Structured Concurrent Programming

Jayadev Misra

Department of Computer Science
University of Texas at Austin

Email: misra@cs.utexas.edu
web: http://www.cs.utexas.edu/users/psp

Collaborators: William Cook, David Kitchin
Example: Airline

- Contact two airlines simultaneously for price quotes.
- Buy ticket from either airline if its quote is at most $300.
- Buy the cheapest ticket if both quotes are above $300.
- Buy any ticket if the other airline does not provide a timely quote.
- Notify client if neither airline provides a timely quote.
Wide-area Computing

Acquire data from remote services.
Calculate with these data.
Invoke yet other remote services with the results.

Additionally
Invoke alternate services for failure tolerance.
Repeatedly poll a service.
Ask a service to notify the user when it acquires the appropriate data.
Download an application and invoke it locally.
Have a service call another service on behalf of the user.
The Nature of Distributed Applications

Three major components in distributed applications:

Persistent storage management

databases by the airline and the hotels.

Specification of sequential computational logic

does ticket price exceed $300?

Methods for orchestrating the computations

We look at only the third problem.
Overview of Orc

- Orchestration language.
 - Invoke services by calling sites
 - Manage time-outs, priorities, and failures

- A Program execution
 - calls sites,
 - publishes values.

- Simple
 - Language has only 3 combinators.
 - Semantics described by labeled transition system and traces.
 - Combinators are (monotonic and) continuous.
Structure of Orc Expression

- **Simple**: just a site call, \(CNN(d) \)

 Publishes the value returned by the site.

- **composition** of two Orc expressions:

 do \(f \) and \(g \) in parallel \(f \mid g \)
 for all \(x \) from \(f \) do \(g \) \(f \bowtie x \bowtie g \)
 for some \(x \) from \(g \) do \(f \) \(f \text{ where } x \in g \)

 Symmetric composition
 Piping
 Asymmetric composition
Symmetric composition: $f \mid g$

$CNN \mid BBC$: calls both CNN and BBC simultaneously.
Publishes values returned by both sites. (0, 1 or 2 values)

- Evaluate f and g independently.
- Publish all values from both.
- No direct communication or interaction between f and g. They may communicate only through sites.
Pipe: \(f > x > g \)

For all values published by \(f \) do \(g \). Publish only the values from \(g \).

- \(CNN > x > Email(address, x) \)

 Call \(CNN \). Bind result (if any) to \(x \). Call \(Email(address, x) \).

 Publish the value, if any, returned by \(Email \).

- \((CNN | BBC') > x > Email(address, x) \)

 May call \(Email \) twice. Publishes up to two values from \(Email \).
Write $f \gg g$ for $f > x > g$ if x unused in g.

Precedence: $f > x > g \mid h > y > u$

$(f > x > g) \mid (h > y > u)$
Figure 1: Schematic of piping
Asymmetric parallel composition: \((f \text{ where } x : \in g)\)

For some value published by \(g\) do \(f\). Publish only the values from \(f\).

\[Email(address, x) \text{ where } x : \in (CNN \mid BBC) \]

Binds \(x\) to the first value from \(CNN \mid BBC\).

- Evaluate \(f\) and \(g\) in parallel.
 Site calls that need \(x\) are suspended; other site calls proceed.
 \[(M \mid N(x)) \text{ where } x : \in g\]

- When \(g\) returns a value, assign it to \(x\) and terminate \(g\).
 Resume suspended calls.

- Values published by \(f\) are the values of \((f \text{ where } x : \in g)\).
Some Fundamental Sites

0: never responds.

\(\text{let}(x, y, \ldots) \): returns a tuple of its argument values.

\(\text{if}(b) \): boolean \(b \),
returns a signal if \(b \) is true; remains silent if \(b \) is false.

\(\text{Signal} \) returns a signal immediately. Same as \(\text{if}(\text{true}) \).

\(\text{Rtimer}(t) \): integer \(t \), \(t \geq 0 \), returns a signal \(t \) time units later.
Centralized Execution Model

- An expression is evaluated on a single machine (client).
- Client communicates with sites by messages.
- All fundamental sites are local to the client. All except *Rtimer* respond immediately.
- Concurrent and distributed executions are derived from an expression.
Expression Definition

\[\text{MailOnce}(a) \triangleq \text{Email}(a, m) \text{ where } m : \in (\text{CNN} \mid \text{BBC}) \]

\[\text{MailLoop}(a, t) \triangleq \text{MailOnce}(a) \gg \text{Rtimer}(t) \gg \text{MailLoop}(a, t) \]

- Expression is called like a procedure. May publish many values. \textit{MailLoop} does not publish a value.

