
Classical Propositional Decidability via Nuprl

Proof Extraction

James L� Caldwell�

Department of Computer Science
Cornell University

Ithaca� N�Y�
caldwell�cs�cornell�edu

Abstract� This paper highlights a methodology of Nuprl proof that re�
sults in e�cient programs that are more readable than those produced by
other established methods for extracting programs from proofs� We de�
scribe a formal constructive proof of the decidability of a sequent calculus
for classical propositional logic� The proof is implemented in the Nuprl
system and the resulting proof object yields a �correct�by�construction�
program for deciding propositional sequents� If the sequent is valid� the
program reports that fact� otherwise� the program returns a counter�
example in the form of a falsifying assignment� We employ Kleene�s
strong three�valued logic to give more informative counter�examples� it
is also shown how this semantics agrees with the standard two�valued
presentation�

� Introduction

Nuprl is both a constructive type theory and an implementation of the type the�
ory in the form of a proof development system� As a result of the constructivity�
and by design� Nuprl proofs yield programs in the form of terms of an untyped
lambda calculus�

This paper presents a Nuprl proof of decidability for a classical propositional
logic along with the resulting programs� Nuprl is used here as a formal meta�
theory for a deep embedding of the syntax and semantics of the logic in Nuprl�
Decidability for this embedded formal system is proved within the Nuprl sys�
tem and the program extracted from the proof is a �correct�by�construction�
propositional decider�

The idea of verifying of decision procedures is not a new one� proposals to ex�
tend theorem provers by adding formally veri�ed decision procedures were made
as as early as �	

 �
�� Harrison provides a detailed survey of two approaches to
the disciplined extension of prover capabilities in �	�� Actual formal veri�cations
of decision procedures are less common� One example that has been repeated a
number of times is Boyer and Moores propositional tautology checker in the form

� Part of this work was performed while the author was a member of the Formal
Methods Group at NASA Langley Research Center in Hampton VA�

of an IF�THEN�ELSE normalization procedure ��� ��� ��� ��� ���� Both Shankar ��
�
and Hayashi ���� verify deciders for implicational fragments of propositional logic
presented in sequent forms� Paulin�Mohring and Werners work ���� is the clos�
est in spirit to the work presented here in that they extract the program for the
Boyer and Moore tautology checker from a constructive proof� In their develop�
ment they address issues related to the e�ciency of the extracted program�

��� Overview of the Approach

The development presented in this paper is based on the informal account given
by Constable and Howe in ���� The program extracted from the formal proof
corresponds to the algorithm which searches for a sequent calculus proof via
repeated �backward� application of the sequent rules until all propositional op�
erators have been eliminated� The leaves of the resulting derivation tree form
a collection of atomic sequents �sequents composed strictly of variables� which
are easily checked for validity by determining if they are axioms� If they are all
axioms� then the derivation tree is a proof and that fact is reported� If there
is a leaf that is not axiomatic� it is used to construct a falsifying assignment
which serves as a counter�example to the original goal� The core of the algo�
rithm is the recursive procedure extracted from a normalization lemma proved
via a well�founded �inverse image� induction on the rank of a sequent� This pro�
cedure collects the leaves of the derivation tree implicit in its recursion� i�e� the
tree is not explicitly constructed but is implicit in the recursion�

The presentation given here is unique in that the semantics are de�ned via
Kleenes strong three valued logic which is the natural partial evaluation se�
mantics for classical propositional logic� Under a �fullness� condition de�ned
for three�valued assignments� three�valued validity coincides with the standard
Boolean semantics� As developed here� a formula is valid under the Kleene se�
mantics when every assignment that contains enough information �assigns values
to enough variables� to determine truth or falsity of the formula asserts its truth�
This notion of validity is lifted to sequents in the natural way� The Kleene se�
mantics account for partial assignments in a particularly clean way and allow
for tighter counter�examples by allowing �dont care� conditions in assignments�

The proof presented here is a version of the one presented by the author in ���
that has been optimized to produce more e�cient and readable computational
content� The Nuprl proofs for the earlier development are available on the web
at the site noted in reference ����

� An Overview of the Nuprl System

The Nuprl type theory is a sequent presentation of a constructive type theory
via type assignment rules� The underlying programming language is untyped and
the objective of a proof is to either prove a type is inhabited� i�e� to show that
some term �program� is a member of the type� or to show that a term inhabits
a particular type� A complete presentation of the type theory can be found in
the Nuprl book ����

The Nuprl system� as distinguished from the type theory� implements a rich
environment to support reasoning about and computing with the Nuprl type
theory� The system implementing the type theory has evolved since publication of
the book but �with a few extensions� the type theory presented there is faithfully
implemented by the Nuprl system� Complete documentation is included in the
Nuprl V��� distribution� �

��� The computation system

Nuprls terms include the constructs of its untyped functional programming
language with additional constructs for denoting types and propositions� Terms
are printed here in typewriter font� The Nuprl computation system provides
reduction rules for a left�most outermost �lazy� evaluation strategy�

For terms t and t� we will write t � t� to indicate that t evaluates to
t� under the reduction rules� The computation system can be extended via the
rewrite facility� For terms t and t� we will write t�R t� to indicate that t reduces
to t� in the extended system�

As usual� the notation t�t��x� denotes the term resulting from the substi�
tution of t� for free occurrences of x in t� Similarly� t�t��� � ��tn�x��� � ��xn�
denotes the simultaneous substitution of each ti for each xi in t� We will some�
times write �t to denote a vector of terms or variables�

��� The type theory

A Nuprl type is a term T of the computation system together with a transitive
and symmetric relation denoted by x�y�T� This relation is known as equality

on T� The term x�T� meaning x is a member of T� is an abbreviation of x�x�T�
Equality on T is an equivalence relation when restricted to members of T� it is
nonsense otherwise� Interpreting the type membership equality relation and type
membership as types is made sensible via the propositions�as�types interpreta�
tion ��� pg��	�����

In addition to the type membership equality provided with each type� there
is an equality between types� Equality of types is intensional i�e� type equality
in Nuprl is a structural equality modulo the direct computation rules� This
means that� unlike sets which enjoy extensional equality� two types may contain
the same elements and share an equality relation but not be equal types� For
example� although T and fx�T 	 Trueg have the same members and equality
relations� they are not equal types in Nuprl�

Nuprls type theory is predicative� supporting an unbounded cumulative hi�
erarchy of type universes� Every universe is itself a type and every type is an
element of some universe�

� The Nuprl system is available from Cornell at
http���www�cs�cornell�edu�Info�Projects�Nuprl�nuprl�html or by anony�
mous ftp from ftp�cs�cornell�edu�

Ufig denotes the type universe where i is a polymorphic speci�cation of uni�
verse level� The members of the universe Ufig are types and other universes
Ufjg for j�i� When the level is

i��� Ufig is displayed simply as U� The
statement that T is a type is formally written T�U�

Pfig is a synonym for Ufig and is sometimes used to emphasize the proposi�
tional side of the propositions�as�types interpretation�

Nuprl includes the following types�

Void is the empty type of which there are no members� Given a declaration
x�Void �absurdly declaring the existence of an element of the empty type�
the constant any�x� is an element of all types T� i�e� any�x��T�

Z is the type integer whose members are denoted by the numerals
� � ���������� � ��

Atom is the type whose elements are denoted by strings of the form

� � ���
where � � � is any character string� Atoms are equal when they are the same
character string�

T list is the type of lists of elements of type T� The elements of T list include
the empty list� denoted �� and conses of the form a��t where a�T and t�T

list� Lists are equal either when they are both the empty list or when they
have equal heads and their tails are equal�

y�A�B�y� is the dependent function type containing functions with domain
of type A and where B�y� is a term and y is a variable possibly occurring
free in B� When a�A� B�a�y� is a type� and M�a�x��B�a�y�� a lambda
abstraction of the form �x�M is an element of the type y�A�B�y�� These
are the functions whose range may depend on the element of the domain
applied to� Function equality is extensional�

A�B is the function type which is an abbreviation for the term y�A�B when y

does not occur free in B�
x�A�B�x� is the dependent product type consisting of pairs �a�b� where a�A

and b�B�a�x�� Two pairs �a�b� and �a��b�� are equal in x�A�B�x� when
a�a��A and b�b��B�a�x��

A�B is the product type and is an abbreviation for the term x�A�B where x

does not occur free in B�
A 	 B denotes the disjoint union of types A and B� elements of this type are

tagged elements of the form inl�a� for a�A and inr�b� for b�B� Two ele�
ments of the disjoint union are equal when their tagged elements are equal
in the underlying type A �if the tag is inl� or B �if the tag is inr��

rec�x�T�x�� is the Nuprl inductive type constructor where x is a variable and
T�x� is a term possibly containing a x free� Free occurrences of x in T denote
inductively smaller elements of the type� thus its members are the members
of T�rec�x�T��x�� There are some technical constraints on the form of T
but we do not include them here� Whenever rec�x�T� is a type� members a
and b are equal if a�b�T�rec�x�T��x��

fy�T	P�y�g denotes a set type when T is a type and P�y� is a proposition
possibly containing free occurrences of the variable y� Elements x of this
type are elements of T such that P�x�y� is true� Equality for set types is just
the equality of T restricted to those elements in the set type�

�x�T�P�x� denotes the intersection type� It is a type whenever T is a type and
P�z�x� can be shown to be a type under the condition that z is a hidden
variable of type T� Two members a and b are equal in type �x�T�P�x� if T
is a type and a�b�P�z�x� for z an arbitrary element of T�

x�y�A��E�x�y� denotes a quotient which is a type whenever A is a type� and
E�x�y� is an equivalence on A� Its members are elements of A and it identi�es
elements a and b whenever the equivalence E�a�b�x�y� is inhabited�

��� Logic via propositions�as�types

A constructive logic is encoded within the Nuprl type theory� The following def�
initions in the Nuprl V� core system library encode the logic�

True
def
� � � Z False

def
� Void

P � Q
def
� P � Q P � Q

def
� P 	 Q

P � Q
def
� P � Q �A

def
� A � False

	x�A� B�x�
def
� x�A � B�x�
x�A� B�x�

def
� x�A � B�x�

The Nuprl tactics have been built to manipulate both propositions and types
uniformly�

��� Judgements

Nuprl judgements are the assertions one proves in the system� Nuprl judgements
take the following form�

x��T��� � ��xn�Tn �� S �ext s�

where x��� � ��xn are distinct variables and T��� � ��Tn � S� and s are terms �n
may be ��� every free variable of Ti is one of x��� � ��xi�� and every free variable
of S or of s is one of x��� � ��xn � The list x��T��� � ��xn�Tn is called the hypothesis
list� each xi�Ti a declaration �of xi�� each Ti is a hypothesis� S is the consequent

or conclusion� the term following the keyword ext is the extract� and the entire
form is a Nuprl sequent� The extract component of judgements are not displayed
as part of the implementation of the proof editor� A judgement of the form

x��T��� � ��xn�Tn �� s � S

is called a well�formedness goal� Since s�S is simply shorthand for s�s�S by
the propositions�as�types interpretation for type equality� the extract of a well�
formedness goal is the constant Axiom�

Somewhat informally� a judgement asserts that� assuming the hypotheses are
well�formed types� then the term S is an inhabited type and the extract s is an
inhabitant ��� pg������ That the extract term s inhabits S is an artifact of the
proof that S is inhabited� If S is inhabited there may be more than one inhabitant
and di�erent proofs may yield di�erent inhabitants�

A Nuprl proof is a decorated tree of sequents� its root being the main goal
of the proof and where the children of each node are sequents justifying the

parent according to the rules of the type theory� A proof of a sequent shows
that its main goal is both well�formed and inhabited� Given terms inhabiting
the hypotheses of a rule� a proof speci�es how to construct a term inhabiting
the type in the conclusion of the rule� thus� proofs contain instructions for the
construction of witness terms� Extraction is the process of constructing a witness
term as speci�ed by proof�

��� The Nuprl system

The Nuprl system supports construction of proofs by top�down re�nement� The
prover is implemented as a tactic based prover in the style of HOL ���� Nuprl
di�ers from HOL in that each tactic invocation de�nes more of the structure of
an explicitly represented proof tree which is directly manipulated in the editor�
stored in the Nuprl library� and retrieved for later editing� The tactic language
is ML� In Nuprl the proposition�as�types interpretation allows for presentations
to be cloaked in either logical or more purely type�theoretic terms�

The Nuprl system supports a powerful display mechanism� Nuprl terms are
edited using a structure editor� however� the structure of a term is independent
of its display� The display form is speci�ed by the user and can be changed
without changing the structure of the term� Thus� the displayed form of a Nuprl
term is never parsed� the editor displays the terms to the user as speci�ed� but
manipulates the actual underlying structure� All Nuprl terms occurring in this
paper appear on the page as they do in the Nuprl editor and library� In ��� Allen
gives an example of a non�trivial application of the display mechanism�

��� Decidability	 Stability	 the Squash Type	 and Squash Stability

Being constructive� Nuprl does not assume all propositions are decidable� i�e� in
general the so�called law of excluded middle is not provable� that is�
P�P�P��P
is not a theorem of Nuprl� Even though decidability for an arbitrary proposition
P is not assumed� for many P it is uniformly decidable �i�e� there is an algo�
rithm to decide� which of P or �P holds� That is precisely the de�nition of the
decidability abstraction DecfPg�

�ABS decidable DecfPg
def
� P ��P

�THM decidable wf
P�Pfig� �DecfPg � Pfig�

Note that the well�formedness theorem decidable wf asserts the fact that the
term DecfPg is a type for all propositions P� but it does not prove it is inhabited
for arbitrary propositions P�

A related notion is that of stability which is constructively weaker than� but
classically equivalent to� decidability �i�e� theyre both tautologies�� Stability is
also not constructively valid�

�ABS stable StablefPg
def
� ��P�P

�THM stable wf
P�Pfig� �StablefPg�Pfig�

A squashed type �or proposition� is one whose computational content has
been discarded� The squash operator is de�ned in Nuprl by a set type as follows�

�ABS squash ��T�
def
� fTrue	 Tg

Thus for any type �proposition� T� ��T� is inhabited if and only if T is� and
furthermore� has as its only inhabitant the term Axiom �the sole inhabitant of
the proposition True�� The operator is called squash because it identi�es all
inhabitants of T with the single constant Axiom�

If we can reconstruct an inhabitant of a type P simply from knowing ��P� is
inhabited we say P is squash stable�

�ABS sq stable SqStablefPg
def
� ��P� � P

�THM sq stable wf
P�Pfig� �SqStablefPg � Pfig�

Squash stability is weaker even that stability and is related to stability in that
they are equivalent for decidable propositions�

��
 Existential VS� Set Type

A method of generating e�cient and readable extracts by the use of the set type
�as opposed to the existential� was presented by the author in ���� Earlier work
by Hayashi ���� stressed a similar approach� We reiterate the main points here�

Inhabitants of the existential 	x�T�P�x� are pairs �a�b� where a�T and
b�P�a�x�� The term b inhabiting P�a�x� speci�es� as far as the proofs�as�
programs interpretation goes� how to prove P�a�x�� When an existential type of
the form above occurs as a hypothesis it can be decomposed into two hypothe�
ses� one of the form a�T and another asserting b�P�a�x�� If v is the name of the
variable denoting the existential hypothesis� occurrences of a in the �nal extract
will appear as ���v�� and occurrences of b appear as ���v��

Alternatively� consider the Nuprl set type fy�T	P�y�g� Its inhabitants are
elements of T� say a� such that P�a�y� holds� Thus� a set type does not carry
the computational content associated with the logical part P�a�y�� Since the
computational content is not available� the fact that the a has the property
P�a�x� is not freely available in parts of a proof where it might �nd its way
into an extract� When a set type of this form� occurring as a hypothesis� is
decomposed it results in two new hypotheses� one of the form a�T� and the
other� a �hidden� hypothesis� of the form b�P�a�x�� Recall that every hypothesis
declares a variable� The proof rules prevent the variable of a hidden hypothesis
from appearing free in the extract of a proof�

Nuprl system manages hidden hypotheses by �unhiding� them when ap�
propriate and by preventing their inadvertent use� Hidden hypotheses become
unhidden and are freely available in the parts of a proof where they do not con�
tribute to computational content� these parts include proofs of well�formedness
�membership� subgoals� equality subgoals� when the computational content on
a branch of the proof has already been fully determined� or when the conclu�
sion is decidable� stable� or squash stable� Hidden hypotheses may be �unhidden�
when their computational content can be e�ectively decided� typically when they
themselves can be shown to be decidable� stable� or squash stable�

� Syntax and Semantics of Formulas and Sequents

In this section the Nuprl de�nitions supporting the statement and proof of the
decidability theorem are presented�

��� Formulas

In the Nuprl formalization� formulas are modeled by a recursive type�

�ABS Formula
def
� rec�F�Var 	 F 	 �F � F� 	 �F � F� 	 �F � F��

The Formula type abstraction is de�ned to be the recursive type whose members
are a disjoint union of �ve elements� The �rst element of the disjoint union is the
type Var of propositional variables� These form the basis of the recursive type�
The second component of the disjoint union is an instance of the bound variable
F denoting a recursively smaller element of the formula type� These elements of
the disjoint union will denote negations and will be displayed as �d�ex�� The
third� fourth� and �fth elements of the disjoint union are the products of two
recursively smaller formulas� When the semantics of propositional formulas is
de�ned below it becomes clear that the pairs of formula in the third� fourth�
and �fth disjuncts denote the operators for conjunction �pd�eq�� disjunction
�pd�eq�� and implication �pd�eq��

A formula of the form dxe� where x denotes an element of type Var� will be
called an atomic formula�

The destructor for the Formula type is given by a formula case operator
de�ned by nested case analysis on the disjoint union type� A measure on formu�
las is de�ned as the number of operators occurring in it� It is de�ned recursively
as follows�

�ABS formula rank

�
def
� letrec measure�f� �

case f�
dxe � ��
d�ep � measure�p� � �

pd�eq � measure�p� � measure�q� � �

pd�eq � measure�p� � measure�q� � �

pd�eq � measure�p� � measure�q� � �

The well�formedness theorem for the formula rank function certi�es it is a func�
tion from formulas to natural numbers�

��� Three valued Semantics of propositional logic

We de�ne a semantics of classical propositional logic in terms of Kleenes strong
three�valued logic ����� A Kleene valuation re�ects the classical interpretations
of the standard propositional connectives under fully determined assignments
�those assigning true or false to every variable in the formula�� For example� if
either p or q is false under the Kleene valuation induced by a partial assignment

a� then p�Kq is false under the valuation too� It does not matter what value
the other conjunct has� or even if it is de�ned� Clearly� exhibiting a partial
assignment that falsi�es a formula is gives more information than a falsifying
total assignment does�

N� is the three valued type containing elements displayed as ��� �� and
�� denoting False� unde�ned� and True respectively� The operators of Kleenes
three valued logic ���� are de�ned over N�as follows�

�K
� �
� �
� �

�K � � �
� � � �
� � � �
� � � �

�K � � �
� � � �
� � � �
� � � �

�K � � �
� � � �
� � � �
� � � �

Inspection of their matrices reveals that on inputs restricted to �� and �� the
operators behave exactly as the familiar boolean operators of the same names�
Thus� these operators are uniquely determined as the strongest possible regular
extensions of the classical ��valued operators� These operators are formalized in
Nuprl using case analysis over N� �

Three valued assignments are functions of type Var�N� � The Kleene valua�
tion of a formula F under the partial assignment a �displayed as �F under a��
is de�ned as follows�

�ABS valuation

�F under a�
def
� �letrec val�f� �

case f�
dxe � a�x��
d�ep � �K val�p��

pd�eq � val�p� �K val�q��

pd�eq � val�p� �K val�q��

pd�eq � val�p� �K val�q��

� F

Using the Kleene valuation we de�ne the semantic notion of a formula being
satis�ed �falsi�ed� by an assignment a�

�ABS formula sat a 	� F
def
� ��F under a� � ��� � N�

�ABS formula falsifiable a 	� F
def
� ��F under a� � ��� � N�

Thus� a formula F is satis�ed by assignment a �written a 	� F� when �F under

a� evaluates to ��� Similarly� a formula F is falsi�ed by assignment a �written
a 	� F when �F under a� evaluates to ���

The satisfaction of a formula by an assignment is clearly a decidable property�
to decide if a formula is satis�ed by a� evaluate �F under a� and check whether
the result is equal to �� � Falsi�cation is similar� This property is captured by
the following theorems�

�THM decidable formula sat�

a�Assignment�
F�Formula� Decfa j� Fg
�THM decidable formula falsifiable�

a�Assignment�
F�Formula� Decfa j� Fg

��� Sequents

Sequents are formalized as pairs of lists of formulas�

�ABS Sequent� Sequent
def
� Formula list � Formula list

We de�ne a measure function on sequents ��� as the sum of the ranks of their
hypothesis and conclusion lists� Note that we have not distinguished the display
form for rank of a formulas from the display form for rank of a sequent� Their
terms are distinguished in the system� but we have chosen to display them in
the same way�

We call sequents having rank � atomic sequents� They contain only variables�
In this section the semantics of sequents is given� First the meaning of a se�

quent is given in informal mathematical terms and then this de�nition is trans�
lated into the three�valued model being developed here�

A sequent is true when the conjunction of the hypotheses implies the dis�
junction of the conclusions�

�H� � � � � �Hn� � �C� � � � � � Cm�

Adopting the convention that an empty conjunction denotes truth and the empty
disjunction denotes falsity� h�H�� � � � � Hn�� � �i evidently means �H� � � � � � �Hn�
h� �� �C�� � � � � Cm�i means C� � � � � � Cm� and the empty sequent� h� �� � �i� denotes
an unsatis�able sequent�

We are interested in the notion of satisfaction under a Kleene valuation in�
duced by a partial assignment� A convenient de�nition is based on the observa�
tion that a sequent is satis�ed by a partial assignment either� when it falsi�es
some hypothesis� or when there is some formula in the conclusion that it satis�
�es� This suggests the following de�nition�

�ABS sequent satisfiable

a 	� �hyp�concl�
def
� 	F�hyp� a 	� F � 	F�concl� a 	� F

Similarly� a sequent is falsi�ed by an assignment if it satis�es every hypotheses
and falsi�es every conclusion�

�ABS sequent falsifiable

a 	� �hyp�concl�
def
�
F�hyp� a 	� F �
F�concl� a 	� F

These de�nitions exhibit the �rst use here of list quanti�cation� The term 	x�L� P�x�
is inhabited �true� if� for some member x of the list L� the predicate P�x� is non�
void� Thus� for empty lists it is false� Similarly� the term
x�L� P�x� is true if
every x in L satis�es P�x�� For the empty list� the quanti�er is vacuously true�

Note that it can e�ectively be decided whether a sequent is satis�ed or falsi�
�ed by an assignment� this follows from the decidability of the same properties
for formulas� These facts are formalized in two decidability lemmas�

A full assignment for a formula F is a partial assignment that either satis�
�es or falsi�es F� i�e� it contains enough information to determine a value for F�

�ABS full sequent assignment

Full�S�
def
� fa�Assignment	 �a 	� S � a 	� S�g

Validity is de�ned with respect to full assignments�

�ABS sequent valid j� S
def
�
a�Full�S�� a j� S

The author has shown elsewhere ��� that partial assignments are monotone
with respect to satisfaction and falsi�cation as de�ned here� thereby showing that
the de�nition of validity just given agrees with the standard notion of validity
over total Boolean assignments�

� Decidability

The most natural formalization of the decidability theorem would simply say
a sequent is either valid or not� A logically equivalent �and computationally
stronger� form of falsi�ablity gives the following theorem�

S�Sequent� 	� S � 	a�Assignment� a 	� S

A constructive proof of this theorem ��� results in a function accepting a se�
quent S as its argument and returning one of inl�t� or inr�ha�ei�� We are
interested here in the computational content of the theorem� The term t under
the injection inl has no computational interest� and so we squash it� The �rst
element of the pair ha�ei under the inr injection is the counter�example� but
the second element of the pair� the witness for the falsi�ablity of the sequent is
not interesting� Thus� we modify the existential to be set type� This gives the
�nal statement of the theorem proved here�

�THM propositional decidability

S�Sequent� ��	� S� � fa�Assignment 	 a 	� Sg

��� A strategy for the proof

Consider the following propositional sequent proof system�

M� q�N � M �� q�N �

M� N � p� concl

M� d�ep� N � concl

p� hyp �M� N

hyp �M� d�ep� N

q� r� M� N � concl

M� qd�er� N � concl

hyp � q� M� N hyp � r� M� N

hyp �M� qd�er� N

q� M� N � concl r� M� N � concl

M� qd�er� N � concl

hyp � q� r� M� N

hyp �M� qd�er� N

M� N � q� concl r� M� N � concl

M� qd�er� N � concl

q� hyp � r� M� N

hyp �M� qd�er� N

A sound rule preserves validity� i�e� if the validity of its hypotheses implies
the validity of its conclusion� A proof rule is said to be invertible when every
assignment satisfying the conclusion also satis�es all the hypotheses� Thus if
any hypothesis of an invertible rule is falsi�ed by a given assignment� then the

conclusion is falsi�ed by the same assignment� Each of these rules has been shown
to be both sound and invertible ����

These facts coupled with the observation that the backwards application of
each rule results in one or two sequents having smaller rank suggests a recursive
procedure for eliminating propositional operators� resulting in a collection of
sequents having the following properties�

i�� the induced sequents are all atomic�
ii�� if all the induced sequents are valid then so is the original sequent �by

soundness�� and
iii�� if any of the induced sequents is falsi�ed by an assignment then that as�

signment falsi�es the original sequent too �by invertibility��

This is formalized by the following lemma�

� THM normalization lemma

G�Sequent

fL�Sequent List	

���
s�L� ��s� � ��

� ��
s�L� 	� s � � 	� G �

� �
a�Assignment� �	s�L� a 	� s� � a 	 � G��g

It should be remarked here that the propositional proof rules given are the
ordinary rules� The reader might suspect that since we are using Kleene se�
mantics the logic is somehow special� but the Kleene semantics simply allows
for the construction of tighter counter�examples� Above the layer of abstraction
provided by the de�nitions of satisfaction� falsi�cation� and validity� the e�ect
of the Kleene semantics on the decidability proof and the extracted program
is isolated to one point� That point occurs in the proof of the following lemma
which asserts that every sequent in a collection of atomic sequents is either valid
or there is an assignment falsifying it�

� THM zero rank valid or falsifiable

L�fL�Sequent List	
s�L����s� � ��g
��
s�Sequent� s�L � 	� s � �

fa�Assignment	 	s�fs�Sequent	 s�Lg � a 	� sg

In the proof of this lemma� a decision must be made as to the values to assign to
variables not occurring in an atomic sequent� Rather than arbitrarily choosing
True or False� as we would have to do in a two valued semantics� using Kleenes
semantics� we assign the �unde�ned� value ��

��� Decidability proof

We present highlights of the Nuprl proof of decidability to show how the poten�
tially troublesome hidden hypotheses generated by the set type are handled�

�
S�Sequent� ��	� S� � fa�Assignment	 a 	� Sg

Decomposing the universal and instantiating the normalization lemma with S as
the goal results in the following Nuprl sequent�

� S� Sequent

�� L� Sequent list

���� ���
s�L���s� � �� �

�
s�L�	� s� � 	� S �

a�Assignment� �	s�L�a 	� s� � a 	� S�

� ��	� S� � fa�Assignment	 a 	� Sg

Instantiating the lemma zero rank valid or falsifiable with L leaves a dis�
junction asserting that either all elements of L are valid or some element of L is
falsi�able� Decomposing this disjunction leaves two subgoals� In the �rst case we
know all sequents in L are valid and so choose to prove the �rst disjunct of the
conclusion� In the second case we have an assignment that falsi�es some sequent
in L and so choose to prove the second disjunct of the main goal in that case�

Consider the �rst case�

�� ��
s�Sequent� s�L � 	� s�

� ��	� S�

Because the conclusion is squashed� the hidden hypothesis ��� can be freely un�
hidden� Eliminating the squash operators and then decomposing the conjuncts
in � results in the following�

��
s�L���s� � �

�� �
s�L�	� s� � 	� S

��
a�Assignment� �	s�L�a 	� s� � a 	� S

��
s�Sequent� s�L � 	� s

� 	� S

Backchaining through hypothesis � combined with the fact stated in � completes
the proof of this branch�

Now consider the second case�

�� fa�Assignment	 	s�fs�Sequent	 s�Lg � a 	� sg
� fa�Assignment	 a 	� Sg

After decomposing the conjunction in hypothesis � �see above� and then de�
composing the set type in hypothesis � we provide the resulting assignment as
the witness for the set type in the conclusion� This yields the following subgoal�

��
s�L���s� � �

�� �
s�L�	� s� � 	� S

��
a�Assignment� �	s�L�a 	� s� � a 	� S

�� a�Assignment

�� 	s�fs�Sequent	 s�Lg � a 	� s

� a 	� S

The hidden hypotheses have been unhidden by the system because the computa�
tional content of the proof is completed� The remaining goal is proved by appeal
to facts in hypotheses � and
� This completes the proof�

The program extracted from this proof �after one step of reduction� is the
following term�

�S�decide extfvalid or falsifiableg�extfnormalizeg�S��
of inl���� �� inl�Axiom�

	 inr���� �� inr����

It accepts a sequent S as input and applies the normalization procedure to it� The
result is a list of zero rank sequents which serve as input to valid or falsifiable�
This returns a term of the form inl�Ax� or inr�a� where a is a partial assign�
ment falsifying some element of L �and by extension which falsi�es S�� A case
split is made on the form of this term which is then packaged up and returned
as the �nal result of the procedure� Thus� we see that this program is nearly
the natural one to write given the procedures extfvalid or falsifiableg and
extfnormalizeg� A simple optimization results in the following simpler program
which foregoes the redundant decide�

�S� extfvalid or falsifiableg�extfnormalizeg�S��

��� The Normalization Proof

The proof of this lemma provides the core of the computational procedure� The
proof is by induction on the rank of a sequent� Recall the statement of the lemma�

�
G�Sequent

fL�Sequent List	

���
s�L� ��s� � ��

� ��
s�L� 	� s � � 	� G �

� �
a�Assignment� �	s�L� a 	� s� � a 	� G��g

The measure induction tactic is invoked with sequent rank as the measure�
Decomposing G into its component formula lists� hyp and concl� results in the
following subgoal�

� hyp� Formula List

�� concl� Formula List

�� IH�
k�fk�Sequent	 ��k� � ���hyp� concl��g
fL�Sequent List	

���
s�L� ��s� � ��

� ��
s�L� 	� s � � 	� k �

� �
a�Assignment� �	s�L� a 	� s� � a 	� k��g
� fL�Sequent List	

���
s�L� ��s� � ��

� ��
s�L� 	� s � � 	� �hyp� concl� �

� �
a�Assignment� �	s�L� a 	� s� � a 	 � �hyp� concl���g

The proof proceeds by inductively decomposing non�zero rank elements of the
sequent �hyp�concl� if there are any� if not we directly argue the theorem holds�
Thus� to proceed with the proof we case split on whether the list hyp contains
any non�zero rank formula� In the case where all formulas in hyp are atomic we
do a case split on whether concl is atomic or not� Thus� in all� we have three
cases� we consider this last case �rst�

The sequent is atomic In this case the list �hyp�concl����� witnesses the
set type� A step of reduction leaves the following squashed conjunction to prove�

�� �	f�hyp���f� � �

�� �	f�concl���f� � �

� ���
s���hyp�concl������� ��s� � ��

� ��
s���hyp�concl������� 	� s � � 	� �hyp� concl� �

� �
a�Assignment� �	s���hyp�concl������� a 	� s�

� a 	� �hyp� concl���

By � and � the �rst conjunct holds and the remaining two conjuncts are trivial�

The hypothesis contains non�atomic formula Now we consider the case
where the formula list hyp contains a non�zero rank formula� 	f�hyp����f� � ���

Whenever property �P� is asserted to hold for some element of a list L� we
use the following lemma to decompose the list� explicitly naming an element of
the list having the property�

� THM list exists decomposition

T�U�
P�T � P�
L�T List�

�	x�L�P�x���	M�T List�	x�T�fN�T List	 L � M � �x��N� � P�x�g

Forward chaining through this lemma with hypothesis 	f�hyp����f� � ��
yields

�� 	f�hyp����f� � ��

�� M� Formula List

�� f� Formula

�� N� Formula List

���� hyp � M � �f��N� � ��f� � �

� fL�Sequent List	

���
s�L� ��s� � ��

� ��
s�L� 	� s � � 	� �hyp� concl� �

� �
a�Assignment� �	s�L� a 	� s� � a 	 � �hyp� concl���g

We provide the following term as a witness for the set type in the conclusion�

case f�
dxe� ���
d�ex� �IH��M � N� x��concl����

xd�ex�� �IH��x��x����M � N�� concl����

xd�ex�� �IH��x���M � N�� concl�� � IH��x����M � N�� concl����

yd�ey�� �IH��y����M � N�� concl�� � IH��M � N� y��concl����

This term encodes the left rules of the sequent proof system presented above�
This step results in two subgoals� the �rst a well�formedness goal to show that the
term is in the type Sequent List and the second to show that term satis�es the
three part conjunction de�ning the set� At this point the computational content
for this branch of the proof is complete� The remaining proof goals serve to
verify the logical part of the theorem and do not contribute to its computational
content�

The conclusion contains non�atomic formula This cased is similarly veri�
�ed� After a second instantiation and decomposition of the the lemma
list exists decomposition we must prove the following�

�� 	f�concl����f� � ��

�� M� Formula List

�� f� Formula

�� N� Formula List

���� concl � M � �f��N� � Formula List � ��f� � �

� fL�Sequent List	

���
s�L� ��s� � ��

� ��
s�L� 	� s � � 	� �hyp� concl� �

� �
a�Assignment� �	s�L� a 	� s� � a 	 � �hyp� concl���g

In this case the set type in the conclusion is eliminated by the following term�

case f�
dxe� ���
d�ex� �IH��x��hyp� M � N����

xd�ex�� �IH��hyp� x���M � N��� � IH��hyp� x����M � N�����

xd�ex�� �IH��hyp� x��x����M � N�����

yd�ey�� �IH��y��hyp� y����M � N�����

This completes the computationally signi�cant part of the proof of the nor�
malization lemma� The remaining part of the proof veri�es that the extracted
term does indeed satisfy the speci�cation�

A purer application of the proofs as programs method would have implicitly
constructed the case statements and recursive calls to the computational con�
tent of the induction hypothesis� A purer proof� equivalent to the one presented
here� having the same extract� proceeds in the two branches by decomposing the
formula f in hypothesis �� resulting in �ve subgoals in each case� One subgoal
for each class of formula� The proof then proceeds by appeal to the induction
hypothesis� The proof presented here is more compact�

The extracted program The extract of the proof is shown in the Figure ��
The term in the �gure is nearly� but not completely a raw extract term� it
is shown after one step of computation has been performed� two de�nitions
have been folded� and some system generated variables have been renamed for
readability� The structure of the program reveals the natural structure of the
recursion which re�ects the structure of the inductive proof� Those familiar with
programs extracted from formal proofs may be surprised at the readability and
naturalness of this extract� These properties are a result of the careful use of the
set and squash types in the speci�cation

� Conclusions

The principal aim of this paper has been to exhibit recently established method�
ology for generating e�cient and clean programs from Nuprl proofs� This paper
extends the work reported on in ��� and applies those techniques to a reasonably
sized example� Propositional decidability is a well understood but non�trivial
test�bed for these techniques� The formalization presented in this paper shows

how the use of the Nuprl set type and squash type eliminates unnecessary and
ine�cient computational content from proof extracts�

� Acknowledgements

The author would like to thank the anonymous referees for their helpful com�
ments� Thanks are also due to Bob Constable and especially Stuart Allen for his
careful reading and insightful comments on this paper�

�G��letrec normalize�S� �

let �hyp	concl
 � S in

case �f�hyp����f�
 ��

of inl��� �

let M	f��	N � �extflist exists decompositiong
�Formula����f���f�
 ���hyp����� in

case f���
dxe � ���
d
�

ex � �normalize��M � N	 x��concl
���

x�d�ex � �normalize��x���x���M � N�	 concl
���

x�d�ex � �normalize��x����M � N�	 concl
�

� normalize��x���M � N�	 concl
���

y�d�ey � �normalize��y���M � N�	 concl
�

� normalize��M � N	 y���concl
���

� inr���� �

case �f�concl����f�
 ��

of inl���� �

let M	f��	N � �extflist exists decompositiong
�Formula����f���f�
 ���concl������ in

case f���
dxe � ���
d
�

ex � �normalize��x��hyp	 M � N
���

x�d�ex � �normalize��hyp	 x����M � N�
�

� normalize��hyp	 x���M � N�
���

x�d�ex � �normalize��hyp	 x���x���M � N�
���

y�d�ey � �normalize��y���hyp	 y���M � N�
���

� inr���� �
 �hyp	 concl
���� �

�G�

Fig� �� Extract of the Normalization Lemma

References

�� Stuart F� Allen� From dy	dx to
 �P� A matter of notation� In Proceedings of User

Interfaces for Theorem Provers ����� Eindhoven University of Technology� July
���

�� R�S� Boyer and J�S� Moore� A Computational Logic� NY�Academic Press� ���
�� James Caldwell� Extracting propositional decidability� A proof of proposi�

tional decidability in constructive type theory and its extract� Available
at http���simon�cs�cornell�edu�Info�People�caldwell�papers�html� March
���

�� James Caldwell� Moving proofs�as�programs into practice� In Proceedings� ��th

IEEE International Conference Automated Software Engineering� IEEE Computer
Society� ���

�� R� Constable and D� Howe� Implementing metamathematics as an approach to
automatic theorem proving� In R�B� Banerji� editor� Formal Techniques in Arti�cial

Intelligence� A Source Book� Elsevier Science Publishers �North�Holland�� ���
�� Robert L� Constable� et al� Implementing Mathematics with the Nuprl Proof De�

velopment System� Prentice�Hall� Englewood Cli�s� New Jersey� ����
�� M� Davis and J� Schwartz� Metamathematical extensibility for theorm veri�ers and

proof checkers� Technical Report ��� Courant Institute of Mathematical Sciences�
New York� ����

�� Michael J� C� Gordon and Tom F� Melham� Introduction to HOL� Cambridge
University Press� ���

� John Harrison� Metatheory and re�ection in theorem proving� A survey and cri�
tique� Technical Report CRC����� SRI Cambridge� Millers Yard� Cambridge� UK�
���

��� Susumu Hayashi� Singleton� union� and intersection types for program extraction�
In Proceedings of the International Conference on Theoretical Aspects of Computer

Software TACS	��� volume ��� of Lecture Notes in Computer Science� pages ����
���� Berlin� ��� Springer Verlag�

��� Susumu Hayashi and Hiroshi Nakano� PX� A Computational Logic� Foundations
of Computing� MIT Press� Cambridge� MA� ����

��� M� Hedberg� Normalising the associative law� An experiment with Martin�L�of�s
type theory� Formal Aspects of Computing� ���������� ���

��� Stephen C� Kleene� Introduction to Metamathematics� van Nostrand� Princeton�
����

��� J� Leszczylowski� An experiment with Edinburgh LCF� In W� Bibel and R� Kowal�
ski� editors�
th International Conference on Automated Deduction� volume �� of
Lecture Notes in Computer Science� pages �������� New York� ���� Springer�
Verlag�

��� C� Paulin�Mohring and B� Werner� Synthesis of ML programs in the system Coq�
Journal of Symbolic Computation� ���������������� ���

��� Lawrence Paulson� Proving termination of normalization functions for conditional
expressions� Journal of Automated Reasoning� �������� ����

��� N Shanker� Towards mechanical metamathematics� Journal of Automated Reason�

ing� ������������� ����

