
Ensemble Tutorial

Mark Hayden, Ohad Rodeh
Copyright c© 1997 Cornell University, 2000 Hebrew University, 2002 IBM Israel Science and Technology

April 11, 2004

Abstract

Ensemble is a reimplementation of the Horus reliable group communication system in the
Objective Caml programming language. This document describes:

• How to configure and execute the applications included with Ensemble.

• The client application interface.

• The Server (OCaml) Ensemble application interface.

1

Contents

1 Introduction 4

2 Quick Installation 5
2.1 Compiling . 5
2.2 Configuration Variables . 5
2.3 Executing Applications . 5

I The Server 6

3 The Programs 7
3.1 Ensembled: the ensemble daemon . 7
3.2 Mtalk: Multi-person Talk . 7
3.3 Gossip: Group Locator Service . 7
3.4 Groupd: Membership Service (formerly called Domain) 7
3.5 Perf: Performance Tests . 8
3.6 Rand: Virtual Synchrony Debugging Tool . 9
3.7 Fifo: Fifo Communication Debugging Tool . 9
3.8 Armadillo: testing Ensemble security extensions . 9
3.9 Socktest . 10

4 Configuration 11
4.1 Command-line Arguments and Environment Variables 11
4.2 Gossip service configuration . 12
4.3 Transports . 13
4.4 Using Deering IP Multicast . 14
4.5 Notes and Problems . 14

5 Server ML Application Interface 15
5.1 Compilation . 15
5.2 Interface Definition and Initialization . 15
5.3 Actions . 17
5.4 The install callback . 18
5.5 View state . 18
5.6 Asynchronous operation . 20
5.7 Exit notice . 20
5.8 Properties . 21
5.9 Initializing Ensemble Applications . 24

6 Using PGP 27

7 Heterogeneous Transports 28
7.1 Code walk-through . 28
7.2 Design of the routers . 30

II The Client 32

2

8 Java Application Interface 33
8.1 The client state-machine . 35
8.2 Locking . 35
8.3 The View structure . 35
8.4 Join options . 36
8.5 Limitations . 37
8.6 Code examples . 38

9 C Application Interface 39

3

1 Introduction

This documentation assumes that the reader has some familiarity with group communication. There
are many texts that describe how to use and build group-communication system.

Ensemble is structured as a client-server system with a server providing group-communication
services through a socket based interface. Clients can connect to the server and send/receive reliable
point-to-point and multicast messages. There should be one server running on a host, and clients
should be located on the same host. This allows using insecure communication for client-server
traffic. The server is written (mostly) in the OCaml programming language, the client is a small
library that has implementations in several languages. At the time of writing there are clients in
C and Java.

Previous versions of the system did not distinguish between client and server. The client was
implemented with an internal server. This provides good performance. However, since the server is
written in ML, in order to link with a C program written by a user the foreign-language interface
of ML needs to be used. This causes very difficult portability issues. As of release 2.00 we decided
to separate client from server; this should improve portability at the expense of performance.

4

2 Quick Installation

Several demonstration applications are included with Ensemble. These can give a sense of the kinds
of facilities provided by group communication to those who have not used a group communication
toolkit before. The demos can also serve as starting points for building new applications. These
applications are briefly described here along with how to execute them and the various command-
line options and environment variables they use.

2.1 Compiling

Please see the file ensemble/INSTALL.htm for instructions on installing Ensemble if you have
not done so already.

2.2 Configuration Variables

Detailed information is given in Section 4.1 for initializing environment variables. We assume
that you will be using IP-multicast as a communication substrate this means no configuration is
neccessary. However, if multicast is not supported by your system you’ll be using the gossip server
for processes to locate each other, see Section 4.1 for more information.

Throughout this tutorial, we assume you are using the Unix csh or tcsh shell. To set an
environment variable in the bash shell you would do the following:

% export ENS_CONFIG_FILE=/etc/ensemble.conf

If you’re using a win32 system you will need to use the native environment-setting tool (start →
setting → control-panel → system → advanced → environment-variables) which provides similar
functionality.

2.3 Executing Applications

On the same or other hosts execute several instances of an application, such as demo/mtalk:

% mtalk
...

Applications should merge together and form a group.
Mtalk is a server-based program, this means that it is really on the server-side, not a client

application. Mtalk is useful for testing if servers on different machines can talk to each other and
merge to form groups. We discourage users from writing server-side programs, it is easier and safer
to write client-side programs.

5

Part I

The Server

This chapter describes how to build server-side programs. The reason users should be wary of
writing such programs is that the server operates in a soft read-time environment. The server is
written in the OCaml programming language, a single thread of execution is used. To improve per-
formance bulk-data for user messages is not allocated on the ML heap, which is garbage collection,
it is allocated on large chunks of memory allocated with malloc. Bulk-data extents are also called
io-vectors and the memory used to hold them is also called iovec-memory. To reduce server memory
foot-print the size of iovec-memory is limited, at the time of writing we are using 6 mega-bytes.
Since memory is limited memory-allocation can fail. The server handles this with flow-control
protocols limiting the amount of incoming messages to fit the amount of available iovec-memory.
In order to maintain responsiveness to incoming messages pure CPU processing (such as search on
a database) should be limited. If the messaging engine does not receive sufficient CPU every, say,
100 milliseconds then performance is going to suffer dramatically.

The casual user will be better served by the chapter on writing client programs that do not
suffer from these limitations. If, however, you are undaunted then this chapter is for you.

6

3 The Programs

Of the programs described here only mtalk, gossip, groupd, and ensembled, are normal programs.
The rest: perf, rand, fifo, socktest, and armadillo, are internal system tests not for use by the casual
user.

Notes:

• please note that warning and error messages printed by Ensemble are not prefixed with the
name of the program generating the message, but rather the name of the module.

3.1 Ensembled: the ensemble daemon

This is the ensemble daemon. By running a single instance of this program on a host all clients on
that host will be able to use Ensemble services.

3.2 Mtalk: Multi-person Talk

This is a multi-person talk demo. As mtalk processes are created, they merge into a single group.
Input typed at one process is broadcast to the rest of the processes in the group.

3.3 Gossip: Group Locator Service

This is not really an application. The gossip server works in conjunction with the Ensemble UDP
communication transport to simulate low-bandwidth gossip broadcast for systems that do not have
IP multicast. See the discussion on transports below. The group communication protocols require
some “gossipping” mechanism in order to detect and heal partitions in the system. When an
application wishes to gossip with other partitions, it broadcasts a message via the gossip servers.
This sends messages to the gossip servers. The gossip servers then forward the message to all
processes they have heard from recently to simulate a broadcast. When an application is using the
UDP transport and not the DEERING transport (DEERING is the default), it is necessary
for a gossip process to be running somewhere in the system.

3.4 Groupd: Membership Service (formerly called Domain)

Normally, Ensemble application groups implement their own group membership protocol. However,
they have the option of using the Ensemble membership service implemented by the groupd
application. groupd is a service for managing multiple process groups. It uses a core group of
Ensemble processes to participate in managing these groups. Clients connect to the service via
TCP connections, through which they request to join and leave groups. The service supports a
simple protocol through which the clients can obtain virtual synchronous properties. The service
also supports weaker properties that give faster membership notifications.

[We emphasize that Ensemble applications can operate independently of a mem-
bership service.]

Some of the benefits of using this service are:

• When there are no membership changes, the clients communicate directly between themselves,
so the membership service has no affect on performance.

• The service implements group membership for multiple groups. The costs of the group mem-
bership protocols (such as failure detection) are shared over the groups.

7

• Because applications are sharing the same membership service, they see consistent views and
failure detections.