- Site calls are strict; expression calls non-strict.
Metronome

Publish a signal at every time unit.

\[\text{Metronome} \triangleright Signal \mid (R\text{timer}(1) \gg \text{Metronome}) \]

Publish \(n \) signals.

\[
\begin{align*}
BM(0) \triangleright 0 \\
BM(n) \triangleright Signal \mid (R\text{timer}(1) \gg BM(n - 1))
\end{align*}
\]
Example of Expression call

- Site $Query$ returns a value (different ones at different times).

- Site $Accept(x)$ returns x if x is acceptable; it is silent otherwise.

- Produce all acceptable values by calling $Query$ at unit intervals forever.

\[\text{Metronome} \Rightarrow Query \succ x \succ Accept(x) \]
Publish M’s response if it arrives before t, and 0 otherwise.

\[
\begin{align*}
let(z) \\
&\text{where} \\
&z : \in \\
&M \\
&| \text{Rtimer}(t) \Rightarrow let(0)
\end{align*}
\]
Recursive definition with time-out

Call a list of sites.

Count the number of responses received within 10 time units.

\[
tally([], \triangleq \text{let}(0))
\]
\[
tally(M : MS), \triangleq u + v
\]

where
\[
u : \in (M \Rightarrow \text{let}(1)) \mid (\text{Rtimer}(10) \Rightarrow \text{let}(0))
\]
\[
v : \in tally(MS)
\]
Fork-join parallelism

Call \(M \) and \(N \) in parallel.

Return their values as a tuple after both respond.

\[
\text{let}(u, v) \\
\text{where } u \in M \\
v \in N
\]

This stands for:

\[
(\text{let}(u, v) \\
\text{where } u \in M) \\
\text{where } v \in N
\]
Barrier Synchronization in $M \gg f \mid N \gg g$

f and g start only after both M and N complete.

\[
(\text{let}(u, v) \\
\text{where} \ u \in M \\
v \in N)
\gg (f \mid g)
\]
In CCS/ Pi-Calculus: \(\alpha.P + \beta.Q \)

In Orc:

\[
if(b) \Rightarrow P \mid if(\neg b) \Rightarrow Q \\
\text{where} \\
\quad b \in (\text{Alpha} \Rightarrow \text{let(true)}) \mid (\text{Beta} \Rightarrow \text{let(false)})
\]

Orc does not permit non-deterministic internal choice.
Publish N's response asap, but no earlier than 1 unit from now.

\[\text{Delay} \triangleq (\text{Rtimer}(1) \gg \text{let}(u)) \text{ where } u \in N \]

Call M, N together.

If M responds within one unit, take its response.

Else, pick the first response.

\[\text{let}(x) \text{ where } x \in (M \mid \text{Delay}) \]
Evaluation of \(f \) can not be directly interrupted.

Introduce two sites:

- \texttt{Interrupt.set}: to interrupt \(f \)
- \texttt{Interrupt.get}: responds after \texttt{Interrupt.set} has been called.

Instead of \(f \), evaluate

\[
\textit{let}(z) \text{ where } z : \varepsilon (f \mid \texttt{Interrupt.get})
\]
Parallel or

Sites \(M \) and \(N \) return booleans. Compute their parallel or.

\[\text{ift}(b) \oplus \text{if}(b) \Rightarrow \text{let}(\text{true}) : \text{returns true if } b \text{ is true; silent otherwise.} \]

\[
\text{ift}(x) \mid \text{ift}(y) \mid \text{or}(x, y) \\
\text{where} \\
x \in M, \ y \in N
\]

To return just one value:

\[
\text{let}(z) \\
\text{where} \\
z \in \text{ift}(x) \mid \text{ift}(y) \mid \text{or}(x, y) \\
x \in M \\
y \in N
\]
Airline quotes: Application of Parallel or

Contact airlines A and B.

Return any quote if it is below c as soon as it is available, otherwise return the minimum quote.

