto deletethe replica. The replicate phase is re-
sponsiblefor enforcingthe correctextentof replicationfor an
objectasdeterminedby the analysisphase.During the repli-
catephase,eachnode � sendsto eachnode � in the i ��� level
of its routingtable,a replication message listing theidentifiers

of all objectsfor which � is the � level decidingnode. When� receivesthis messagefrom � , it checksthelist of identifiers
andpushesto node � any unlistedobjectwhosecurrentlevel
of replicationis � or lower. In addition, � sendsback to �
the identifiersof objectsno longerreplicatedat level � . Upon
receiving this message,� removesthelistedobjects.

Beehive nodesinvoke the analysisandthe replicatephases
periodically. Theanalysisphaseis invokedonceeveryanalysis
interval andthereplicatephaseonceeveryreplication interval.
In order to improve the efficiency of the replicationprotocol
and reduceload on the network, we integratethe replication
phasewith theaggregationprotocol. We performthis integra-
tion by settingthe samedurationsfor the replicationinterval
andtheaggregationinterval andcombiningthereplicationand
the aggregationmessagesasfollows: Whennode � sendsan
aggregationmessageto � , themessageimplicitly containsthe
list of objectsreplicatedat � whose� level decidingnodeis � .
Similarly, whennode� repliesto thereplicationmessagefrom� , it addsthe aggregatedaccessfrequency informationfor all
objectslistedin thereplicationmessage.

The analysisphaseestimatesthe relative popularity of the
objects using the estimatesfor accessfrequency obtained
through the aggregation protocol. Recall that, for an object
replicatedat level � , it takes w)� �����)� = � ! roundsof aggrega-
tion to obtainanaccurateestimateof theaccessfrequency. In
order to allow time for the information flow during aggrega-
tion, we setthereplicationinterval to at leastw �����)� timesthe
aggregationinterval.

Randomvariationsin thequerydistributionwill leadto fluc-
tuationsin therelativepopularityestimatesof objects,andmay
causefrequentchangesin thereplicationlevelsof objects.This
behavior may increasethe object transferactivity andimpose
substantialloadon thenetwork. Increasingthedurationof the
aggregationinterval is not an efficient solutionbecauseit de-
creasestheresponsivenessof systemto changes.Beehivelimits
theimpactof fluctuationsby employing hysteresis.During the
analysisphase,whenanodesortstheobjectsat level � basedon
theirpopularity, theaccessfrequenciesof objectsalreadyrepli-
catedat level � = � is increasedby asmallfraction.Thisbiases
thesystemtowardsmaintainingalreadyexisting replicaswhen
thepopularitydifferencebetweentwo objectsis small.

ThereplicationprotocolalsoenablesBeehiveto maintainap-
propriatereplicationlevelsfor objectswhennew nodesjoin and
othersleave thesystem.Whena new nodejoins thesystem,it
obtainsthe replicasof objectsit needsto storeby initiating a
replicatephaseof the replicationprotocol. If thenew nodeal-
readyhasobjectsreplicatedwhenit waspreviously partof the
system,thentheseobjectsneednot be fetchedagainfrom the
decidingnodes. A nodeleaving the systemdoesnot directly
affectBeehive. If theleaving nodeis a decidingnodefor some
objects,theunderlyingDHT choosesa new decidingnodefor
theseobjectswhenit repairstheroutingtable.

2.4 Mutable Objects

Beehive directly supportsfor mutableobjectsby proactively
disseminatingobjectupdatesto thereplicasin thesystem.The
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semanticsof readandupdateoperationson objectsis an im-
portant issueto considerwhile supportingobject mutability.
Strongconsistency semanticsrequirethatonceanobjectis up-
dated,all subsequentqueriesto thatobjectonly returnthemod-
ified object. Achieving strongconsistency is challengingin a
distributedsystemwith replicatedobjects,becauseeachcopy
of the replicatedobjectshouldbe updatedor invalidatedupon
objectmodification.In Beehive,we exploit thestructureof the
underlyingDHT to efficiently disseminateobjectupdatesto all
thenodescarryingreplicasof theobject. Our schemeguaran-
teesthatwhenanobjectis modified,all replicaswill beconsis-
tently updatedwithin a very shorttime if the systemis stable,
thatis, nodesarenot joining andleaving thesystem.

Beehive associatesa 64 bit version number with eachob-
ject to identify modifiedobjects.An objectreplicawith higher
versionnumberis more recentthana replicawith lower ver-
sionnumber. Theownerof anobjectin thesystemcanmodify
theobjectby insertinga freshcopy of theobjectwith a higher
versionnumberat thehomenode.Thehomenodeproactively
multicaststheupdateto all thereplicasof theobjectsusingthe
routing table. If the object is replicatedat level � , the home
nodesendsa copy of theupdatedobjectto eachnode � in the����� level of the routing table. Node � thenpropagatestheup-
dateto eachnodein the � � @ � ! ��� level of its routingtable.

