Ensemble Reference Manual

Mark Hayden, Ohad Rodeh *
Copyright (©) 1997 Cornell University, 2000 Hebrew University, 2002 IBM Israel Science and Technology

April 11, 2004

Abstract

Ensemble is a reliable group communication toolkit implemented in the Objective Caml
programming language. The purposes of this implementation are:

e to provide a concise and clear “reference” implementation of the Ensemble architecture
and protocols

e to abstract protocol layer implementations as far as possible from the runtime system

e to support the application of formal methods to real implementations of distributed com-
munication protocols

e to provide a flexible platform for ease of experimentation

Throughout, we attempt to follow a design that supports a simple compilation of the protocols
to C.

*Thanks to Takako Hickey, Roy Friedman, Robbert van Renesse, and Zhen Xiao for descriptions of their contri-
butions.

Contents

(1 _Introduction|

I The Ensemble Architecturel

[2__Identifiers|
2.1 Endpoint Identifiers|
2.2 Group Identifiers| . .

[4 Event protocol: Intra-stack communication|

4.1 Event Types|.
4.2 Event fieldsl

4.4.7 Merge Chain (successful)l Lo oL

4.4.8 Merge Chain (failed)| L

[6 Layer Execution Model|

11
11
16
16
19
19
19
19
20
20
20
20
20
21

[6 Layer Anatomy: what are the pieces of a layer?|
6.1 Design Goals|
6.2 Notes| e

[Event Handlers: Standard|

[8 Heterogeneous Transports|
[8.1 Code walk-through|
[8.2 Design of the routers|

[9 The Ensemble Security Architecture (by Ohad Rodeh))
9.1 Cryptographic Infrastructure]o oL
9.2 Rekeying]
0.3 A securestackl
9.4 Security events| Lo
9.5 Using Security| e e e
9.6 Checking that things work]
9.7 Using security from HOT and EJaval

(10 Outboard messaging|
[10.1 Locating the service|
[10.2 Communicating with the service|
[10.3 Messages from server toclient|. 0oL
[10.4 Messages from client to server|.

I The Ensemble Protocols|

[11 Layers and Stacks|

24
24
24
24

27

29
29
31

33
33
34
34
35
35
36
38

39
39
39
40
41

43

Appendix: ML Does Not Allow Segmentation Faults|

Ensemble Membership Service TCP Interface|

IB.1 Locating the service|
[B.2 Communicating with the service]o 0.

C

Bimodal Multicast (by Ken Birman, Mark Hayden, and Zhen Xiao)|

|C.1 Protocol description|
C.2 Usage] e

86

87
87
87

1

Introduction

This document is attempting to serve several goals. It is intended to be:

A description/motivation of the Ensemble architecture.

An aid for learning about the Ensemble protocol layers and their workings.

An informal specification of individual protocol layers and common compositions of the layers.
Documentation of possible alternate designs/implementations of the system.

A repository of specification and verification information developed for protocol layers.

A repository of descriptions of potential projects.

Source for combined hypertext code/text documentation of Ensemble.

Documentation TODO list:

mark all ML values with mlval{}
add more detail in the event fields section
add “common problems” section

— Elnit vs. EView

layer programming tutorial

Part 1
The Ensemble Architecture

2 Identifiers

Ensemble uses a variety of identifiers for a variety of different purposes. Here we summarize the
important ones and describe what they are used for. Their type definitions can be found in the type
directory in the file corresponding to the name. Look in type/README for an up to date listing
of these files. Most of the different identifiers support a similar interface for a variety of operations.
Several of the identifiers are opaque, in the sense that the interface hides the actual structure of
the identifier. All identifiers have a string_of_id function defined which gives a human-readable
description of their contents.

Changes from Horus

e None of the identifiers are defined as fixed length sequences of bytes. This is something that
remains to be done.

e Horus EID’s have been split into endpoint and group identifiers.
e We have removed addressing information entirely from endpoint and group identifiers.

e Entity identifiers have been eliminated. Connection, stack, and protocol identifiers have been
added to support a variety of features new to Ensemble.

2.1 Endpoint Identifiers

Endpoint identifiers are unique names for communication endpoints. A single process can create
any number of local endpoint identifiers, each of which is guaranteed to be unique (within some
limits). A process can have multiple endpoints in a single group. An endpoint can be a member of
multiple groups. However, the endpoints in a group must be distinct.

2.2 Group Identifiers

Group identifiers serve as unique names of communication groups. They do not contain addressing
information. The exception to this rule is that groups communicating via Deering multicast choose
a random multicast address by taking a hash of the group address. Processes can create any number
of local group identifiers, each of which is guaranteed to be unique (within some limits).

2.3 View ldentifiers

View identifiers are unique identifiers of group views. Whenever communication protocols proceed
through a view change, the resulting view is given a new view identifier. These are made unique
by pairing the coordinator of the group with a logical timestamp that is advanced whenever a view
change happens. Although two partitions of a group may share the same time stamp, they will
have different coordinators.

2.4 Connection Identifiers

Connection identifiers are used to route messages to the precise destinations. They specify the
exact destination endpoint or group, the view identifier, the protocol stack to deliver to, the type
of protocol being used to send the message, as well as several other bits of information. Typically,
endpoint or group identifiers are used to send messages to the correct processes and connection
identifiers are used to route messages to the exact destination of a message within a process.
Messages usually contain a connection identifier as a “header” of the message but do not contain
endpoint identifiers or group identifiers, except as subfields of a connection identifier.

2.5 Protocol Identifiers

There is a one-to-one relationship between the standard protocol stacks of Ensemble and protocol
identifiers. Applications select the protocol to use by specifying the protocol id of that stack.
Having identifiers for protocols is convenient because they can be passed around in messages and
have equality comparisons made on them, whereas the actual protocol stacks cannot.

2.6 Mode identifiers

Each communication domain has a corresponding mode identifier used to specify that domain.

2.7 Stack Identifiers

Stack identifiers are used to distinguish between the various domains that a protocol stack may be
receiving messages through. Each of the various kinds of “channels” that protocol stacks use has a
separate identifier. Currently, these are:

Primary : This is the primary communication channel for a protocol stack. This is normally
where most messages are received.

Bypass : Messages sent via the optimized bypass protocols use this id.
Gossip : Messages sent by group merge protocols use this id.

Unreliable : This stack id is reserved for unreliable stacks.

3 The Event Module

Events in Ensemble are used for intra-stack communication, as opposed to inter-stack communi-
cation, for which messages are used. Currently, the event module is the only Ensemble-specific
module that all layers use. Events contain a well-known set of fields which all layers use for com-
municating between themselves using a common event protocol. Learning this protocol is one of
the harder parts of understanding Ensemble. In this section we describe the operations supported
for events; in section [4f we describe the meaning of the various event types and their fields.

We repeatedly refer the reader to the source code of the event module source files, both
type/event.mli and type/event.ml. This is done to ensure that information in this documen-
tation does not fall out of date due to small changes in the event module.

Note that a certain number of the operations invalidate events passed as arguments to the
function. This means that no further operations are accessing on the event should be done after
the function call. The purpose of this limitation is to allow multiple implementations of the event
module with different memory allocation mechanisms. The default implementation of events is
purely functional and these rules can be violated without causing problems. Other implementations
of the event module require that events be manipulated according to these rules, and yet other
implementations trace event modifications to check that the rules are not violated. What this
means is that protocol designers do not need to be concerned with allocation and deallocation
issues, except in the final stages of development.

Currently a reference counting scheme is used for handling message bodies, which form the
bulk of memory used in Ensemble. Reference counting is done by-hand, and events that reference
Io-vectors must be freed using the free function (see below). The rest of the event is allocated on
the ML heap, and is therefore freed automatically by the ML garbage collector.

3.1 Fields

Events are ML records with fixed sets of fields. We refer to type/event.mli for their type defini-
tions and fields.

3.1.1 Extension fields

Events have a special field called the extension field. Uncommon fields are included in up events as
a linked list of extensions to this field. The list of valid extensions is defined in type/event.mli
by the type definition fields.

3.1.2 Event Types

Events have a “type” field (called typ to avoid clashes with the type keyword) in them which can
take values from a fixed set of enumerated constants. For the enumerations of the type fields for
events, we refer to appl/event.mli for the type definitions for typ.

3.1.3 Field Specifiers

Events have defined for them a variant record called field. These are called field specifiers. There
is a one-to-one relation between the fields in up and down events and the variants in the fields
specifiers. As will be seen shortly, lists of field specifiers are passed to event constructor and
modifier functions to specify the fields in an event to be modified and their values. This allows
changes to an event to be specified incrementally.

3.2 Constructors

Events are constructed with the create function.

(* Constructor *)
val create : debug -> typ -> field list -> t

Create takes 3 arguments:

e The string name of the module or location where this operation is being performed. This is
used only for debugging purposes and usually the value name (defined to be the name of the
current module) is used for this argument.

e The type of the event, which is a typ enumeration.

e A list of field specifiers for changing the values of the fields in the new events. Unmodified
fields should not be accessed. For example, if an empty list is passed as a field specifier then
only the type field of the event will be available in the event.

The return value of the constructor functions is a valid event.

3.3 Special Constructors

type/event.ml defines some special case constructors for either performance or ease-of-coding
reasons. All of these constructors are defined using the create function or could be defined using
them.

3.4 Modifiers

Events are modified with the set function.

(* Modifier *)
val set : debug -> t -> field list > t

set takes 3 arguments:
e The string name where this modification is taking place. Used only for debugging purposes.

e The event which is being modified. The event passed as an argument to this function is
invalidated: no further references should be made to the event.

e A field specifier list. See the arguments description for Constructors.

The return value of set is a new event with the same fields as the original event, except for the
changes in the specifier list.

3.5 Copiers

Events are copied with the copy function.

(* Copier)
val copy : debug -> t >t

Copy takes two arguments:
e The name where this modification is taking place. Used only for debugging purposes.
e The event to be copied.

The return value is a new event with its fields set to the same values as the original.

3.6 Destructors

Events are released with the free function.

(* Destructor *)
val free : debug -> t -> unit

Free functions takes two arguments:
e The name where this modification is taking place. Used only for debugging purposes.

e The event to be deallocated. This event becomes invalidated by this function call. No further
references to the event should be made.

The return value is the unit value.

10

4 Event protocol: Intra-stack communication

Ensemble embodies two forms of communication. The first is communication between protocol
stacks in a group, using messages sent via some communication transport. The second is intra-stack
communication between protocol layers sharing a protocol stack (see fig , using Ensemble events
(see page [§|for a overview of Ensembleevents). One use of events is for passing information directly
related to messages (i.e., broadcast messages are usually associated with ECast events). However,
events also are used for notifying layers of group membership changes, telling other layers about
suspected failed members, synchronizing protocol layers for view changes, passing acknowledgment
and stability information, alarm requests and timeouts, etc. ... In order for a set of protocol layers
to harmoniously implement a higher level protocol, they have to agree on what these various events
“mean,” and in general follow what is called here the Ensemble event protocol.

The layering in Ensemble is advantageous because it allows complex protocols to be decomposed
into a set of smaller, more understandable protocols. However, layering also introduces the event
protocol which complicates the system through the addition of intra-stack communication (the
event protocol) to inter-stack communication (normal message communication).

Be aware that this information may become out of date. Although the “spirit” of the informa-
tion presented here is unlikely to change in drastic ways, always consider the possibility that this
information does not exactly match that in type/event.ml and type/event.mli. Please alert us
when such inconsistencies are discovered so they may be corrected.

The documentation of the event protocol proceeds as follows.

e “types” of events are listed along with a summary of their meaning

e [TODO: the types that usually have a message associated with them are identified]

event fields are described along with a summary of their usage

[TODO: a table is given showing the event types for which the various event fields
have defined values]

the several event chains which occur in protocol stacks are listed (event chains are sequences
of event micro-protocols that tend to occur in Ensemble protocol stacks)

4.1 Event Types

This section describes the different types of events. See fig [2| for the source code of enumerated
types. The behavior of a layer depends not only on the event type and its fields, but also on the
direction from which it arrives. For example, an ESend event travels in the sender stack from
the application down, and at the receiver from the bottom, up to the application. The sender and
receiver layers behave quite differently depending on whether the message is sent or received. In
what follows, we sometimes specifically include the event direction. Detailed Descriptions:

e Up(EBlock): The coordinator is blocking the view. Is a reply to Dn(E()Block); replied
with Dn(EBlockOk).

e Dn(EBlock): The group is being blocked. Is a reply to Up(ESuspect) and Up(EMergeRequest);
replied with Up(EBlock).

e Up(EBlockOk): The coordinator gets one of these events when the group is blocked. Is a
reply to Dn(EBlockOk); replied with Dn(EView) or Dn(EMergeRequest).

11

Protocol Stack -
Protocol Layer -

-
-

zE==

SENDER RECEIVER

&

=
V EEG

Event
I]] Message

D Header

Figure 1: FEvents are used for intra-stack communication: layers can only communicate with other
layers by modifying events; layers never read or modify other layer’s message headers. Messages
are used for inter-stack communication: only messages are sent between group members; events are
never sent between members.

e Dn(EBlockOk): Is a reply to Up(EBlock); replied with Up(EBlockOk) (but usually
only at the coordinator).

e Up(ECast): A member (whose rank is specified by the origin field) broadcast a message
to all members in the group. Usually the broadcast is delivered at all members except the
sender.

e Dn(ECast): A message is being broadcast. Replied with Up(ECast) at all members but
sender.

e Up(ESend): Another member sent us a pt2pt message.

e Dn(ESend): A message is being sent pt2pt. Results in an Up(ESend) at the destination.
e ESubCast: A message that will be multicast to a subset of the group.

e ECastUnrel: A message that will be unreliablely multicasted

e ESendUnrel: A message that will be unreliablely sent point-to-point

12

(* These events should have messages associated with them. *)
ECast (* Multicast message *)

ESend (* Pt2pt message *)

ESubCast (* Multi-destination message *)

ECastUnrel (* Unreliable multicast message *)

ESendUnrel (* Unreliable pt2pt message *)

EMergeRequest (* Request a merge *)

EMergeGranted (* Grant a merge request *)

EOrphan (* Message was orphaned *)

(* These types do not have messages. *)
EAccount (* Output accounting information *)
EAck *x) (* Acknowledge message *)
EAsync (* Asynchronous application event *)
EBlock (* Block the group *)
EBlockOk (* Acknowledge blocking of group *)
EDump (* Dump your state (debugging) *)
EElect (¥ I am now the coordinator *)
EExit (* Disable this stack *)
EFail (* Fail some members *)
EGossipExt (* Gossip message *)
EGossipExtDir (* Gossip message directed at particular address *)
EInit (* First event delivered *)
ELeave (* A member wants to leave *)
ELostMessage (* Member doesn’t have a message *)
EMergeDenied (* Deny a merge request *)
EMergeFailed (* Merge request failed *)
EMigrate (* Change my location *)
EPresent (* Members present in this view *)
EPrompt (* Prompt a new view *)
EProtocol (* Request a protocol switch *)
ERekey (* Request a rekeying of the group *)
ERekeyPrcl (* The rekey protocol events *)
ERekeyPrcl2 (x *)
EStable (* Deliver stability down *)
EStableReq (* Request for stability information *)
ESuspect (* Member is suspected to be faulty *)
ESystemError (* Something serious has happened *)
ETimer (* Request a timer *)
EView (* Notify that a new view is ready *)
EXferDone (* Notify that a state transfer is complete *)
ESyncInfo
(* Ohad, additions *)
ESecureMsg (* Private Secure messaging *)
EChannelList (* passing a list of secure-channels *)
EFlowBlock (* Blocking/unblocking the application for flow controlx)

(¥ Signature/Verification with PGP *)

EAuth

13
ESecChannellist (* The channel list held by the SECCHAN 1
ERekeyCleanup

ERekeyCommit

ayer *)

Up(EMergeRequest): Some other partition want to merge with us. Replied with Dn(EMergeGranted)
or Dn(EMergeDenied).

