Classical Propositional Decidability via Nuprl
Proof Extraction

James L. Caldwell*

Department of Computer Science
Cornell University
Ithaca, N.Y.
caldwell@cs.cornell.edu

Abstract. This paper highlights a methodology of Nuprl proof that re-
sults in efficient programs that are more readable than those produced by
other established methods for extracting programs from proofs. We de-
scribe a formal constructive proof of the decidability of a sequent calculus
for classical propositional logic. The proof is implemented in the Nuprl
system and the resulting proof object yields a ” correct-by-construction”
program for deciding propositional sequents. If the sequent is valid, the
program reports that fact; otherwise, the program returns a counter-
example in the form of a falsifying assignment. We employ Kleene’s
strong three-valued logic to give more informative counter-examples, it
is also shown how this semantics agrees with the standard two-valued
presentation.

1 Introduction

Nuprl is both a constructive type theory and an implementation of the type the-
ory in the form of a proof development system. As a result of the constructivity,
and by design, Nuprl proofs yield programs in the form of terms of an untyped
lambda calculus.

This paper presents a Nuprl proof of decidability for a classical propositional
logic along with the resulting programs. Nuprl is used here as a formal meta-
theory for a deep embedding of the syntax and semantics of the logic in Nuprl.
Decidability for this embedded formal system is proved within the Nuprl sys-
tem and the program extracted from the proof is a “correct-by-construction”
propositional decider.

The idea of verifying of decision procedures is not a new one; proposals to ex-
tend theorem provers by adding formally verified decision procedures were made
as as early as 1977 [7]. Harrison provides a detailed survey of two approaches to
the disciplined extension of prover capabilities in [9]. Actual formal verifications
of decision procedures are less common. One example that has been repeated a
number of times is Boyer and Moore’s propositional tautology checker in the form

* Part of this work was performed while the author was a member of the Formal
Methods Group at NASA Langley Research Center in Hampton VA.

of an IF-THEN-ELSE normalization procedure [2, 14, 16,12, 15]. Both Shankar [17]
and Hayashi [11] verify deciders for implicational fragments of propositional logic
presented in sequent forms. Paulin-Mohring and Werner’s work [15] is the clos-
est in spirit to the work presented here in that they extract the program for the
Boyer and Moore tautology checker from a constructive proof. In their develop-
ment they address issues related to the efficiency of the extracted program.

1.1 Overview of the Approach

The development presented in this paper is based on the informal account given
by Constable and Howe in [5]. The program extracted from the formal proof
corresponds to the algorithm which searches for a sequent calculus proof via
repeated (backward) application of the sequent rules until all propositional op-
erators have been eliminated. The leaves of the resulting derivation tree form
a collection of atomic sequents (sequents composed strictly of variables) which
are easily checked for validity by determining if they are axioms. If they are all
axioms, then the derivation tree is a proof and that fact is reported. If there
is a leaf that is not axiomatic, it is used to construct a falsifying assignment
which serves as a counter-example to the original goal. The core of the algo-
rithm is the recursive procedure extracted from a normalization lemma proved
via a well-founded (inverse image) induction on the rank of a sequent. This pro-
cedure collects the leaves of the derivation tree implicit in its recursion, i.e. the
tree is not explicitly constructed but is implicit in the recursion.

The presentation given here is unique in that the semantics are defined via
Kleene’s strong three valued logic which is the natural partial evaluation se-
mantics for classical propositional logic. Under a “fullness” condition defined
for three-valued assignments, three-valued validity coincides with the standard
Boolean semantics. As developed here, a formula is valid under the Kleene se-
mantics when every assignment that contains enough information (assigns values
to enough variables) to determine truth or falsity of the formula asserts it’s truth.
This notion of validity is lifted to sequents in the natural way. The Kleene se-
mantics account for partial assignments in a particularly clean way and allow
for tighter counter-examples by allowing “don’t care” conditions in assignments.

The proof presented here is a version of the one presented by the author in [3]
that has been optimized to produce more efficient and readable computational
content. The Nuprl proofs for the earlier development are available on the web
at the site noted in reference [3].

2 An Overview of the Nuprl System

The Nuprl type theory is a sequent presentation of a constructive type theory
via type assignment rules. The underlying programming language is untyped and
the objective of a proof is to either prove a type is inhabited, i.e. to show that
some term (program) is a member of the type, or to show that a term inhabits
a particular type. A complete presentation of the type theory can be found in
the Nuprl book [6].

The Nuprl system, as distinguished from the type theory, implements a rich
environment to support reasoning about and computing with the Nuprl type
theory. The system implementing the type theory has evolved since publication of
the book but (with a few extensions) the type theory presented there is faithfully
implemented by the Nuprl system. Complete documentation is included in the
Nuprl V4.2 distribution. !

2.1 The computation system

Nuprl’s terms include the constructs of its untyped functional programming
language with additional constructs for denoting types and propositions. Terms
are printed here in typewriter font. The Nuprl computation system provides
reduction rules for a left-most outermost (lazy) evaluation strategy.

For terms t and t’ we will write t > t’ to indicate that t evaluates to
t’ under the reduction rules. The computation system can be extended via the
rewrite facility. For terms t and t’ we will write tbg t? to indicate that t reduces
to t’ in the extended system.