The updatepropagationprotocolensuresthat eachnode �
sharingat least� prefixeswith the objectobtaina copy of the
modifiedobject.Theobjectupdatereachesthenode � follow-
ing exactly the samepatha queryissuedat the object’s home
nodefor node� ’s identifierwouldfollow. Becauseof thisprop-
erty, all nodeswith a replicaof theobjectgetexactly onecopy
of themodifiedobject.Hence,thisschemeis bothefficientand
providesguaranteedcachecoherency in the absenceof nodes
leaving thesystem.

Nodesleaving thesystemmaycausetemporaryinconsisten-
ciesin theroutingtable. Consequently, updatesmaynot reach
somenodeswhereobjectsarereplicated.Similarly, nodesjoin-
ing thesystembut having olderversionsof theobjectreplicated
at themneedto updatethe copy of their objects. We modify
Beehive’s replicationprotocolslightly to disseminateupdates
to nodesthat have older versionsdueto churn in the system.
Duringthereplicatephase,eachnodeincludestheversionnum-
ber in additionto theobjectidentifierslisted in the replication
message.Uponreceiving thismessage,thedecidingnodeof an
objectpushesacopy of theobjectif it hasamorerecentversion
of theobject.

3 Implementation

Beehive is a generalreplicationmechanismthatcanbeapplied
to any prefix-baseddistributedhashtable.We have layeredour
implementationon top of Pastry, a freely availableDHT with
log(N) lookupperformance.Our implementationis structured
asa transparentlayer on top of FreePastry1.3, supportsa tra-
ditional insert/modify/delete/queryDHT interfacefor applica-
tions, andrequiredno modificationsunderlyingPastry. How-
ever, convertingtheprecedingdiscussioninto aconcreteimple-

mentationof theBeehive framework, building a DNS applica-
tion on top,andcombiningtheframework with Pastryrequired
somepracticalconsiderationsandidentifiedsomeoptimization
opportunities.

Beehive needsto maintainsomeadditional,modestamount
of statein order to track the replicationlevel, freshness,and
popularityof objects.EachBeehive nodestoresall replicated
objectsin anobjectrepository. Beehive associatesthe follow-
ing meta-informationwith eachobjectin thesystem,andeach
Beehivenodemaintainsthefollowing fieldswithin eachobject
in its repository:

� Object-ID: A 128-bit field uniquely identifiesthe object
andhelpsresolve queries.Theobjectidentifier is derived
from thehashkey at thetimeof insertion,justasin Pastry.

� Version-ID:A 64-bit versionnumberdifferentiatesfresh
copiesof an object from older copiescachedin the net-
work.

� Home-Node: A single bit specifieswhetherthe current
nodeis thehomenodeof theobject.

� Replication-Level: A small integer specifiesthe current,
local replicationlevel of theobject.

� Access-Frequency: A small integer monitorsthe number
of queriesthat have reachedthis node. It is incremented
by onefor eachlocally observedquery, andresetat each
aggregation.

� Aggregate-Popularity:A small integerusedin theaggre-
gationphaseto collectandsumup theaccessfrequencies
from all dependentnodesfor which thisnodeis thedecid-
ing node.We alsomaintainanolderaggregatepopularity
countfor aging.

In addition to the stateassociatedwith eachobject, Beehive
nodesalsomaintaina runningestimateof the Zipf parameter.
The updatesto this estimatearebatched,andoccurrelatively
infrequentlycomparedto thequerystream.Overall,thestorage
costconsistsof severalbytesperobject,andtheprocessingcost
of keepingthemeta-dataup to dateis small.

Pastry’squeryroutingdeviatesfrom themodeldescribedear-
lier in thepaperbecauseit is not entirelyprefix-basedanduni-
form. SincePastrymapseachobject to the numericallyclos-
estnodein the identifier space,it is possiblefor an object to
not shareany prefixes with its homenode. For example, in
a network with two nodesw yX| and v?� z , Pastry will storean
objectwith identifier v � } on node w yT| . Sincea queryfor ob-
ject v � } propagatedby prefix matchingalonecannotreachthe
homenode,Pastrycompletesthequerywith theaid of anaux-
iliary datastructurecalled leaf set. The leaf set is usedin the
last few hopsto directly locatethenumericallyclosestnodeto
thequeriedobject. Pastryinitially routesa queryusingentries
in the routing table,andmay routethe lastcoupleof hopsus-
ing the leaf setentries. This requiredus to modify Beehive’s
replicationprotocolto replicateobjectsat theleaf setnodesas
follows. Sincetheleaf setis mostlikely to beusedfor the last
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hop,we replicateobjectsin theleaf setnodesonly at thehigh-
estreplicationlevels.Let