• The client part of the protocol for implementing virtual synchrony is simple. Most of the
complexity is in the server. This allows client programs to be implemented in languages other
than ML, but save much of the programming burden because the servers handle the “hard”
group membership protocols. The client TCP interface is described in the Ensemble reference
manual.

• Applications that do not need the full virtual synchrony properties can use weaker synchro-
nization protocols and get faster view changes.

• The service allows groups to scale to larger sizes. The membership servers do not need to run
on all the hosts on which the clients run, so clients can be on more hosts than are normally
supported by Ensemble.

Executing Groupd: In order to run Groupd, set the ENS GROUPD PORT environment
variable to select the TCP port for the service to use. The membership service is executed through
the groupd application program:

% groupd

It takes command-line arguments similar to the other Ensemble demonstration programs. Normally,
each host runs a server.

Other demo applications use the service when the -groupd command-line argument is selected.
For example:

% mtalk -groupd

Note that you must have a groupd server running on the same host as mtalk for this to work.

3.5 Perf: Performance Tests

This program includes a variety of performance tests for Ensemble.

Ring: This test is run with the -prog ring option. Say that there are n members. Each process
first waits until there are n members. It then sends k messages, and waits for (n − 1)k messages
from other members. It measures the time for this, and does so a number of times to determine
the average and variance. This can be done for varying n, k, message size, and protocol.

The time between the rounds is a measure of latency. The total amount of data sent between
the rounds is a measure of bandwidth. The total number of messages sent between rounds is a
measure of throughput. For good measurements, set the parameters as follows:

measure k message size
latency 1 0
throughput large 0
bandwidth 1 large

Additional command-line arguments (with default values in parentheses):

-n # : number of members (2 members)

8

-s # : size in bytes of application messages (0 bytes)

-r # : number of rounds (300 rounds)

-k # : messages per round (1 message per round)

These values must be set by all members. All members must use the same values for all of the
arguments except message size.

[TODO: The other performance tests are undocumented.]

3.6 Rand: Virtual Synchrony Debugging Tool

This demo is used to test Ensemble. It uses simulated communication and introduces random
process failures to check for proper behavior of the group membership protocols.

3.7 Fifo: Fifo Communication Debugging Tool

This demo is used to test Ensemble. It uses simulated communication structured in such a way as
to trigger bugs in FIFO, reliable communication protocols.

3.8 Armadillo: testing Ensemble security extensions

This program tests Ensemble security features. It has several command line options:

-n # number of endpoints to create

-t # after what threshold to start the test

-prog which security to use? [policy,rekey,exchange,reg,prompt]

-pa simulate partitions?

-net run everything in a single process or run throughout the network

-real pgp use PGP for authentication? otherwise, simulate it.

-group set the group name

The “exchange” test checks that the Exchange layer functions correctly. For example, running:

% armadillo -n 20 -prog exchange

will create 20 endpoints with random intial keys. the endpoints should merge into one group after
a short while.

The “rekey” test creates a group and once its size is above the threshold it start rekeying it.
The test: Use: armadillo -n 7 -t 7 -prog rekey will create a group of 7 members and once
the group reaches this size, will start to rekey it.

To see what happens when the group partitions use: armadillo -n 5 -t 3 -prog rekey -pa.
This will create a group of 5 members and start partitioning and remerging the group. Everytime
the membership in a group component exceeds 3, the component leader will try rekeying it.

The “policy” test checks that Ensemble respects application trust policies. For example running:

% armadillo -n 7 -prog policy

9

will create a static group of 7 processes, numbered 0 through 6, and dynamically change the
endpoints trust policies. Ensemble forms subgroups according to the trust relationship. The policies
are designed to change in stages:

1. All endpoints trust each other.

2. All endpoints of the same (mod 2) trust each other. That is we have to trust domains:
{0, 2, 4, 6} and {1, 3, 5}.

3. All endpoints of the same (mod 3) trust each other. That is we have three trust domains:
{0, 3, 6}, {1, 4} {2, 5}.

The “prompt”, and “reg” tests are auxillary tests not related to security.

3.9 Socktest

This is a simple application that tests the soundness of the lower level Ensemble interface to sockets
and IP-multicast.

The current menu is as follows:

• [Join ipm addr] Join a multicast group.

• [Leave ipm addr] Leave a multicast group.

• [Cast ipm addr msg] Send a message to a multicast group.

• [Ttl num] set the time-to-live.

• [Loopback onoff] set the loopack. If this is on, then messages sent to a multicast group will
also be locally received.

• [Sendbuf size] Set the send-buffer size in the kernel. Normally, to little space is reserved in
the kernel for storing IP packets, therefore, it is common practice to increase it.

• [Recvbuf size] Same, as Sendbuf, only for received packets.

• [Nonblock onoff] set a socket to blocking or non-blocking mode.

10

4 Configuration

4.1 Command-line Arguments and Environment Variables

Ensemble applications typically support a variety of configuration parameters. Most of these can be
configured through command-line options as well as through setting environment variables. In all
cases, command-line options override environment variables. Look in appl/arg.ml for the author-
itative list of the configuration parameters. Some are listed below as command-line options. The
corresponding configuration variable for -group name (for example) is ENS GROUP NAME
(the name is capitalized and the ‘-’ is replace with ENS).

-modes arg : Set the default modes for an application to use. The modes are specified giving
their names in all-uppercase, each separated by single colons (‘:’) and no white-space.

-udp port port : set the default UDP port for Ensemble applications. For point to point UDP
communication, this is the port number Ensemble first tries to bind to for UDP communica-
tion (if it is already in use Ensemble will then fail). It can be set to any value. The default
is to let the operating system choose a port to use.

-host ip IP address: set the default IP address of the host for Ensemble applications. This allows
overriding the default IP-address of the machine, a useful option if the machine is connected
to several network interface cards (NICs) and has several IP addresses.

-deering port port : This is the port that Ensemble will use for Deering IP multicast communi-
cation (if enabled). All processes must use the same port number.

-gossip port port : sets the port that the gossip servers use.

-gossip hosts arg : sets the hosts where applications using UDP communication can look for
gossip servers. The value should be a colon-separated list of hostnames. The gossip server
application will only execute on these hosts. Note that you only have to execute a gossip
server on one of these hosts: applications will try each of the hosts in turn while looking for
a gossip server. However, multiple servers can be executed for increased availability.

-id name : used to give applications unique identifiers. Usually this is set to be your user id.
Setting this variable prevents Ensemble applications run by other users from interacting with
yours. In case you do want them to interact, you should set their variables to have the same
value. If using DEERING IP multicast, their -deering port variable should also be set to
the same value.

-groupd port port : sets the port that the membership groupd servers use.

-groupd hosts arg : sets the hosts that the membership groupd servers use. Format is the same
as for -gossip hosts.

-groupd : Use the membership service on the local host (see section 3.4. This option may override
others.

-group name name : Set the name of the application’s group. [Currently, only the ensemble
application supports this.]

-key key : Set the key to use for a particular application. All messages sent and received by the
application will be authenticated with this key.

11

-secure : Enable security enforcement. This prevents any insecure communication transports from
being initialized.

-add prop property : Adds a specific property to the Ensemble protocol stack. See Section 5.8
for more information on supported Ensemble properties.

-remove prop property : The dual of add prop.

-sock buf size : The size of socket buffers to request from the operating system. The default
size is 52428 (the traditional limit on Unix). If you are using Ensemble in high-performance
setting and are experiencing message loss, this is a parameter that should be increased.

-multiread : Enable multiple reads on sockets. The default is to receive and process one message
from the operating system at a time. Setting this will cause all available messages to be read
from sockets before processing any of them, which may reduce message loss due to buffer
overflow in the operating system.

