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Impact on New Programming Languages

 

The versatility and flexibility of Active Messages come fully into play in two implementations of new
parallel programming languages presented in this Chapter. The implementations of Split-C and of Id90
on the CM-5 integrate Active Message communication into the compilation process and demonstrate
that Active Messages is a natural compilation target which enables new optimizations in the compila-
tion process to take communication into account and which offer performance at the hardware’s limit.

The Split-C language is a simple parallel extension to C and offers a structured global address space
with a set of novel split-phase memory access primitives. The discussion of Split-C in Section 6.1 focus-
es on the role of Active Messages in the language implementation. The flexibility of Active Messages al-
lows Split-C’s remote memory access primitives to be implemented with a set of simple handlers which
allow multiple outstanding remote memory references and use simple counters to detect their comple-
tion. This set of handlers in fact forms a run-time library, called libsplit-c, which is used by the compil-
er to implement the language constructs. The libsplit-c run-time substrate could be used in other
language systems and illustrates the layering model proposed in Subsection 2.1.2. The discussion of
Split-C also complements the discussion of traditional communication architectures in Chapter 5. It
shows the benefit of decoupling the construction of a global address space from the communication re-
quired to access remote locations (two notions which are combined in shared memory) which allows
Split-C to offer a structured address space with novel access operations. The discussion also shows the
performance advantages that a global address space offers over the disjoint local address spaces of mes-
sage passing: Split-C’s remote memory accesses can transfer bulk data more efficiently than message
passing because no memory allocation for message queueing is necessary, no tag matching is involved,
and processors do not need to block, waiting for each other.

The presentation of the Id90/TAM compilation system extends the discussion of message driven archi-
tectures in Section 5.2 to show that Active Messages allows the languages for which these architectures
were originally developed to be implemented efficiently on conventional multiprocessors—in this case
the CM-5. The Threaded Abstract Machine (TAM) was developed specifically to target Active Messag-
es and uses the fact that communication and scheduling are exposed to the compiler (unlike in message
driven architectures) to apply powerful optimizations reducing the frequency and cost of dynamic
scheduling. TAM also pays careful attention to the storage hierarchy of conventional microprocessors
and achieves computational performance superior to specialized message driven hardware. The discus-
sion illustrates how Active Messages facilitates the tight coupling between computation and communi-
cation that is required for the efficient implementation of such dynamic parallel languages. The Id90
compiler generates a custom Active Message handler for every type of message used in a program. Each
handler stores the message data directly into a variable in the proper activation frame and enables the
appropriate computation. While the code in all these handlers is very similar, the data movement and
especially the synchronization in each handler is heavily specialized to each situation.
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6.1 Split-C

 

Split-C is a parallel extension of the C programming language primarily intended for distributed mem-
ory multiprocessors that support an Active Messages communication architecture. It is designed around
two objectives. The first is to capture certain useful elements of shared memory, message passing, and
data parallel programming in a familiar context, while eliminating the primary deficiencies of each par-
adigm. The second is to provide efficient access to the underlying machine with no surprises. (This is
similar to the original motivation of C—to provide a direct and obvious mapping from high-level pro-
gramming constructs to low-level machine instructions.) Split-C does not try to obscure the inherent
performance characteristics of the machine through sophisticated transformations. This combination of
generality and transparency of the language give the algorithm or library designer a concrete optimiza-
tion target.

The role of this section is four-fold:

1. it illustrates the layering model described in Subsection 2.1.2 in the context of a high-level lan-
guage, in particular, it describes the run-time substrate used to implement the communication
model underlying Split-C,

2. it uses the versatility of Active Messages to develop novel remote memory access operators that of-
fer efficient access to global data structures and that can be extended easily,

3. it shows the role of Active Messages in implementing shared memory like communication models,
in particular, the separation of the address translation and the actual communication aspects of
shared memory, and

4. it demonstrates that a global address space (combined with the flexibility of Active Message han-
dlers) allows large data blocks to be transferred more efficiently than with regular message passing.

The current Split-C language system consists of three distinct parts: the Split-C compiler, the run-time
library 

 

libsplit-c

 

 and Active Messages. The compiler translates the C language extensions into calls to
the library which uses Active Messages to implement the structured global address space fundamental
to Split-C. This section concentrates on the language developer’s perspective of Split-C and describes
the impact of Active Messages on the language development and on its implementation. The Split-C
language itself is not covered in detail here; Subsection 6.1.1 summarizes the language features relevant
to this discussion and the reader is referred to the language tutorial [CDG+] and to “Parallel Program-
ming in Split-C” [CDG

 

+

 

93] for an in-depth discussion of the language itself.