	 . ������
�� bethehighestreplication
level for Beehive,thatis, thedefault replicationlevel for anob-
ject replicatedonly at its homenode. As part of the maintain
phase,a node � sendsa maintenancemessageto all nodes�
in its routing tableaswell as its leaf setwith a list of identi-
fiers of objectsreplicatedat level

	 = � whosedecidingnode
is � . � is thedecidingnodeof anobjecthomedat node � , if� would forwarda queryto thatobjectto node � next. Upon
receiving a maintenancemessageat level

	 = � , node � would
pushan object to node � only if node � andthe objecthave
at least

	 = � matchingprefixes. Oncean objectis replicated
on a leaf setnodeat level

	 = � , further replicationto lower
levels follow the replicationprotocol describedin Section2.
Thisslightmodificationto Beehiveenablesit to work ontopof
Pastry. Otherrouting metricsfor DHT substrates,suchasthe
XOR metric [18], have beenproposedthat do not exhibit this
non-uniformity, andwheretheBeehive implementationwould
besimpler.

Pastry’s implementationprovidestwo opportunitiesfor opti-
mization,which improveBeehive’s impactandreduceits over-
head. First, Pastrynodespreferentiallypopulatetheir routing
tableswith nodesthat are in physicalproximity [4]. For in-
stance,a nodewith identifier � �X� hasthe opportunityto pick
eitherof two nodesw �T� andw � � whenroutingbasedonthefirst
digit. Pastryselectsthe nodewith the lowestnetwork latency,
asmeasuredby thepacket round-triptime. As theprefixesget
longer, nodedensitydropsandeachnodehasprogressively less
freedomto find andchoosebetweennearbynodes.Thismeans
thata significantfractionof thelookuplatency experiencedby
a Pastrylookupis incurredon thelasthop.This meansthatse-
lectingevena largenumberof constanthops, � , asBeehive’s
performancetarget, will have a significanteffect on the real
performanceof thesystem.While wepick � . � in our imple-
mentation,notethat � is a continuousvariableandmaybeset
to a fractionalvalue,to getaveragelookupperformancethat is
a fractionof a hop. � . � yieldsa solutionthatwill replicate
all objectsat all hops,which is suitableonly if the total hash
tablesizeis small.

Thesecondoptimizationopportunitystemsfrom themainte-
nancemessagesusedby Beehive andPastry. Beehive requires
someinter-nodecommunicationfor replicadisseminationand
dataaggregation. This communicationis confinedto pairsof
nodeswhereonememberof thepairappearsin theothermem-
ber’s routing table. This highly stylized communicationpat-
ternsuggestsapossibleoptimization.Pastrynodesperiodically
sendheart-beatmessagesto nodesin theirroutingtableandleaf
setto detectnodefailures.They alsoperformperiodicnetwork
latency measurementsto nodesin their routingtablein orderto
obtaincloserrouting tableentries.We canimprove Beehive’s
efficiency by combiningtheperiodicheart-beatmessagessent
by Pastrywith theperiodicmaintenancemessagessentby Bee-
hive. By piggy-backingthe i ��� row routing tableentrieson to
theBeehivemaintenancemessageatreplicationlevel � , asingle
messagecansimultaneouslyserveasaheartbeatmessage,Pas-
try maintenancemessage,andaBeehivemaintenancemessage.

We have built a prototypeDNS nameserver on top of Bee-

hive in orderto evaluatethe cachingstrategy proposedin this
paper. Beehive-DNS usesthe Beehive framework to proac-
tively disseminateDNS resourcerecordscontainingnameto
IP addressbindings. The Beehive-DNSserver currentlysup-
portsUDP-basedname(A) queries,is compatiblewith widely-
deployed resolver libraries and is designedto provide a mi-
gration path from legacy DNS. Queriesthat are not satisfied
within the Beehive systemare looked up in the legacy DNS
by thehomenodeandareinsertedinto theBeehiveframework.
TheBeehivesystemstoresanddisseminatesresourcerecordsto
theappropriatereplicationlevelsby monitoringtheDNSquery
stream.Clientsarefreeto routetheir queriesthroughany node
that is part of the Beehive-DNS.Sincethe DNS systemrelies
entirelyonaggressivecachingin orderto scale,it providesvery
loosecoherency semantics,andlimits therateatwhichupdates
canbe performed.Recall that the Beehive systemenablesre-
sourcerecordsto be modified at any time, and disseminates
thenew resourcerecordsto all cachingnameserversaspartof
theupdateoperation.However, for this processto beinitiated,
nameownerswould have to directly notify the homenodeof
changesto thenameto IP addressbinding. We expectthat,for
sometime to come,Beehive will beanadjunctsystemlayered
on top of legacy DNS,andthereforenameownerswho arenot
part of Beehive will not know to contactthe system.For this
reason,our currentimplementationdelineatesbetweennames
that exist solely in Beehive versusresourcerecordsoriginally
insertedfrom legacy DNS. In the currentimplementation,the
homenodechecksfor thevalidity of eachlegacy DNSentryby
issuingaDNSqueryfor thedomainwhenthetime-to-livefield
of thatentry is expired. If theDNS mappinghaschanged,the
homenodedetectstheupdateandpropagatesit asusual.Note
thatthisstrategy preservesDNSsemanticsandis quiteefficient
becauseonly thehomenodescheckthevalidity of eachentry,
while replicasretainall mappingsunlessinvalidated.