$\text{threshold}(x)$ returns x if $x < c$; silent otherwise.
$\text{Min}(x, y)$ returns the minimum of x and y.

\[
\text{let}(z) \\
\text{where} \\
z \in \text{threshold}(x) \mid \text{threshold}(y) \mid \text{Min}(x, y) \\
x \in A \\
y \in B
\]
Sequential Computing

- $(S; T) \text{ is } (S \Rightarrow T)$
- if b then S else T

 is

 $\text{if}(b) \Rightarrow S \mid \text{if}(\neg b) \Rightarrow T$
- while $B(x)$ do $x := S(x)$

\[
\text{loop}(x) \triangleq
B(x) \triangleright b \triangleright \text{if}(b) \Rightarrow S(x) \triangleright y \triangleright \text{loop}(y) \mid \text{if}(\neg b) \Rightarrow \text{let}(x))
\]
Angelica vs. Demonic non-determinism

- for all \(x \) from \(f \) do \(g \): implements angelic non-determinism.
 All paths of computation are explored.

- for some \(x \) from \(f \) do \(g \): implements demonic non-determinism.
 Some selected path of computation is explored.
Backtracking: Eight queens

Figure 2: Backtrack Search for Eight queens
Eight queens; contd.

- **Configuration**: placement of queens in the last i rows. Represented by a list of i values from 0..7.

- **Valid configuration**: no queen captures another.

 $valid(z)$ returns z if configuration z is valid; silent otherwise.

- **Produce all** valid extensions of z by placing n additional queens:

 $$extend(z, 1) \triangleq valid(0; z) \mid valid(1; z) \mid \cdots \mid valid(7; z)$$

 $$extend(z, n) \triangleq extend(z, 1) > y > extend(y, n - 1)$$

- **Solve the original problem by calling** $extend([], 8)$.
Processes

- Processes typically communicate via channels.
- For channel \(c \), treat \(c.put \) and \(c.get \) as site calls.
- In our examples, \(c.get \) is blocking and \(c.put \) is non-blocking.
- Other kinds of channels can be programmed as sites.
Typical Iterative Process

Forever: Read x from channel c, compute with x, output result on e:

$$P(c, e) \triangleq c\text{.get} \triangleright x \triangleright Compute(x) \triangleright y \triangleright e\text{.put}(y) \triangleright P(c, e)$$

Process (network) to read from both c and d and write on e:

$$Net(c, d, e) \triangleq P(c, e) \mid P(d, e)$$
Run a dialog with a child.

Forever: child inputs an integer on channel \(p \)

Process outputs \(true \) on channel \(q \) iff the number is prime.

Sites: \(c.get \) and \(c.put \), for channel \(c \).

\(Prime?(x) \) returns \(true \) iff \(x \) is prime.

\[
\text{Dialog}(p, q) \triangleq \\
p.get > x > \\
Primes? (x) > b > \\
q.put (b) \Rightarrow \\
\text{Dialog}(p, q)
\]
Laws of Kleene Algebra

(Zero and \(\mid \))
(Commutativity of \(\mid \))
(Associativity of \(\mid \))
(Idempotence of \(\mid \))
(Associativity of \(\gg \))
(Left zero of \(\gg \))
(Right zero of \(\gg \))
(Left unit of \(\gg \))
(Right unit of \(\gg \))
(Left Distributivity of \(\gg \) over \(\mid \))
(Right Distributivity of \(\gg \) over \(\mid \))

\[
\begin{align*}
\text{(Zero and } \mid \text{)} & \quad f \mid 0 = f \\
\text{(Commutativity of } \mid \text{)} & \quad f \mid g = g \mid f \\
\text{(Associativity of } \mid \text{)} & \quad (f \mid g) \mid h = f \mid (g \mid h) \\
\text{(Idempotence of } \mid \text{)} & \quad f \mid f = f \\
\text{(Associativity of } \gg \text{)} & \quad (f \gg g) \gg h = f \gg (g \gg h) \\
\text{(Left zero of } \gg \text{)} & \quad 0 \gg f = 0 \\
\text{(Right zero of } \gg \text{)} & \quad f \gg 0 = 0 \\
\text{(Left unit of } \gg \text{)} & \quad \text{Signal } \gg f = f \\
\text{(Right unit of } \gg \text{)} & \quad f \gg \text{let}(x) = f \\
\text{(Left Distributivity of } \gg \text{ over } \mid \text{)} & \quad f \gg (g \mid h) = (f \gg g) \mid (f \gg h) \\
\text{(Right Distributivity of } \gg \text{ over } \mid \text{)} & \quad (f \mid g) \gg h = (f \gg h \mid g \gg h)
\end{align*}
\]
Laws which do not hold