As usual, the notation t[t’/x] denotes the term resulting from the substi-
tution of t’ for free occurrences of x in t. Similarly, t[t1, - ,tn/X1, - ,Xn]
denotes the simultaneous substitution of each t; for each x; in t. We will some-
times write £ to denote a vector of terms or variables.

2.2 The type theory

A Nuprl type is a term T of the computation system together with a transitive
and symmetric relation denoted by x=y€T. This relation is known as equality
on T. The term xE€T, meaning x is a member of T, is an abbreviation of x=x€T.
Equality on T is an equivalence relation when restricted to members of T, it is
nonsense otherwise. Interpreting the type membership equality relation and type
membership as types is made sensible via the propositions-as-types interpreta-
tion [6, pg.29-31].

In addition to the type membership equality provided with each type, there
is an equality between types. Equality of types is intensional i.e. type equality
in Nuprl is a structural equality modulo the direct computation rules. This
means that, unlike sets which enjoy extensional equality, two types may contain
the same elements and share an equality relation but not be equal types. For
example, although T and {x:T | True} have the same members and equality
relations, they are not equal types in Nuprl.

Nuprl’s type theory is predicative, supporting an unbounded cumulative hi-
erarchy of type universes. Every universe is itself a type and every type is an
element of some universe.

! The Nuprl system is available from Cornell at
http://www.cs.cornell.edu/Info/Projects/Nuprl/nuprl.html or by anony-
mous ftp from ftp.cs.cornell.edu.

U{i} denotes the type universe where i is a polymorphic specification of uni-
verse level. The members of the universe U{i} are types and other universes
U{j} for j<i. When the level is ¢ “i’’, U{i} is displayed simply as U. The
statement that T is a type is formally written TEU.

P{i} is a synonym for U{i} and is sometimes used to emphasize the proposi-
tional side of the propositions-as-types interpretation.

Nuprl includes the following types:

Void is the empty type of which there are no members. Given a declaration
x:Void (absurdly declaring the existence of an element of the empty type)
the constant any(x) is an element of all types T, i.e. any(x) €T.

Z is the type integer whose members are denoted by the numerals
e, —1,0,1,2,- -

Atom is the type whose elements are denoted by strings of the form ¢¢...?°
where --- is any character string. Atoms are equal when they are the same
character string.

T 1list is the type of lists of elements of type T. The elements of T 1ist include
the empty list, denoted [] and conses of the form a::t where a€T and tE€T
list. Lists are equal either when they are both the empty list or when they
have equal heads and their tails are equal.

y:A—B[y] is the dependent function type containing functions with domain
of type A and where B[y] is a term and y is a variable possibly occurring
free in B. When a€A, B[a/y] is a type, and M[a/x]E€B[a/y], a lambda
abstraction of the form Ax.M is an element of the type y:A—B[y]. These
are the functions whose range may depend on the element of the domain
applied to. Function equality is extensional.

A—B is the function type which is an abbreviation for the term y:A—B when y
does not occur free in B.

x:AXB[x] is the dependent product type consisting of pairs <a,b> where a€A
and b€B[a/x]. Two pairs <a,b> and <a’,b’> are equal in x:AXB[x] when
a=a’€A and b=b’€B[a/x].

AXB is the product type and is an abbreviation for the term x:AXB where x
does not occur free in B.

A | B denotes the disjoint union of types A and B, elements of this type are
tagged elements of the form inl(a) for a€A and inr (b) for b€B. Two ele-
ments of the disjoint union are equal when their tagged elements are equal
in the underlying type A (if the tag is inl) or B (if the tag is inr).

rec(x.T[x]) is the Nuprl inductive type constructor where x is a variable and
T[x] is a term possibly containing a x free. Free occurrences of x in T denote
inductively smaller elements of the type, thus its members are the members
of T[rec(x.T)/x]. There are some technical constraints on the form of T
but we do not include them here. Whenever rec(x.T) is a type, members a
and b are equal if a=b€T[rec(x.T)/x].

{y€TIPLyl} denotes a set type when T is a type and P[y] is a proposition
possibly containing free occurrences of the variable y. Elements x of this
type are elements of T such that P[x/y] is true. Equality for set types is just
the equality of T restricted to those elements in the set type.

Nx:T.P[x] denotes the intersection type. It is a type whenever T is a type and
P[z/x] can be shown to be a type under the condition that z is a hidden
variable of type T. Two members a and b are equal in type Nx:T.P[x] if T
is a type and a=b€P[z/x] for z an arbitrary element of T.

x,y:A//Elx,y] denotes a quotient which is a type whenever A is a type, and
E[x,y] is an equivalence on A. Its members are elements of A and it identifies
elements a and b whenever the equivalence E[a,b/x,y] is inhabited.

2.3 Logic via propositions-as-types

A constructive logic is encoded within the Nuprl type theory. The following def-
initions in the Nuprl V4 core_1 system library encode the logic.

True défO € 7 False def Void
PAQE P xq Ppvg®op g
p=q®p g -4 % A = False

dx:A. Blx] def x:A X B[x] Vx:A. B[x] def x:A — Bl[x]

The Nuprl tactics have been built to manipulate both propositions and types
uniformly.