Up(EMergeGranted): Notification that a merge is ready to proceed.

Dn(EMergeGranted): Done by the coordinator after an Up(EMergeRequest) to tell
the other coordinator that the merge is progressing. Results in an Up(EMergeGranted)
at the merging coordinator.

Up(EMergeDenied): This is notification that the coordinator of a partition we tried to
merge with has explicitly denied the merge. Is a reply to Dn(EMergeRequest); replied
with Dn(E()View).

Dn(EMergeDenied): Done by the coordinator after an Up(EMergeRequest) to tell
another coordinator that its request has been denied. Is a reply to Up(EMergeRequest).

Up(EMergeFailed): This is notification that some problem occurred in an attempt to
merge with another partition of our group. Is a reply to Dn(EMergeRequest); replied
with Dn(E()View).

Up(EOrphan): A message has lost its parent. Usually it is OK to ignore this message: it
is just being delivered in case we are interested.

EAccount: Used to control accounting information. Periodically this event is passed through
the stack, and each layer can record its current information/performance.

EAsync: Used to handle asynchronous events. Unused currently.

Up(EDump): A layer wants the stack to dump its state. Usually the top-most layer
will bounce this down as a Dn(EDump) and the members will dump their state on the
Dn(EDump) event.

Dn(EDump): Dump your state. Pass it on. Is a reply to Up(EDump).

Up(EElect): This member has been elected to be coordinator of the group. Usually means
that this member will be generating failure and view events and managing the group for the
rest of the view.

Up(EExit): This protocol stack has been disabled (because of a previous Dn(ELeave)
event). Layers should pass this event up and then do nothing else.

Up(EFail): This is notification that some members have been marked as failed. This does
not necessarily mean we will get no more messages from the failed members. The COM
layer drops them, but messages from those members retransmitted by other members are still
delivered. Usually, it also means the coordinator has started or will start a new view soon
(but this is not necessary). Is a reply to Dn(EFail).

Dn(EFail): Some members are being failed. Is a reply to Up(ESuspect); replied with
Up(EFail).

Up(EGossipExt): A gossip message has arrived. Note that the data is in the extension
fields.

14

Dn(EGossipExt): Transmit a gossip message. Note that data is carried in extension fields
of events and does not use the normal header pushing mechanism.

Up(EGossipExtDir): The same, but send a gossip message to a specified address.
Up(EInit): This is the first event that any layer receives. It should be passed up the stack.
Up(ELeave): Some member (specified by the origin field) is leaving the group.

Dn(ELeave): We are leaving the group. Replied with Up(EExit) event. Depending on
when this is seen it can mean different things. Before a new view change it means we are
really leaving the group. After a new view, it usually means that we have a new protocol stack
taking part in the next view and the Dn(ELeave) is just garbage collecting this protocol
stack because its view is over.

Up(ELostMessage): This is notification that some protocol layer below does not have a
message it thinks it should have. What this means is usually highly-protocol-stack-specific.
Sometimes replied with Dn(EFail).

EMigrate: Used to support migration of an endpoint between transport addresses.

EPresent: A notification that all group members currently in the group are live and started
“talking”. This is useful in large groups, where it takes time for all members to synchronize
and agree on the view.

EPrompt: Ask for a new view
EProtocol: Ask for a new protocol
ERekey: Request a rekey

ERekeyPrcl: Used for inter-layer communication between the rekeying layers. Used to
separate out their event types.

ERekeyPrcl2: dito.

Up(EStable): This event contains stability information. If we are buffering broadcast mes-
sages, we can use this to decide which messages are safe to drop.

EStableReq: Ask for stability information

Up(ESuspect): This is notification that some other layer (or possibly some other member)
thinks that some members should be kicked out of the group. Replied with Dn(EFail) and
often Dn(EBlock).

Dn(ESuspect): Some members are suspected to be failed. Replied with an Up(ESuspect)
with the same members failed.

Up(ESystemError): Something serious has happened. Do whatever you feel like because
the world is about to fall apart.

Up(ETimer): A timer has expired. Pass it on.

15

4.2

Dn(ETimer): A request for a timer alarm. Replied with an Up(ETimer) at or after the
requested time.

Up(EView): A new view is ready. Note that this does not affect our protocol: usually a
different instance of our protocol stack will be created to take care of the next view. This
event is not delivered at the beginning of a view. The Up(EView) event signals the end of
a view. Up(EInit) events are delivered at the beginning of a view.

Dn(EView): A new view is prepared. Usually followed by an Up(EView). Usually does
not affect the current protocol stack, but later results in the creation of a new protocol stack
for the new view.

EXferDone: Used for the state-transfer layer. Tells the Xfer-layer that this endpoint has
completed its state-transfer protocol.

ESynclInfo: Used inside the virtual-synchrony protocol.

ESecureMsg: Send a secure private message on an encrypted point-to-point channel to
another member.

EChannelList: Used to debug the secure-channel layer. The event lists the set of current
open secure-channels.

ESecChannelList: dito.
EFlowBlock: Blocking/unblocking the application for flow control.
EAuth: Signature/Verification with PGP.

ERekeyCleanup: Erase all current open secure point-to-point connections. This initializes
the secure-channel cache.

ERekeyCommit: Commit the current tentative group-key as the key for the upcoming
view.

Event fields

Here we describe all the fields that appear in the events. The type definitions appear in fig
and fig

4.2.1 Event Fields

Typ: The type of the event.

Flags: A bitfield specifying a set of potential flags for the event.
Peer: rank of sender/destination

Tov: ITovec list containing raw application data.

ApplMsg: was this message generated by an appl? This sometimes requires a different treat-
ment than other, system generated messages.

16

type field =
(* Common fields x*)

| Type of typ (* type of the messagex*)

| Peer of rank (* rank of sender/destination *)

| Tov of Iovecl.t (* payload of message *)

| ApplMsg (* was this message generated by an appl? *)

(* Uncommon fields x*)

Address of Addr.set (* new address for a member *)
Failures of bool Arrayf.t (* failed members *)
Presence of bool Arrayf.t (* members present in the current view *)

|

|

|

| Suspects of bool Arrayf.t (* suspected members *)

| SuspectReason of string (* reasons for suspicion *)

| Stability of seqno Arrayf.t (* stability vector *)

| NumCasts of seqno Arrayf.t (* number of casts seen *)

| Contact of Endpt.full * View.id option (* contact for a merge *)
(* HEAL gossip *)

| HealGos of Proto.id * View.id * Endpt.full * View.t * Hsys.inet list

| SwitchGos of Proto.id * View.id * Time.t (* SWITCH gossip *)

| ExchangeGos of string (* EXCHANGE gossip *)

(* INTER gossip *)
MergeGos of (Endpt.full * View.id option) * seqno * typ * View.state
ViewState of View.state (* state of next view *)

ProtoId of Proto.id (* protocol id (only for down events) *)
Alarm of Time.t (* for alarm requests *)

ApplCasts of seqno Arrayf.t

I
I
I
| Time of Time.t (* current time *)
I
I
| ApplSends of segno Arrayf.t

I

DbgName of string
(* Flags *)

| NoTotal (* message is not totally orderedx*)
| ServerOnly (* deliver only at servers *)
| ClientOnly (* deliver only at clients *)
| NoVsync
| ForceVsync
| Fragment (* Iovec has been fragmented *)

(* Debugging *)
| History of string (x debugging history *)

(* Private Secure Messaging *)
| SecureMsg of Buf.t
| Channellist of (rank * Security.key) list

(* interaction between Mflow, Pt2ptw, Pt2ptwp and the application *)
| FlowBlock of rank option * bool
17
(¥ Signature/Verification with Auth *)
| AuthData of Addr.set * Auth.data

Address: A address for a member, used, for example, in sending gossip messages to specific
endpoints.

Failures: List of ranks of members that have failed.
Presence: The list of members present in the current view. Used in large groups.
Suspects: List of ranks of members that are suspected to have failed or be faulty in some way.

SuspectReason: String containing “reason” for suspecting members. Used for debugging
purposes.

Stability: Vector of number of broadcasts for each member in the group that are stable.
NumCasts: Vector of number of known broadcasts for members in the group.

Contact: Endpoint of contact used for communication to endpoints outside of group. Usually
only in merge events.

HealGos: The type of gossip messages sent between HEAL layers.

SwitchGos: dito, for SWITCH layers.

ExchangeGos: dito, for EXCHANGE layers.

MergeGos: dito, for MERGE layers.

ViewState: Used to pass around view state for new views

Protold: A new protocol id that we are switching to.

Time: Time that the event/message was received.

Alarm: Requested time for an alarm.

ApplCasts: The sequence numbers of the latest multicast messages sent in the group.
ApplSends: dito, for send messages

NoTotal: Flag: specifying that this message should not be totally ordered even if total a
totally-ordered stack is in use. Used to send Ensemble control messages which should not be
delayed. Fail and View messages are sent this way.

ServerOnly: Flag: Deliver only at servers.

ClientOnly: Flag: Deliver only at clients.

NoVsync: Flag: This message is not subject to virtual synchrony

ForceVsync: Flag: this message must be subject to virtual synchrony

Fragment: Flag: This event contains a fragment of an Iovec.

SecureMsg: Send this buffer through a secure-channel point-to-point to another member.

ChannelList: Describe the secure channel list.

18

e FlowBlock: Used for interaction the flow control layers: Mflow, Pt2ptw, Pt2ptwp and the
application

e AuthData: Send a buffer for PGP to check, and receive a checked buffer from PGP

4.3 Event fields and the “types” for which they are defined
[TODO]

4.4 Event Chains

We describe here common event sequences, or chains, in Ensemble. Event chains are sequences of
alternate up and down events that ping-pong up and down the protocol stack bouncing between
the two end-layers of the chain. The end layers are typically the the top and bottom-most layers
in the stack (eg., TOP and BOT). The most common exceptions to this are the message chains
(Sends and Broadcasts), which can have any layer for their top layer.

Note that these sequences are just prototypical. Necessarily, there are variations in which of
layers see which parts of these sequences. For example, consider the Failure Chain in a virtual syn-
chrony stack with the GMP layer. The Failure Chain begins at the coordinator with an ESuspect
event initiated at any layer in the stack. The BOT layer bounces this up as an ESuspect event.
The top-most layer usually responds with a EFail event. The EFail event passes down through
all the layers until it gets to the GMP layer. The GMP layer at the coordinator both passes the
EFail event to the layer below and passes down a ECast event (thereby beginning a Broadcast
Chain...). At the coordinator, the EFail event bounces off of the BOT layer as an EFail event
and then passes up to the top of the protocol stack. At the other members, an ECast event will be
received at the GMP layer. The message is marked as a “Fail” message, so the GMP layers generate
and send down an EFail event (just like the one at the coordinator) and this is also bounced off the
BOT layer as an EFail event. The lesson here is that the different layers in the different members
of the group all essentially saw the same Failure Chain, but exact sequencing was different. For
example, the layers above the GMP layer at the members other than the coordinator did not see a
EFail event. [TODO: give diagram)|

[TODO: Leave Chain]

4.4.1 Timer Chain

Request for a timer, followed by an alarm timeout.

ETimer | down: timeout requested, sent down to BOT.
ETimer | up: alarm generated in BOT at or after requested time, and sent up.

4.4.2 Send Chain

Send a pt2pt message followed by stability detection.

ESend down: send a pt2pt message down.

ESend up: destinations receive the message

EStable | message eventually becomes stable, and stability information is bounced off BOT.

19

4.4.3 Broadcast Chain

Broadcast of a message followed by stability detection.

ECast down: broadcast a message

ECast up: other members receive the broadcast

EStable | broadcast eventually becomes stable, and stability information is bounced off BOT

4.4.4 Failure Chain

Suspicion and “failure” of group members.

ESuspect | down: suspicion of failures generated at any layer
ESuspect | up: notification of suspicion of failures
EFail down: coord fails suspects

EFail up: all members get failure notice

4.4.5 Block Chain

Blocking of a group prior to a membership change.

ESuspect/EMergeRequest | up: reasons for coord blocking

EBlock down: coord starts blocking

EBlock up: all members get block notice
EBlockOk down: all members reply to block notice
EBlockOk up: coord get block OK notice
EMergeRequest EView down: coord begins Merge or View chain

4.4.6 View Chain

Installation of a new view, followed by garbage collection of the old view.

EView | down: coord begins view chain (after failed merge or blocking)
EView | up: all members get view notice

EExit | down: protocol stacks are ready for garbage collection [todo]
EExit | up: protocol stacks are garbage collected

4.4.7 Merge Chain (successful)

Partition A merges with partition B, followed by garbage collection of the old view. We focus on
partition A and only give a subset of events in partition B.

EMergeRequest | down: coord A begins merge chain (after blocking)
EMergeRequest | up: coord B gets merge request

EMergeGranted | down: coord B replies to merge request
EMergeGranted | up: coord A gets merge OK notice

EView down: coord A installs new view for coord B

EView up: all members in group A get view notice

EExit down: protocol stacks are ready for garbage collection
EExit up: protocol stacks are garbage collected

[TODO: EExit above is currently ELeave]

20

4.4.8 Merge Chain (failed)

Failed merge, followed by installation of a view.

EMergeRequest | down: coord begins merge chain (after blocking)
EMergeFailed or

EMergeDenied up: coord detect merge problem

EView down: coord begins view chain

21

¥4 S

LaYER

FIFO
Chienes

LaYER

LaYER

3
@ LaYER
g
*

LAYER LAYER

Figure 4: Layers are executed as 1/O automata, with pairs FIFO event queues connecting adjacent
layers.