Overall, the Beehive implementationaddsonly a modest
amountof overheadandcomplexity to peer-to-peerdistributed
hashtables.Our prototypeimplementationof Beehive-DNSis
only 3500lines of code,comparedto the 17500lines of code
for Pastry.

4 Evaluation

In this section,we evaluatetheperformancecostsandbenefits
of the Beehive replicationframework. We examineBeehive’s
performancein the context of a DNS systemand show that
Beehivecanrobustlyandefficiently achieveits targetedlookup
performance.We alsoshow thatBeehive canadaptto sudden,
drasticchangesin the popularityof objectsaswell asglobal
shifts in the parameterof the querydistribution, andcontinue
to providegoodlookupperformance.

We comparethe performanceof Beehive with that of pure
Pastry and Pastry enhancedby passive caching. By passive
caching,we meancachingobjectsalongall nodeson thequery
path,similar to theschemeproposedin [23]. We imposenore-
strictionson thesizeof thecacheusedin passive caching.We
follow the DNS cachemodel to handlemutableobjects,and
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associatea time to live with eachobject. Objectsareremoved
from the¡ cacheuponexpirationof thetime to live.

4.1 Setup

We evaluateBeehive usingsimulations,drivenby a DNS sur-
vey andtracedata.Thesimulationswereperformedusingthe
samesourcecodeasour implementation.Eachsimulationrun
wasstartedby seedingthe network with just a singlecopy of
eachobject,andthenqueryingfor objectsaccordingto a DNS
trace.Wecomparedtheproactivereplicationof Beehiveto pas-
sivecachingin Pastry(PC-Pastry),aswell asregularPastry.

Since passive caching relies on expiration times for co-
herency, andsincebothBeehiveandPastryneedto performex-
trawork in thepresenceof updates,weconducteda large-scale
survey to determinethe distribution of TTL valuesfor DNS
resourcerecordsandto computetherateof changeof DNSen-
tries. Our survey spannedJuly throughSeptember2003,and
periodically queriedweb servers for the resourcerecordsof
594059uniquedomainnames,collectedby crawling the Ya-
hoo! andtheDMOZ.ORGwebdirectories.We usedthedistri-
bution of thereturnedtime-to-livevaluesto determinethelife-
timesof the resourcerecordsin our simulation. We measured
therateof changein DNS entriesby repeatingtheDNS survey
periodically, andderivedanobjectlifetime distribution.

We usedtheDNStrace[15] collectedat MIT between4 and
11December2000.This tracespans} Y ��¢ � Y yXz } lookupsover ~
daysfeaturing ��wXvXv distinctclientsand v � w Y � vXw distinct fully-
qualifiednames.In orderto reducethe memoryconsumption
of the simulations,we scalethe numberof distantobjectsto} �Ty ¢ � , andissuequeriesat thesamerateof ~ queriespersec.
The rateof issuefor requestshaslittle impacton the hit rate
achievedby Beehive,which is dominatedmostlyby theperfor-
manceof the analyticalmodel,parameterestimation,andrate
of updates.Theoverall querydistribution of this tracefollows
anapproximateZipf-lik edistribution with parameter

�+x y � . We
separatelyevaluateBeehive’s robustnessin thefaceof changes
in this parameter.

Weperformedourevaluationsby runningtheBeehiveimple-
mentationon Pastryin simulatormodewith 1024nodes.For
Pastry, we setthebaseto be16, the leaf-setsizeto be24, and
the length of identifiersto be 128, as recommendedin [22].
In all ourevaluations,theBeehivemaintenanceinterval was} |
minutesandthereplicationintervalwas} |X� minutes.Therepli-
cationphasesateachnodewererandomlystaggeredto approxi-
matethebehavior of independent,non-synchronizedhosts.We
setthetargetlookupperformanceof Beehive to average� hop.