(Idempotence of $|)$ $\quad f | f = f$
(Right zero of \gg) $\quad f \gg 0 = 0$
(Left Distributivity of \gg over $|$) $\quad f \gg (g | h) = (f \gg g) | (f \gg h)$
Additional Laws

(Distributivity over \gg) if g is x-free
\[(f \gg g \text{ where } x: \in h) = (f \text{ where } x: \in h) \gg g\]

(Distributivity over $|$) if g is x-free
\[(f | g \text{ where } x: \in h) = (f \text{ where } x: \in h) | g\]

(Distributivity over where) if g is y-free
\[
((f \text{ where } x: \in g) \text{ where } y: \in h) =
((f \text{ where } y: \in h) \text{ where } x: \in g)
\]

(Elimination of where) if f is x-free, for site M
\[(f \text{ where } x: \in M) = f | M \gg 0\]
Rules for Site Call

\[
\frac{u \text{ fresh}}{M(c) \xrightarrow{\text{SITECALL}} M\langle c, u \rangle \xrightarrow{?u}} \quad (\text{SITECALL})
\]

\[
?u \xrightarrow{u?c} \text{let}(c) \quad (\text{SITERET})
\]

\[
\text{let}(c) \xrightarrow{i_c} 0 \quad (\text{LET})
\]
Symmetric Composition

\[
\begin{align*}
 f \xrightarrow{l} f' \\
 f \mid g \xrightarrow{l} f' \mid g
\end{align*}
\]

(SYM1)

\[
\begin{align*}
 g \xrightarrow{l} g' \\
 f \mid g \xrightarrow{l} f \mid g'
\end{align*}
\]

(SYM2)
Sequencing

\[
\begin{align*}
 f & \xrightarrow{l} f' & l \neq {!c} \\
 f \seq x g & \xrightarrow{l} f' \seq x g
\end{align*}
\]

\((\text{SEQ1N})\)

\[
\begin{align*}
 f & \xrightarrow{!c} f' \\
 f \seq x g & \xrightarrow{\tau} (f' \seq x g) \mid [c/x]g
\end{align*}
\]

\((\text{SEQ1V})\)
Asymmetric Composition

\[\frac{f \xrightarrow{l} f'}{l \neq \neg c} \]
\[g \text{ where } x : \in f \xrightarrow{l} g \text{ where } x : \in f' \quad (*) \text{(ASYM1N)} \]

\[\frac{f \xrightarrow{!c} f'}{g \text{ where } x : \in f \xrightarrow{\tau} [c/x]g} \]
\[(*) \text{(ASYM1V)} \]

\[\frac{g \xrightarrow{l} g'}{g \text{ where } x : \in f \xrightarrow{l} g' \text{ where } x : \in f} \]
\[\text{(ASYM2)} \]
Expression Call

\[
\frac{[[E(q) \mathrel{\Delta} f]] \in D}{E(p) \xrightarrow{\tau} \left[p/q \right] f}
\]
\[
\begin{align*}
\text{Rules} & \\
\text{**k** fresh} & \\
M(v) & \xrightarrow{M_k(v)} ?k \\
?k & \xrightarrow{k?v} \text{let}(v) \\
\text{let}(v) & \xrightarrow{!v} 0 \\
f & \xrightarrow{a} f' \\
f & \xrightarrow{\alpha} f' \\
\frac{f | g \xrightarrow{\alpha} f' | g}{g \xrightarrow{\alpha} g'} \\
\frac{[[E(x) \triangle f]] \in D}{E(p) \xrightarrow{\tau} [p/x].f} \\
\text{where} \ x : \in g & \xrightarrow{\alpha} f' \text{ where } x : \in g \\
g & \xrightarrow{!v} g' \\
\frac{f \xrightarrow{\alpha} f' \text{ where } x : \in g}{\frac{\text{where } x : \in g \xrightarrow{\tau} [v/x].f}{g \xrightarrow{\alpha} g'} \\
g & \xrightarrow{a} g' \\
\frac{\text{where } x : \in g}{f' \text{ where } x : \in g'} \\
f & \xrightarrow{a \neq !v} f' \text{ where } x : \in g'
\end{align*}
\]
Example