2.4 Judgements

Nuprl judgements are the assertions one proves in the system. Nuprl judgements
take the following form:

X1:T1, ,%X,:Tp >> S [ext s]

where x;,---,%, are distinct variables and Ty,---,T, , S, and s are terms (n
may be 0), every free variable of T; is one of x1,---,%;—1 and every free variable
of Sorof sisone of x1,---,%x,. The list x1:T1,---,%,: T, is called the hypothesis
list, each x;:T; a declaration (of x;), each T; is a hypothesis, S is the consequent
or conclusion, the term following the keyword ext is the extract, and the entire
form is a Nuprl sequent. The extract component of judgements are not displayed
as part of the implementation of the proof editor. A judgement of the form

x1:T1, -,x,:T,, >> s € S

is called a well-formedness goal. Since s€S is simply shorthand for s=s€S by
the propositions-as-types interpretation for type equality, the extract of a well-
formedness goal is the constant Axiom.

Somewhat informally, a judgement asserts that, assuming the hypotheses are
well-formed types, then the term S is an inhabited type and the extract s is an
inhabitant [6, pg.141]. That the extract term s inhabits S is an artifact of the
proof that S is inhabited. If S is inhabited there may be more than one inhabitant
and different proofs may yield different inhabitants.

A Nuprl proof is a decorated tree of sequents, its root being the main goal
of the proof and where the children of each node are sequents justifying the

parent according to the rules of the type theory. A proof of a sequent shows
that its main goal is both well-formed and inhabited. Given terms inhabiting
the hypotheses of a rule, a proof specifies how to construct a term inhabiting
the type in the conclusion of the rule; thus, proofs contain instructions for the
construction of witness terms. Ezxtraction is the process of constructing a witness
term as specified by proof.

2.5 The Nuprl system

The Nuprl system supports construction of proofs by top-down refinement. The
prover is implemented as a tactic based prover in the style of HOL [8]. Nuprl
differs from HOL in that each tactic invocation defines more of the structure of
an explicitly represented proof tree which is directly manipulated in the editor,
stored in the Nuprl library, and retrieved for later editing. The tactic language
is ML. In Nuprl the proposition-as-types interpretation allows for presentations
to be cloaked in either logical or more purely type-theoretic terms.

The Nuprl system supports a powerful display mechanism. Nuprl terms are
edited using a structure editor; however, the structure of a term is independent
of its display. The display form is specified by the user and can be changed
without changing the structure of the term. Thus, the displayed form of a Nuprl
term is never parsed, the editor displays the terms to the user as specified, but
manipulates the actual underlying structure. All Nuprl terms occurring in this
paper appear on the page as they do in the Nuprl editor and library. In [1] Allen
gives an example of a non-trivial application of the display mechanism.

2.6 Decidability, Stability, the Squash Type, and Squash Stability

Being constructive, Nuprl does not assume all propositions are decidable, i.e. in
general the so-called law of excluded middle is not provable; that is, VP:[P.PV—P
is not a theorem of Nuprl. Even though decidability for an arbitrary proposition
P is not assumed, for many P it is uniformly decidable (i.e. there is an algo-
rithm to decide) which of P or =P holds. That is precisely the definition of the

decidability abstraction Dec{P}.

*ABS decidable Dec{P} ¥ p v—p

*THM decidablewf VP:P{i}. (Dec{P} € P{i})

Note that the well-formedness theorem decidable wf asserts the fact that the
term Dec{P} is a type for all propositions P, but it does not prove it is inhabited
for arbitrary propositions P.

A related notion is that of stability which is constructively weaker than, but
classically equivalent to, decidability (i.e. they’re both tautologies). Stability is
also not constructively valid.

*ABS stable Stable{P} ¥ ——p=P
*THM stable wf VP:P{i}. (Stable{P}€P{i})

A squashed type (or proposition) is one whose computational content has
been discarded. The squash operator is defined in Nuprl by a set type as follows:

*ABS squash (T def {Truel| T}

Thus for any type (proposition) T, J.(T) is inhabited if and only if T is, and
furthermore, has as its only inhabitant the term Axiom (the sole inhabitant of
the proposition True.) The operator is called squash because it identifies all
inhabitants of T with the single constant Axiom.

If we can reconstruct an inhabitant of a type P simply from knowing . (P) is
inhabited we say P is squash stable.

*ABS sq_stable SqStable{P} % | (P) — P
*THM sq-stablewf VP:P{i}. (SqStable{P} € P{i})

Squash stability is weaker even that stability and is related to stability in that
they are equivalent for decidable propositions.

2.7 Existential VS. Set Type

A method of generating efficient and readable extracts by the use of the set type
(as opposed to the existential) was presented by the author in [4]. Earlier work
by Hayashi [10] stressed a similar approach. We reiterate the main points here.

Inhabitants of the existential 3x:T.P[x] are pairs <a,b> where a€T and
beP[a/x]. The term b inhabiting P[a/x] specifies, as far as the proofs-as-
programs interpretation goes, how to prove P[a/x]. When an existential type of
the form above occurs as a hypothesis it can be decomposed into two hypothe-
ses, one of the form a:T and another asserting b:P[a/x]. If v is the name of the
variable denoting the existential hypothesis, occurrences of a in the final extract
will appear as my (v), and occurrences of b appear as mo (v).