The heart of Split-C lies in the run-time library that implements the two-dimensional global address
space and provides a number of innovative accessors within that address space. Subsection 6.1.2 de-
scribes libsplit-c as providing an abstract multiprocessor, in some sense a NUMA machine—static in
that each processor has one thread of control and global in the sense that memory can be accessed glo-
bally. Active Messages play and important role in libsplit-c: the novel forms of read and write to remote
memory locations that libsplit-c provides are implemented using custom Active Message handlers to
perform the access at the remote end and to synchronize the responses with the ongoing computation.

The Split-C language itself is a thin veneer over the run-time library as is implemented as part of the
compiler front-end. The Split-C syntax for global pointers, global memory accesses and split-phase as-
signments is expanded into inline function calls to the underlying library. Subsection 6.1.3 summarizes
performance results obtained with Split-C and contrasts libsplit-c to traditional shared memory, mes-
sage passing, and data parallel programming models. Split-C offers a global address space similar to
shared memory hardware at directly comparable performance, but with a clear cost model for the pro-
grammer and without the complexity of the hardware implementations.

 

6.1.1 Split-C language summary

 

The Split-C language extensions address two fundamental concerns introduced by large-scale multipro-
cessors: there are multiple active threads of control, one on each processor, and there is a new level of
the storage hierarchy which involves access to remote memory modules via an interconnection net-
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work. Split-C assumes that the programmer must think about these issues in designing effective data
structures and algorithms and desires a reasonable means of expressing the results of the design effort.
The underlying machine model is a collection of processors operating in a common global address
space, which is expected to be implemented as a physically distributed collection of memories. As illus-
trated in Figure 6-1, the global address space is two-dimensional from the viewpoint of address arith-
metic on global data structures and from a performance viewpoint, in that each processor has efficient
access to a portion of the address space—the local portion of the global space. Split-C provides access to
global objects in a manner that reflects the access characteristics of the inter-processor level of the stor-
age hierarchy.

Split-C provides a range of access methods to the global address space, but encourages a “mostly local”
programming style. It is anticipated that different architectures will provide varying degrees of support
for direct access to remote memory. Finally, it is expected that global objects will often be shared and
this requires an added degree of control in how they are accessed. While Split-C requires the program-
mer to manage the synchronization issues resulting from split-phase accesses into the global address
space explicitly, other, higher-level, language implementations are planned and expected to use more
sophisticated compiler technology to relieve the programmer from many of the low-level concerns.

The Split-C language consists of ANSI-C augmented with a small set of extensions described in the fol-
lowing paragraphs. Each extension corresponds directly to a set of primitives provided by the run-time
library which is described in Subsection 6.1.2 and evaluated in Subsection 6.1.3.

 

Multiple persistent threads

 

A Split-C program is parallel 

 

ab initio

 

. From program begin to program end there are 

 

PROCS

 

 threads of
control within the same program image. Each thread has a unique number given by a special variable

 

MYPROC

 

 that ranges from 0 to 

 

PROCS

 

–1. Generally, in Split-C the term processor refers to the thread of
control on that processor. A variety of convenient parallel control structures can be built on this sub-
strate and several are provided as C preprocessor (cpp) macros, but the basic language definition does
not prescribe dynamic thread manipulation or task scheduling. A small family of global synchroniza-
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Figure 6-1: 2D global address space underlying Split-C.
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tion operations are provided to coordinate the entire collection of threads, e.g., 

 

barrier

 

. No specific
programming paradigm, such as data parallel, data driven, or message passing, is imposed by the lan-
guage. However, these programming paradigms can be supported as a matter of convention.

 

2-D global address space

 

One of the fundamental notions in Split-C is the two-dimensional address space which allows every
processor to reference all memory in the machine. Figure 6-1 shows the canonical Split-C view of a dis-
tributed memory multiprocessor in which the memories on all nodes are seen as one large address space
indexed by processor number and by local addresses.

Split-C distinguishes between normal pointers referencing objects local to the processor and global
pointers into the 2-D address space in order to expose their differing properties to the programmer. A
global pointer refers to an arbitrary object of the associated type anywhere in the machine. An object
referenced by a global pointer is entirely owned by a single processor. A new type qualifier 

 

global

 

 is
introduced to define a pointer as meaningful to all processors. Global pointers can be dereferenced in
the same manner as standard C pointers, although the time to dereference a global pointer is consider-
ably greater than that for a local pointer. The language provides support for allocating global objects,
constructing global pointers from local counterparts, and destructuring global pointers into its proces-
sor and local components.