-pollcount count : The number of times to query the operating system before blocking. Ensemble
blocks after checking (via the select() system call) the operating system for messages and
not finding any. Setting this to 1 will cause Ensemble to block immediately when there are no
more messages. Setting this to a large number will cause Ensemble to busy-poll for a longer
time before blocking.

The following configuration parameter can only be set as an environment variable.

ENS TRACE : enables module initialization tracing. With this set (to any value), modules print
out their names as they initialize. This is useful if an exception occurs during initialization
because because it enables you to narrow the problem down to one module.

Prior to version 1.42 all configuration variables were defined in the environment. This meant
that the environment-variable system was tainted with the various Ensemble configuration options.
Starting with version 1.42 configuration is handled using a configuration-file which is by default
$USER/ensemble.conf. To set this to a different file use the ENS CONFIG FILE environment variable.

Each line in the configuration file is either (1) a comment starting with # (2) an empty line (3)
a value binding where ensemble variable = value. For example:

Ensemble ID
ENS_ID=orodeh

The port used by Ensemble for transport
ENS_PORT=6790

The first operation an Ensemble process performs is to open and parse the configuration file.
Note that an option set in the configuration file takes effect for all your Ensemble processes.

4.2 Gossip service configuration

Not all platforms support IP-multicast. Furthermore, if you compile Ensemble without the default
native socket library you’ll be using OCaml’s networking library which, up to version 3.06, did not
support multicast. If you fall under any of these categories you’ll need to use the gossip service to
allow applications to locate each other.

12

ENS GOSSIP PORT must be set to a port number that is not used by other applications.
Normally, user applications cannot use port numbers below 1000. ENS GOSSIP HOSTS must
be set to a list of colon-separated host names where the gossip server may be found. If you wish to
use port 7500 for the gossip server on hosts “ely” and “natasha,” you would set these configuration
variables as follows (in the configuration file):

ENS_GOSSIP_PORT=7500
ENS_GOSSIP_HOSTS=ely:natasha

Applications will require a gossip server process to be running in order to contact each other.
Before executing an application, a gossip server must be started on one of the hosts listed in
ENS GOSSIP HOSTS:

% gossip
...

On the same or other hosts execute several instances of an application, such as demo/mtalk:

% mtalk
...

4.3 Transports

[If you are only using regular IP-multicast sockets for communication, then you do
not need to read this section.]

Perhaps the most confusing part of running Ensemble applications comes from selecting com-
munication transports. Communication transports are the bottom-most part of Ensemble and are
used for sending and receiving messages on a network. There are several ways this can be confus-
ing and often Ensemble cannot detect that there is a problem, so you do not get a warning. For
instance, if you configure an application so that one process is using UDP sockets for communica-
tion and another is using NETSIM, then the two processes will stall waiting for other processes to
communicate with them on their selected medium.

A confusing aspect of transport is that an application typically uses two different kinds of
transports: a primary transport and a gossip transport. Normal application communication is
all done over the primary transport, which must support point-to-point communication and may
also support multicast communication. Communication between different partitions of a group of
applications uses the gossip transport which must support “anonymous” multicast communication.

Applications occasionally send “gossip” messages with their gossip transport to the rest of
the “world” in order to inform other partitions about their presence. When two partitions learn
of each other, they can then merge the partitions together. After they have merged together,
they communicate over their primary transport. This gossip-and-merge mechanism is used when
applications first start up: an application creates its own singleton group and then merges with
any other already existing partitions through gossiping and merging. Thus, if there is a problem
with the gossip transport, you will tend to have a bunch of applications in singleton groups that
never merge. If there is a problem with the primary transport, the merging will occur, but then
the various members will be unable to communicate. This will cause them to repeatedly break into
partitions (when they decide that the other members must have failed) and then re-merge again.

The various primary and gossip transports are presented in the following table. The “P” and
“G” columns specify whether a transport can be used for primary communication and/or gossip
communication.

13

transport P G description
UDP

√ √
UDP (+ gossip server)

DEERING
√ √

UDP/IP multicast
NETSIM

√ √
network simulator

The NETSIM transports are used only in applications that are simulating the behavior of a
group inside a single process. The rand and fifo demos use this, for instance. All other currently
supported modes run over IP. UDP requires running the gossip server.

There are several ways to change the communication transports that Ensemble uses. These are
listed below in order of highest “precedence.”

1. Command-line argument: with the -modes argument (see the command-line argument doc-
umentation).

2. Application setting: a particular application may differ from the Ensemble defaults.

3. Environment variable: ENS MODES variable (see the environment variable documentation
below).

4. Ensemble defaults: DEERING.

4.4 Using Deering IP Multicast

Deering IP Multicast is the default configuration. If your machines support IP multicast commu-
nication, it is preferable to use DEERING transports because you will then not have to run the
gossip server with Ensemble applications. IP multicast is only available when using the Socket
library. It is not currently supported by the native OCaml library. The configuration parame-
ters pertaining to Deering are ENS MODES and ENS DEERING PORT. To modify their default
settings use:

ENS_DEERING_PORT=1234
ENS_MODES=DEERING

You can try out the IP multicast transport by using the command-line arguments. For example:

% mtalk -modes DEERING

4.5 Notes and Problems

See also the problems mentioned in the Ensemble reference manual.

IP Multicast problems : Some problems may occur with IP Multicast. The time-to-live value
for multicast messages may be too small in some environments, preventing multicast messages
from reaching all members. The TTL value can be adjusted by editing the file
socket/s/PLATFORM/multicasts.c.

Variation in site configuraiton : IP-multicast may be misconfigured or disabled for security
reasons on your site. You’ll need to use the gossip service in this case. To do so set:

ENS_MODES=UDP

This will tell the system to use UDP instead of DEERING.

14

5 Server ML Application Interface

[TODO: add example handlers from mtalk]
We present a simple interface for building single-group applications. This interface is intended

to make small applications easy to build, and to protect users from complications in the internals
of the system.

The interface is implemented as a set of callbacks the application provides to Ensemble. The
application is notified through these callbacks (in a similar fashion to callbacks with Motif widgets)
of events that occur in the system, such as message receipts and membership changes.

The interface for a member of a group is always in one of two states, blocked or unblocked.
While unblocked, only the recv send, recv cast, and heartbeat callbacks are enabled. This is
the normal state of the system. While block, the application should refrain from sending messages.
However, it can send messages, causing the system to fail with the notification “sending while
blocked”.

Messages are sent by returning from these callbacks lists of actions to take. An action is usually
a message send: either a Cast (group broadcast) or a Send (point-to-point message). Thus,
messages are delivered by callbacks from Ensemble and further messages are sent by returning
values from these callbacks.

5.1 Compilation

Compiling ML applications is easy. You can use demo/Makefile as a skeleton for your own
applications.

5.2 Interface Definition and Initialization

Below is the full ML interface type definition for the application interface described here. A group
member is initialized by creating an interface record which defines a set of callback handlers for
the application. This is then passed to one of the Ensemble stack initialization functions exported
by appl/appl.mli.

15

(* Some type aliases.
*)
type rank = int
type view = Endpt.id list
type origin = rank
type dests = rank array

type control =
| Leave
| Prompt
| Suspect of rank list

| XferDone
| Rekey of bool
| Protocol of Proto.id
| Migrate of Addr.set
| Timeout of Time.t (* not supported *)

| Dump
| Block of bool (* not for casual use *)
| No_op

type (’cast_msg,’send_msg) action =
| Cast of ’cast_msg
| Send of dests * ’send_msg
| Send1 of rank * ’send_msg
| Control of control

16

(* APPL_INTF.New.full: The record interface for applications. An
* application must define all the following callbacks and
* put them in a record.
*)

type cast_or_send = C | S
type blocked = U | B

type ’msg naction = (’msg,’msg) action

type ’msg handlers =
flow_block : rank option * bool -> unit ;
block : unit -> ’msg naction array ;
heartbeat : Time.t -> ’msg naction array ;
receive : origin -> blocked -> cast_or_send -> ’msg -> ’msg naction array ;
disable : unit -> unit

type ’msg full =
heartbeat_rate : Time.t ;
install : View.full -> (’msg naction array) * (’msg handlers) ;
exit : unit -> unit

}

5.3 Actions

Some callbacks allow a (possibly empty) array of actions to be returned. There are 4 different kinds
of actions:

Cast(msg) : Causes msg to be broadcast to the group.