Alternatively, consider the Nuprl set type {y€T|P[y]l}. Its inhabitants are
elements of T, say a, such that P[a/y] holds. Thus, a set type does not carry
the computational content associated with the logical part P[a/y]. Since the
computational content is not available, the fact that the a has the property
P[a/x] is not freely available in parts of a proof where it might find its way
into an extract. When a set type of this form, occurring as a hypothesis, is
decomposed it results in two new hypotheses: one of the form a:T; and the
other, a “hidden” hypothesis, of the form b:P[a/x]. Recall that every hypothesis
declares a variable. The proof rules prevent the variable of a hidden hypothesis
from appearing free in the extract of a proof.

Nuprl system manages hidden hypotheses by “unhiding” them when ap-
propriate and by preventing their inadvertent use. Hidden hypotheses become
unhidden and are freely available in the parts of a proof where they do not con-
tribute to computational content; these parts include proofs of well-formedness
(membership) subgoals, equality subgoals, when the computational content on
a branch of the proof has already been fully determined, or when the conclu-
sion is decidable, stable, or squash stable. Hidden hypotheses may be “unhidden”
when their computational content can be effectively decided; typically when they
themselves can be shown to be decidable, stable, or squash stable.

3 Syntax and Semantics of Formulas and Sequents

In this section the Nuprl definitions supporting the statement and proof of the
decidability theorem are presented.

3.1 Formulas

In the Nuprl formalization, formulas are modeled by a recursive type.

*ABS Formula % rec(F.Var | F | (F X F) | (F X F) | (F X F))

The Formula type abstraction is defined to be the recursive type whose members
are a disjoint union of five elements. The first element of the disjoint union is the
type Var of propositional variables. These form the basis of the recursive type.
The second component of the disjoint union is an instance of the bound variable
F denoting a recursively smaller element of the formula type. These elements of
the disjoint union will denote negations and will be displayed as (rr\ﬂ x). The
third, fourth, and fifth elements of the disjoint union are the products of two
recursively smaller formulas. When the semantics of propositional formulas is
defined below it becomes clear that the pairs of formula in the third, fourth,
and fifth disjuncts denote the operators for conjunction (plAlq), disjunction
(p'Vv1q), and implication (pl=1q).

A formula of the form [x!, where x denotes an element of type Var, will be
called an atomic formula.

The destructor for the Formula type is given by a formula case operator
defined by nested case analysis on the disjoint union type. A measure on formu-
las is defined as the number of operators occurring in it. It is defined recursively
as follows.

*ABS formula_rank

def
p = letrec measure(f) =

case f:
Nxl — 0;
[~lp — measure(p) + 1;
p/Alq — measure(p) + measure(q) + 1;
p[Vlq — measure(p) + measure(q) + 1;
pl=1q — measure(p) + measure(q) + 1;

The well-formedness theorem for the formula_rank function certifies it is a func-
tion from formulas to natural numbers.

3.2 Three valued Semantics of propositional logic

We define a semantics of classical propositional logic in terms of Kleene’s strong
three-valued logic [13]. A Kleene valuation reflects the classical interpretations
of the standard propositional connectives under fully determined assignments
(those assigning true or false to every variable in the formula). For example, if
either p or q is false under the Kleene valuation induced by a partial assignment

a, then pAgq is false under the valuation too. It does not matter what value
the other conjunct has, or even if it is defined. Clearly, exhibiting a partial
assignment that falsifies a formula is gives more information than a falsifying
total assignment does.

N3 is the three valued type containing elements displayed as 03, 13, and
23 denoting Fulse, undefined, and True respectively. The operators of Kleene’s
three valued logic [13] are defined over Nzas follows.

~K Ag| 0 1 2 V|0 1 2 =>rl0 1 2
0] 2 0|0 0 O 0(o0 1 2 0112 2 2
1] 1 1/0 1 1 11 1 2 11 1 2
2| 0 210 1 2 212 2 2 210 1 2

Inspection of their matrices reveals that on inputs restricted to 03 and 23 the
operators behave exactly as the familiar boolean operators of the same names.
Thus, these operators are uniquely determined as the strongest possible regular
extensions of the classical 2-valued operators. These operators are formalized in
Nuprl using case analysis over N3.

Three valued assignments are functions of type Var—Ng. The Kleene valua-
tion of a formula F under the partial assignment a (displayed as (F under a))
is defined as follows.

*ABS valuation

(F under a) def (letrec val(f) =

case f:
k1 — a(x);
[~p — ~gval(p);
plAlq — val(p) Ax val(q);
plvlq — val(p) Vi val(q);
pl=1q — val(p) =k val(q);
) F
Using the Kleene valuation we define the semantic notion of a formula being

satisfied (falsified) by an assignment a.
def

*ABS formula_sat al|l=F = ((F under a) = 23) € N3
*ABS formula falsifiable a |# F % ((F under a) = 03) € Ny
Thus, a formula F is satisfied by assignment a (written a |= F) when (F under

a) evaluates to 23. Similarly, a formula F is falsified by assignment a (written
a |# F when (F under a) evaluates to 03.

The satisfaction of a formula by an assignment is clearly a decidable property;
to decide if a formula is satisfied by a, evaluate (F under a) and check whether
the result is equal to 23 . Falsification is similar. This property is captured by
the following theorems.

*THM decidable__formula sat:

Va:Assignment. VF:Formula. Dec{a |= F}
*THM decidable__formula falsifiable:

Va:Assignment. VF:Formula. Dec{a |# F}

3.3 Sequents

Sequents are formalized as pairs of lists of formulas:

*ABS Sequent: Sequent def Formula list X Formula list

We define a measure function on sequents (p) as the sum of the ranks of their
hypothesis and conclusion lists. Note that we have not distinguished the display
form for rank of a formulas from the display form for rank of a sequent. Their
terms are distinguished in the system, but we have chosen to display them in
the same way.

We call sequents having rank 0 atomic sequents. They contain only variables.

In this section the semantics of sequents is given. First the meaning of a se-
quent is given in informal mathematical terms and then this definition is trans-
lated into the three-valued model being developed here.

A sequent is true when the conjunction of the hypotheses implies the dis-
junction of the conclusions.

(HiA - NH,) = (CLV --- V)

Adopting the convention that an empty conjunction denotes truth and the empty
disjunction denotes falsity, ([Hi,...,Hy],[]) evidently means =H; V ---V = H,,
([1,[C1,-..,Cn]) means Cy V - - -V Cp,, and the empty sequent, ([],[]), denotes
an unsatisfiable sequent.

We are interested in the notion of satisfaction under a Kleene valuation in-
duced by a partial assignment. A convenient definition is based on the observa-
tion that a sequent is satisfied by a partial assignment either, when it falsifies
some hypothesis, or when there is some formula in the conclusion that it satis-
fies. This suggests the following definition.

*ABS sequent_satisfiable

a |= <hyp,concl> def JdF€hyp.a |# F V JdF€concl.a |= F

Similarly, a sequent is falsified by an assignment if it satisfies every hypotheses
and falsifies every conclusion.

*ABS sequent_falsifiable

a |# <hyp,concl> def VFEhyp.a |= F A VF€concl.a |# F

These definitions exhibit the first use here of list quantification. The term Ix€L. P [x]
is inhabited (true) if, for some member x of the list L, the predicate P [x] is non-
void. Thus, for empty lists it is false. Similarly, the term Vx€L. P[x] is true if
every x in L satisfies P[x]. For the empty list, the quantifier is vacuously true.
Note that it can effectively be decided whether a sequent is satisfied or falsi-
fied by an assignment; this follows from the decidability of the same properties
for formulas. These facts are formalized in two decidability lemmas.
A full assignment for a formula F is a partial assignment that either satis-
fies or falsifies F, i.e. it contains enough information to determine a value for F.

*ABS full_sequent_assignment
Full(s) & {a:Assignment| (a I=S V a |# S)}

Validity is defined with respect to full assignments.

def

*ABS sequent_valid |= S = Va:Full(S). a |= S

The author has shown elsewhere [3] that partial assignments are monotone
with respect to satisfaction and falsification as defined here, thereby showing that
the definition of validity just given agrees with the standard notion of validity
over total Boolean assignments.

4 Decidability

The most natural formalization of the decidability theorem would simply say
a sequent is either valid or not. A logically equivalent (and computationally
stronger) form of falsifiablity gives the following theorem.

VS:Sequent. |= S V Ha:Assignment. a |# S

A constructive proof of this theorem [3] results in a function accepting a se-
quent S as its argument and returning one of inl(t) or inr((a,e)). We are
interested here in the computational content of the theorem. The term t under
the injection inl has no computational interest, and so we squash it. The first
element of the pair (a,e) under the inr injection is the counter-example, but
the second element of the pair, the witness for the falsifiablity of the sequent is
not interesting. Thus, we modify the existential to be set type. This gives the
final statement of the theorem proved here.

*THM propositional_decidability
VS:Sequent. [(|l=S) V {a:Assignment | a |# S}

4.1 A strategy for the proof

Consider the following propositional sequent proof system.

M,q,N - M',q,N'

M, N F p, concl p, hyp- M, N
M, [~]p, N concl hypt M, [~]p, N
q, v, M, N concl hypt-q, M, N hyptr, M, N
M, q[A|r, N F concl hypt M, q[A]r, N
q, M, N+ concl r, M, N | concl hyptq, r, M, N
M, q[V]r, N F concl hypt M, q[V]r, N
M, N F q, concl r, M, N | concl q, hyptbr, M, N
M, q[=1r, N F concl hypt+ M, ql=]r, N

A sound rule preserves validity, i.e. if the validity of its hypotheses implies
the validity of its conclusion. A proof rule is said to be invertible when every
assignment satisfying the conclusion also satisfies all the hypotheses. Thus if
any hypothesis of an invertible rule is falsified by a given assignment, then the

conclusion is falsified by the same assignment. Each of these rules has been shown
to be both sound and invertible [3].