$$\langle (M(x) \mid \text{let}(x)) \rangle \triangleright y \triangleright R(y) \rangle \text{ where } x: \in (N \mid S)$$

$$S_k \{ \text{Call } S; \ S \xrightarrow{S_k} ?k; \ N \mid S \xrightarrow{S_k} N \mid ?k \}$$

$$\langle (M(x) \mid \text{let}(x)) \rangle \triangleright y \triangleright R(y) \rangle \text{ where } x: \in (N \mid ?k)$$

$$N_l \{ \text{Call } N \}$$

$$\langle (M(x) \mid \text{let}(x)) \rangle \triangleright y \triangleright R(y) \rangle \text{ where } x: \in (?l \mid ?k)$$

$$l?5 \{ ?l \xrightarrow{l?5} \text{let}(5); \ ?l \mid ?k \xrightarrow{l?5} \text{let}(5) \mid ?k \}$$

$$\langle (M(x) \mid \text{let}(x)) \rangle \triangleright y \triangleright R(y) \rangle \text{ where } x: \in (\text{let}(5) \mid ?k)$$
Example; contd.

\[((M(x) \mid let(x)) \triangleright y \triangleright R(y)) \text{ where } x \in (let(5) \mid ?k) \]

\[\xrightarrow{\tau} \{ \; let(5) \xrightarrow{!5} 0 ; \; let(5) \mid ?k \xrightarrow{!5} 0 \mid ?k \} \]

\[(M(5) \mid let(5)) \triangleright y \triangleright R(y) \]

\[\xrightarrow{\tau} \{ \; let(5) \xrightarrow{!5} 0 ; \; M(5) \mid let(5) \xrightarrow{!5} M(5) \mid 0 ; \; f \xrightarrow{!v} f' \text{ implies } f \triangleright y \triangleright g \xrightarrow{\tau} (f' \triangleright y \triangleright g) \mid [v/y].g \} \]

\[((M(5) \mid 0) \triangleright y \triangleright R(y)) \mid R(5) \]

\[\xrightarrow{R_n(5)} \{ \text{call } R \text{ with argument } (5) \} \]

\[((M(5) \mid 0) \triangleright y \triangleright R(y)) \mid ?n \]
Example; contd.

\[
\begin{align*}
((M(5) \mid 0) > y > R(y)) \mid \ ?n \\
\rightarrow^n \{ \ ?n \rightarrow^n \ let(7) \} \\
((M(5) \mid 0) > y > R(y)) \mid let(7) \\
\rightarrow^7 \{ \ f \mid let(7) \rightarrow^7 f \mid 0 \} \\
((M(5) \mid 0) > y > R(y)) \mid 0
\end{align*}
\]

The sequence of events:
\[S_k \ N_i \ l?5 \ \tau \ \tau \ R_n(5) \ n?7 \ \uparrow^7\]

The sequence minus \(\tau\) events:
\[S_k \ N_i \ l?5 \ \ R_n(5) \ n?7 \ \uparrow^7\]
Executions and Traces

Define

\[f \xrightarrow{\varepsilon} f \]

\[f \xrightarrow{a} f'', \quad f'' \xrightarrow{s} f' \]

\[f \xrightarrow{\alpha s} f' \]

- Given \(f \xrightarrow{s} f' \), \(s \) is an execution of \(f \).

- A trace is an execution minus \(\tau \) events.

- The set of executions of \(f \) (and traces) are prefix-closed.
Laws, using strong bisimulation

- $f \mid 0 \sim f$
- $f \mid g \sim g \mid f$
- $f \mid (g \mid h) \sim (f \mid g) \mid h$
- $f >x> (g >y> h) \sim (f >x> g) >y> h$, if h is x-free.
- $0 >x> f \sim 0$
- $(f \mid g) >x> h \sim f >x> h \mid g >x> h$
- $(f \mid g)$ where $x:\in h \sim (f$ where $x:\in h) \mid g$, if g is x-free.
- $(f >y> g)$ where $x:\in h \sim (f$ where $x:\in h) >y> g$, if g is x-free.
- $(f$ where $x:\in g)$ where $y:\in h \sim (f$ where $y:\in h)$ where $x:\in g$, if g is y-free, h is x-free.
Relation \sim is an equality