Send(dests,msg) : Causes msg to be sent to a subset of the group specified in dests. dests is
an array of ranks.

Send1(dest,msg) : Same as Send, but sends msg to a single destination. This is slightly more
efficient for single destinations.

Control c : This bundles together all control actions. There are several of these:

Leave : Causes the member to leave the group. There should always be at most one Leave
action returned in an action array.

Prompt : Ask the system to perform a view-change immediately.

XferDone : Signals that this member has completed its state transfer. If a state transfer
layer is in the protocol stack, this will trigger a new non-state transfer view after all
members have taken an XferDone action.

Rekey opt : Ask the system to rekey itself. This should be done in case the current key
may have been compromised, for example, if a previously trusted member should be

17

expelled. The opt parameter describes whether previously constructed pt-2-pt session
keys can be used to optimize this operation, or whether this is disallowd. For the casual
user, the optimized version (opt = false) should be used.

Protocol(protocol) : Requests a protocol switch. If the stack supports protocol switches,
a new view will be triggered.

Dump : Causes some debugging output to be printed by the stack in use. The output
depends greatly on the protocol stack.

The rest of the actions are not intended for the casual user, they are either not supported,
badly supported, or used by system internals.

5.4 The install callback

Whenever a new view is installed, the application install callback is called. This handler describes
several callbacks:

type ’msg handlers =
flow_block : rank option * bool -> unit ;
block : unit -> ’msg naction array ;
heartbeat : Time.t -> ’msg naction array ;
receive : origin -> blocked -> cast_or_send -> ’msg -> ’msg naction array ;
disable : unit -> unit

flow block source onoff is called whenever there are flow control issues. The onoff value
describes whether communication on the specific channel can resume, or should be held back mo-
mentarily until communication problems are resolved. If the source is None, then the problematic
channel is multicast, if it is Some(rank) then there are issues with the point-to-point connection
between this endpoint, and endpoint rank.

block () is called to notify the application to stop sending messages, because a view change is
pending. It is an error to send messages from now on, until a new view is installed, and install
will be called again.

heartbeat current time is regularly called by Ensemble when the application is unblocked.
The expected rate of heartbeats is specified through the heartbeat rate field of the interface
record. The return values for all of these callbacks is an action array.

receive origin bk cs msg is called when a message has been received. The callback is made
with the origin of the message, the current block state (bk), if this is a Cast of Send message (cs)
and the message itself.

The install callback is called with the current view state, it returns a set of 5 handlers, and also
a set of actions to be performed immediatly. It is wrapped up in a structure bundling the heartbeat
rate, exit function (see below), and itself.

5.5 View state

Several callbacks receive as an argument a pair of records with information about the new view.
The information is split into two parts, a View.state and a View.local record. The first contains
information that is common to all the members in the view, such as the view of the group. The
same record is delivered to all members. The second record contains information local to the
member that receives it. These fields include the Endpt.id of the member and its rank in the

18

view. It also contains information that is derived from the View.state record, such as nmembers
with is merely the length of the view field.

(* VIEW.STATE: a record of information kept about views.
* This value should be common to all members in a view.
*)
type state =

(* Group information.
*)
version : Version.id ; (* version of Ensemble *)
group : Group.id ; (* name of group *)
proto_id : Proto.id ; (* id of protocol in use *)
coord : rank ; (* initial coordinator *)
ltime : ltime ; (* logical time of this view *)
primary : primary ; (* primary partition? (only w/some protocols) *)
groupd : bool ; (* using groupd server? *)
xfer_view : bool ; (* is this an XFER view? *)
key : Security.key ; (* keys in use *)
prev_ids : id list ; (* identifiers for prev. views *)
params : Param.tl ; (* parameters of protocols *)
uptime : Time.t ; (* time this group started *)

(* Per-member arrays.
*)
view : t ; (* members in the view *)
clients : bool Arrayf.t ; (* who are the clients in the group? *)
address : Addr.set Arrayf.t ; (* addresses of members *)
out_of_date : ltime Arrayf.t ; (* who is out of date *)
lwe : Endpt.id Arrayf.t Arrayf.t ; (* for light-weight endpoints *)
protos : bool Arrayf.t (* who is using protos server? *)

19

(* VIEW.LOCAL: information about a view that is particular to
* a member.
*)
type local =

endpt : Endpt.id ; (* endpoint id *)
addr : Addr.set ; (* my address *)
rank : rank ; (* rank in the view *)
name : string ; (* my string name *)
nmembers : nmembers ; (* # members in view *)
view_id : id ; (* unique id of this view *)
am_coord : bool ; (* rank = vs.coord? *)
falses : bool Arrayf.t ; (* all false: used to save space *)
zeroes : int Arrayf.t ; (* all zero: used to save space *)
loop : rank Arrayf.t ; (* ranks in a loop, skipping me *)
async : (Group.id * Endpt.id) (* info for finding async *)

(* LOCAL: create local record based view state and endpt.
*)
val local : debug -> Endpt.id -> state -> local

Most of the fields are moderately self-explanatory. If xfer view is true, then this view is only
for state transfer and all members should take an XferDone action when the state transfer is
complete. The view field is defined as View.t, which is:

(* VIEW.T: an array of endpt id’s.
*)
type t = Endpt.id Arrayf.t

5.6 Asynchronous operation

The application can only send messages when handling a callback. Under some circumstances (such
as when receiving input from another source), it is necessary to send messages immediately rather
than waiting for the next regularly scheduled heartbeat to occur. Call the function Appl.async
with the group and endpoint of the group. This returns a function that can be called whenever an
immediate hearbeat is desired. [This replaces the previous heartbeat now callback.]

let async = Appl.async (group,endpt) in
async ()

5.7 Exit notice

Called when the member has left the group (through a previous Leave action). This is the last
callback the group member will receive.

exit : unit -> unit ;

20

5.8 Properties

The Ensemble Property module is used to construct protocols based on desired properties the ap-
plication wants. You can look at appl/property.mli for the various properties that are supported
by Ensemble:

type id =
| Agree (* agreed (safe) delivery *)
| Gmp (* group-membership properties *)
| Sync (* view synchronization *)
| Total (* totally ordered messages *)
| Heal (* partition healing *)
| Switch (* protocol switching *)
| Auth (* authentication *)
| Causal (* causally ordered broadcasts *)
| Subcast (* subcast pt2pt messages *)
| Frag (* fragmentation-reassembly *)
| Debug (* adds debugging layers *)
| Scale (* scalability *)
| Xfer (* state transfer *)
| Cltsvr (* client-server management *)
| Suspect (* failure detection *)
| Flow (* flow control *)
| Migrate (* process migration *)
| Privacy (* encryption of application data *)
| Rekey (* support for rekeying the group *)
| Primary (* primary partition detection *)
| Local (* local delivery of messages *)
| Slander (* members share failure suspiciions *)
| Asym (* overcome asymmetry *)

(* The following are not normally used.
*)

| Drop (* randomized message dropping *)
| Pbcast (* Hack: just use pbcast prot. *)
| Zbcast (* Use Zbcast protocol. *)
| Gcast (* Use gcast protocol. *)
| Dbg (* on-line modification of network topology *)
| Dbgbatch (* batch mode network emulation *)
| P_pt2ptwp (* Use experimental pt2pt flow-control protocol *)

Here is a short description of some of the properties:

• Gmp: Group Membership Properties.