Beehive Performance

Figure 3 shows the averagelookup latency for Pastry, PC-
Pastry, and Beehive over a query period spanning40 hours.
We plot the lookup latency asa moving averageover } | min-
utes. Theaveragelookup latency of purePastryis about w x vT}
hops. The averagelookup latency of PC-Pastrydropssteeply
during the first } hoursandaverages� x z } after } � hours. The
averagelookupperformanceof Beehivedecreasessteadilyand
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Figure3: Latency (hops)vs Time. Theaveragelookupperfor-
manceof Beehive convergesto the targeted � . � hop after
two replicationphases.
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Figure 4: Object Transfers(cumulative) vs Time. The total
amountof objecttransfersimposedby Beehive is significantly
lower comparedto caching.Passive cachingincurslargecosts
in orderto checkfreshnessof entriesin thepresenceof conser-
vative timeouts.

convergesto about
�+x yT|

hops,within
z)£

of the target lookup
performance.Beehiveachievesthetargetperformancein about��¢ hoursand } | minutes,thetime requiredfor two replication
phasesfollowedby a maintainphaseat eachnode.Thesethree
phases,combined,enableBeehiveto propagatethepopularob-
jectsto their respective replicationlevels. Onceall level � ob-
jects have beendisseminated,Beehive’s proactive replication
achievesthe expectedpayoff. In contrast,PC-Pastryprovides
limited benefits,despitean infinite-sizedcache.Therearetwo
reasonsfor therelativeineffectivenessof passivecaching.First,
theheavy tail in Zipf-lik edistributionsimpliesthattherewill be
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many objectsfor which therewill befew requests,andqueries
will take many disjoint pathsin the network until they collide
on a nodeon which the objecthasbeencached.Second,PC-
Pastryreliesontime-to-livevaluesfor cachecoherency, instead
of trackingthelocationof cachedobjects.Thetime-to-liveval-
uesneedto be setconservatively in order to reflect the worst
casescenariounderwhich the recordmay be updated,asop-
posedto theexpectedlifetime of theobject.Consequently, pas-
sive cachingsuffers from a low hit rateasentriesareevicted
dueto smallvaluesof TTL setby nameowners.

Next, we examine the bandwidthconsumedand network
load incurredby PC-Pastry and Beehive for cachingobjects,
and show that Beehive generatessignificantly lower back-
ground traffic due to object transferscomparedto passive
caching.Figure4 shows thetotalamountof objectstransferred
by Beehive andPC-Pastry sincethe beginning of the experi-
ment.PC-Pastryhasa rateof objecttransferproportionalto its
lookup latency, sinceit transfersan objectto eachnodealong
the querypath. Beehive incurs a high rate of object transfer
during the initial period; but onceBeehive achievesits target
lookupperformance,it incursconsiderablylower overhead,as
it needsto performtransfersonly in responseto changesin ob-
ject popularityand,relatively infrequentlyfor DNS, to object
updates.Beehive continuesto performlimited amountsof ob-
ject replication,dueto fluctuationsin thepopularityof theob-
jectsaswell asestimationerrorsnot dampeneddown by hys-
teresis.
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Figure5: StorageRequirementvs Latency. This graphshows
the averageper nodestoragerequiredby Beehive andthe es-
timatedlatency for different target lookup performance.This
graphcapturesthe tradeoff betweentheoverheadincurredby
Beehiveandthelookupperformanceachieved.

Theaveragenumberof objectsstoredateachnodeat theend
of } � hoursis v |X� for Beehive and }Xw � for passive caching.
PC-Pastry cachesmore objectsthan Beehive even thoughits
lookupperformanceis worse,dueto theheavy tailednatureof
Zipf distributions.Our evaluationshows thatBeehiveprovides� hopaveragelookup latency with low storageandbandwidth
overhead.

Beehive efficiently tradesoff storageandbandwidthfor im-
provedlookuplatency. Our replicationframework enablesad-
ministratorsto tunethis tradeoff by varying the target lookup
performanceof the system. Figure5 shows the tradeoff be-
tweenstoragerequirementandestimatedlatency for different
target lookup performance.We usedthe analyticalmodelde-
scribedin Section2 to estimatethe storagerequirements.We
estimatedtheexpectedlookuplatency from roundtrip timeob-
tainedby pingingall pairsof nodesin PlanetLab,andaddingto
this

�+x }Tw msfor accessingthelocalDNS resolver. Theaverage� hoproundtrip timebetweennodesin PlanetLabis w � w x w ms.
In our largescaleDNSsurvey, theaverageDNSlookuplatency
was w zXz�x y ms. Beehivewith a targetperformanceof � hopcan
providebetterlookuplatency thanDNS.
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Figure6: Latency (hops)vs Time. This graphshows thatBee-
hive quickly adaptsto changesin thepopularityof objectsand
bringstheaveragelookupperformanceto 1 hop.

Flash Crowds

Next, we examine the performanceof proactive and passive
cachingin responseto changesin objectpopularity. Wemodify
the traceto suddenlyreversethepopularitiesof all theobjects
in the system. That is, the leastpopularobject becomesthe
mostpopularobject, the secondleastpopularobjectbecomes
the secondmostpopularobject,andso on. This representsa
worstcasescenariofor proactivereplication,asobjectsthatare
leastreplicatedsuddenlyneedto bereplicatedwidely, andvice
versa,simulating,in essence,a setof flashcrowdsfor theleast
popularobjects. The switch occursat � . } � , andwe issue
queriesfrom thereversedpopularitydistribution for another} �
hours.