5 Layer Execution Model

5.1 Callbacks

Layers are implemented as a set of callbacks that handle events passed to the layer by Ensemble
from some other protocol layer. These callbacks can in turn call callbacks that Ensemble has
provided the layer for passing events onto other layers. Logically, a layer is initialized with one
callback for passing events to the layer above it, and another callback for passing events to the
layer below it. After initialization, a layer returns two callbacks to the system: one for handling
events from the layer below it and another for handling events from the layer above it. In practice,
these “logical callbacks” are subdivided into several callbacks that handle the cases where different
kinds of messages are attached to events.

5.2 Ordering Properties

The system infrastructure that handles scheduling of protocol layers and the passing of events
between protocol layers provides the following guarantees:

FIFO ordering : The infrastructure guarantees that events passed between two layers are deliv-
ered in order. For instance, if layer A is stacked above layer B, then all events layer A passes
to layer B are guaranteed to be delivered in FIFO order to layer B. In addition, events that

22

layer B passes up to layer A are guaranteed to be delivered in FIFO order to layer A. Note
that these ordering properties allow the scheduler some flexibility in scheduling because they
only specify the ordering of events in a single channel between a pair of layers.

no concurrency : The sytem infrastructure that hands events to layers through the callbacks
never invokes a layer’s callbacks concurrently. It guarantees that at most one invocation
of any callback is executing at a time and that the current callback returns before another
callback is made to the protocol layer. See fig [d] for a diagram of layer automata. Note that
although a single layer may not be executed concurrently, different layers may be executed
concurrently by a scheduler.

The execution of a protocol stack can be visualized as a set of protocol layers executing with a
pair of event queues between each pair: one queue for events going up and another for events going
down. The protocol layers are then automata that repeatedly are scheduled to take pending events
from one of the adjacent incoming queues, execute it, and then deposit zero or more events into
two adjacent outgoing queues (see fig .

23

6 Layer Anatomy: what are the pieces of a layer?

This is a description of the standard pieces of a Ensemble layer. This description is meant to serve
as a general introduction the standard “idioms” that appear in layers. Because all layers follow
the same general structure, we present a single documentation of that structure, so that comments
in a layer describe what is particular to that layer rather than repeating the features each has in
common with all the others. Comments on additional information that would be useful here would
be appreciated.

6.1 Design Goals

A design goal of the protocol layers is to include as little Ensemble-specific infrastructure is present
in the layers. For instance, none of the layers embody notions of synchronization, messages opera-
tions, of event scheduling. In fact, the only Ensemble-specific modules used by layers are the Event
and the View modules.

6.2 Notes

Some general notes on layers:
e All layers are in single files.

e Usually the only objects exported by a layer are the type “header” and the value “I”. When
referred to outside of a layer, these values are prefixed with the name of the layer followed by
“” and the name of the object (either “header” or “1”). For instance the STABLE layer is
referenced by the name “Stable.l”.

6.3 Values and Types

Listed below are the values and types commonly found in a layer, listed in the usual order of
occurrence. For each object we give a description of its typical use and whether or not it is
exported out of the layer.

e name : Local variable containing the name of the layer.

e failwith : Typically this standard Objective Caml function is redefined to prefix the failure
message with the name of the layer. Sometimes it is also redefined to dump the state of a
layer.

e header : Exported type of the header a layer puts on messages. Layers that do not put
headers on messages do not have this type defined. The type is exported abstractly so it
is opaque outside the layer. This type is usually a disjoint union (variant record) of several
different types. Some example variants are:

— NoHdr : Almost always one of the values is defined to be NoHdr which is used for
messages for which the layer does not put on a (non-trivial) header

Data : Put on application data messages from the layer above

— Gossip : Put on gossip messages (such as by a stability layer)

Ack/Nak : Acknowledgement or negative acknowledgements

24

Retrans : Retransmissions of application data messages

View : List of members in a new view.
— Fail : List of members being failed.
— Suspect : List of members to be suspected.
— Block : Prepare to synchronize this group.
e nohdr : exported variable. This is a variable that only occurs in a few layers. It is always

defined to be the value NoHdr of the header type of the layer. It is exported so that the rest
of the system can do optimizations when layers put trivial headers on a message.

e normCastHdr : exported variable. This is a variable that is used only by special layers that
may need to generate a valid header for this layer. This variable should have no relevence to
the execution of a layer.

e state : Local type that contains the state of an instance of a layer. Some layers do not yet
use this, but eventually all of them will. [layers that do not use a state varable have
the state split up amongst several local state variables]. The state then is referenced
through the local variable s. A field in a state record is referred to by the Objective Caml
syntax, s.field, where field is the name of a field in the state record.

Some example field names used in layer states:

— time : time of last (up) ETimer event seen

— next_sweep/next_gossip : next time that I want to do something (such as retransmit
messages, synchronize clocks, ...)

— sweep : time between sweeping

— buf : buffer of some sort

— blocking/blocked : boolean for whether group is currently blocking

— Itime : the current “logical time stamp” (usually taken from the view_id)
— max_ltime : the largest logical time stamp seen by this member

— seqno : some sequence number

— failed : information on which members have failed (either a list of ranks or a boolean
vector indexed by rank)

— elected : do I think I am the coordinator?

General notes on fields:

— fields with type vect: usually array with one entry for each member, indexed by rank
— fields with type map: usually mapping of members eid to some state on the member

— fields with “up” (or “dn”) in the name: refers to some info kept on events that are going
up (or down)

— fields with “cast” (or “send”) in the name: refers to state kept about broadcasts (or
sends)

— fields with “buf” in the name: refers to some buffer

— fields with “dbg” in the name: fields used only for debugging puposes

25

— fields with “acct” in the name: fields used only for keeping track of tracing or accounting
data for the layer

e dump : Local function that takes a value of type state and prints some representation for
debugging purposes

e member : Local type that only occurs in some layers. Defines state kept for each member
in a group. Typically, the layer’s state will have an array of member objects indexed by rank
(and this field is usually called members). The notes above fields in state records generally
apply to the fields in member types as well.

e init : Initialization function for this layer. Takes two arguments. The first is a tuple contain-
ing arguments specific to this layer. The second is a view state record containing arguments
general to the protocol stack this layer is in. This function does any initialization required
and returns a state record for a layer instance.

Some example names of initialization parameters for layers:
— sweep : float value of how often to carry out some action (such as retransmitting
messages or pinging other members)

— timeout : amount of time to use for some timeout (such as how long to wait before
kicking a non-responsive member out of a group)

— window : size of window to use for some buffer
e hdlrs : Function initializing handlers for this layer. Takes two arguments. The first is a
state record for this layer. The second is a record containing all the handlers the layer is to

use for passing events out of the layer. Return value is a set of handlers to be used for passing
events into this layer.

26

name | in/ | up/ | above/ | message? | header?
out | dn | below
upnm | out | up | above no no
up out | up | above yes no
dnnm | out | dn | below no no
dnlm | out | dn | below no yes
dn out | dn | below yes yes
upnm | in | up | below no no
uplm | in | up | below no yes
up in | up | below yes yes
dnnm | in | dn | above no no
dn in | dn | above yes no

Table 1: The 10 standard event handlers.

7 Event Handlers: Standard

Logically, a protocol has two incoming event handlers (one each above and below) and two outgoing
event handlers (one each above and below). In practice, because some events have messages and
others do not, these handlers are split up into several extra handlers. The breakdown of the 4 logical
handlers into 10 actual handlers is done for compatibility with the ML typechecker. Typechecking
is used extensively to guarantee that layers recieve messages of the same type they send. This is a
very useful property because it prevents a large class of programming errors.

In the standard configuration, each layer has 10 handlers. A handler is uniquely specified by
a set of characteristics: whether it is an incoming or outgoing handler, a handler for up events or
down events, a handler for communication with the layer above or for the layer below, whether it
has an associated message, and whether it has an associated header. See table[l|for a enumeration
of the 10 handlers. Of the 10 handlers, 5 are outgoing and 5 are incoming; 5 are up event handlers
and 5 are down event handlers; 4 are for event communication with the layer below and 6 are for
event communication with the layer above. These are depicted in fig

The names of the handlers have two parts. The first specifies the sort of event the handler is
called with (“up” or “dn”). The second specifies the sort of message that is associated with the
event and may be either “” (nothing, the default case), “lm” (for local message), or “nm” (for no
message), which correspond to:

nothing: Events with associated messages, where the message was created by a layer above this
layer. This layer was not the first layer to push a header onto the message and will not be
the last layer to pop its header off the message.

“lm”: Events with associated messeges, where the message was created by this layer. This was
the first layer to push a header onto the message and is the last layer to pop its header off of
the message.

“nm”: Corresponds to events without associated messages. These handlers always take a single
argument which is either an up event or a down event.

27

ABOVE

Outzoing Incoming
— x A A EA
% =] o g
gl = al =
! E . o
Bl = Bl 2
—| = — :-E" 5
el IS = e —
n =
= AV By 2| 3 B
s
A = = ~
< 2
B &
V A 5
Incoming Outgoing
BELOW

Figure 5: Diagram of the 10 standard event handlers. Note that the ABOVE layer has a similar
interface above it as the BELOW layer. Likewise with the interface beneath the BELOW layer.

28

8 Heterogeneous Transports

Complete this section
Ensemble provides a flexible infrastructure for sending communication across a variety of dif-
ferent communication transports. Not only can different groups use different communication trans-
ports, but a single group can support communication on multiple transports at the same time.
The design of the transport module is split into three parts:

The socket module:
Low-level system calls: send, sendto, recv etc., implemented in a system-independent fash-
ion. The socket directory contains the code. socket/u is a simple-minded implementation
that uses the Ocaml Unix library directly. A more efficient version is located in socket/s,
where native OS io-vector send /recv facilities are used.

Transports:
Self registering transports: Deering, UDP, TCP, NETSIM. These use the low-level socket
module calls to provide an abstract transport.

Routers:
Uses a communication transport to build Ensemble specific send/recv capabilities. Length
field, group id, and endpoint rank are added to each outgoing message. Basic parsing is
performed on received messages and sender rank, group, and message length are extracted.

There are several routers in the route subdirectory. signed.ml adds a 16-byte MDb5 checksum
to each outgoing message. An agreed group-secret is used to key MD5, providing group
authentication. Incoming messages are stripped of this header, and verified. unsigned.ml is
the vanilla router.

The user can choose to use either one of the socket module implementations. The socket mod-
ule interface is defined in socket/socket.mli. The unoptimized socket implementation (usocket)
represents message data as a Caml string and benefits from native garbage collection. Its disadvan-
tage is reduced performance. The optimized socket library (ssocket) uses native C io-vectors, and
native operating-system scatter-gather message send/receive facilities. This provides much better
performance, and zero-copy integration with C applications. The disadvantage is more difficult
integration with native ML values.

The transports are defined the trans subdirectory. UDP in trans/udp.ml, TCP in trans/tcp.ml,
DEERING in trans/ipmc, and NETSIM in trans/netsim.

The route subdirectory contains three routes: signed, unsigned, and bypass.

8.1 Code walk-through

To provide better understanding of the design this section walks through a configuration of the
unsigned router, UDP transport, and optimized socket library. We shall start from the bottom and
work our way up.

In file server/socket/s/nt/sendrecv.c, there is code for sending an array of C io-vectors and
part of an ML string for win32. The function takes five arguments:

e info_v : a structure describing a list of remote targets and a socket through which to send
messages.

e prefix v : an ML string that prefixes the data

29

e ofs_v, len_v: the offset and length of the prefix to send

e iova_a : an array of io-vectors wrapped in an ML representation

value skt_udp_mu_sendsv(

value info_v,

value prefix_v,

value ofs_v,

value len_v,

value iova_v

) A
int naddr=0, i, ret=0, len=0;
ocaml_skt_t sock=0 ;
skt_sendto_info_t *info ;
int nvecs = Wosize_val(iova_v) ;

// Extract the set of addresses
info = skt_Sendto_info_val(info_v);

// Prepare the header

skt_prepare_send_header(send_iova, peek_buf, Int_val(len_v), skt_iovl_len(iov

// Prepare the iovectors
skt_add_ml_hdr(send_iova, 1, prefix_v, ofs_v, len_v);
skt_gather(send_iova, 2, iova_v) ;

sock = info->sock ;
naddr = info->naddr ;

for (i=0;i<naddr;i++)

// Send the message. Assume we don’t block or get interrupted.

ret = WSASendTo(sock, send_iova, nvecs+2, &len, O,
&info->sali], info->addrlen, O, NULL);

if (SOCKET_ERROR == ret) skt_udp_error("skt_udp_mu_sendsv");

return Val_unit;

a_v));

The mu_ prefix is added to this function because it uses the Ml/User convention for sending

data. Each data packet is split into:

ML header length: Describes the length of the ML header. of length four bytes.

User data length: Describes the length of the user data. of length four bytes.

ML header: the ML header itself. Variable size.

User data: user data. Variable size.

30

The function builds a header of size eight that includes two integers: (a) ml-header length
(b) io-vector length in network byte order. The header is the first in an array of io-vectors that
includes in second place the ML-header, and then the array of user io-vectors. Once the io-array is
assembled it is sent to each destination in the list using the native OS API.

skt_udp_mu_sendsv is hidden inside the socket library, and can safely be used using Socket .udp_mu_sendsv.
The sendto_info structure can be created from an array of target socket addresses, and a sending
socket.

type sendto_info
val sendto_info : socket -> Unix.sockaddr array -> sendto_info

val udp_mu_sendsv : sendto_info -> buf -> ofs -> len -> Iov.t array -> unit

The Hsys module makes access to sendtovs safer, and changes its type:

val udp_mu_sendsv : sendto_info -> Buf.t -> ofs -> len -> Iovecl.t -> unit

(* Implementation *)

Socket.udp_mu_sendsv info
(Buf.string_of buf) (Buf.int_of_len ofs) (Buf.int_of_len len)
(Iovecl.to_iovec_array iovl)

Core Ensemble code, including the routers, does not use Socket calls directly. Rather, it uses the
Hsys module which wraps all calls with a more type safe interface. Separate types are used for
length, offset, io-vector, and buffer.

The UDP implementation at trans/udp.ml uses Hsys in the transmit function called x.

let x hdr ofs len iovl =
Hsys.sendtosv dests hdr ofs len iovl;
Tovecl.free iovl

The io-vector array is freed after the message is transmitted. The reference count for an iovec-
array is decremented on two occasions: (1) it is sent on the network (2) it is handed to an application,
and the callback has completed. The iovec refcount is initially set to one when the application sends
it, and it is henceforth incremented whenever a copy of it created. Ultimately, the refcount will be
decremented when the stability detection protocol determines that all group members received the
message.