A pointer in C references a particular object, but also defines a sequence of objects that can be refer-
enced by arithmetic operations on the pointer. In Split-C the sequence of objects referenced by a stan-
dard pointer are entirely local to the processor. Address arithmetic on a global pointer has the same
meaning as arithmetic on a standard pointer by the processor that owns the object. Hence, all the ob-
jects referenced relative to a global pointer are associated with one processor.

A second form of global pointer is provided which defines a sequence of objects that are distributed or

 

spread

 

 across the processors. The keyword 

 

spread

 

 is used as the qualifier to declare this form of global
pointer

 

1

 

. Consecutive objects referenced by a spread pointer are “wrapped” in a helical fashion through
the global address space with the processor dimension varying fastest. Each object is entirely owned by
a single processor, but the consecutive element, (i.e., that referenced by 

 

++

 

) is on the next processor.
The arithmetic on both, global and spread pointers is illustrated in Figure 6-2.

 

Split-phase assignment

 

Split-phase assignments provide support to overlap communication and computation in Split-C. With
a new assignment operator, 

 

:=

 

, the initiation of a global access can be split from the completion of the
access. This allows the processor to initiate remote accesses, do some local computation, and then wait
for the outstanding accesses to complete using a 

 

sync

 

 statement. In contrast, standard assignments
stall the issuing processor until the assignment is complete to guarantee that reads and writes occur in
program order. However, there are restrictions on the use of split assignments: the split assignment op-
erator specifies either to 

 

get

 

 the contents of a single global reference into a local one or to 

 

put

 

 the con-
tents of a local reference into a global one. This is in contrast to the standard assignment operator
which allows multiple reads and one write.

The 

 

:=

 

 assignment initiates a transfer, but does not wait for its completion. A 

 

sync

 

 operation joins the
preceding split assignments with the thread of control, i.e., it blocks until all outstanding gets and puts
complete. A local variable assigned by a get (similarly, a global variable assigned by a put) is guaranteed
to have its new value only after the following sync statement. The value of the variable prior to the sync
is not defined. Variables appearing in split assignments should not be modified (either directly or
through aliases) between the assignment and the following sync, and variables on the left hand side
should not be read during that time. The order in which puts take effect is only constrained by sync
boundaries; between those boundaries the puts may be reordered. No limit is placed on the number of
outstanding assignments.

 

1. 

 

The term global pointer is used when discussing the properties common to both, 

 

global

 

 and 

 

spread

 

 pointers.
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Signaling assignment

 

A weaker form of assignment, called 

 

store

 

 and denoted 

 

:-

 

, is provided to allow efficient one-way data
pushing and global operations. Store updates a global location, but does not provide any acknowledg-
ment of its completion to the issuing processor. Completion of a collection of such stores is detected
globally using 

 

all_store_syn

 

c, executed by all processors. For global data rearrangement, in which
all processors are cooperating to move data, a set of stores by the processors are followed by an

 

all_store_sync

 

. In addition, the recipient of store can determine if certain number of stores to it
have completed using 

 

store_sync

 

, which takes the expected number of stores and waits until they
have completed. This is useful for data driven execution with predictable communication patterns (e.g.,
not requiring arbitrary dynamic scheduling of computation).

 

Bulk assignment

 

Transfers of complete objects are supported through the assignment operators and library routines. The
library operations allow for bulk transfers, which reflect the view that, in managing a storage hierarchy,
the unit of transfer should increase with the access time. Moreover, bulk transfers enhance the utility of
split-phase operations. A single word get is essentially a binding prefetch. The ability to prefetch an en-
tire object or block often allows the prefetch operation to be moved out of the inner loop and increases
the distance between the time where the get is issued and the time where the result is needed. The as-
signment and split-assignment operators transfer arbitrary data types or structs, as with the standard C
assignment. However, because C does not provide operators for copying entire arrays, library functions
must be used for this purpose.

 

6.1.2 Libsplit-c implementation using CM-5 Active Messages

 

Originally libsplit-c was developed as a true library to be called from the user program. The Split-C lan-
guage was added later after the important concepts had settled and it became clear that a simple veneer
could greatly improve the ease of use without compromising the performance. Due to the inevitable
constraints of language syntax and semantics the Split-C language does not fully exploit all capabilities
of the library whose functionality is also expected to grow as other languages use it as a run-time sub-
strate. As illustrated in Figure 6-3, libsplit-c is not wedded to Active Messages and implementation on

Figure 6-2: Split-C pointer arithmetic.
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structures involving dynamic scheduling and requiring a closer coupling of computation and commu-
nication will require more of the power of Active Messages, however, and will be less amenable to im-
plementation on other substrates.

The Split-C run-time substrate is structured around the definition of global pointers forming the Split-
C two-dimensional address space. A number of functions provide remote memory accessors and a set of
collective operations such as reductions and scans. The implementation of each one of these operations
uses custom Active Message handlers. In the case of Split-C, the compiler translates the language exten-
sions into inlined calls to the run-time substrate as if they were macro-assembly instructions.

 

Multiple persistent threads

 

At program start-up, libsplit-c broadcasts the conventional C program arguments (

 

argv

 

) to all proces-
sors and starts the main function, 

 

splitc_main

 

, on each one. The broadcast is implemented using
Active Messages to propagate the arguments along a static broadcast tree.

 

2-D global address space

 

Libsplit-c represents global addresses as 64-bit tuples with a processor and a local-address part:

• addresses are in the range , and

• address  (  and ) refers to location 

 

l

 

 on node 

 

p

 

, where P is the num-
ber of processors and N is the highest memory address.

The definition of global pointers is shown in Figure 6-6 together with functions to construct and de-
struct global pointers. Note that special care must be taken to ensure that a unique representation of
global NULL pointers is used (line 8).

l i b s p l i t - c

Active Messages

Spl i t -C
C++/threads
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Figure 6-3: Software layers related to Split-C.
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In the 2-D address space a data structure is kept local to a given processor by indexing into it using
arithmetic on the local part of the global address such that, for example, the 

 

i

 

-th element of a localized
integer array allocated at address  is at . To spread a data structure across
nodes arithmetic is performed on both the node and the local part. The 

 

i

 

-th element of an integer array
a l l o c a t ed  a t  add re s s  

 

a

 

 and  sp re ad  e l emen t -w i s e  a c ro s s  a l l  node s  wou ld  b e  a t
.

The use of two forms of data structure layout requires support from the memory allocator which allo-
cates spread structures in a special memory segment which is kept aligned on all processors. Local and
global data structures are allocated in the normal heap which grows and shrinks independently on all
processors. Figure 6-5 illustrates the use of memory segments to implement the Split-C global address
space.

 

Pointer arithmetic

 

A number of pointer arithmetic operators are provided to support the global and spread forms of data
layout. As illustrated in Figure 6-6, global pointer arithmetic is local to a given node and defined such
that

where 

 

S

 

 is the size of the pointer base type. Spread pointer arithmetic wraps across all nodes, i.e., it is
defined such that

When a global pointer is dereferenced, a simple check, shown in Figure 6-6, determines whether the ac-
cess is local or whether it is remote. Local accesses simply dereference the address part of the global
pointer. This means that using global pointers to point to local objects is only slightly more expensive

Figure 6-4: Representation of global pointers in libsplit-c’s 2-D address space.

# Global and spread pointer definition
1: typedef struct {
2:   int   proc;
3:   void  *addr;
4: } gptr;

# Constructing a global pointer
5: inline gptr toGlobal(int proc, void *addr)
6: {
7:   gptr  g;
8:   g.proc = addr == 0 ? 0 : proc; unique representation of NULL pointer
9:   g.addr = addr;

10:   return g;
11: }

# Taking a global pointer apart
12: inline int toProc(gptr g)
13: {
14:   return g.proc;
15: }
16: inline void *toLocal(gptr g)
17: {
18:   return g.addr;
19: }

<a p, > <p a i sizeof int( )⋅+, >

<i modP a i modP( ) sizeof int( )+, >

<p l, > i+ <p l iS+ >,= ,

<p l, > i+ <p i+ modP l p i+( ) divP( ) S+ >.,=
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than using regular pointers2. On 32-bit machines global pointers are twice the size of local pointers,
though, which bears an indirect cost, increasing the register pressure and requiring double-word loads
and stores.

Remote memory access

The two primitives for remote memory access are split-phase puts and gets with programmer-managed
synchronization counters. The implementation is shown in Figure 6-73 and uses Active Message re-
quest and reply messages for the round-trip protocol. A counter on the initiating node is used to keep

2. The current CM-5 implementation polls every time a global pointer is dereferenced locally. This raises the cost of
accesses to local variables via global pointers substantially.
3. The figure shows the implementation of the remote access of integers. The library provides a full complement for
all data types.
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Figure 6-5: Usage of memory segments in Split-C.