• Sync: Synchronizes messages on view changes to ensure view synchrony.

• Total: Broadcast messages are totally ordered in the group.

• Heal: Group partitions are healed.

21

• Switch: Allows on-the-fly protocol switching.

• Auth: Allows only authenticated and authorized members into the group. Creates secure
agreement in the group on a mutual group key. This key is used to sign and verify, using
keyed-MD5, all group messages. This protects the group from outisde attack.

• Rekey: Allows rekeying the group.

• Privacy: Encrypts all user messages.

• Causal: Broadcasts are causally ordered.

• Subcast: Point-to-point messages are sent using filtered broadcasts. Guarantees FIFO order-
ing between broadcasts and point-to-point messages.

• Frag: Message fragmentation. Allows messages of any size to be sent.

• Debug: Inserts a variety of “assertion” protocols that check that other properties are being
met.

• Scale: Switches some protocols with more scalable versions.

• Xfer: Causes the state transfer field (xfer) of view states to be set.

• Cltsvr: Causes the clients field of view states to be set according to whether members are
“clients” or “servers”.

• Suspect: Members watch other members for suspected failures.

• Zbcast: A probabilistic multicast protocol, does not guaranty virtual syncrhony. Has been
used for experimental studies. See the Cornell Spinglass system for more details.

• Gcast: A protocol that simulates IP-multicast useing a binary tree of pt-2-pt connections
between group members.

The Property.choose function selects a protocol stack based on a list of desired properties
(you can examine the implementation to see exactly how this is done):

(* Create protocol with desired properties.
*)
val choose : id list -> Proto.id

The default properties used for Ensemble applications is Property.vsync. This is one of a
variety of predefined protocol property lists defined in the Property module:

let vsync = [Gmp;Sync;Heal;Migrate;Switch;Frag;Suspect;Flow]
let total = vsync @ [Total]
let scale = vsync @ [Scale]
let fifo = [Frag]

In order to set the properties used by an application, you would use the following code:

22

(* Choose default view state.
*)
let vs = Appl.default_info "my-appl" in

(* Select desired properties.
*)
let properties = [(* list of properties *)] in

(* Choose corresponding protocol stack.
*)
let proto_id = Property.choose properties in

(* Set proto_id of the view state record.
*)
let vs = View.set vs [Vs_proto_id proto_id] in

(* Configure the application
*)
Appl.config_new my_interface vs ;

As described in the reference manual, each of these protocols are derived by combining a set of
protocol layers together to get a full protocol stack with application-level properties. Anyway, here
we describe the behavior of the vsync protocol stack.

• The first callback a protocol stack receives is an install with a singleton view.

• All members in the same partition of a group receive the same View.state records (excepting
the rank field, of course).

• Send messages are delivered reliably and in FIFO order. It is an error for a member to send
a message to itself.

• Cast messages are delivered reliably and in FIFO order. FIFO order for Cast messages
means that members receive the messages in the order they were sent by the sender. Cast
messages are usually not delivered to the sender (the primary exceptions are stacks with
total-ordering layers in them).

• There is no ordering relationship between Send and Cast messages.

• Messages are delivered in the same view they were sent in (the protocol stack “blocks” so
that the protocols can flush all the current messages out of the system before advancing to
the next view).

• Cast messages are delivered atomically. This means that either all members (excepting the
sender) or none will receive a Cast message. If the sender of a Cast message fails, other
members who received the message will retransmit it for the failed member. When there is
more than one member in a group, a Cast message may be delivered to no members only if
the sender fails.

23

• All members that receive the same consecutive views (they get the same install upcalls will
have delivered the same set of Cast messages between the upcalls (but not necessarily in
the same order). Thus views can be considered as synchronization points where all members
agree on what has been done so far.

5.9 Initializing Ensemble Applications

This is a description of how simple applications are initialized with Ensemble. The source code
presented here is extracted from the mtalk demo, which is distributed with Ensemble. The source
can be found in demo/mtalk.ml which compiles and links with the Ensemble library to form the
demo/mtalk executable.

An application consists of two parts, initialization and an interface. The initialization involves
setting up Ensemble and the communication framework. An interface consists of a set of callback
handlers that manage application events that Ensemble generates for messages and membership
changes. The initialization code tends to be similar across applications, and the handlers tend
to contain most of the application-specific functionality. We present a sample set of initialization
code, which can easily be adapted for other simple applications. We do not describe the callback
handlers here; they are described in section 5. For specific examples, see demo/mtalk.ml and
demo/rand.ml.

let run () =
(*
* Parse command line arguments.
*)
Arge.parse [

(*
* Extra arguments can go here.
*)

] (Arge.badarg name) "mtalk: multiperson talk program" ;

(*
* Get default transport and alarm info.
*)
let view_state = Appl.default_info "mtalk" in

let alarm = Alarm.get_hack () in

The initialization must do several things, all of which can be contained in a single function, as shown
here with the function run. First parse the command-line arguments as is done above. In addition
to arguments provided by the applicatoin, this parses the standard Ensemble arguments. Then,
default info is called. This initializes a View.state record (which contains all the information
other modules need to initialize your application).

24

(*
* Choose a string name for this member. Usually
* this is "userlogin@host".
*)
let name =

try
let host = gethostname () in

(* Get a prettier name if possible.
*)
let host = string_of_inet (inet_of_string host) in
sprintf "%s@%s" (getlogin ()) host

with _ -> view_state.name
in

(*
* Initialize the application interface.
*)
let interface = intf name alarm in

Next we initialize the interface record that contains the application’s handlers and which does
the actual work of the application. How the interface is initialized is application dependent. For
example, interface will usually require several arguments. In the mtalk application, the interface
takes the endpoint identifier of the application and a string name to use for this member of the
talk group. Other applications will use different arguments.

(*
* Initialize the protocol stack, using the interface and
* view state chosen above.
*)
Appl.config_new interface view_state ;

The code above initializes the protocol stack. In this case we use the vsync protocol properties,
which provide FIFO, virtually-synchronous communication and an automatic merging facility for
healing partitions. There are several different sets of properties by the appl/property.mli module,
each of which provides different properties or performance characteristics (for more information
about properties, see section 5.8).

(*
* Enter a main loop
*)
Appl.main_loop ()
(* end of run function *)

(* Run the application, with exception handlers to catch any
* problems that might occur.
*)

let _ = Appl.exec ["mtalk"] run

25

The initialization is complete and we enter a main loop. The main loop never returns. The final
code calls the run function with some standard exception handlers to catch any exceptions that
should not, but may, occur.

This is all that is required for initializing simple, single-group Ensemble server applications.

26

6 Using PGP

The Ensemble server supports the use of PGP for authenticating members of groups. This work
is complete, and several papers have been pusblished with our results. We do not guarantee bullet
proof security, however, we do not know of any remaining security bugs. All the Ensemble demo
applications support the use of PGP, for exmaple, mtalk.

Only the server-side needs to worry about security, the client is on the same host as the server
so no special measures are needed to protect client-server communication. Security is needed for
host-to-host traffic. To set up a secure static a client needs to supply a principal name and specify
that it wants security enabled.

These are the instructions for using PGP. Note that PGP is supported for all platforms.

• The pgp binary must be in your path. Ensemble executes PGP as a subprocess for authenti-
cating remote members. If you do not yet have a PGP keyring, read the PGP documentation
on how to set all this up.

• You must set the PGPPASS environment variable to contain your secret key pass phrase.
See the PGP documentation for more information.

• -pgp user : command line argument. This tells Ensemble what this user’s name is for PGP
other processes will use this name to select the public key to use for authenticating you.