8.2 Design of the routers

Many endpoints belonging to different groups can coexist in a single Ensemble process. Each
endpoint is identified by its connection identifier. The internal representation of this id is given in
module Conn:

31

type id = {
version : Version.id ;
group : Group.id ;
stack : Stack_id.t ;
proto : Proto.id option ;
view_id : View.id option ;
sndr_mbr : sndr_mbr ;
dest_mbr : dest_mbr ;
dest_endpt : dest_endpt option

The id is mapped into a string using the Route.pack_of_conn function. Ensemble uses MD5
for this mapping. The probability of a collision, i.e., for two different endpoints to map onto a
single string, is 2764 which is sufficient for our purposes.

val pack_of_conn : Conn.id -> Buf.t

The purpose of the route module is to create a single interface to these various endpoints. The
main type exported is handlers. This is essentially a large array holding the set of connection
identifiers and the delivery function for each of them. When a message is received by the bottom-
most part of the system, it is parsed by the socket code into an ML header that is a string, and
the rest of the message which is received into a C-iovector. This information is later fed into the
deliver function.

’val deliver : handlers -> Buf.t -> Buf.ofs -> Buf.len -> Iovecl.t -> unit ‘

Deliver takes the current set of handlers, and a message, figures out which endpoints need to
receive this message and calls the appropriate handlers.
A transmission function is abstracted as a type xmitf:

(* transmit an Ensemble packet, this includes the ML part, and a
* user—-land iovecl.

*)

type xmitf = Buf.t -> Buf.ofs -> Buf.len -> Iovecl.t —-> unit

The Router module has an API allowing the creation of send/recv functions for connection-ids.
It also allows installing and deleting such functions. The unsigned router is a simple example of
using this functionality to create the basic, insecure, router. It defines function f:

val £ : unit ->

(Trans.rank -> Obj.t option -> Trans.seqno -> Iovecl.t -> unit) Route.t

This router will allow users to send (1) sender rank (2) ML object (3) sequence number and (4)
a user iovector array. The body of the code calls Route.create where it mainly needs to define
how it plans on handling blast and merge. Blast is how to send messages, merge is how to receive
a message on behalf of several connection ids.

32

9 The Ensemble Security Architecture (by Ohad Rodeh)

This section describes the Ensemble security architecture. We believe that Ensemble completely
supports the fortress security model. Only trusted, authorized members are allowed into the group.
Once a member is allowed into a group, it is completely trusted. Ensemble is not secure against
attacks from members that have been admitted into the group: any group member can break the
protocols by sending bad messages.

The goal of our architecture is to secure group messages from tampering and eavesdropping.
To this end, all group messages are signed and (possibly) encrypted. While it is possible to use
public key cryptography for this task, we find this approach unacceptably expensive. Since all
group members are mutually trusted, we share a symmetric encryption key, and a MAC E] key
among them. These keys are used to seal all group messages, making the seal/unseal operation
very fastﬂ As a shorthand, we shall refer to the key-pair as the group key. Using a group key raises
two challenges:

A rekeying mechanism: allowing secure replacement of the current group key once it is deemed
insecure, or if there is danger that it was leaked to the adversary. Dissemination of the new
key should be performed without relying on the old (compromised) group key.

Secure key agreement in a group: i.e., a protocol that creates secure agreement among group
members on a mutual group key.

We focus on benign failures and assume that authenticated members will not be corrupted.
Byzantine fault tolerant systems suffer from poor performance since they use costly protocols and
make extensive use of public key cryptography. We believe that our failure model is sufficient for
the needs of most practical applications.

The user may specify a security policy for an application. The policy specifies for each addressﬁ
whether it is trusted or not. Each application maintains its own policy, it is up to Ensemble to
enforce it and to allow only mutually trusted members into the same subgroup. A policy allows an
application to specify the members that it trusts and exclude untrusted members from its subgroup.

9.1 Cryptographic Infrastructure

Our design supports the use of a variety of authentication and encryption mechanisms. Ensemble
has been interfaced with the OpenSSL (see http://www.openssl.org/) cryptographic library, the
PGP authentication engine, and the Kerberos centralized authentication system (this is out of date).
By default, messages are signed using MD5, encrypted using RC4, and authentication is performed
using PGP. Because these three functionalities are carried out independently any combination of
supported authentication, signature, and encryption systems can be used. A future goal is to allow
multiple systems to be supported concurrently. Under such a system, processes would be able to
compare the systems they have support for and select any system that both have support for.

'MAC, Message Authentication Code. This is typically a keyed hash function.

2symmetric encryption/MAC is roughly 1000 times faster than equivalent public key operations.

3An Ensemble address is comprised of a set of identifiers, for example an IP address and a PGP princi-
pal name. Generally, an address includes an identifier for each communication medium the endpoint is using
{UDP,TCP,MPI,ATM,..}.

33

9.2 Rekeying

Ensemble rekeying uses the notion of secure channels. A secure channel between endpoints p and
q is essentially a symmetric encryption key k,, agreed upon between p and ¢. This key is known
only to p and ¢ and is different than the group key. Whenever confidential information needs to be
passed between p and ¢ it is encrypted using k,; and sent using Ensemble reliable point-to-point
messaging.

The basic rekeying protocol supported uses a binary tree structure. In order to rekey the group,
a complete binary tree spanning the group is created. Member 0 is the father of 1 and 2, 1 is the
father of 3 and 4, etc.. The leader chooses a new key ke, and sends it securely to 1 and 2; member
number 1 sends ke, securely down to 3 and 4, etc.. When a tree leaf receives a new key it sends
up a clear-text acknowledgment. When acknowledgments reach the leader (0) it prompts the group
for a view change in which the new key will be used.

knew 1s disseminated confidentially using secure channels. We cannot use the old key to protect
knew since the old key is assumed to be compromised. Secure channels are created upon demand
by Ensemble, they are then cached for future use. Creating a secure channel is a costly operation
taking hundreds of milliseconds even on fast CPUs. It is performed in the background so as not to
block the application.

Recently, we have added faster rekeying protocols to the system. A complete implementation of
the dWGL algorithm has been added, in the form of several layers. There are two new algorithms
rekey_dt, and rekey_diam. There are described in the reference manual.

9.3 A secure stack

The Security architecture is comprised of 5 layers:

Exchange: secure key agreement. This layer is responsible for securely handing the group key to
new joining group components. Component leaders mutually authenticate and check autho-
rization policies prior to handing the group key securely between them.

Encrypt: chain-encryption of all user messages.
Secchan: create and manage a cache of secure channels.

PerfRekey: handling common rekeying tasks. For example, after a new key has been disseminated
to the group, acknowledgments must be collected from all group members.

Rekey_dt: Binary tree rekeying. Rekeying a group is very fast once secure channels have been
setup. We logged an average rekey operation for a 20 member group at 100 milliseconds.
Rekey_dt assumes that the Secchan and PerfRekey layers are in the stack.

The regular and secure Ensemble stacks are depicted in Figure [2. The Top and Bottom layer
cap the stack from both sides. The membership layers compute the current set of live and connected
machines, the Appl_top layer interfaces with the application and provides reliable send and receive
capabilities for point-to-point and multicast messages. The RFifo layers provide reliable per-source
fifo messaging. The Exchange and Rekey layers are related to the membership layers since the
group key is a part of the view information. The Encrypt layer encrypts all user messages hence it
is below the Appl_top layer.

34

Regular | security additions

Top
Exchange
Rekey_dt
PerfRekey
Secchan
Gmp
Top_appl | Interface to the application
Encrypt
Rfifo
Bottom

Table 2: The Ensemble stack. On the left is the default stack that includes an application interface,
the membership algorithm and a reliable-fifo module. To the right is a secure stack with the
Exchange, Encrypt, Rekey_dt, and Secchan layers in place.

9.4 Security events

There are three security events to note:
o ERekey: By this event the application requests a Rekey operation.

e ESecureMsg: This event is used by the Rekey layer to send private messages to other processes.
The Secchan layer catches this event and sends the message securely to its destination.

e ERekeyPrcl: this event is used in the communication between all rekeying layers.
The Vs_key field was added to the view state was to allow for group keys. It holds the current
group key.

9.5 Using Security

Ensemble has three security properties:

1. Rekey: Add rekeying to the stack.

[\)

. OptRekey: Use the dWGL algorithm for rekeying.
3. Auth: Authenticate all messages.
4. Privacy: Encrypt all user messages.

An application wishing for strong security should choose all of the above properties in its stack
and perform a Control Rekey action once every several hours. Note that there are two flavors to
application Rekey-ing:

e Rekey false: The default, as above.

e Rekey true: Cleanup prior to rekeying. For performance considerations, Ensemble keeps
cached key-ing material and secure channels. These should be cleared up every couple of
hours to prevent an adversary from using cryptanalysis to discover the group key.

35

An example command line, for application appl, with pgp user name James_Joyce:

appl -add_prop Auth -add_prop Privacy -key 01234567012345670123456701234567
-pgp James_Joyce

In order to add authorization to the stack, thereby controlling which members are allowed to
join a group, one must do:

val policy_function : Addr.set -> bool
val interface : Appl_intf.New.t

let state = Layer.new_state interface in
let state = Layer.set_exchange (Some policy_function) state in
Appl.config new_full state (1s,vs)

Instead of simply:

Appl.config_new interface state (1s,vs)

Authorization is not linked to the Security architecture, regular stacks can perform authoriza-
tion. Control of joining members is delegated to the group leader that checks its authorization
list and allows/disallows join. Every view change the authorization list is checked and existing
members that are not authorized are removed.

In practice, if an application changes its authorization list dynamically, it must perform a
Prompt and a Rekey whenever such a change occurs.

9.6 Checking that things work

To check that PGP has been installed correctly, that Ensemble can talk to it without fault, and
the cryptographic support is running correctly, one can use the armadillo demo program.

In order to set up PGP, one must create principals and corresponding public and private keys.
These are installed by PGP in its local key repository. The basic PGP key-generation command
is:

zigzag ~/ensemble/demo> pgp -kg

To work with the armadillo demo, you’ll need to create principals in the group ol,02,.... Ar-
madillo creates a set of endpoints, and then runs a test between them. To this end, the program
has a “n” flag that describes the number of endpoints to use. For example, the command line
armadillo -n 2 ... tells armadillo that use a two members configuration. These members will
have principal names ol and 02 respectively.

To view the set of principals in the repository do:

zigzag ~/ensemble/demo> pgp -kv
pub 512/2F045569 1998/06/15 02
pub 512/A2358EED 1998/06/15 o1l
2 matching keys found.

To check that PGP runs correctly do:

36

zigzag ~/ensemble/demo> armadillo -prog pgp
PGP works

check_background

got a ticket

background PGP works

If something is broken, the PGP execution trace can be viewed using:

zigzag ~/ensemble/demo> armadillo -prog pgp -trace PGP

If more information is required use the flags —trace PGP1 -trace PGP2. The default version
of PGP that Ensemble works with is 2.6. If, however, you’d like to use a different version, set your
environment variable ENS_PGP_VERSION to the version number. Versions 5.0 and 6.5 are also
supported.

To check that OpenSSL is installed correctly, one can do:

zigzag ~/ensemble/demo> armadillo -prog perf

For a wider scale test use the exchange test. This is a test that creates a set of endpoints, with
principal names: o1, 02, ..., and merges them securely together into one group. Each group merge
requires that group-leaders properly authenticate themselves using PGP. The test is started with
all members in components containing themselves, and ends when a single secure component is
created. Note that it will keep running until reaching the timeout. The timeout is set by default
to 20 seconds. To invoke the test do:

zlgza, ensemole emo> armadi O —pro exchange —-n —real_
igzag ~/ ble/d dillo -prog hang 2 1_pgp

If something goes wrong, a trace of the authentication protocol is available through -trace
EXCHANGE.

The -real_pgp flag tells armadillo not to simulate PGP. Simulation is the default mode for
armadillo, since we use it to test communication protocol correctness.

To check that rekeying works do:

zigzag ~/ensemble/demo> armadillo -prog rekey -n 5

To test security with two separate processes do the following:

zigzag ~/ensemble/demo> gossip &
zigzag ~/ensemble/demo> mtalk -key 11112222333344441111222233334444
—add_prop Auth -pgp ol
zigzag ~/ensemble/demo> mtalk -key 01234567012345670123456701234567
-add_prop Auth -pgp o2

The two mtalk processes should authenticate each other and merge.
The three command line arguments specify:

e -key 111122223333444111122223333444 : The initial security key of the system. Should be
a 16 byte string.

e -add prop Auth: Add the authentication protocol. Otherwise, stacks with different keys will
not be able to merge.

e —pgp ol: Specify the principal name for the system.

37

9.7 Using security from HOT and EJava

The security options have been added to the HOT interface. For a demonstration program look at
hot_sec_test.c in the hot subdirectory. The only steps one needs to make are: (1) Set the program’s
principal name (2) Set the security bit. Both of these options are specified in the join-options
structure. For example, in hot_sec_test.c:

static void join(
int i,

char *xargv

)
state *s ;
s = (state *) hot_mem_Alloc(memory, sizeof(*s)) ;
memset(s,0,sizeof (*¥s8)) ;

s->status = BOGUS;
s->magic = HOT_TEST_MAGIC;

strcpy(s->jops.transports, "UDP");
strcpy(s->jops.group_name, "HOT_test");

sprintf (s->jops.princ, "Pgp(o%d)",i);
s->jops.secure = 1;

/* Join the group.
*/
err = hot_ens_Join(&s->jops, &s->gctx);
if (err !'= HOT_OK)
hot_sys_Panic(hot_err_ErrString(err));

EJava is interfaced with HOT, so they share a similar interface. Note that the outboard mode,
supported by both interface is insecure. The messages passing on the TCP connection between
the client and server are neither MACed nor encrypted. Therefore, they can be used securely only
when situated on a single machine.

38

10 Outboard messaging

The ce_outboard program allows clients to work with a remote Ensemble server that implements
the CE library calls. The description here is of the nuts-and-bolts TCP interface to the ce_outboard
service.

10.1 Locating the service

The CE outboard service uses TCP port 5002. Client processes connect to this port on the local-
host in the normal fashion for TCP services. Client processes can join any number of groups and
perform any number of operations over a single connection to a server. If ce_outboard is not
running on the local machine then processes will not be able to connect to it. Currently, we do not
support connecting to a remote service.

If the TCP connection breaks, the CE outboard service will fail the member from all groups
that it joined. However, a client can reconnect to the same server and rejoin the groups it was in.