The use of two forms of data structure layout requires support from the memory allocator. Local and global data
structures are allocated in the normal heap which grows and shrinks independently on all processors. Allocating
spread structures, however, requires coordination among processors as a spread structure requires memory on each
node at the same local addresses. The spread allocator uses a memory segment which remains synchronized among
all processors; growing or shrinking it is a global operation. On each processor the virtual-memory mapping main-
tains four memory segments which each start at the same local address on all nodes. The code segment is identical
on all nodes as is typical for the SPMD programming model of Split-C. The data and stack segments are distinct in
that they grow and shrink independently in response to local operations. The spread data segment, however, is spe-
cial: it has the same size on all nodes and growing or shrinking it requires coordination of all processors. As illustrat-
ed, the initialized data region of the heap segment and the parallel segment are used to allocate global data
structures (statically, respectively, dynamically).
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track of the number of outstanding requests; it is incremented before issuing the request Active Message
and decremented by the Active Message reply handler. The handler at the remote node simply fetches
(respectively stores, in the case of a write or put) the value and sends the appropriate reply back. The
outstanding request counters allow a simple form of synchronization between the communication and
the issuing computation. Synchronization operations provided in the library take a counter as argu-
ment and wait until it reaches zero.

As Figure 6-7 shows, the implementation of get with Active Messages is straightforward. The getCtr
function increments the counter of outstanding requests and formats the request Active Message. The
compiler typically inlines this function with the result that register allocation can ensure that the values
to be sent in the message are produced in the correct registers such that they are transferred directly into
the network interface (in the AM function) without intermediate copy. The request handler consists of a
single statement sending the reply back. Again, the data value fetched from the remote memory is load-
ed into the correct register and never copied before it is stored into the network interface. The reply
handler disposes of the data as appropriate and synchronizes the communication with the computation
by decrementing a counter. The implementation of put is similar to that of get with the difference that
the data value to be stored is carried in the request message and that only an acknowledgment is re-
turned.

Split-C implements blocking remote reads and writes using these primitives. The functions implement-
ing read and write declare a local synchronization counter and pass that to the split-phase put or get,
similar to the blocking fetch&add shown in Figure 4-18. The implementation of Split-C’s puts and
gets simply uses one statically allocated set of synchronization counters per processor.

The full libsplit-c flexibility of using multiple synchronization counters for simultaneously outstanding
remote accesses is not accessible from Split-C (except by calling the library primitives directly). One
reason for restricting the language is to be able to use prefetch buffers or counters in the network inter-

Figure 6-6: Address arithmetic in the two-dimensional address space.

# Global pointer arithmetic
1: inline gptr addToGlobal(gptr p, int i, int elem_sz)
2: {
3:   p.addr += i * elem_sz;
4:   return p;
5: }

# Spread pointer arithmetic
6: inline sptr addToSpread(gptr p, int i, int elem_sz)
7: {
8: # ifndef PROCS_POWER_OF_TWO defined if PROCS is power of two
9:     p.proc = (p.proc + i) % PROCS;

10:     p.addr = p.addr + ((p.proc + i) / PROCS) * elem_sz;
11: # else
12:     p.proc = (p.proc + i) & (PROCS-1); LOG_PROCS = log2(PROCS)
13:     p.addr = p.addr + ((p.proc + i) >> LOG_PROCS);
14: # endif
15:   return p;
16: }

# Global pointer dereference
1: int *global gp;
2: ...
3: x = *gp;
4: ...

1: gptr gp;
2: ...
3: x = (gp.proc == MYPROC)
4:       ? *(int *)gp.addr
5:       : read_int(gp);
6: ...



152 IMPACT ON NEW PROGRAMMING LANGUAGES

face on machines which provide this type of hardware support. A second reason is that syntax for asso-
ciating a synchronization counter with each assignment statement was deemed to cumbersome.
Associating different synchronization counters statically with assignment statement is mainly useful
when building communication libraries in order to avoid interference between the primitive and the
enclosing scope. The use of multiple counters is also useful with a task model and allows split-phase ac-
cesses of one task to complete while the next one starts executing. This might not be of great impor-
tance for single-word accesses, but can become significant when bulk transfers are used.

Signaling store

For stores, the library also provides a primitive with explicit synchronization counters. The store
counters keep track of the number of bytes sent and the number received, rather than counting out-
standing operations. This supports two forms of synchronization: waiting until a number of bytes have
been received on a given processor and waiting until all stores have completed on all processors.
Figure 6-8 shows the implementation of the synchronization operations, of the store primitive, and of
the Split-C store which uses a statically allocated set of counters. The implementation is again similar to
that of get but uses only one-way communication.