These facts coupled with the observation that the backwards application of
each rule results in one or two sequents having smaller rank suggests a recursive
procedure for eliminating propositional operators, resulting in a collection of
sequents having the following properties:

i.) the induced sequents are all atomic,

ii.) if all the induced sequents are valid then so is the original sequent (by
soundness), and

iii.) if any of the induced sequents is falsified by an assignment then that as-
signment falsifies the original sequent too (by invertibility).

This is formalized by the following lemma.

* THM normalization_lemma
VG:Sequent
{L:Sequent List|
J((VseL. p(s) = 0)
AN ((Vs€L. |=s) = |=G)
A (Va:Assignment. (Js€L. a |# s) = a |#£ G}

It should be remarked here that the propositional proof rules given are the
ordinary rules. The reader might suspect that since we are using Kleene se-
mantics the logic is somehow special, but the Kleene semantics simply allows
for the construction of tighter counter-examples. Above the layer of abstraction
provided by the definitions of satisfaction, falsification, and validity, the effect
of the Kleene semantics on the decidability proof and the extracted program
is isolated to one point. That point occurs in the proof of the following lemma
which asserts that every sequent in a collection of atomic sequents is either valid
or there is an assignment falsifying it.

* THM zero_rank_valid or_falsifiable

VL:{L:Sequent List| Vs€L.(p(s) = 0)}
J(Vs:Sequent. s€L = [|=5s) V
{a:Assignment| ds:{s:Sequent| s€L} . a |# s}

In the proof of this lemma, a decision must be made as to the values to assign to
variables not occurring in an atomic sequent. Rather than arbitrarily choosing
True or False, as we would have to do in a two valued semantics, using Kleene’s
semantics, we assign the “undefined” value 13.

4.2 Decidability proof

We present highlights of the Nuprl proof of decidability to show how the poten-
tially troublesome hidden hypotheses generated by the set type are handled.

F VS:Sequent. |(|= S) V {a:Assignment| a |# S}

Decomposing the universal and instantiating the normalization lemma with S as
the goal results in the following Nuprl sequent.

1. S: Sequent
2. L: Sequent list
[3.1 L((Vs€L.p(s) = 0) A
(Vs€L.|=s8) = =8 A
Va:Assignment. (ds€L.a |# s) = a |# S)
F 4= 8) V {a:Assignment| a |# S}

Instantiating the lemma zero_rank valid or falsifiable with L leaves a dis-

junction asserting that either all elements of L are valid or some element of L is

falsifiable. Decomposing this disjunction leaves two subgoals. In the first case we

know all sequents in L are valid and so choose to prove the first disjunct of the

conclusion. In the second case we have an assignment that falsifies some sequent

in L and so choose to prove the second disjunct of the main goal in that case.
Consider the first case.

4. | (Vs:Sequent. s€L = |= s)
F 4= 9)

Because the conclusion is squashed, the hidden hypothesis (3) can be freely un-
hidden. Eliminating the squash operators and then decomposing the conjuncts
in 3 results in the following:

3. Vs€L.p(s) =0

4. (Vs€L.|l=8) = |=8

5. Va:Assignment. (ds€Ll.a |# s) = a |# S
6. Vs:Sequent. s€L = |= s

F =5

Backchaining through hypothesis 4 combined with the fact stated in 6 completes
the proof of this branch.

Now consider the second case.

4. {a:Assignment| Js:{s:Sequent| s€L} . a |# s}
F {a:Assignment| a |# S}

After decomposing the conjunction in hypothesis 3 (see above) and then de-
composing the set type in hypothesis 4 we provide the resulting assignment as
the witness for the set type in the conclusion. This yields the following subgoal.

3. Vs€L.p(s) =0

(VseL.|=s) = |=8

Va:Assignment. (ds€L.a |# s) = a |# S
a:Assignment

. ds:{s:Sequent| s€L} . a |# s

Fal#S

The hidden hypotheses have been unhidden by the system because the computa-
tional content of the proof is completed. The remaining goal is proved by appeal
to facts in hypotheses 5 and 7. This completes the proof.

The program extracted from this proof (after one step of reduction) is the
following term.

~N O O

AS.decide ext{valid.or_falsifiable}(ext{normalize}(S))

of inl(%3) => inl(Axiom)

| inr(%4) => inr(%4)

It accepts a sequent S as input and applies the normalization procedure to it. The
result is a list of zero rank sequents which serve as input to valid_or _falsifiable.
This returns a term of the form inl(Ax) or inr(a) where a is a partial assign-
ment falsifying some element of L (and by extension which falsifies S.) A case
split is made on the form of this term which is then packaged up and returned
as the final result of the procedure. Thus, we see that this program is nearly
the natural one to write given the procedures ext{valid_or_falsifiable} and
ext{normalize}. A simple optimization results in the following simpler program
which foregoes the redundant decide.
AS. ext{valid or_falsifiable}(ext{normalize}(S))

4.3 The Normalization Proof

The proof of this lemma provides the core of the computational procedure. The
proof is by induction on the rank of a sequent. Recall the statement of the lemma.