• -key sharedkey: command line argument. This sets the shared key conversation key that
Ensemble will use initially. It should be at least 32 characters long.

• -add prop Auth: command line argument. This adds the Auth property to the default
Ensemble properties. This then causes the EXCHANGE protocol to be used in the protocol
stack for exchanging shared keys.

Now when you run an application only members that start with the same shared key or who
can authenticate each other through PGP will merge into the same group.

If you run into problems, you can access PGP’s debugging output through the additional
command-line arguments, -trace PGP.

27

7 Heterogeneous Transports

Complete this section
Ensemble provides a flexible infrastructure for sending communication across a variety of dif-

ferent communication transports. Not only can different groups use different communication trans-
ports, but a single group can support communication on multiple transports at the same time.

The design of the transport module is split into three parts:

The socket module:
Low-level system calls: send, sendto, recv etc., implemented in a system-independent fash-
ion. The socket directory contains the code. socket/u is a simple-minded implementation
that uses the Ocaml Unix library directly. A more efficient version is located in socket/s,
where native OS io-vector send/recv facilities are used.

Transports:
Self registering transports: Deering, UDP, TCP, NETSIM. These use the low-level socket
module calls to provide an abstract transport.

Routers:
Uses a communication transport to build Ensemble specific send/recv capabilities. Length
field, group id, and endpoint rank are added to each outgoing message. Basic parsing is
performed on received messages and sender rank, group, and message length are extracted.

There are several routers in the route subdirectory. signed.ml adds a 16-byte MD5 checksum
to each outgoing message. An agreed group-secret is used to key MD5, providing group
authentication. Incoming messages are stripped of this header, and verified. unsigned.ml is
the vanilla router.

The user can choose to use either one of the socket module implementations. The socket mod-
ule interface is defined in socket/socket.mli. The unoptimized socket implementation (usocket)
represents message data as a Caml string and benefits from native garbage collection. Its disadvan-
tage is reduced performance. The optimized socket library (ssocket) uses native C io-vectors, and
native operating-system scatter-gather message send/receive facilities. This provides much better
performance, and zero-copy integration with C applications. The disadvantage is more difficult
integration with native ML values.

The transports are defined the trans subdirectory. UDP in trans/udp.ml, TCP in trans/tcp.ml,
DEERING in trans/ipmc, and NETSIM in trans/netsim.

The route subdirectory contains three routes: signed, unsigned, and bypass.

7.1 Code walk-through

To provide better understanding of the design this section walks through a configuration of the
unsigned router, UDP transport, and optimized socket library. We shall start from the bottom and
work our way up.

In file server/socket/s/nt/sendrecv.c, there is code for sending an array of C io-vectors and
part of an ML string for win32. The function takes five arguments:

• info v : a structure describing a list of remote targets and a socket through which to send
messages.

• prefix v : an ML string that prefixes the data

28

• ofs v, len v: the offset and length of the prefix to send

• iova a : an array of io-vectors wrapped in an ML representation

value skt_udp_mu_sendsv(
value info_v,
value prefix_v,
value ofs_v,
value len_v,
value iova_v
) {

int naddr=0, i, ret=0, len=0;
ocaml_skt_t sock=0 ;
skt_sendto_info_t *info ;
int nvecs = Wosize_val(iova_v) ;

// Extract the set of addresses
info = skt_Sendto_info_val(info_v);

// Prepare the header
skt_prepare_send_header(send_iova, peek_buf, Int_val(len_v), skt_iovl_len(iova_v));

// Prepare the iovectors
skt_add_ml_hdr(send_iova, 1, prefix_v, ofs_v, len_v);
skt_gather(send_iova, 2, iova_v) ;

sock = info->sock ;
naddr = info->naddr ;

for (i=0;i<naddr;i++)
// Send the message. Assume we don’t block or get interrupted.
ret = WSASendTo(sock, send_iova, nvecs+2, &len, 0,
&info->sa[i], info->addrlen, 0, NULL);
if (SOCKET_ERROR == ret) skt_udp_error("skt_udp_mu_sendsv");

return Val_unit;
}

The mu prefix is added to this function because it uses the Ml/User convention for sending
data. Each data packet is split into:

ML header length: Describes the length of the ML header. of length four bytes.

User data length: Describes the length of the user data. of length four bytes.

ML header: the ML header itself. Variable size.

User data: user data. Variable size.

29

The function builds a header of size eight that includes two integers: (a) ml-header length
(b) io-vector length in network byte order. The header is the first in an array of io-vectors that
includes in second place the ML-header, and then the array of user io-vectors. Once the io-array is
assembled it is sent to each destination in the list using the native OS API.

skt udp mu sendsv is hidden inside the socket library, and can safely be used using Socket.udp mu sendsv.
The sendto info structure can be created from an array of target socket addresses, and a sending
socket.

type sendto_info
val sendto_info : socket -> Unix.sockaddr array -> sendto_info

val udp_mu_sendsv : sendto_info -> buf -> ofs -> len -> Iov.t array -> unit

The Hsys module makes access to sendtovs safer, and changes its type:

val udp_mu_sendsv : sendto_info -> Buf.t -> ofs -> len -> Iovecl.t -> unit

(* Implementation *)
Socket.udp_mu_sendsv info

(Buf.string_of buf) (Buf.int_of_len ofs) (Buf.int_of_len len)
(Iovecl.to_iovec_array iovl)

Core Ensemble code, including the routers, does not use Socket calls directly. Rather, it uses the
Hsys module which wraps all calls with a more type safe interface. Separate types are used for
length, offset, io-vector, and buffer.

The UDP implementation at trans/udp.ml uses Hsys in the transmit function called x.

let x hdr ofs len iovl =
Hsys.sendtosv dests hdr ofs len iovl;
Iovecl.free iovl

The io-vector array is freed after the message is transmitted. The reference count for an iovec-
array is decremented on two occasions: (1) it is sent on the network (2) it is handed to an application,
and the callback has completed. The iovec refcount is initially set to one when the application sends
it, and it is henceforth incremented whenever a copy of it created. Ultimately, the refcount will be
decremented when the stability detection protocol determines that all group members received the
message.

7.2 Design of the routers

Many endpoints belonging to different groups can coexist in a single Ensemble process. Each
endpoint is identified by its connection identifier. The internal representation of this id is given in
module Conn:

30

type id = {
version : Version.id ;
group : Group.id ;
stack : Stack_id.t ;
proto : Proto.id option ;
view_id : View.id option ;
sndr_mbr : sndr_mbr ;
dest_mbr : dest_mbr ;
dest_endpt : dest_endpt option

}

The id is mapped into a string using the Route.pack of conn function. Ensemble uses MD5
for this mapping. The probability of a collision, i.e., for two different endpoints to map onto a
single string, is 2−64 which is sufficient for our purposes.

val pack_of_conn : Conn.id -> Buf.t

The purpose of the route module is to create a single interface to these various endpoints. The
main type exported is handlers. This is essentially a large array holding the set of connection
identifiers and the delivery function for each of them. When a message is received by the bottom-
most part of the system, it is parsed by the socket code into an ML header that is a string, and
the rest of the message which is received into a C-iovector. This information is later fed into the
deliver function.

val deliver : handlers -> Buf.t -> Buf.ofs -> Buf.len -> Iovecl.t -> unit

Deliver takes the current set of handlers, and a message, figures out which endpoints need to
receive this message and calls the appropriate handlers.

A transmission function is abstracted as a type xmitf:

(* transmit an Ensemble packet, this includes the ML part, and a
* user-land iovecl.
*)
type xmitf = Buf.t -> Buf.ofs -> Buf.len -> Iovecl.t -> unit

The Router module has an API allowing the creation of send/recv functions for connection-ids.
It also allows installing and deleting such functions. The unsigned router is a simple example of
using this functionality to create the basic, insecure, router. It defines function f:

val f : unit ->
(Trans.rank -> Obj.t option -> Trans.seqno -> Iovecl.t -> unit) Route.t

This router will allow users to send (1) sender rank (2) ML object (3) sequence number and (4)
a user iovector array. The body of the code calls Route.create where it mainly needs to define
how it plans on handling blast and merge. Blast is how to send messages, merge is how to receive
a message on behalf of several connection ids.

31

Part II

The Client

The client library (or simply the “client”) implements a message-passing protocol between server
and user. The protocol used is described in the reference manual. The client-library has no internal
threads. No message-memory is allocated by the client, all messages are allocated and freed by
the user. This gives the user complete control on its memory foot-print. The client is thread-
safe, several threads can send/recv messages concurrently. Blocking socket operations are used to
simplify client semantics.

In order to use the client-library the user application must first connect to the server. It can
then create group members and perform a subset of Ensemble actions: Leave, Cast, Send, Send1,
Suspect. There are other Ensemble operations that we decided not to support since they add more
complexity than value.

The application must poll Ensemble periodically to see if there are any pending messages,
and receive them. In the past, it was possible for the application not to receive messages while
continuing to create new actions. This is now not possible. The application will be blocked at some
point before flooding the server.

32

8 Java Application Interface

The API is constructed from a namespace named Ensemble and several public classes the major of
which are: View, JoinOps, Message, Connection, and Member.

View: The View class describes a group membership view.

JoinOps: The JoinOps class contains a specification for a new member for Ensemble to create.

Message: The Message class describes a message received from Ensemble. A Message can be:
a new View, a multicast message, a point-to-point message, a block notification, or an exit
notification.

Connection: The Connection class implements the actual socket communication between the
client and the server. It has three public methods the application has to use.

public class Connection {
public bool Poll();
public Message Recv();
public void Connect ();

}

The application can open several Ensemble connections, however, a single connection should
suffice. No action can be taken on a connection that has not connected to the server through
the Connect call. Once connected the application can receive messages through the Recv
method. Recv is a blocking call, in order to check first that there are pending messages the
non-blocking Poll method should be used.

Member: The Member class embodies an Ensemble group member. A member can join a single
group, no more. A Member can be in several states:

Pre: The initial status in which all members are created. The class constructor sets this as
the default.

Joining: Joining a group is an asynchronous operation. A member is in the Joining state
from the time it attempts to join, until when it receives a View message with the initial
group membership.

Normal: Normal operation state. The member is a regular resident in the group. It can
send/mcast messages and perform all other Ensemble operations.

Blocked: The member is currently blocked, and temporarily cannot perfrom any action.
This state is achieved by sending a BlockOk in response to a Block request.

Leaving: The member has requested to leave the group. Leave is an asynchronous operation,
the Leaving state captures the time between the Leave request and the final leaving of
the group. It is possible for a member to receive a Block message after it has requested
to leave the group. The member should not respond with a BlockOk, it is in the process
of being removed from the group.

Left: The member has left the group and is in an invalid state

33

public class Member {
public enum Status {

Pre, // the initial status
Joining, // we joining the group
Normal, // Normal operation state, can send/mcast messages
Blocked, // we are blocked
Leaving, // we are leaving
Left // We have left the group and are in an invalid state

};

public View current view ; // The current view
public Status current status = Status.Pre; // Our current status

The member state can be learned by examining the current status field. The current view
the member is part of is in the current view field.

Prior to any action, the member has to join a group.

// Join a group with the specified options.
public void Join(JoinOps ops);

The set of operations allowed on a member in Normal state is:

Leave: Leave a group. This should be the last call made to the member It is possible for
messages to be delivered to this member after the call returns. However, it is illegal to
initiate new actions on this member.

public void Leave();

Cast: Send a multicast message to the group.

public void Cast(byte[] data);

Send: Send a point-to-point message to a list of members.

public void Send(int[] dests, byte[] data);

Send1: Send a point-to-point message to the specified group member.

public void Send1(int dest, byte[] data);

Suspect: Report group members as failure-suspected.

public void Suspect(int[] suspects);

34

BlockOk: Send a BlockOk

public void BlockOk();

8.1 The client state-machine

Each group member moved inside a state-machine that has a very clear set of rules. Initially, it
is in the Pre state. After asking to join a group, it is in the Joining state. When the first view
arrives it is in the Normal state. In the Normal state and prior to a view-change Ensemble will
send a Block message to the member. The member has to reply with a BlockOk action. After the
BlockOk the member is in the Blocked state until the next view. When the next view is received
is moves back to the Normal state. Upon a Leave request the member moves to the Leaving state
which turns into Left after the Exit message arrives.

8.2 Locking

All Connection and Member method calls are thread-safe. However, accessing the public Member
fields such as the current view and current status should be done while holding the connection
lock. All Ensemble actions, except Join, can be performed only on a group-member that is in the
Normal state. A multi-threaded application may need to synchronize its access to the client library
so as to avoid a situation where one thread sends a BlockOk and another thread sends message on
the group later. The connection lock should be used for synchronization purposes.

For example:

synchronization (conn)
{

if (memb.current_status == Member.Status.Normal)
memb.Cast("hello world");

else
System.out.Println("Blocked currently, please try again later");

}

Replying to Block message with a BlockOk and moving to the Blocked state can be done
asynchronously. This gives the application a chance to send any pending messages prior to moving
to the Blocked state. Depending on the application, this may allow the programmer to avoid
locking.

8.3 The View structure

The view structure is composed of several fields describing the members of the current membership.

35

public class View {
public int nmembers;
public String version; /** The Ensemble version */
public String group; /** group name */
public String proto; /** protocol stack in use */
public int ltime; /** logical time */
public boolean primary; /** this a primary view? */
public String parameters; /** parameters used for this group */
public String[] address; /** list of communication addresses */
public String[] endpts; /** list of endpoints in this view */
public String endpt; /** local endpoint name */
public String addr; /** local address */
public int rank; /** local rank */
public String name; /** My name. */
public ViewId view_id; /** view identifier */

}

nmembers: The number of members.

version: The Ensemble version

group: The name of this group. This was chosen by the user when he joined the group.

proto: The names of all the layers in the Ensemble stack.

ltime: The logical time of the view.

primary: It this a primary view?

parameters: The set of additional parameters used for this stack. These were chosen by the user
when he joined the group.

address: The list of communication addresses of group members. Currently, this lists the addresses
of servers not the clients.

endpts: list of endpoints in this view.

endpt: my endpoint name.

addr: my communication address.

rank: my rank.

name: My name. Does not change through the lifetime of this member.

view id: The view identifier.

8.4 Join options

The join-options structure is used to specify which group an endpoint should join.

36

public class JoinOps {
public String group_name = null; /** group name. */

/** The default set of properties */
public final String DEFAULT_PROPERTIES = "Vsync";
/** requsted list of properties. */
public String properties = DEFAULT_PROPERTIES;

public String parameters = null; /** parameters to pass to Ensemble. */
public String princ = null; /** principal name */
public boolean secure = false; /** a secure stack? */

}

group name: The group name to join.

properties: The set of properties requested. The most oftenly used property is Vsync which en-
sures virtually-synchronous point-to-point communication. The other commonly used prop-
erties are:

Total: totally ordered multicast messages

Auth: Authenticate members and MAC all group-messages.

Scale: use scalable protocols. Useful if there are more than 12 machines in the group.

See section 5.8 for more information.

parameters: An additional set of parameters controlling the stack.

princ: The client principal name. This is used only for secure stacks. It can be left null otherwise.

secure: Should the stack be secure?