Figure6 shows thelookupperformanceof Pastry, PC-Pastry
andBeehive in responseto flashcrowds. Popularityreversal
causesatemporaryincreasein averagelatency for bothBeehive
andPC-Pastry. Beehive adjuststhereplicationlevelsof its ob-
jectsappropriatelyandreducestheaveragelookupperformance
to about � hopafter two replicationintervals. The lookupper-
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Figure7: Rateof ObjectTransfersvs Time. This graphshows
that whenpopularityof the objectschange,Beehive imposes
extra bandwidthoverheadtemporarily to replicatethe newly
popularobjectsandmaintainconstantlookuptime.

formanceof passive cachingalsodecreasesto about � x ¢ hops.
Figure7 showstheinstantaneousrateof objecttransferinduced
by thepopularityreversalfor BeehiveandPC-Pastry. Thepop-
ularity reversalcausesa temporaryincreasein theobjecttrans-
fer activity of Beehive asit adjuststhereplicationlevelsof the
objectsappropriately. Even thoughBeehive incurs this high
rateof activity in responseto aworst-casescenario,it consumes
lessbandwidthand imposeslessaggregateload comparedto
passivecaching.
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Figure8: Latency (hops)vs Time. This graphshows thatBee-
hive quickly adaptsto changesin the parameterof the query
distribution and brings the averagelookup performanceto 1
hop.
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Figure9: Objectsstoredpernodevs Time. This graphshows
thatwhentheparameterof thequerydistributionchanges,Bee-
hive adjuststhenumberof replicatedobjectsto maintainO(1)
lookupperformancewith storageefficiency.

Zipf Parameter Change

Finally, we examine the adaptationof Beehive to global
changesin theparameterof theoverall querydistribution. We
issuequeriesfrom Zipf-lik edistributionsgeneratedwith differ-
entvaluesof theparameter� ateachwX} hourinterval. We start
with � . ��x | , thenincreaseit to

�+x y
after wX} hours,thende-

creasethevalueto
�+x ~ at � . } | , andfinally increaseit to the

startingvalueof
�+x |

at � . ~�w . In order to shortenthe com-
pletiontime of our simulations,we performedthis experiment
with } �Xy ¢ objectsandissuedqueriesat the rateof } x z queries
persec.

Figure 8 shows the lookup performanceof Beehive as it
adaptsto changesin the parameterof the query distribution.
After westartedtheexperiment,theaveragequerylatency con-
vergesrapidlyto thetargetof � hop.At wX} hours,theincreasein
thevalueof � to

�+x y
causesatemporarydecreasein theaverage

querylatency, but Beehive adaptsto thechangein theZipf pa-
rameterandbringsthe lookupperformancecloseto thetarget.
Similarly, Beehiverefinesthereplicationlevelsof theobjectsto
meetthe target lookup performance,whenthe Zipf parameter
changesto

��x ~ at } | hoursandbackto
��x |

at ~�w hours.

Figure9 shows the averagenumberof objectsreplicatedat
eachnodein the systemby Beehive. Whenthe parameterof
the query distribution is

��x |
, Beehive achieves � hop lookup

performanceby replicatingabout �T��¢ objectsat eachnodeon
average.WhenBeehive observesthe increasein the Zipf pa-
rameterto

��x y
, it decreasesthe per nodestoragerequirement

to about ~�v objectsin order to meetthe target lookup perfor-
manceefficiently. Similarly, whenthe parameterincreasesto�+x ~ , Beehive increasesthe numberof objectsstoredto about��¢?~ per nodein orderto achieve the target. Overall, continu-
ouslymonitoringandestimatingthe � of thequerydistribution
enablesBeehive to adjusttheextentandlevel of replicationto
compensatefor any globalchanges.
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Summary

In this section,we have evaluatedtheperformanceof theBee-
hivereplicationframework for differentscenariosin thecontext
of DNS. Our evaluationindicatesthat Beehive achievesO(1)
lookupperformancewith low storageandbandwidthoverhead.
In particular, it outperformspassive cachingin termsof aver-
agelatency, storagerequirements,network loadandbandwidth
consumption. Beehive continuouslymonitors the popularity
of theobjectsandtheparameterof thequerydistribution, and
quickly adaptsits performanceto changingconditions.

5 Related Work

Peerto peerlookupsystemsproposedto datefall into two cat-
egories,namely, unstructured systems,where the DHT con-
structsan unconstrainedgraphamongthe participatingnodes,
andstructured systems,wheretheDHT imposessomestructure
on theunderlyingnetwork.

Unstructuredpeer-to-peersystems,suchasFreenet[5] and
Gnutella [1] perform lookupsfor objectsusing graphtraver-
sal algorithms. Gnutellausesa flooding basedbreadth-first-
search,while Freenetusesan iterative depth-firstsearchtech-
nique. Both GnutellaandFreenetcachequeriedobjectsalong
the searchpath to improve the efficiency of the searchalgo-
rithms. However, their lookupprotocolsareinefficient, do not
scalewell, and do not provide boundson the the averageor
worstcaselookupperformance.

Structuredpeer-to-peersystemsareappealingbecausethey
canprovide a worst-caseboundon lookup performance.Sev-
eral structuredpeer-to-peersystemshave beendesignedin re-
cent years. CAN [21] mapsboth objectsand nodeson a d-
dimensionaltorusandprovidesO(

m�3 $¤ ) lookupperformanceby
searchingin a multi-dimensionalspace.Plaxtonet al. [19] in-
troducearandomizedlookupalgorithmbasedon prefixmatch-
ing to locateobjectsin a distributednetwork in O(

�����)�
) prob-

abilistic time. Chord[24], Pastry [22], andTapestry[26] use
consistenthashingto map objectsto nodesand route lookup
requestsusingPlaxton’s prefix-matchingalgorithmsto search
for objects. An internaldatabaseof O(

�������
) entriesenables

thesesystemsto route lookup requestsand achieve O(
�����)�

)
worst-caselookup performance.Kademlia[24] alsoprovides
O(
�������

) lookupperformanceusingasimilarsearchtechnique,
but usesthe XOR metric to computeclosenessof objectsand
nodes. Viceroy [17] provides O(

�������
) lookup performance

with aconstantdegreeroutinggraph.DeBruijn graphs[16, 25]
canachieveO(

�����)�
) lookupperformancewith w neighborsper

nodeandO(
������� ;T�������������

) with
�������

degreepernode.Bee-
hivecanbeappliedonany overlaybasedon prefixmatching.

A few recentlyintroducedDHTs provide O( � ) lookup per-
formanceby toleratingincreasedstorageandbandwidthcon-
sumption.Kelips [12] providesO( � ) lookupperformancewith
probabilisticguaranteesby replicatingeachobjecton O(¥ � )
nodes. It divides the nodesinto O(¥ � ) groupsof O(¥ � )
nodeseachandmaintainsinformationaboutnetwork member-
shipandobjectupdatesusinggossip-basedprotocols. It maps
eachobject to a group and replicatesthe objecton all nodes

in the group,regardlessof popularity. Thebackgroundgossip
communicationconsumesaconstantamountof bandwidth,but
incurs long convergencetime. Consequently, Kelips may not
disseminateobjectupdatesto all replicasquickly. An alterna-
tive methodto achieve onehop lookupsis describedin [13],
andrelieson maintainingfull routingstate(i.e. a completede-
scriptionof systemmembership)at eachnode. Thespaceand
bandwidthcostsof this approachscalelinearly with thesizeof
the network. Farsite[10] alsoroutesin a constantnumberof
hops,but doesnotaddressrapidmembershipchanges.Beehive
differs from thesesystemsin threefundamentalways. First,
Beehive operatesasa separablelayer on many DHTs without
requiringstructuralchanges.Second,it exploits the popular-
ity distribution of objectsto minimize the amountof replica-
tion. Unpopularobjectsare not replicated,reducingstorage
overhead,bandwidthconsumptionandnetwork load. Finally,
Beehive providesa fine grain control of the tradeoff between
lookupperformanceandoverheadby allowing usersto choose
thetargetlookupperformancefrom a continuousrange.

Severalpeer-to-peerapplicationshaveexaminedcachingand
replicationto improve lookupperformance,increaseavailabil-
ity, andprovidebetterfailureresilience.PAST [23] andCFS[9]
are examplesof file backupapplicationsbuilt on top of Pas-
try andChord,respectively. Both reserve a partof thestorage
spaceat eachnodeto cachequeriedresultson thelookuppath
andprovide fasterlookup.They alsomaintaina constantnum-
berof replicasof eachobjectin thesystemin orderto improve
fault tolerance.Thesepassive cachingschemesdo not provide
any performancebounds.

Somesystemsemploy acombinationof cachingwith proac-
tive object updates. In [6], the authorsdescribea proactive
cachefor DNS records. Whenever a cachedDNS record is
aboutto expire, thecacheissuesa freshqueryto checkfor the
validity of the DNS record,and result of the query is stored
in thecache.While this techniquereducesthe impactof short
expiration timeson lookup performance,it introducesa large
amountof overheaddueto backgroundobjecttransfers,with-
out providing boundedlookupperformance.