10.2 Communicating with the service

Communication with the service is done through specially formatted messages. We describe the
message types and their format here.

messages: Messages in both directions are formatted as follows. Both directions of the TCP
streams are broken into variable-length packets. A packet has a header of size 8 consisting of
two integers in network byte order (NBO). The first integer gives the length of the message
header, the second integer gives the length of message body. The next message follows
immediately after the body.

integers: Integers are unsigned and are formatted as 4 bytes in NBO.
booleans: Booleans are formatted the same as integers where 1 equals true and 0 equals false.

strings: Strings have a somewhat more complex format. The first 4 bytes are an integer length
(unsigned, NBO). The body of the string immidiately follows the length.

endpoint and group identifiers: These types have the same format as strings. For non-Ensemble
applications, the contents can contain whatever the transport service you are using requires.
Ensemble only tests the contents of endpoint and group identifiers for equality with other
endpoints and groups.

time: Time is formatted as two integers; the first counts 10s of seconds, the second counts 10s of
microseconds.

lists: Lists have two parts. The first is an integer giving the number of elements in the list.
Immediately following that are the elements in the list, one after the other and adjacent to
one-another. It is assumed that the application knows the formats of the items in the list in
order to break them up.

iovec: Message body, a seqence of bytes that is bulk data.

The actual messages sent between the client and the server are composed of integers and strings.
The first field of a message is an integer that denotes the group id, the second field is an integer
tag value from which the format of the remainder of the message can be determined.

39

10.3 Messages from server to client

e View : A new view is being installed. The view is a list of Endpt.id’s. A member who just
sent a Join message may not be included in the view, in which case it should await the next
View message. The ltime is the logical time of the view. The first entry in the view and
the Itime uniquely identify the view. The ltime’s that a member sees grow monotonicly. In
addition, a boolean value is sent specifying whether this view is a primary view. The primary

bit is based on the primary bit of the group daemon’s being used.

integer group-id

integer View =1

int number of members

string Ensemble version number
string group-name

string protocol stack

int logical time of the view
boolean | is this the primary partition?
string parameters

list addresses of group members
list view of this group

endpoint | my endpoint

string my address

integer rank

string my name

view_id current view id

iovec an empty message body

e Cast : A mulitcast message has been received on this group.

integer | group-id
integer | Cast = 2
integer | origin

iovec message body

e Send : A point-to-point message has been received for this endpoint.

integer | group-id
integer | Send = 3
integer | origin

iovec message body

e Block : Block the endpoint as preperation for a view change.

After receiving the Block

message the client needs to (asynchronously) reply with a BlockOk message. After sending a
BlockOk no messages can be sent in this view.

integer | group-id
integer | Block = 4
iovec empty

40

e Exit : this endpoint is no longer valid. After receiving this message the client can discard
any outstanding state for this endpoint.

integer | group-id

integer | Exit = 5

iovec empty

10.4 Messages from client to server

e Join : Join a group with a set of options. The use-properties flag indicates whether to use
the properties field to derive a stack or use the raw set of layers requested in the protocol
field. The group-id must be unique across this socket-connection and is chosen by the client.

integer | group-id
integer | Join = 1
string | group-name
string | properties

string | parameters

string | principal

bool secure stack?

e Cast : Multicast a message in this group.

integer | group-id

integer | Cast = 2

iovec message body

e Send : Send a point-to-point message to a subset of the group. The client must make sure
that the target ranks are within the group, the server will exit with an error otherwise.

integer | group-id
integer | Send = 3

list target ranks
iovec message body

e Sendl : Send a point-to-point message to a single destination. The client must make sure
that the destination is within the group, the server will exit with an error otherwise.

integer | group-id
integer | Sendl = 4
iovec message body

e Suspect : Suspect a list of members. The client must make sure that the suspected members
are valid member ranks; the server will exit with an error otherwise.

integer | group-id
integer | Suspect = 5

list suspect rank list
iovec message body

e Leave : Request to leave the group. The endpoint is valid until the Exit message is received
from the server.

41

integer | group-id
integer | Leave = 6

iovec empty

e BlockOk : A response to the Block message. After sending the BlockOk no new messages
can be sent in the view.

integer | group-id
integer | BlockOk = 7
iovec empty

42

Part 11
The Ensemble Protocols

11 Layers and Stacks

We document a subset of the Ensemble layers and stacks (compositions of layers) in this section.
This documentation is intended to be largely independent of the implementation language. They
are currently listed in order, bottom-up, of their use in the VSYNC layer.

Each layer (or stack) has these items in its documentation:

11.1 ANYLAYER

The name of the layer follwed by a general description of its purpose.

Protocol

A description of the protocol implemented by the layer.

Parameters
e The list of parameters required to initialize the layer, along with descriptions of their purpose.
e [should also specify reasonable values]
e If a layers takes no arguments, the documentation specifies “None.”

Properties

e A list of informal properties of the layer.

Notes

e General notes about the layer.

Sources
The source files for the ML implementation of the layer.

Generated Events

A list of event types generated by the layer. In the future, this field will contain more infor-
mation, such as what event types are examined by the layer (instead of being blindly passed on).
Hopefully, this information will eventually be generated automatically.

43

Testing

e Information about the status of the layer regarding testing.

Testing information should always be documented: if the layer has not been tested, that
should be stated.

What testing has been completed on the layer (along with version information).

What infrastracture is in place for testing the layer.

Known bugs for a layer are listed in the ML source code.

44

11.2 CREDIT

This layer implements a credit based flow control.

Protocol

On initialization, sender informs receivers how many credits it wants to keep in stock.
Receivers sends credits whenever it finds that the sender is low on credits, either explic-
itly through a sender’s request or implicitly through its local accounting. A credit is
one time use only. Sender is allowed to send a message only if it has a credit available.
If the sender does not have a credit, the message is buffered. Buffered messages are sent
when new credits arrive. Credits are piggybacked to data messages whenever there is
an opportunity of doing so to save bandwidth.

Parameters

e rtotal: the total number of credits that this member can give out. Should be set according
to the number of receive buffers that the machine the member is running has.

e ntoask: the number of credits that this member likes to keep in stock.

e whentoask: the threshold number of credits remaining at sender before the receiver consider
sending out more credits.

e pntoask: like ntoask for piggyback style of credit giving.
e pwhentoask: like nwhentoask for piggyback style of credit giving.

e sweep: frequency at which periodic sweep routine, which give out credits to senders, should
run.

Notes

e Future implementation should support dynamic credit adjustment.

e Alternative flow control layers include RATE and WINDOW.

Sources

’ layers/credit.ml

Last updated: Fri Mar 29, 1996

45

11.3 RATE

This layer implements a sender rate based flow control. Multicast messages from each sender are
sent at a rate not exceeding some prescribed value.

Protocol

All the messages to be sent are buffered initially. Buffered messages are sent on periodic
timeouts that are set based on the sender’s rate.

Parameters

e rate_n, rate_t: the pair determines the rate. At most rate_n messages are allowed to sent
over any time period of rate_t. This is ensured by having two consecutive messages sent with
a inter-send time of at least (rate_t/rate_n) apart.

Notes

e Future implementation should support dynamic rate adjustment.

e Alternative flow control layers include CREDIT and WINDOW.

Sources

| layers/rate.ml |

This layer and its documentation were written by Takako Hickey.

46

11.4 BOTTOM

Not surprisingly, the BOTTOM layer is the bottommost layer in a Ensemble protocol stack. It
interacts directly with the communication transport by sending/receiving messages and schedul-
ing/handling timeouts. The properties implemented are all local to the protocol stack in which the
layer exists: ie., a (dn)Fail event causes failed members to be removed from the local view of the
group, but no failure message to be sent out—it is assumed that some other layer actually informs
the other members of the failure.

Protocol

None

Parameters

e None

Properties

e Requires messages be appropriately fragmented for the transport in use.

e Dn(ETimer){time} events cause an alarm to be scheduled with the transport so that an
Up(ETimer) event is later delivered some time after time.

e Dn(EBlock), Dn(EView), Dn(EStable), and Dn(EFail) events cause an Up(EBlock),
Up(EView), Up(EStable), and Up(EFail) event (respectively) to be locally “bounced”
up the protocol stack. No communication results from these events.

e In addition, Dn(EFail) events cause further Send and Cast messages from the failed members
to be dropped.

e Dn(EView) events do not affect the membership in the current protocol stack. The view in
the resulting Up(EView) event is merely a proposal for the next view of the group. (It is
expected that a new protocol stack will be created for that view.)

e Dn(ESend), Dn(ECast) events cause messages to be sent (unreliably) to other members in
the group. The resulting Up(ESend) and Up(ECast) events are delivered with the origin
field set with the rank of the sender and the time field set with the time that the messages
was received (according to the transport).

e Dn(EMerge), Dn(EMergeDenied), and Dn(EMergeGranted) causes messages to be
sent (unreliably) to members outside of the group. These result in Up(EMergeRequest),
Up(EMergeDenied), and Up(EMergeGranted) messages at the destination, respec-
tively.

e Dn(ELeave) events disable the transport instance and bounce up an Up(EExit) event. No
further events are delivered after the Up(EExit). [currently, this may not be true]

Sources

| layers/bottom.ml

47

Generated Events

Up(EBlock)

Up(ECast)

Up(EExit)

Up(EFail)

Up(EStable)

Up(EMergeDenied)

Up(EMergeGranted)

Up(EMergeRequest)

Up(ESend)

Up(ESuspect)

Up(ETimer)

Up(EView)

Testing

e see the VSYNC stack

11.5 CAUSAL

The CAUSAL layer implements causally order multicast. It assumes reliable, FIFO ordered reliable
messaging from layers below.

Protocol

The protocol has two versions: full and compressed vectors. First, we explain the simple
version which uses full vectors. Then, we explain how these vectors are compressed.

Each outgoing message is appended with a causal vector. This vector contains the last
causally delivered message from each member in the group. Each received message is
checked for deliverability. It may be delivered only if all messages which it causally
follows, according to its causal vector, have been delivered. If it is not yet deliverable,
it is delayed in the layer until delivery is possible. A view change erases all delayed
messages, since they can never become deliverable.

Causal vectors become large with the group size, so they must be compressed in order
for this protocol to scale. The compression we use is derived from the Transis system.
We demonstrate with an example: assume the membership includes three processes
p,q and r. Process p sends message m, 1, ¢ sends mg1, causally following m, 1 and
r sends m,; causally following m, ;. The causal vector for m,; is [1|1|1]. There is
redundancy in the causal vector since it is clear that m,.; follows m,.o. Furthermore,
since mg,1 follows m, 1 we may omit stating that m,; follows m, ;. To conclude, it
suffices to state that m,.; follows m, 1. Using such optimizations causal vectors may be
compressed considerably.

Sources

’ layers/causal.ml

Testing
e The CHK_CAUSAL protocol layer checks for CAUSAL delivery.

This layer and its documentation were written by Ohad Rodeh.

49

11.6 ELECT

This layer implements a leader election protocol. It determines when a member should become the
coordinator. Election is done by delivering an Dn(EElect) event at the new coordinator.

Protocol

When a member suspects all lower ranked members of being faulty, that member elects
itself as coordinator.

Parameters

e None

Properties

e Up(ESuspect) events may cause a Dn(EElect) event to be generated.

Sources

’ layers/elect.ml ‘

Generated Events

’ Dn(EElect) ‘

Testing

e see also the VSYNC stack

50

11.7 ENCRYPT

This layer encrypts application data for privacy. Uses keys in the view state record. Authentication
needs to be provided by the lower layers in the system. The protocol headers are not encrypted.
This layer must reside above FIFO layers for sending and receiving because it uses encryption
contexts whereby the encryption of a message is dependent on the previous messages from this
member. These contexts are dropped at the end of a view. A smarter protocol would try to
maintain them, as they improve the quality of the encryption.

Protocol

Does chained encryption on the message payload in the iov field of events. Each member
keeps track of the encryption state for all incoming and outgoing point-to-point and
multicast channels. Messages marked Unreliable are not encrypted (these should not
be application messages).

Parameters

e None

Properties

e Guarantees (modulo encryption being broken) that only processes that know the shared group
key can read the contents of the application portion of data messages.

e Requires FIFO ordering on point-to-point and multicast messages.

Sources

’ layers/encrypt.ml

Generated Events

None

Testing

e see the VSYNC stack

51

11.8 HEAL
This protocol is used to merge partitions of a group.
Protocol

The coordinator occasionally broadcasts the existence of this partition via Dn(EGossipExt)
events. These are delivered unreliably to coordinators of other partitions. If a coordi-
nator decides to merge partitions, then it prompts a view change and inserts the name

of the remote coordinator in the Up(EBlockOk) event. The INTER protocol takes
over from there. Merge cycles are prevented by only allowing merges to be made from
smaller view id’s to larger view id’s.

Parameters

e heal wait_stable : whether or not to wait for a first broadcast message to become stable before
starting the protocol. This ensures that all the members are in the group.

Properties

e [TODO: |

Sources

| layers/heal.ml |

Generated Events

Up(EPrompt)
Dn(EGossipExt)

Testing

e see the VSYNC stack

52

11.9 INTER

This protocol handles view changes that involve more than one partition (see also INTRA).

Protocol

Group merges are the more complicated part of the group membership protocol. How-
ever, we constrain the problem so that:

e Groups cannot be both merging and accepting mergers at the same time. This

eliminates the potential for cycles in the “merge-graph.”

A view (i.e. view_id) can only attempt to merge once, and only if no failures have
occured. Each merge attempt is therefore uniquely identified by the view_id of
the merging group. Note also that by requiring no failures to have occured for a
merge to happen, this prevents a member from being failed in one view and then
reappearing in the next view. There has to be an intermediate view without the
failed member: this is a desirable property.

The merge protocol works as follows:

= L=

D.

The merging coordinator blocks its group,
The merging coordinator sends a merge request to the remote group’s coordinator.
The remote coordinator blocks its group,

The remote coordinator installs a new view (with the mergers in it) and sends the
view to the merging coordinator (through a merge-granted message).

The merging coordinator installs the view in its group.

If the merging coordinator times out on the merged coordinator then it immediately
installs a new view in its partition (without the other members even finding out about
the merge attempt).

Parameters

e None

Properties

e When another partition is merging, a View message is also sent to the coordinator of the

merging group, which then forwards the message to the rest of its group.

e Requires that Dn(EMerge) events only be delivered by the original coordinator of views (in
which no failures have yet occured). Otherwise, the partition should first form a new view

and then attempt the merge.

e Dn(EMerge) causes a Dn(EMerge) event to be delivered to the layer below. This will be
replied with either an Up(EView), Up(EMergeFailed), or Up(EMergeDenied) event,

depending on the outcome of the merge attempt.

e Up(EMergeRequest)’s are only delivered at the coordinator. And only if the group is not
currently blocking and only if the mergers list does not contain members that are/were in

this view or in previous merge requests in this view.

93

Sources

’ layers/inter.ml ‘

Generated Events

Dn(EMerge)

Dn(EMergeDenied)

Dn(ESuspect)

Testing

e see the VSYNC stack

o4

11.10 INTRA

This layer manages group membership within a view (see also the INTER layer). There are three
related tasks here:

e Forwarding of group membership events to the rest of the group (without INTRA, normally
Dn(EView) and Dn(EFail) events have only local effect).

e Filtering of group membership events from remote members (for example, when two other
group members think they are the coordinator and fail each other, the INTRA layer choose
one of them and ignores the other member).

e Determining the view_id of the following view.