F VG:Sequent
{L:Sequent List|
J((VsEL. p(s) = 0)
A ((Vs€L. |=s) = |=G)
A (Va:Assignment. (Js€L. a |# s) = a |# G))}
The measure induction tactic is invoked with sequent_rank as the measure.
Decomposing G into its component formula lists, hyp and concl, results in the
following subgoal.
1. hyp: Formula List
2. concl: Formula List
3. IH: Vk:{k:Sequent| p(k) < p(<hyp, concl>)}
{L:Sequent List|
J((VsEL. p(s) = 0)
A ((Vs€L. |=s) = I|=k)
A (Va:Assignment. (Js€L. a |# s) = a |# k))}
F {L:Sequent List|

J((VseL. p(s) = 0)

A ((Vs€L. |=s) = |= <hyp, concl>)

A (Va:Assignment. (3s€L. a |# s) = a |# <hyp, concl>))}
The proof proceeds by inductively decomposing non-zero rank elements of the
sequent <hyp, concl> if there are any; if not we directly argue the theorem holds.
Thus, to proceed with the proof we case split on whether the list hyp contains
any non-zero rank formula. In the case where all formulas in hyp are atomic we
do a case split on whether concl is atomic or not. Thus, in all, we have three
cases, we consider this last case first.

The sequent is atomic: In this case the list <hyp,concl>::[] witnesses the
set type. A step of reduction leaves the following squashed conjunction to prove.

4. —3df&hyp.p(£f) > 0
5. m3IfEconcl.p(f) > 0
F J((Vs€(<hyp,concl>::[1). p(s) = 0)
A ((Vs€(<hyp,concl>::[1). |=s) = |= <hyp, concl>)
A (Va:Assignment. (Is€(<hyp,concl>::[1). a |# s)
= a |# <hyp, concl>))

By 4 and 5 the first conjunct holds and the remaining two conjuncts are trivial.

The hypothesis contains non-atomic formula: Now we consider the case
where the formula list hyp contains a non-zero rank formula, 3f €hyp. (p(£) >0).

Whenever property (P) is asserted to hold for some element of a list L, we
use the following lemma to decompose the list, explicitly naming an element of
the list having the property.

* THM list_exists_decomposition
VT:U. VP:T — P. VL:T List.
(Ix€L.P[x]) = 3IM:T List.3Ix:T.{N:T List| L = M @ (x::N) A P[x]}

Forward chaining through this lemma with hypothesis f&hyp. (p(£) >0)
yields

4. Ifehyp. (p(£) > 0)
5. M: Formula List
6. f: Formula
7. N: Formula List
[8]. hyp =M @ (£f::N) A p(£f) >0
F {L:Sequent List]|
J((VseL. p(s) = 0)
A ((Vs€Ll. |=s) = |= <hyp, concl>)
A (Va:Assignment. (Is€L. a |# s) = a |# <hyp, concl>))}

We provide the following term as a witness for the set type in the conclusion.

case f:
Mkl — [1;
[—1x — (IH(<M @ N, x::concl>));
x1TATx2 — (TH(<x1::x2:: (M @ N), concl>));
x1Iv1x2 — (IH(<x1:: (M @ N) , concl>) @ IH(<x2::(M @ N), concl>));
y1r¢1y2—) (IH(<y2::(M @ N), concl>) @ IH(<M @ N, yl::concl>));

This term encodes the left rules of the sequent proof system presented above.
This step results in two subgoals: the first a well-formedness goal to show that the
term is in the type Sequent List and the second to show that term satisfies the
three part conjunction defining the set. At this point the computational content
for this branch of the proof is complete. The remaining proof goals serve to
verify the logical part of the theorem and do not contribute to its computational
content.

The conclusion contains non-atomic formula: This cased is similarly veri-
fied. After a second instantiation and decomposition of the the lemma
list_exists_decomposition we must prove the following:

4. Jfecconcl. (p(f) > 0)
5. M: Formula List
6. f: Formula
7. N: Formula List
[8]. concl = M @ (f::N) € Formula List A p(f) > 0
F {L:Sequent List]|

J((Vs€eL. p(s) = 0)

A ((Vs€l. |=s) = |= <hyp, concl>)

A (Va:Assignment. (Is€L. a |# s) = a |# <hyp, concl>))}

In this case the set type in the conclusion is eliminated by the following term.

case f:

xl — [1;

[1x — (IH(<x::hyp, M @ N>));

x1TA1x2 — (IH(<hyp, x1::(M @ N)>) @ IH(<hyp, x2:: (M @ N)>));

x11Vv1x2 — (IH(<hyp, x1::x2::(M @ N)>));

yil=1y2 — (IH(<y1::hyp, y2:: (M @ N)>));

This completes the computationally significant part of the proof of the nor-

malization lemma. The remaining part of the proof verifies that the extracted
term does indeed satisfy the specification.

A purer application of the proofs as programs method would have implicitly
constructed the case statements and recursive calls to the computational con-
tent of the induction hypothesis. A purer proof, equivalent to the one presented
here, having the same extract, proceeds in the two branches by decomposing the
formula £ in hypothesis 6, resulting in five subgoals in each case. One subgoal
for each class of formula. The proof then proceeds by appeal to the induction
hypothesis. The proof presented here is more compact.