Using multiple counters with store has a number of interesting uses. In order to perform message pass-
ing style communication one can associate a set of counters with each data structure that is sent, or if
the communication patterns highly structured, with each communication direction, e.g., north-south-
east-west in 2-D grid communication. In a systolic communication mode (used, for example, in repeti-

Figure 6-7: Split-phase remote memory accessors.

# Synchronization
1: int numSplit=0;
2: void sync(void)
3: { syncCtr(&numSplit); }

# Split-C get
4: void get(gptr g, int *l)
5: {
6:   getCtr(g, l, &numSplit);
7: }

# Synchronization
1: typedef int Ctr;
2: void syncCtr(Ctr *ctr)
3: { while(*ctr) ; }

# Issue get (assume local/remote check done)
4: void getCtr
5:   (gptr g, int *l, Ctr *ctr)
6: {
7:   (*ctr)++;
8:   AM(g.proc, getCtr_h,
9:     MYPROC, l, ctr, g.addr);

10: }

# Handle get request
11: void getCtr_h
12:   (int p, int *l, Ctr *c,
13:    int *a)
14: {
15:   AM_reply(p, getCtr_rh,
16:     l, c, *a);
17: }

# Handle get reply
18: void getCtr_rh
19:   (int *l, Ctr *ctr, int v)
20: {
21:   *l = v;
22:   (*ctr)--;
23: }

Get primitive with explicit counter Split-C get with implicit counter

# Split-C read
1: int read(gptr g)
2: {
3:   Ctr *ctr;
4:   int val;
5:   getCtr(g, val, &ctr);
6:   syncCtr(&ctr);
7:   return val;
8: }

Split-C read



SPLIT-C 153

tive broadcasts, scans, and reductions) multiple sets of counters can be used in order to separate one
wave from the next.

Bulk Assignment

The bulk get, put, and store allow the transfer of large blocks of data with high efficiency. Because all
the operations specify both a source and a destination memory address no storage allocation needs to
occur at the destination. Furthermore, because the synchronization is explicit and the semantics of the
operations prescribe that data must not be changed before the operation completes the data can be sent
directly from the source data structure and received directly into the destination memory locations. No
intermediate copies need to be made in order to hide the fact that transmission is not instantaneous.

Due to the fact that typical Active Message implementations limit the message size challenging imple-
mentation issues arise for the transfer of blocks larger than the maximal message. For example, the CM-
5 implementation of bulk get is straightforward, but bulk put is complicated by the potential for mes-
sage reordering in the network which makes accounting of all messages forming a single block transfer

Figure 6-8: Signalling stores.

# Synchronization counters
1: typedef struct {
2:   int  send, recv;
3: } StCtr;

# Local synchronization
4: void store_syncCtr
5:   (StCtr *ctr, int num)
6: {
7:   while(ctr->recv < num) ;
8:   ctr->recv -= num;
9:   ctr->send -= num;

10: }

# Global synchronization
11: void all_store_syncCtr
12:   (StCtr *ctr)
13: {
14:   int d, all_d;
15:   barrier();
16:   d = 0;
17:   do {
18:     d += ctr->send-ctr->recv;
19:     ctr->recv = ctr->send = 0;
20:     all_d = reduce(d);
21:   } while(all_d != 0);
22: }

# Issue store
20: void storeCtr
21:   (gptr g, int val,
22:    StCtr *ctr)
23: {
24:   AM(g.proc, store_h,
25:     g.addr, val, ctr);
26:   ctr->send += sizeof(int);
27: }

# Handle store
28: void store_h
29:   (int *a, int val, StCtr *c)
30: {
31:   *a = val;
32:   c->recv += sizeof(int);
33: }

Primitives for synchronization of stores Primitives for store with explicit counter

# Synchronization counter
1: StCtr stores = {0,0};

# Issue store
2: void store(gptr g, int val)
3: {
4:   storeCtr(g, val, stores);
5: }

# Synchronize
6: void store_sync(int num)
7: {
8:   store_syncCtr(num, stores);
9: }

10: void all_store_sync(void)
11: {
12:   all_store_syncCtr(stores);
13: }

Split-C store with implicit counter
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difficult. In the case of get, a single request message is sent to the remote processor with the remote ad-
dress, block length, and return address. The request handler sends the data back using multiple Active
Messages which the local reply handler counts. When the last message arrives its reply handler decre-
ments the number of outstanding gets. In the case of a block put, however, detecting the arrival of all
messages is more challenging. A simple solution is to acknowledge every put message and thereby count
the messages at the originating node in the same manner as for gets. On the CM-5, the additional cost
of the acknowledgment for every message is significant and therefore the actual implementation starts
the transfer with a round-trip message to allocate a synchronization variable at the remote node. The re-
mote handler can thereby detect the arrival of all messages and send back a single acknowledgment at
the end. Note that block puts of intermediate size, e.g., larger than a single message but too small to
amortize the round-trip start-up, use the simple scheme.