Protocol

This is a relatively simple group membership protocol. We have done our best to resist
the temptation to “optimize” special cases under which the group is “unnecessarily”
partitioned. We also constrain the conditions under which operations such as merges
can occur. The implementation does not “touch” any data messages: it only handles
group membership changes. Furthermore, this protocol does not use any timeouts.

Views and failures are forwarded via broadcast to the rest of the members. Other
members accept the view/failure if they are consistent with their current representation
of the group’s state. Otherwise, the view/failure message is dropped and the sender is
suspected of being problematic.

Parameters

e None

Properties

e Dn(EView) events are passed on to the layer below. They also cause a View message to be
broadcast to the other members. On receipt of this View message, the other members either
accept it (and deliver a Dn(EView) event to layer below) or mark the sender of the View
as problematic, and possibly deliver a Dn(ESuspect) event to the layer below.

e Requires FIFO, atomic broadcast delivery from layers below.

e Dn(EFail) events are passed on to the layer below. They also cause a Fail message to be
broadcast to the other members. On receipt of this Fail message, the other INTRA instances
will either accept it (and deliver a Dn(EFail) event to the layer beneath them) or mark the
sender of the Fail message as problematic, and possibly deliver an Dn(ESuspect) event to
the layer below.

e View and Fail messages from a particular coordinator are delivered in FIFO order to the
members.

e Not all members may see same set of Up(EFail) events. However, the set of failed members
grows monotonicly with each failure notification.

95

Sources

’ layers/intra.ml ‘

Generated Events

Dn(ECast)
Dn(EFail)
Dn(ESuspect)
Dn(EView)

Testing

e sece the VSYNC stack

96

11.11 LEAVE

This protocol has two tasks. (1) When a member really wants to leave a group, the LEAVE
protocol tells the other members to suspect this member. (2) The leave protocol garbage collects
old protocol stacks by initiating a Dn(ELeave) after getting an Up(EView) and then getting an
Up(EStable) where everything is marked as being stable.

Protocol

Both protocols are simple.

For leaving the group, a member broacasts a Leave message to the group which causes
the other members to deliver a Dn(ESuspect) event. Note that the other members
will get the Leave message only after receiving all the prior broadcast messages. This
member should probably stick around, however, until these messages have stabilized.

Garbage collection is done by waiting until all broadcast message are stable before
delivering a local Dn(ELeave) event.

Parameters

e leave_wait_stable : whether or not to wait for the leave announcment to become stable before
leaving

Properties

e [TODO: |

Sources

’ layers/leave.ml ‘

Generated Events

’ Dn(ELeave) ‘

Testing

e see the VSYNC stack

57

11.12 MERGE

This protocol provides reliable retransmissions of merge messages and failure detection of remote
coordinators when merging.

Protocol

Simple retransmission protocol. A hash table is used to detect copied merge requests,
which are dropped.

Parameters

e merge_sweep: how often to retransmit merge requests

e merge_timeout: how long before timing out on merges

Properties

e Dn(EMerge), Dn(EMergeGranted), and Dn(EMergeDenied) events are buffered for
later retransmission.

e Up(EMergeRequest), Up(EMergeGranted), and Up(EMergeDenied) events are fil-
tered so that each event is delivered at most once by this layer (i.e., so that retransmissions
are dropped).

o After timeout time (a parameter listed above) an Up(EMergeFailed) event is delivered with
the problems field set to be the contact of the Dn(EMerge) (only) event. (It is assumed
that the merge process will normally be complete before this timeout occurs.)

Notes

e Removal of this protocol layer only makes the merges unreliable, and stops the failure detec-
tion of the new coordinator.

Sources

’ layers/merge.ml ‘

Generated Events

Up(ESuspect)
Dn(EMerge)
Dn(ETimer)

Testing

e see the VSYNC stack

o8

11.13 MFLOW

This layer implements window-based flow control for multicast messages. Multicast messages from
each sender are transmitted only if the number of send credit left is greater than zero. The protocol
attempts to avoid situations where all recievers send credit at the same time, so that a sender is
not flooded with credit messages.

Protocol

Whenever the amount of send credits drops to zero, messages are buffered without being
sent. On receipt of acknowledgement credit, the amount of send credits are recalculated
and buffered messages are sent based on the new credit.

Parameters

e mflow_window : the maximum amount on unacknowledged messages or the size of the window.

e mflow_ack_thresh : The acknowledge threshold. After receiving this number of bytes of data
from a sender, the receiver acknowledged previous credit.

Properties

e This protocol bounds the number of unrecieved multicast messages a member has sent.

e The amount of received credits are initialized to different values for avoiding many members
sending back acknowledge at the same time.

e This protocol requires reliable multicast and point-to-point properties from underlying pro-
tocol layers.

Notes

e As opposed to most of the Ensemble protoocols, this protocol implements flow control on
bytes and not on messages. It only considers the data in the application payload portion of
the message (the iov field of the event).

e Because of the EBlockOk events, this layer needs to be below the broadcast stability layer.

Sources

’ layers/mflow.ml

Testing
e Some testing has been carried out.

This layer and its documentation were written with Zhen Xiao.

99

11.14 DMNAK

The MNAK (Multicast NAK) layer implements a reliable, agreed, FIFO-ordered broadcast protocol.
Broadcast messages from each sender are delivered in FIFO-order at their destinations. Messages
from live members are delivered reliably and messages from failed members are retransmitted by
the coordinator of the group. When all failed members are marked as such, the protocol guarantees
that eventually all live members will have delivered the same set of messages.

Protocol

Uses a negative acknowledgment (NAK) protocol: when messages are detected to be out
of order (or the NumCast field in an Up(EStable) event detects missing messages),
a NAK is sent. The NAK is sent in one of three ways, chosen in the following order:

1. Pt2pt to the sender, if the sender is not failed.
2. Pt2pt to the coordinator, if the reciever is not the coordinator.

3. Broadcast to the rest of the group if the receiver is the coordinator.

All broadcast messages are buffered until stable.

Parameters

e mnak_allow_lost : boolean that determines whether the MNAK layer will check for lost mes-
sages. Lost messages are only possible when using an inaccurate stability protocol.

Properties

e Requires stability and NumClast information (equivalent to that provided by the STABLE
layer).

e Dn(ECast) events cause Up(ECast) events to be delivered at all other members (but not
locally) in the group in FIFO order.

e Up(EStable) events from the layer below cause stable messages to be garbage collected and
may cause NAK messages to be sent to other members in the group.

Sources

’ layers/mnak.ml ‘

Generated Events

Dn(ECast)
Dn(ESend)

60

Testing

e The CHK_FIFO protocol layer checks for FIFO safety conditions.

e The FIFO application generates bursty communication in which a token traces its way through
each burst. If a reliable communication layer drops the token, communication comes to an
abrupt halt. This is intended to capture the liveness conditions of FIFO layers.

e see also the VSYNC stack

61

11.15 PRIMARY

Detect primary partition in a group. Usually a primary partition has the majority of members or
holds some important resources.

Protocol

Upon Up(EInit) event, a member sends a message to the coordinator, claiming that
it is in the current view. When a view has the majority of members, its coordinator
prompts a view change to make itself the primary partition if it is not yet. When a new
view is ready, it decides whether it is primary and mark it as so.

Parameters

e primary_quorum: how many servers (non-client member) are needed to form the primary
partition.

Properties

e Guarantees no two primary partitions can have the same logical timestamp.
e Optimal in the normal case: no addtional view change is necessary.

e This protocol requires group membership management from underlying protocol layers.

Sources

’ layers/primary.ml ‘

Generated Events

Dn(EPrompt)
Dn(ESend)

Testing
e TODO

This layer and its documentation were written with Zhen Xiao.

62

11.16 PT2PT

This layer implements reliable point-to-point message delivery.
[TODO: finish this documentation]

Parameters

e pt2pt_sweep : how often to retransmit messages and send out acknowledgments

e pt2pt_ack_rate : determines how many messages will be received before an acknowledgement
is generated.

e pt2pt_sync : boolean determining if point-to-point messages should be synchronized with
view changes

Testing

e see the VSYNC stack

63

11.17 PT2PTW

This layer implements window-based flow control for point to point messages. Point-to-point mes-
sages from each sender are transmitted only if the window is not yet full.

Protocol

Whenever the amount of send credits drops to zero, messages are buffered without being
sent. On receipt of acknowledgement credit, the amount of send credits are recalculated
and buffered messages are sent based on the new credit. Acknowledgements are sent
whenever a speicified threshhold is passed.

Parameters

e pt2ptw_window : the maximum amount on unacknowledged messages or the size of the
window.

e pt2ptw_ack_thresh : The acknowledge threshold. After receiving this number of bytes of data
from a sender, the receiver acknowledges previous credit.

Properties
e This protocol bounds the number of unrecieved point-to-point messages a member can send.
e This protocol requires reliable point-to-point properties from underlying protocol layers.
Notes

e As opposed to most of the Ensemble protocols, this protocol implements flow control on bytes
and not on messages. It only considers the data in the application payload portion of the
message (the iov field of the event).

Sources

’ layers/pt2ptw.ml

Testing
e Some testing has been carried out.

Last updated: March 21, 1997

64

11.18 PT2PTWP

This layer implements an adaptive window-based flow control protocol for point-to-point commu-
nication between the group members.

In this protocol the receiver’s buffer space is shared between all group members. This is ac-
complished by dividing the receiver’s window among the senders according to the bandwidth of the
data being received from each sender. Such way of sharing attempts to minimize the number of
ack messages, i.e. to increase message efficiency.

Protocol

In the following, the term acknowledgement is used with the meaning of flow control
protocols and not that of reliable communication protocols.

This protocol uses credits to measure the available buffer space at the receiver’s side.
Each sender maintains a window per each destination, which is used to bound the
unacknowledged data a process can send point-to-point to the given destination. For
each message it sends, the process deducts a certain amount of credit based on the size
of the message. Messages are transmitted only if the sender has enough credit for them.
Otherwise, messages are buffered at the sender.

A receiver keeps track of the amount of unacknowledged data it has received from each
sender. Whenever it decides to acknowledge a sender, it sends a message containing new
amount of credit for this sender. On receipt of an acknowledgement message, sender
recalculates the amount of credit for this receiver, and the buffered messages are sent
based on the new credit.

The receiver measures the bandwidth of the data being received from each sender. It
starts with zero bandwidth, and adjusts it periodically with timeout ptZ2ptwp_sweep.

On receipt of a point-to-point message, the receiver checks if the sender has passed
threshold of its window, i.e. if the amount of data in point-to-point messages re-
ceived from this sender since the last ack was sent to it has exceeded a certain ratio,
pt2ptwp_ack_thresh, of the sender’s window. If it is, an ack with some credit has to be
sent to the sender. In order to adjust processes’ windows according to their bandwidth,
the receiver attempts to steal some credit from an appropriate process and add it to
the sender’s window. The receiver looks for a process with maximal \/% ratio,
decreases its window by certain amount of credit and increases the window of the sender
appropriately. Then the receiver sends the sender ack with the new amount of credit.
When the process from which the credit was stolen passes theshold of its new, smaller
window, the receiver sends ack to it.

Parameters

e pt2ptwp_window : size of the receiver’s window, reflects the receiver’s buffer space.
o pt2ptwp_ack_thresh : the ratio used by the receiver while deciding to acknowledge senders.

e pt2ptwp_min_credit : minimal amount of credit each process must have.

65

e pt2ptwp_bw_thresh : credit may be stolen for processes with greater bandwidth only.

e pt2ptwp_sweep : the timeout of periodical adjustment of bavdwidth.

Properties

e This protocol requires reliable point-to-point properties from underlying protocol layers.
Notes

e As opposed to most of the Ensemble protocols, this protocol implements flow control on bytes

and not on messages. It only considers the data in the application payload portion of the
message (the iov field of the event).

Sources

’ layers/pt2ptwp.ml

Testing

e Correctness and performance testing has been carried out.

66

11.19 REKEY

This layers switches the group key upon request. There may be several reasons for switching the
key:

e The key’s lifetime has expired — it is now possible that some dedicated attacker has cracked
it.
e The key has been compromised.

e Application authorization policies have changed and previously trusted members need to be
excluded from the group.

This layer also relies on the Secchan layer to create secure channels when required. A secure
channel is essentially a way to pass confidential information between two endpoints. The Secchan
layer creates secure channels upon demand and caches them for future use. This allows the new
group key to be disseminated efficiently and confidentially through the tree.

Protocol

When a member layer gets an ERekeyPrcl event, it sends a message to the coordinator
to start the rekeying process. The coordinator generates a new key and sends it to its
children using secure channels. The children pass it down the tree. Once a member
receives the new key is passes it down to PerfRekey using an ERekeyPrcl event.

The PerfRekey layer is responsible for collecting acknowledgments from the members
and performing a view change with the new key once dissemination is complete.

Parameters

o rekey_degree: The degree of the dissemination tree. By default it is 2.

Properties

e Guarantees during a view change, either all members switch to the new shared key or none
of them do.

Sources

’ layers/rekey.ml ‘

Generated Events

Dn(ECast)
Dn(ESend)

Testing
e The armadillo.ml file in the demo directory tests the security properties of Ensemble.

This layer was originally written by Mark Hadyen with Zhen Xiao. Ohad Rodeh later rewrote
the security layers and related infrastructure.

67

11.20 REKEY_ DT

This is the default rekeying layer. The basic data structure used is a tree of secure channels. This
tree changes every view-change, therefore the name of the layer. Dynamic Tree REKEY.

The basic problem in obtaining efficient rekeying is the high cost of constructing secure channels.
A secure channel is established using a two-way handshake using a Diffie-Hellman exchange. At
the time of writing, a PentiumIII 500Mhz can perform one side of a Diffie-Hellman exchange (using
the OpenSSL cryptographic library) in 40 milliseconds. This is a heavyweight operation.

To discuss the set of channels in a group, we shall view it as a graph where the nodes are
group members, and the edges are secure channels connecting them. The strategy employed by
REKEY DT is to use a tree graph. When a rekey request is made by a user, in some view V', the
leader multicasts a tree structure that uses, as much as possible, the existing set of edges.

For example, if the view is composed of several previous components, then the leader attempts
to merge together existing key-trees. If a single member joins, then it is located as close to the
root as possible, for better tree-balancing. If a member leaves, then the tree may, in the worst case,
split into three pieces. The leader fuses them together using (at most) 2 new secure channels.

The leader chooses a new key and passes it to its children. The key is passed recursively down
the tree until it reaches the leaves. The leaf nodes send acknowledgments back to the leader.

This protocol has very good performance. It is even possible, that a rekey will not require any
new secure-channels. For example, in case of member leave, where the node was a tree-leaf.