8.5 Limitations

There are several limitations on argument sizes.

private final int ENS_DESTS_MAX_SIZE= 10;
private final int ENS_GROUP_NAME_MAX_SIZE= 64;
private final int ENS_PROPERTIES_MAX_SIZE= 128;
private final int ENS_PROTOCOL_MAX_SIZE= 256;
private final int ENS_PARAMS_MAX_SIZE= 256;
private final int ENS_ENDPT_MAX_SIZE= 48;
private final int ENS_ADDR_MAX_SIZE= 48;
private final int ENS_PRINCIPAL_MAX_SIZE= 32;
private final int ENS_NAME_MAX_SIZE= ENS_ENDPT_MAX_SIZE+24;
private final int ENS_VERSION_MAX_SIZE= 8;
private final int ENS_MSG_MAX_SIZE= 32 *1024;

The important limitations are:

37

Number of destinations: The user can send a point-to-point message to a set of targets. The
size of the target set is limited to ENS DESTS MAX SIZE. The same goes for suspecting
sets of members.

Message size: The maximal message size is limited to 32K.

8.6 Code examples

Take a look at the Mtalk.java program in the client/java subdirectory.

38

9 C Application Interface

The C-language API is similar in nature to the Java/C-sharp APIs. This section assumes the
reader is already familiar with that material.

The main addition for C is the careful description of who allocates which memory.
In order for an application to start using Ensemble it needs to initialize a connection structure:

ens_conn_t *ens_Init(void);

The ens Init call allocates and initializes an ens conn t structure that encapsulates a local
socket connection to the Ensemble Server. All operations require the connection structure. Only
one connection is needed for an application.

The application needs to poll the connection periodically to see if it has pending messages.

typedef enum ens_rc_t
ENS_OK = 0,
ENS_ERROR = 1

ens_rc_t;

ens_rc_t ens_Poll(ens_conn_t *conn, int milliseconds, /*OUT*/ int *data_available);

ens Poll returns an ens rc t return type which conveys whether the operations was successful
or not. Poll takes a connection, and a number of milliseconds to wait for input on the socket. It
is a blocking call, as is the rest of the API. If data is available the out argument: data available
will be set to 1; if no data is available it will be set to 0.

In order to Join a group the ens Join call should be used.

ens_rc_t ens_Join(
ens_conn_t *conn,
ens_member_t *memb,
ens_jops_t *ops,
void *user_ctx
) ;

Join takes a connection, a member structure, a set of join-options and a opaque pointer for the
user’s use. It initializes the member structure, attaches the user-context to it, and sends a Join
request to Ensemble. The set of allowed join-options is:

typedef struct ens_jops_t
char group_name[ENS_GROUP_NAME_MAX_SIZE] ; /* The group name */
char properties[ENS_PROPERTIES_MAX_SIZE] ; /* The set of properties */
char params[ENS_PARAMS_MAX_SIZE] ; /* The set of parameters */
char princ[ENS_PRINCIPAL_MAX_SIZE] ; /* My principal name (security) */
int secure ; /* Do we want a secure stack (encryption + authentication? */

ens_jops_t ;

The user can choose the group-name, set of properties expected from the group, and a set of
additional configuration parameters. The default values for properties is ENS DEFAULT PROPERTIES,
the additional set of parameters should be empty for normal use. There are two parameters used

39

for security: the principal name, and the secure flag. If one is not intersted in security, simply set
the secure flag to zero. If the flag is set to one, then the principal name in PGP should be specified.
The principal names for users are used for authentication purposes; only authenticated users are
allowed into a secure group.

After joining a group there are several operations that are allowed on it: Leave, Send1, Send,
Cast, Suspect, and BlockOk. All these calls are (a) blocking, they return only after the whole data
has been written to the socket (b) thread-safe: they may be used from any application thread.

To leave a group use the ens Leave call.

ens_rc_t ens_Leave(
ens_member_t *memb
) ;

After the call the member structure becomes invalid and cannot be used for any other operations.
Point-to-point and multicast messages can be send with three different calls:

ens_rc_t ens_Cast(
ens_member_t *memb,
int len,
char *buf
) ;

ens_rc_t ens_Send(
ens_member_t *memb,
int num_dests,
int *dests,
int len,
char* buf
) ;

ens_rc_t ens_Send1(
ens_member_t *memb,
int dest,
int len,
char* buf
) ;

For the above three calls The data is not freed nor allocated by the Ensemble client. The user
needs to manager memory that is sent. Maximal message size is 32K. The maximal number of
destinations is 10.

Report specified group members as failure-suspected. The maximal number of suspects is 10.

ens_rc_t ens_Suspect(
ens_member_t *memb,
int num,
int *suspects
);

40

Tell the system we will no longer send messages in this view. Should be sent as a reponse to a
Block message.

ens_rc_t ens_BlockOk(
ens_member_t *memb
) ;

Messages can be received by the ens RecvMetaData call together with ens RecvView and
ens RecvMsg.

When there is data on the connection the ens RecvMetaData tells which type of message has
arrived and how much memory needs to be allocated for receiving it.

typedef enum ens_up_msg_t
VIEW = 1, /* A new view has arrived from the server. */
CAST = 2, /* A multicast message */
SEND = 3, /* A point-to-point message */
BLOCK = 4, /* A block requeset, prior to the installation of a new view */
EXIT = 5 /* A final notification that the member is no longer valid */

ens_up_msg_t;

typedef struct ens_msg_t
ens_member_t *memb; /* endpoint this message blongs to */
ens_up_msg_t mtype ; /* message type */
union

struct /* The variant for VIEW: */
int nmembers; /* the number of members in a view */

view;
struct /* The variant for a point-to-point message */

int msg_size; /* length of a bulk-data */
send;
struct /* The variant for multicast message */

int msg_size; /* length of a bulk-data */
cast;

u;
ens_msg_t;

ens_rc_t ens_RecvMetaData(ens_conn_t *conn, ens_msg_t *msg);

ens RecvMetaData is a blocking call, therefore, it needs to be executed only after the user knows
there is pending data on the socket. The user needs to pre-allocate an ens msg t structure which
is used to store meta-information about the in-coming message:

• which member is this message for?

• what type is the message? view, point-to-point message, multicast message, block, or exit.

• For each type, how much memory is required to receive it.

41

The next step is to call ens RecvView for a view-message, and ens RecvMsg for a bulk-data
message.

ens_rc_t ens_RecvView(ens_conn_t *conn,
ens_member_t *memb,
/*OUT*/ ens_view_t *view);

ens_rc_t ens_RecvMsg(ens_conn_t *conn,
/*OUT*/ int *origin, char *buf);

42

Acknowledgments

Thanks to Greg Sharp for comments on previous versions of this document.

43

	Introduction
	Quick Installation
	Compiling
	Configuration Variables
	Executing Applications

	I The Server
	The Programs
	Ensembled: the ensemble daemon
	Mtalk: Multi-person Talk
	Gossip: Group Locator Service
	Groupd: Membership Service (formerly called Domain)
	Perf: Performance Tests
	Rand: Virtual Synchrony Debugging Tool
	Fifo: Fifo Communication Debugging Tool
	Armadillo: testing Ensemble security extensions
	Socktest

	Configuration
	Command-line Arguments and Environment Variables
	Gossip service configuration
	Transports
	Using Deering IP Multicast
	Notes and Problems

	Server ML Application Interface
	Compilation
	Interface Definition and Initialization
	Actions
	The install callback
	View state
	Asynchronous operation
	Exit notice
	Properties
	Initializing Ensemble Applications

	Using PGP
	Heterogeneous Transports
	Code walk-through
	Design of the routers

	II The Client
	Java Application Interface
	The client state-machine
	Locking
	The View structure
	Join options
	Limitations
	Code examples

	C Application Interface