The difficulty in detecting the arrival of multiple messages on the CM-5 leads to the situation where
block puts (and thus also block writes) are more expensive than block reads. Note that this is an artifact
of the combination of small fixed-size messages and the possibility for message reordering. On the
nCUBE/2 block writes have the same cost as block reads because messages arrive in order and the re-
mote node can simply send the acknowledgment when the last message arrives. On both machines it is
important that Active Messages exposes the hardware constraints to allow the run-time substrate, lib-
split-c in this case, to implement the best possible communication protocol. This means that the library
implementation is not directly portable from one machine to the other, but the functionality provided
by the library and seen by the user is portable and the general structure of the library is portable as well.

Collective operations

Libsplit-c implements a number of collective communication operations which involve all processors.
These include barrier, broadcasts, reductions, and scans. The reductions and scans provided support the
usual set of integer and floating point arithmetic and logic operations but can be easily extended to ar-
bitrary function.

The basic structure of all collective operations is identical. All processors are organized into a binary tree
rooted at processor 0 and values are propagated up and/or down the tree. The collective operations are
implemented in terms of stores. At each node, when propagating up the tree the processor waits for two
stores from the child nodes, combines the two values, and stores the result onto the parent node. The
down-propagation is similar with each node waiting for the store from the parent and storing onto the
two child nodes.

6.1.3 Split-C evaluation

This subsection evaluates Split-C from an absolute performance point of view and in comparison to
other programming models. § 6.1.3.1 presents detailed Split-C micro-benchmark measurements, com-
pares them with the costs of the underlying architecture, and summarizes the performance of a few
larger Split-C programs. § 6.1.3.2 contrasts the Split-C programming language with shared memory to
show the advantages and disadvantages of the explicit 2D address space. § 6.1.3.3 relates Split-C’s store
to messages passing and discusses the performance advantages gained by the global address space which
allows block transfers to occur without any intermediate buffering.

6.1.3.1 Performance

Table 6-1 shows micro-benchmark performance measurements for individual Split-C remote access op-
erations. The table compares the measurements obtained for the Split-C operations with those of the
underlying Active Message primitives (as measured in Subsection 4.3.4). The results show that, in good
C tradition, the cost of the Split-C operations directly reflects the possibilities of the underlying com-
munication architecture.

The use of Split-C in a message passing style is nicely illustrated in a study of fast parallel sorting algo-
rithms [CDMS93] which implements four sorting algorithms in Split-C and carefully measures their
performance on a CM-5. The goal of the study is to develop sorting algorithms that sort a billion large
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keys on a thousand processors in less than a minute. More precisely, the sorting algorithms are designed
to sort a billion 31-bit keys of arbitrary distribution. The input data set is spread evenly in a blocked
layout across the processors and the output is sorted such that each processor ends up with 1/P-th of
the keys. The algorithms studied are bitonic sort, column sort, radix sort, and sample sort. The perfor-
mance of each algorithm is predicted using the LogP model of parallel computation and the experi-
mental results are carefully matched to the model to ascertain that the behavior of the implementation
is well understood.

The structure of all four sorting algorithms is very similar and consists of an alternation of local compu-
tation or sorting phases and global communication phases in which the keys are permuted. The imple-
mentations exclusively use Split-C stores for the communication as all data can be “pushed” and store
offers a low overhead in this case. Figure 6-9 compares the LogP prediction for the four sorting algo-
rithms with the results. The close agreement between the two demonstrates that the performance ob-
tained in the micro-benchmarks—on which the LogP parameter values are based—translates to the real
program behavior.

In addition to observing the absolute performance achieved by the Split-C implementations, a report
on a similar radix sort implementation on the CM-5 [TS91] allows a comparison of Split-C with a
hand-tuned “assembly language” version produced at Thinking Machines Corp. (TMC). The TMC
version was written in C and uses assembly language routines to access the network interface which
were hand coded specifically for the radix sort. Table 6-2 shows the timings for large runs of the two
implementations. It is surprising to see that in the communication-intensive permutation phase the

Table 6-1. Split-C micro-benchmark performance results

The measurements for the various Split-C primitives (shown in the “Split-C” columns) is compared to a prediction
obtained by summing the costs of the underlying Active Messages (shown in the “Active Messages” columns).