Given $f \sim g$, show

1. $\frac{f}{h} \sim \frac{g}{h}$
 $\frac{h}{f} \sim \frac{h}{g}$

2. $\frac{f}{x} \sim \frac{g}{x}$
 $\frac{h}{x} \sim \frac{h}{g}$

3. $\frac{f}{h}$ where $x:\in h$ \sim \frac{g}{h}$ where $x:\in h$
 $\frac{h}{f}$ where $x:\in f$ \sim \frac{h}{g}$ where $x:\in g$
Treatment of Free Variables

Closed expression: No free variable.
Open expression: Has free variable.

- Law $f \sim g$ holds only if both f and g are closed.
 Otherwise: $\text{let}(x) \sim 0$
 But $\text{let}(1) > x > 0 \neq \text{let}(1) > x > \text{let}(x)$

- Then we can't show $\text{let}(x) | \text{let}(y) \sim \text{let}(y) | \text{let}(x)$
Substitution Event

\[f \xrightarrow{[v/x]} [v/x].f \quad \text{(SUBST)} \]

- Now, \(\text{let}(x) \xrightarrow{[1/x]} \text{let}(1). \)

 So, \(\text{let}(x) \neq 0 \)

- Earlier rules apply to base events only.

 From \(f \xrightarrow{[v/x]} [v/x].f \), we can not conclude:

 \[f \parallel g \xrightarrow{[v/x]} [v/x].f \parallel g \]
Traces as Denotations

Define Orc combinators over trace sets, \(S \) and \(T \). Define:

\[
S \mid T, \quad S \triangleright x \triangleright T, \quad S \text{ where } x \in T.
\]

Notation: \(\langle f \rangle \) is the set of traces of \(f \).

Theorem

\[
\begin{align*}
\langle f \mid g \rangle & = \langle f \rangle \mid \langle g \rangle \\
\langle f \triangleright x \triangleright g \rangle & = \langle f \rangle \triangleright x \triangleright \langle g \rangle \\
\langle f \text{ where } x \in g \rangle & = \langle f \rangle \text{ where } x \in \langle g \rangle
\end{align*}
\]
Expressions are equal if their trace sets are equal

Define: \(f \simeq g \) if \(\langle f \rangle = \langle g \rangle \).

Theorem (Combinators preserve \(\simeq \))

Given \(f \simeq g \) and any combinator \(*: f \ast h \simeq g \ast h, \ h \ast f \simeq h \ast g \)

Specifically, given \(f \simeq g \)

1. \(f \upharpoonright h \simeq g \upharpoonright h \)
 \(h \upharpoonright f \simeq h \upharpoonright g \)

2. \(f \upharpoonright x \upharpoonright h \simeq g \upharpoonright x \upharpoonright h \)
 \(h \upharpoonright x \upharpoonright f \simeq h \upharpoonright x \upharpoonright g \)

3. \(f \text{ where } x : \in h \simeq g \text{ where } x : \in h \)
 \(h \text{ where } x : \in f \simeq h \text{ where } x : \in g \)
Monotonicity, Continuity

- Define: $f \sqsubseteq g$ if $\langle f \rangle \sqsubseteq \langle g \rangle$.

Theorem (Monotonicity) Given $f \sqsubseteq g$ and any combinator $*$

$$f \ast h \sqsubseteq g \ast h, \quad h \ast f \sqsubseteq h \ast g$$

- Chain $f: f_0 \sqsubseteq f_1, \ldots f_i \sqsubseteq f_{i+1}, \ldots$

Theorem: $\sqcup (f_i \ast h) \simeq (\sqcup f) \ast h$.

Theorem: $\sqcup (h \ast f_i) \simeq h \ast (\sqcup f)$.
Least Fixed Point

\[M \triangleq S \mid R \triangleright M \]

\[\begin{align*}
M_0 & \simeq 0 \\
M_{i+1} & \simeq S \mid R \triangleright M_i, \quad i \geq 0
\end{align*} \]

\(M \) is the least upper bound of the chain \(M_0 \subseteq M_1 \subseteq \cdots \)
Weak Bisimulation

\[
\begin{align*}
\text{signal} \gg f & \equiv f \\
 f \gg x \gg \text{let}(x) & \equiv f
\end{align*}
\]