The extracted program: The extract of the proof is shown in the Figure 1.
The term in the figure is nearly, but not completely a raw extract term; it
is shown after one step of computation has been performed, two definitions
have been folded, and some system generated variables have been renamed for
readability. The structure of the program reveals the natural structure of the
recursion which reflects the structure of the inductive proof. Those familiar with
programs extracted from formal proofs may be surprised at the readability and
naturalness of this extract. These properties are a result of the careful use of the
set and squash types in the specification

5 Conclusions

The principal aim of this paper has been to exhibit recently established method-
ology for generating efficient and clean programs from Nuprl proofs. This paper
extends the work reported on in [4] and applies those techniques to a reasonably
sized example. Propositional decidability is a well understood but non-trivial
test-bed for these techniques. The formalization presented in this paper shows

how the use of the Nuprl set type and squash type eliminates unnecessary and
inefficient computational content from proof extracts.

6 Acknowledgements

The author would like to thank the anonymous referees for their helpful com-
ments. Thanks are also due to Bob Constable and especially Stuart Allen for his
careful reading and insightful comments on this paper.

AG. (letrec normalize(S) =
let <hyp,concl> = § in
case Ifchyp.(p(£) > 0)
of inl(%2) =>
let M,f@0,N = (ext{list_exists_decomposition}
(Formula) (A2f.p(£) > 0) (hyp) (42)) in
case f00:
1 — [1;
~1x — (normalize(<M @ N, x::concl>));
x1TA1x2 — (normalize(<x1::x2::(M @ N), concl>));
x1Tv1x2 — (normalize(<xl::(M @ N), concl>)
@ normalize(<x2::(M @ N), concl>));
y1'=1y2 — (normalize(<y2::(M @ N), concl>)
@ normalize(<M @ N, yl::concl>));
| inr(%3) =>
case dfE€concl. (p(f) > 0)
of inl(45) =>
let M,f@0,N = (ext{list_exists_decomposition}
(Formula) (A2f.p(£f) > 0)(concl) (%5)) in
case fQ0:
rx-l — [I;
1y — (normalize(<x::hyp, M @ N>));
x1fATx2 — (normalize(<hyp, x1:: (M @ N)>)

@ normalize(<hyp, x2::(M @ N)>));
x1Mv1x2 — (normalize(<hyp, x1::x2:: (M @ N)>));
y1il=1y2 — (normalize(<yl::hyp, y2:: (M @ N)>));

| inr(%6) => <hyp, concl>::[])
(®

Fig. 1. Extract of the Normalization Lemma

References

10.

11.

12.

13.

14.

15.

16.

17.

. Stuart F. Allen. From dy/dx to [|P: A matter of notation. In Proceedings of User

Interfaces for Theorem Provers 1998. Eindhoven University of Technology, July
1998.

R.S. Boyer and J.S. Moore. A Computational Logic. NY:Academic Press, 1979.
James Caldwell. Extracting propositional decidability: A proof of proposi-
tional decidability in constructive type theory and its extract. Available
at http://simon.cs.cornell.edu/Info/People/caldwell/papers.html, March
1997.

James Caldwell. Moving proofs-as-programs into practice. In Proceedings, 12th
IEEE International Conference Automated Software Engineering. IEEE Computer
Society, 1997.

R. Constable and D. Howe. Implementing metamathematics as an approach to
automatic theorem proving. In R.B. Banerji, editor, Formal Techniques in Artificial
Intelligence: A Source Book. Elsevier Science Publishers (North-Holland), 1990.
Robert L. Constable, et al. Implementing Mathematics with the Nuprl Proof De-
velopment System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

M. Davis and J. Schwartz. Metamathematical extensibility for theorm verifiers and
proof checkers. Technical Report 12, Courant Institute of Mathematical Sciences,
New York, 1977.

Michael J. C. Gordon and Tom F. Melham. Introduction to HOL. Cambridge
University Press, 1993.

John Harrison. Metatheory and reflection in theorem proving: A survey and cri-
tique. Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK,
1995.

Susumu Hayashi. Singleton, union, and intersection types for program extraction.
In Proceedings of the International Conference on Theoretical Aspects of Computer
Software TACS’91, volume 526 of Lecture Notes in Computer Science, pages 701—
730, Berlin, 1991. Springer Verlag.

Susumu Hayashi and Hiroshi Nakano. PX: A Computational Logic. Foundations
of Computing. MIT Press, Cambridge, MA, 1988.

M. Hedberg. Normalising the associative law: An experiment with Martin-Lof’s
type theory. Formal Aspects of Computing, 3:218-252, 1991.

Stephen C. Kleene. Introduction to Metamathematics. van Nostrand, Princeton,
1952.

J. Leszczylowski. An experiment with Edinburgh LCF. In W. Bibel and R. Kowal-
ski, editors, 5th International Conference on Automated Deduction, volume 87 of
Lecture Notes in Computer Science, pages 170-181, New York, 1981. Springer-
Verlag.

C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system Coq.
Journal of Symbolic Computation, 15(5-6):607-640, 1993.

Lawrence Paulson. Proving termination of normalization functions for conditional
expressions. Journal of Automated Reasoning, 2:63-74, 1986.

N Shanker. Towards mechanical metamathematics. Journal of Automated Reason-
ing, 1(4):407-434, 1985.