Protocol

When a member layer gets an ERekeyPrcl event, it sends a message to the coordinator
to start the rekeying process. The coordinator checks if the view is composed of a single
tree-component. If not, it multicasts a Start message. All members that are tree-roots,
sends their tree-structure to the leader. The leader merges the trees together, and
multicasts the group-tree. It then chooses a new key and sends it down the tree.

Once a member receives the new key is passes it down to PerfRekey using an ERekeyPrcl
event.

The PerfRekey layer is responsible for collecting acknowledgments from the members
and performing a view change with the new key once dissemination is complete.

Sources

’ layers/rekey_dt.ml ‘

Generated Events

Dn(ECast)
Dn(ESend)

Testing

e The armadillo.ml file in the demo directory tests the security properties of Ensemble.

68

11.21 SECCHAN

This layer is responsible for sending and receiving private messages to/from group members. Privacy
is guaranteed through the creation and maintenance of secure channels.

A secure channel is, essentially, a symmetric key (unrelated to the group key) agreed upon
between two members. This key is used to encrypt any confidential message sent between them.
We allow layers above Secchan to send/receive confidential information using SecureMsg events.
When a SecureMsg(dst, data) event arrives at Secchan, a secure channel to member dst is created
(if one does not already exist). Then, the data is encrypted using the secure channel key and
reliably sent to dst.

This layer relies on an authentication engine - this is provided in system independent form by the
Auth module. Currently, PGP is used for authentication. New random shared keys are generated
by the Security module. The Security module also provides hashing and symmetric encryption
functions. Currently RC4 is used for encryption and MD5 is used for hashing.

Protocol

A secure channel between members p and ¢ is created using the following basic protocol:

1. Member p chooses a new random symmetric key k,,. It creates a ticket to ¢ that
includes k,, using the Auth module ticket facility. Essentially, Auth encrypts kp,
with ¢’s public key and signs it using p’s private key. Member p then sends the
ticket to q.

2. Member ¢ authenticates and decrypts the message, and sends an acknowledgment
(Ack) back to p.

This two-phase protocol is used to prevent the occurrence of a double channel. By this
we mean the case where p and ¢ open secure channels to each other at the same time.
We augment the Ack phase; ¢ discards p’s ticket if:

1. g has already started opening a channel to p

2. q has a largelﬂ name than p.

Secchan also keeps the number of open channels, per member, below the secchan_cache_size
configuration parameter. Regardless, a channel is closed if it’s lifetime exceeds 8 hours
(the setable secchan_ttl parameter). A two-phase protocol is used to close a channel.
If members p and ¢ share channel, assuming p created it, then p sends a CloseChan
message to q. Member ¢ responds by sending a CloseChanO¥k to p.

It typically happens that many secure channels are created simultaneously group wide.
For example, in the first Rekey of a group. If we tear down all these channels exactly
8 hours from their inception, the group will experience an explosion of management
information. To prevent this, we stagger channel tear down times. Upon creation, a
channel’s maximal lifetime is set to 8hours + Iseconds where I is a random integer in
the range [0 ..secchan_rand] . secchan_rand is set by default to 200 seconds, which we
view as enough.

4Polymorphic comparison is used here.

69

Properties

e Requires VSYNC properties.

Parameters

e secchan_cache_size: determines size of secure channel cache.
e secchan_ttl: Time To Live of a channel.
e secchan_rand: Used to stagger channel refresh times.

e secchan_causal flag: for performance evaluations.

Sources

layers/secchan.ml

layers/msecchan.ml

Generated Events

EChannelList
ESecureMsg
Dn(ECast)
Dn(ESend)

Testing

e The armadillo program (in the demo subdirectory) tests the security properties of Ensemble.

70

11.22 SEQUENCER

This layer implements a sequencer based protocol for total ordering.

Protocol

One member of the group serves as the sequencer. Any member that wishes to send
messages, send them point-to-point to the sequencer. The sequencer then delivers the
message localy, and cast it to the rest of the group. Other members, as soon as they
receive a cast from the sequencer, they deliver the message.

If a view change occurs, messages are tagged as unordered and are send as such. When
the Up(EView) event arrives, indicating that the group has successfully been flushed,
these messages are delivered in a deterministic order everywhere (according to the ranks
of their senders, breaking ties using FIFO).

Parameters

e None

Properties

e Requires VSYNC properties.

Sources

’ layers/sequencer.ml ‘

Generated Events

Dn(ECast)
Dn(ESend)

Testing
e [TODO: |

This layer and its documentation were written by Roy Friedman.

71

11.23 SLANDER

This protocol is used to share suspicions between members of a partition. This way, if one member
suspects another member of being faulty, the coordinator is informed so that the faulty member is
removed, even if the coordinator does not detect the failure. This ensures that partitions will occur
even in the case of asymmetric network failures. Without the protocol, only when the coordinator
notices the faulty member will the member be removed.

Protocol

The protocol works by broadcasting slander messages to other members whenever it
recieves a new Suspect event. On the receipt of such a message, DnSuspect events are
generated.

Parameters

e None

Properties

e If any member suspects another member of being faulty, all members will eventually suspect
that member.

e Up(ESuspect) events may cause a Slander message to be generated.

Sources

’ layers/slander.ml ‘

Generated Events

’ Dn(ESuspect) ‘

Testing
e see also the VSYNC stack

This layer and its documentation were written by Zhen Xiao.

72

11.24 STABLE

This layer tracks the stability of broadcast messages and does failure detection. It keeps track of
and gossips about an acknowledgement matrix, from which it occasionally computes the number
of messages from each member that are stable and delivers this information in an Dn(EStable)
event to the layer below (which will be bounced back up by a layer such as the BOTTOM layer).

Protocol

The stability protocol consists of each member keeping track of its view of an acknowl-
edgement matrix. In this matrix, each entry, (A,B), corresponds to the number of
member B’s messages member A has acknowledged (the diagonal entries, (A,A), con-
tain the number of broadcast messages sent by member A). The minimum of column A
(disregarding entries for failed members) is the number of broadcast messages from A
that are stable. The vector of these minimums is called the stability vector. The maxi-
mum of column A (disregarding entries of failed members) is the number of broadcast
messages member A has sent that are held by at least one live member. The vector of
the maximums is called the NumCast vector [there has got to be a better name)].
Occasionally, each member gossips its row to the other members in the group. Occa-
sionally, the protocol layer recomputes the stability and NumCast vectors and delivers
them up in an Dn(EStable) event.

To prevent a message storm when members gossip their stability vectors, each mem-
ber adds an initial time-delta to its timer. The deltas are spread between zero and
stable_spacing based on member rank. For example, if there are 10 members, and
suspect_spacing is set to 1 second, then the deltas for members zero through nine are:
0.0, 0.1, .., 0.9.

Parameters

e stable_sweep: how often to (1) gossip and (2) deliver stability (if it has changed)
e stable_explicit_ack: whether to request end-to-end acknowledgements for messages

e stable_spacing : the time-interval over which to spread periodic sending of stability vectors.

Properties

e Unless it is marked with the Unreliable option all DnCast events are counted by the STABLE
layer and require eventual acknowledgement by the other members in the group in order to
achieve stability.

e Dn(EStable) events from the stability layer have two extension fields set. The first is the
StableVect extension, which is the vector of stability number of messages from each of the
members in the group which are known to be stable. The second is the NumCast extension
which is a vector with the number of broadcast messages each member in the group is known
to have sent.

e Dn(EStable) events are never delivered before all live members have acknowledged at least
the number of messages noted in the stability event. (safety)

73

e Dn(EStable) event will eventually be delivered after live members have acknowledged mes-
sage seqno from member A, where the entry in the stable vector for member A is at least
seqno+1. (liveness)

e The stability vectors in Dn(EStable) events from the STABLE layer are monotonically
increasing.

Notes

e NumCast entries are not monotonicly increasing. For example, consider the case of member
A broadcasting some messages (which are all dropped by the network), then broadcasting its
gossip information (which are recieved), then failing. The other members may deliver some
UpStable events with the number of known broadcasts from member A, in which the dropped
broadcasts are counted. However, after the other members detect member A’s failure, the
NumCast entry for member A will be lowered to be the number of messages from A that
the live members have recieved, which will be lower than when A was not failed.

e Up(ECast) events do not need to be acknowledged individually: an acknowledgment, Ack(from,seqno),
is taken to acknowledge all of the first seqno messages from the member with rank from.

e An attempt has been made to speed up stability detection during view changes by sending
extra gossip messages when failures have occurred.

Sources

’ layers/stable.ml ‘

Generated Events

Up(EStable)
Dn(ECast)
Dn(ETimer)

Testing

e see the VSYNC stack

74

11.25 SUSPECT

This layer regularly pings other members to check for suspected failures. Suspected failures are
announce in a Dn(ESuspect) event to the layer below (which will be bounced back up by a layer
such as the BOTTOM layer).

Protocol

Simple pinging protocol. Uses a sweep interval. On each sweep, Ping messages are
broadcast unreliably to the entire group. Also, the number of sweep rounds since the
last Ping was received from other members is checked and if it exceed the max_idle
threshold then a Dn(ESuspect) event is generated.

To prevent a message storm when member’s sweep timers expire, each member adds
an initial time-delta to its sweep timer. The deltas are spread between zero and
suspect_spacing based on member rank. For example, if there are 10 members, and
suspect_spacing is set to 1 second, then the deltas for members zero through nine are:
0.0, 0.1, .., 0.9.

Parameters

e suspect_sweep : how often to Ping other members and check for suspicions

e suspect_max_idle : number of unacknowledged Ping messages before generating failure suspi-
cions.

e suspect_spacing : the time-interval over which to spread periodic sending of suspicions.

Properties

e Suspicions are no guarantee that an actual failure has occured, only a guess.

Notes

e None

Sources

’ layers/suspect.ml ‘

Generated Events

Dn(ESuspect)
Dn(ECast)
Dn(ETimer)

Testing

e sce the VSYNC stack

75

11.26 SYNC

This layer implements a protocol for blocking a group during view changes. One member initiates
the SYNC protocol by delivering a Dn(EBlock) event from above. Other members will receive
an Up(EBlock) event. After replying with a Dn(EBlockOk), the layers above the SYNC layer
should not broadcast any further messages. Eventually, after all members have responded to the
Up(EBlock) and all broadcast messages are stable, the member that delivered the Dn(EBlock)
event will recieve an Up(EBlockOk) event.

Protocol

This protocol is very inefficient and needs to be reimplemented at some point. The Block
request is broadcast by the coordinator. All members respond with another broadcast.
When the coordinator gets all replies, it delivers up an Up(EBlockOk)

Parameters

e None

Properties

e Requires FIFO, reliable broadcasts with stability detection.
e Expects at most one Dn(EBlock) from above.

e Always delivers at most one Up(EBlockOk) event. Only delivers an Up(EBlockOKk) if a
Dn(EBlock) was recieved from above.

e When at least one member recieves a Dn(EBlock) event, all live members will eventually
deliver an Up(EBlock) event.

e Expects at most one Dn(EBlockOk) event from above. Expects a Dn(EBlockOk) from
above only if an Up(EBlock) event was previously delivered by this layer.

e Expects a Dn(EBlock) to the layers below will be replied with an Up(EBlock) from below.

e When all members have delivered a Dn(EBlockOk) event from above and all broadcast
messages have been acknowledged (by non-failed members), eventually all members who
delivered a Dn(EBlock) event will receive an Up(EBlockOk) event from this layer.

Sources

’ layers/sync.ml ‘

Generated Events

Up(EBlockOK)
Dn(EBlock)
Dn(ECast)

76

Testing

e The CHK_SYNC protocol layer checks for SYNC safety conditions.

e see also the VSYNC stack

77

11.27 TOPS

This layer implements a lexicographic total ordering protocol. (This is a variation on the protocol
developed as part of the Transis project.)

Protocol

The protocol works by lexigraphically ordering messages. For example, if group mem-
bers are {A, B,C'} and they send messages Aj, By, and C, then the ordering will be
Ay < By < (. Since the ordering is fixed the protocol can get stuck if a member does
not send a message every timeout. For example, if the application messages are A; and
(1 then the protocol would wait indefinitely for B; and never deliver C'y. Hence, every
member multicasts a null message every timeout to maintain liveness. Currently, the
timeout is hardcoded to one second.

This protocol is not normally used because it has high latency if members do not
multicast messages often.

Parameters

e None

Properties

e Requires VSYNC properties, implements the AGREE property.

Sources

| layers/tops.ml

78

11.28 TOTEM

This layer implements the rotating token protocol for total ordering. (This is a variation on the
protocol developed as part of the Totem project.)

Protocol

The protocol here is fairly simple: As soon as the stack becomes valid, the lowest ranked
member starts rotating a token in the group. In order to send a message, a process must
wait for the token. When the token arrives, all buffered messages are broadcast, and
the token is passed to the next member. The token must be passed on even if there are
no buffered messages.

If a view change occurs, messages are tagged as unordered and are send as such. When
the Up(EView) event arrives, indicating that the group has successfully been flushed,
these messages are delivered in a deterministic order everywhere (according to the ranks
of their senders, breaking ties using FIFO).

Parameters

e None

Properties

e Requires VSYNC properties and local delivery.

Sources

| layers/totem.ml |

Generated Events

Dn(ECast)

Testing
e [TODO: |

This layer and its documentation were written by Roy Friedman.

79

11.29 WINDOW

This layer implements window-based flow control based on stability information. Multicast mes-
sages from each sender are sent only if the number of unacknowledged messages from the sender is
smaller than the window.

Protocol

Whenever the number of unstable messages goes above the window, messages are
buffered without being sent. On receipt of a stability update, the number of unsta-
ble messages are recalculated and buffered messages are sent as allowed by the window.

Parameters

e window_window : the window size in number of messages

Properties

e Requires stability information in the form of Up(EStable) events.

Notes

e Future implementation should support dynamic window adjustment.

e Performance with the WINDOW layer depends in part with the frequency of stability updates.
The WINDOW flow control works the best when the frequency is based on the number of
unstable messages rather than on periodic timeouts.

e Alternative flow control layers include RATE and CREDIT.

Sources

| layers/window.ml

This layer and its documentation were written by Takako Hickey.

80

11.30 XFER

This protocol facilitates application based state-transfer. The view structure contains a boolean
field xfer_view conveying whether the current view is one where state-transfer is taking place
(xfer_view = true) or whether it is a regular view (xfer_view = false).

Protocol

It is assumed that an application initiates state-transfer after a view change occurs. In
the initial view, xfer_view = true. In a fault free run, each application sends pt-2-pt
and multicast messages, according to its state-transfer protocol. Once the application-
protocol is complete, an XferDone action is sent to Ensemble. This action is caught
by the Xfer layer, where each member sends a pt-2-pt message XferMsg to the leader.
When the leader collects XferMsg from all members, the state-transfer is complete, and
a new view is installed with the xfer_view field set to false.