CUP, CacheUpdatePropagation[20], is a demand-based
cachingmechanismwith proactiveobjectupdates.In CUP, the
processof queryingfor an object and updatingcachedrepli-
casof thatobjectformsa treelike structurerootedat thehome
nodeof theobject. CUPnodespropagateobjectupdatesaway
from the homenodein accordanceto a popularity basedin-
centive thatflows from the leaf nodestowardsthehomenode.
Theareseveralsimilaritiesbetweenthereplicationprotocolsof
CUPandBeehive. However, thedecisionto cacheobjectsand
propagateupdatesin CUP are basedon heuristics,while the
replicationin Beehive is drivenby ananalyticalmodelthaten-
ablesit to provide constantlookupperformancefor power law
querydistributions.

Theclosestwork to Beehiveis [7], whichpresentsastudyof
optimal strategiesfor replicatingobjectsin unstructuredpeer-
peersystems.Thispaperemploysananalyticalapproachto find
the bestpossiblereplicationstrategy for unstructuredpeer-to-
peersystems,subjectto storageconstraints.Theobservations
in this work arenot directlyapplicableto structuredDHTs,be-
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causeit assumesthat the lookup time for an object depends
only on thenumberof replicasandnot theplacementstrategy.
Beehive exploits the structureof the overlay to placereplicas
at appropriatelocationsin the network to achieve the desired
performancelevel.

6 Future Work

This paperhasinvestigatedthe potentialperformancebenefits
of model-drivenproactivecachingandhasshown thatit is fea-
sible to usepeer-to-peersystemsin cooperative low-latency,
high-performanceenvironments. Deploying full-blown appli-
cations, such as a completepeer-to-peerDNS replacement,
on top of this substratewill requiresubstantialfurther effort.
Mostnotably, securityissuesneedto beaddressedbeforepeer-
to-peersystemscan be deployed widely. At the application
level, this involvesusingsomeauthenticationtechnique,such
asDNSSEC[11], to securelydelegatenameserviceto nodes
in a peerto peersystem.At theunderlyingDHT layer, secure
routing techniques[3] arerequiredto limit the impactof ma-
licious nodeson the DHT. Both of thesetechniqueswill add
additionallatencies,which may be offset at the cost of addi-
tional bandwidth,storageandload by settingBeehive’s target
performancelevel, � , to a lower, fractionalvalue.At theBee-
hive layer, theproactive replicationlayerneedsto beprotected
from nodesthat misreportthe popularity of objects. Sincea
maliciouspeerin Beehive canreplicateanobject,or indirectly
causeanobjectto bereplicated,at � nodesthathave thatmali-
ciousnodein their routingtables,we expectthatonecanlimit
theamountof damagethatattackerscancausethroughmisre-
portedobjectpopularities.

7 Conclusion

StructuredDHTs offer many unique propertiesdesirablefor
a large classof applications,including self-organization,fail-
ure resilience,high scalability, anda worst-caseperformance
bound.However, theirO(

�����)�
) average-caseperformancehas

prohibitedthemfrom beingdeployedfor latency-sensitive ap-
plications,including DNS. In this paper, we outline a frame-
work for proactive replicationthat can improve the average-
caselookup performanceof prefix-basedDHTs to ¦c�\� ! for a
frequentlyencounteredclassof querydistributions.

The Beehive framework consistsof threecomponents,lay-
eredon top of a standardDHT substrate,suchasPastry. An
analyticalmodelprovidesaclosedform solutionfor computing
the requisitelevel of replicationin orderto achieve a targeted
lookupperformance.This analyticalsolutionis optimal in the
numberof replicasfor Zipf-lik e distributionswith �K[§� . An
estimationtechnique,basedonlocalmeasurementsandlimited
aggregationto addressstatisticalfluctuations,derivesinput pa-
rametersfor the model. The estimationprocessis integrated
with backgroundtraffic alreadypresentin the DHT. Comput-
ing the level of replicationfor eachobject is performedinde-
pendentlyat eachnode,without costly consensusor synchro-
nization. A replicationalgorithmproactively disseminatesthe

objectsthroughoutthesystem,alongtheroutingtablesalready
maintainedby theunderlyingDHT.

Analysisof Beehive’s performancein thecontext of a DNS
applicationindicatesthatit canachievea targetedperformance
level with low overhead. Beehive adaptsquickly to flash
crowds,which canalter the relative popularitiesof theobjects
in the system. It detectsqualitative shifts in the global query
distribution andadjustsreplicationparametersaccordinglyto
compensate.The implementationis smallandtheBeehive ap-
proachcan be appliedto other latency-sensitive applications.
Overall, the systemderivesits efficiency by taking advantage
of theunderlyingstructureof thelower-layerDHT, andmakes
it feasibleto useDHTs in low-latency applicationswherethe
querydistribution follows a power law by decouplinglookup
performancefrom thesizeof thenetwork.
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