When faults occur, and members fail during the state-transfer protocol, new views are
installed with xfer_view set to true. This informs applications that state-transfer was
not completed, and they can restart the protocol.

Notes

e This layer allows the application to choose the state-transfer protocol it wishes to use, the
only constrain being the XferDone actions.

e In the normal case, (a fault free run) the protocol should take a single view to complete.

Parameters

e None

Properties

e Requires VSYNC properties.

Sources

’ layers/xfer.ml ‘

81

11.31 ZBCAST

The ZBCAST layer implements a gossip-style probabilistically reliable multicast protocol. Unlike
most other protocols in Ensemble, this protocol admits a small, but non-zero probability of message
loss: a message might be garbage collected even though some operational member in the group has
not received it yet. We found that doing so can offer dramatic improvements in the performance
and scalability of the protocol.

Protocol

This protocol is composed of two sub-protocols structured roughly as in the Internet
MUSE protocol. The first protocol is an unreliable multicast protocol which makes a
best-effort attempt to efficiently deliver each message to its destinations. The second
protocol is a 2-phase anti-entropy protocol that operates in a series of unsynchronized
rounds. During each round, the first phase detects message loss; the second phase
corrects such losses and runs only if needed.

Parameters

e zbcast_fanout : the fanout of gossip messages. This determines how many destinations a
member gossips to during each round.

e zbcast_sweep: the interval of each round.

e zbcast_idle: how many rounds to wait after the last retransmission request of a message before
that message can be garbage collected.

e zbcast_max_polls: the maximum number of destinations a member can poll for missing mes-
sages during one round.

e zbcast_max_reqs: the maximum number of retransmission requests a member can make during
one round.

e zbcast_max_entropy: the maximum amount of data a member can retransmit during one
round.

e zbcast_req_limit: the threshold for message retransmission request before that request is mul-
ticasted to the whole group.

e zbcast_reply_limit: the threshold for message retransmission before that retransmission is
multicasted to the whole group.

Properties

e Under some conservative assumptions about the network properties, message delivery can be
proved to have a bimodal distribution under this protocol: with a very small probability the
message will be delivered to a small number of destinations(including failed ones); with very
high probability the message will be delivered to almost all destinations; and with vanishingly
low probability the message will be delivered to many but not most destinations.

82

e Using this protocol for multicast transmissions, virtual synchrony cannot be guaranteed since
it admits a non-zero probability of message losses at some operational members. Message
losses (if any) are reported to the application. If the message loss is deemed to compro-
mise correct behavior, the application may decide to leave the group and then rejoins them,
triggering state transfer — a separate feature provided by Ensemble.

e This protocol needs multicast support from underlying layers. If IP-multicast is not available,
GCAST protocol is needed to simulate the effect of multicast by a series of unicasts.

e As its current implementation, this protocol requires groupd membership services.

e This protocol assumes that the application is able to control its message transmission within
a certain rate (rate-based flow control). If the load injected into the network is heavier than
what it can sustain, the failure probability and latency guarantees of the protocol may no
longer hold.

Sources

’ layers/zbcast.ml ‘

Generated Events

Dn(ECast)
Dn(ESend)
Up(ELostMessage)

Testing

e Extensive experiments have been conducted on a SP2 parallel machine (used as a network
of UNIX workstations) with group size ranging from 8 to 128 nodes. The protocol scales
gracefully and maintains stable throughput.

e The protocol has been tested on a multicast-capable LAN with 30 Solaris workstations. One
of the member is the sender and the rest are receivers. The sender is sending at a rate of 200
messages per second. Each message is 1000 bytes. Most of the receivers are able to maintain
a steady throughput of 200 msgs/sec. Message losses are very rare.

We emphasize that in both tests we have reached the limit of the largest group of machines
which we have access to. We believe that our protocol can scale far more than what is
indicated above.

e In the next step of our work, we will investigate its performance on WAN.

This layer and its documentation were written by Zhen Xiao. It is based on the PBCAST
protocol implemented by Mark Hayden. This documentation is based the Bimodal Multicast paper.

83

11.32 VSYNC

Virtual synchrony is decomposed into a set of 8 independent protocol layers, listed in figure[3] The
layers in this stack are decribed in the layer section.

[TODO: here describe the overall protocol created by composing all the protocol
layers]

Parameters

e [TODO: composition of parameters below]

Protocol

[TODO: composition of protocols below]

Properties

e [some form of composition of properties in layers]

Notes

e Causal ordering can be introduced by replacing the MNAK layer with a causal implementation
of same protocol.

e Weak virtual synchrony can be implemented by removing the SYNC layer and adding appli-
cation support for managing multiple live protocol stacks.

Testing

e Use the various testing code described in the component layers.
e Version of Jan 12, 1996, tested with > 100000 random failure scenarios.
e Version of April 10, 1997, tested with > 100000 random failure scenarios.

e Random testing is done nightly on debugged VSYNC protocol stack.

84

name

purpose

LEAVE reliable group leave

INTER inter-group view management
INTRA intra-group view management
ELECT leader election

MERGE reliable group merge

SYNC view change synchronization
PT2PT FIFO, reliable pt2pt
SUSPECT | failure suspcions

STABLE broadcast stability

MNAK FIFO, agreed broadcast
BOTTOM | bare-bones communication

Table 3: Virtual synchrony protocol stack

85

A Appendix: ML Does Not Allow Segmentation Faults

Normally, Ensemble should never experience segmentation faults. When they occur, there are only
a few possible causes. We list these below along with fixes. Please inform us if you detect other
sources of “unsafety” in Ensemble.

e One of the Ensemble extensions to Objective Caml written in C (in the socket directory)
may have a bug. Most (all?) extensions have equivalent ML implementations. Use those and
see if the bug goes away.

86

B Ensemble Membership Service TCP Interface

[This is intended as an appendix to the Maestro paper (Maestro: A Group Structuring
Tool For Applications With Multiple Quality of Service Requirements). It describes
the exact TCP messaging interface to the group membership service described in that
paper.]

The description here is of the nuts-and-bolts TCP interface to the maestro membership service
service described in the Ensemble tutorial. Ensemble also supports a direct interface to this service
in ML. Developers using ML should probably use this interface instead. See appl/maestro/*.mli
for the source code for the interface to this service.

B.1 Locating the service

The membership service uses the configuration variable ENS_GROUPD_PORT to select a TCP
port number to use. Client processes connect to this port in the normal fashion for TCP services.
Client processes can join any number of groups over a single connection to a server, so they normally
only connect once to the servers.

If you run groupd on all the hosts from which your clients will be using the service, then
processes can connect to the local port on their host. However, clients are not limited to using local
servers, and can connect to any membership server on their system.

If the TCP connection breaks, the membership service will fail the member from all groups that
it joined. However, a client can reconnect to the same server and rejoin the groups it was in. If
client’s membership server crashes, it can reconnect to a different server.

B.2 Communicating with the service

Communication with the service is done through specially formatted messages. We describe the
message types and their format here.

messages: Messages in both directions are formatted as follows. Both directions of the TCP
streams are broken into variable-length packets. A packet has a header of size 8 of which
the first 4 bytes are an unsigned integer in network byte order (NBO) giving the length of
the message body (not including the header). The next 4 bytes must be zero (this is done
for internal reasons, which we shall not go into here). The next message follows immediately
after the body.

integers: Integers are unsigned and are formatted as 4 bytes in NBO.

strings: Strings have a somewhat more complex format. The first 4 bytes are an integer length
(unsigned, NBO). The body of the string immidiately follows the length.

endpoint and group identifiers: These types have the same format as strings. For non-Ensemble
applications, the contents can contain whatever the transport service you are using requires.
Ensemble only tests the contents of endpoint and group identifiers for equality with other
endpoints and groups.

lists: Lists have two parts. The first is an integer giving the number of elements in the list.
Immediately following that are the elements in the list, one after the other and adjacent to
one-another. It is assumed that the application knows the formats of the items in the list in
order to break them up.

87

Failed

Failed

Figure 6: Client state machine diagram of the client-server membership protocol.

The actual messages sent between the client and the servers are composed of integers and
strings. The first field of a message is an integer tag value from which the format of the remainder
of the message can be determined.

e Coord_View : A new view is being installed. The view is a list of Endpt.id’s. A member
who just sent a Join message may not be included in the view, in which case it should await
the next View message. The ltime is the logical time of the view. The first entry in the view
and the Itime uniquely identify the view. The Itime’s that a member sees grow monotonicly.
In addition, a boolean value is sent specifying whether this view is a primary view. The
primary bit is based on the primary bit of the group daemon’s being used.

integer Coord_View = 0
group my group
endpoint my endpoint
integer logical time
boolean primary view
endpoint list | view of the group

e Coord_Sync : All members should ”synchronize” (usually this means waiting for messages
to stabilize) and then reply with a SyncOk message. The next view will not be sent until all
members have replied.

integer Coord_Sync = 1
group my group
endpoint | my endpoint

e Coord_Failed : Fail a member is being reported as having failed. This is done because
members may need to know about failures in order to determine when they are synchronized.

88

integer Coord_Failed = 2
group my group
endpoint my endpoint
endpoint list | failed endpoints

Member_Join : Request to join the group. Replied with a View message.

integer Member_Join = 3
group my group
endpoint | my endpoint
bool logical time

Member_Sync : This member is synchronized. Is a reply to a Sync message. Will be replied
with a View message.

integer Member_Sync = 4

group my group
endpoint | my endpoint

Member _Fail : Fail other members in the group (or leave the group by failing self).

integer Member_Fail = 5
group my group
endpoint my endpoint
endpoint list | failed endpoints

Client_Version : This is sent by the client process to tell the server its version. If the
server’s version is incompatible, the server will send an Error message and close the client’s
connection. The value to use for the version field can be found by running any of the Ensemble
demonstration programs with the -v flag.

integer | Member_Version= 6
string | service name (“ENSEMBLE:groupd”)
string | my version (“0.40”)

Server_Error : This is sent by the server. An error has occurred. Usually this means the
client’s connection will be closed.

integer | Server_Error = 7

string | explanation

89

C Bimodal Multicast (by Ken Birman, Mark Hayden, and Zhen
Xiao)

There are many methods for making a multicast protocol reliable. The majority protocols in
Ensemble aim to provide virtually synchronous properties. However, these properties come with a
price in terms of the possibility of unstable or unpredictable performance under stress and limited
scalability. This is unacceptable to some applications where system stability and scalability are
viewed as inextricable from other aspects of reliability.

This section describes a bimodal multicast protocol that not only has much better scalability
properties but also provides predictable reliability even under highly perturbed conditions. This
work is described in the Bimodal Multicast paper (ncstrl.cornell/ TR98-1683) by Ken Birman, Mark
Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu and Yaron Minsky (this documentation is based
on that paper). The original version of the protocol was implemented by Mark Hayden. It was
reimplemented by Zhen Xiao with many new optimizations and is described in the ZBCAST layer.
In the remainder of the section, we will refer to our new protocol as Zbcast.

C.1 Protocol description

Zbcast protocol consists of two stages:

e During the first stage, the protocol multicasts each message using an unreliable multicast
primitive. IP multicast can be used to serve this purpose if it is available. Otherwise a
randomized tree-dissemination protocol is used (the GCAST layer). In the latter case, the
protocol uses the Ensemble group membership manager to track membership information.

e The second stage uses an anti-entropy protocol to detect and correct message losses in the
group. The protocol consists of a series of rounds. In each round, every member randomly
choose another member and exchange its message histories with him. A member compares
the received message history with its own. If it detects itself to be lacking a message during
the exchange, then it solicits copies of that message from the original sender.

A member records the round in which a message is received. The message will be gossiped
until it has not been requested for retransmission for a prespecified number of rounds. At
that point the member will garbage collect that message. Due to the probabilistic nature of
the protocol, it is possible for a message to be garbage collected by other members while some
operational member has not received it yet. In such cases, the member missing the message
will report a message gap to the application.

C.2 Usage

To use Zbcast protocol, specify the “Zbcast” property on the command line as follows(using perf
demo as an example):

perf -prog 1-n -add_prop Zbcast —-groupd

This assumes that IP-multicast is available in the underlying network. Remember to set the related
environment variables:

ENS_DEERING_PORT=38350
ENS_MODES=Deering:UDP

90

Otherwise the Gcast layer needs be linked into the stack:

perf -prog 1-n -add_prop Zbcast -add_prop Gcast -groupd

Note that in both cases we need groupd to track group membership information. This is the state
of art of the current implementation and is not something intrinsic to the protocol. If sufficient
needs arise, we are going to remove this restriction.

Message losses are reported to the application via Up(ELostMessage) event. The application
can either ignore those messages (i.e. multimedia applications) or leave the process groups and
then rejoin them, triggering state transfer.

91

	Introduction
	I The Ensemble Architecture
	Identifiers
	Endpoint Identifiers
	Group Identifiers
	View Identifiers
	Connection Identifiers
	Protocol Identifiers
	Mode identifiers
	Stack Identifiers

	The Event Module
	Fields
	Extension fields
	Event Types
	Field Specifiers

	Constructors
	Special Constructors
	Modifiers
	Copiers
	Destructors

	Event protocol: Intra-stack communication
	Event Types
	Event fields
	Event Fields

	Event fields and the ``types'' for which they are defined
	Event Chains
	Timer Chain
	Send Chain
	Broadcast Chain
	Failure Chain
	Block Chain
	View Chain
	Merge Chain (successful)
	Merge Chain (failed)

	Layer Execution Model
	Callbacks
	Ordering Properties

	Layer Anatomy: what are the pieces of a layer?
	Design Goals
	Notes
	Values and Types

	Event Handlers: Standard
	Heterogeneous Transports
	Code walk-through
	Design of the routers

	The Ensemble Security Architecture (by Ohad Rodeh)
	Cryptographic Infrastructure
	Rekeying
	A secure stack
	Security events
	Using Security
	Checking that things work
	Using security from HOT and EJava

	Outboard messaging
	Locating the service
	Communicating with the service
	Messages from server to client
	Messages from client to server

	II The Ensemble Protocols
	Layers and Stacks
	ANYLAYER
	CREDIT
	RATE
	BOTTOM
	CAUSAL
	ELECT
	ENCRYPT
	HEAL
	INTER
	INTRA
	LEAVE
	MERGE
	MFLOW
	MNAK
	PRIMARY
	PT2PT
	PT2PTW
	PT2PTWP
	REKEY
	REKEY_DT
	SECCHAN
	SEQUENCER
	SLANDER
	STABLE
	SUSPECT
	SYNC
	TOPS
	TOTEM
	WINDOW
	XFER
	ZBCAST
	VSYNC

	Appendix: ML Does Not Allow Segmentation Faults
	Ensemble Membership Service TCP Interface
	Locating the service
	Communicating with the service

	Bimodal Multicast (by Ken Birman, Mark Hayden, and Zhen Xiao)
	Protocol description
	Usage