Overhead measures the time spent by the processor initiating the remote access, latency measures the time from the
access initiation to its acknowledgment (assuming the access is to a neighbor node, note that this is not LogP’s la-
tency L), and bandwidth measures the peak data transfer rate achievable.

operation overhead [µs] latency [µs] bandwidth [Mb/s]

transfer
size

Split-C Active Mes-
sages

Split-C Active Mes-
sages

Split-C Active Mes-
sages

read 32-bit 12.2 11.2 12.2 11.2 0.3 0.4

64-bit 12.2 11.2 12.2 11.2 0.6 0.7

bulk 20.3 18.2 20.3 18.2 10.1 10.0

write 32-bit 11.8 11.2 11.8 11.2 0.3 0.4

64-bit 11.8 11.2 11.8 11.2 0.6 0.7

bulk 31.2 29.4 31.2 29.4 9.1 9.3

get 32-bit 4.0 3.1 11.9 11.2 1.0 1.3

64-bit 4.0 3.1 11.9 11.2 2.0 2.6

bulk 11.0 9.8 20.4 18.2 9.8 10.0

put 32-bit 3.9 3.1 11.9 11.2 1.0 1.3

64-bit 3.9 3.1 11.9 11.2 2.0 2.6

bulk 22.8 21.2 31.4 29.4 9.8 9.3

store 32-bit 2.2 1.6 7.6 5.6 1.0 2.5

64-bit 2.2 1.6 7.6 5.6 1.0 5.0

bulk 20.7 19.5 24.2 23.5 10.0 10.0

sync 0.6 0.7 n/a n/a n/a n/a
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Figure 6-9: Predicted and measured performance for four Split-C sorting algorithms

Four fast parallel sorting algorithms were implemented in Split-C: bitonic sort, sample sort, radix sort, and column sort
[CDMS93]. The performance of each algorithm was predicted using the LogP model and measured on a CM-5 using from
32 to 512 processors.
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Split-C version performs only 70% worse than TMC’s version given that the Split-C version distributes
the keys using a simple loop containing a :- store for every key whereas TMC’s version includes a spe-
cial loop which sets-up registers to address the network interface once, tightly integrates sending and re-
ceiving, and uses a simpler message format consisting of the key destination address and the key value.

6.1.3.2 Shared memory style programming in Split-C

At first, it may seem that Split-C is a software implementation of NUMA shared memory with a few
peculiar assignment statements added. In particular, in most NUMA shared memory machines each
processor has two types of memory addressing for global data as well: memory segments local to a given
processor (but mapped into all processor’s address spaces) have the same arithmetic as Split-C’s global
pointers and the address translation hardware for memory segments interleaved across all processors is
similar to spread pointer indexing. Closer inspection, however, reveals that the two differ in two impor-
tant aspects:

• the interleaving unit in spread pointer arithmetic is the size of the elements pointed-to, which
means that each data structure element resides on a single memory module and consecutive
elements reside on consecutive modules while in NUMA shared memory the interleaving unit
is determined by the hardware4 and is the same for the entire memory segment, and

• global and spread pointers can refer to the same data structures which allows the local ele-
ments of a spread data structure to be traversed easily while the memory segments in shared
memory architectures are disjoint.

The syntactic separation of global pointers from local pointers is simultaneously Split-C’s main advan-
tage and main drawback over cache-coherent shared memory programming models. In Split-C, the
programmer is presented with a simple explicit cost model which encourages reasoning about the loca-
tion of shared data structures and making local copies of frequently accessed data. From an implemen-
tation point of view, the separation allows the address translation required for global accesses to be
decoupled from the communication proper. The frequency of global pointer dereferences is low enough
that the address translation can be performed in software with the advantage that the spreading of data
structures across nodes can respect access patterns and element sizes. Using Active Messages for the

4. Some systems allow the interleave unit to be changed on a per segment basis [Pfi85 ACC+90], while in others it
is fixed [BGWW91].

Table 6-2. Comparison of Split-C and hand-coded radix sort on CM-5

The benchmarks consists of sorting one billion uniformly distributed 31-bit keys on a 1024-processor CM-5. The
table shows the time each processor spends per key in the sort. The Split-C run sorted 512M 31-bit keys on 512
processors while Thinking Machines’ run sorted 1G 31-bit keys on 1024 processors. Experiments show that radix
sort scales almost linearly at this size problem.

The implementations use a 16-bit radix and perform two passes over the keys. Each pass consists of three phases: (i)
a local histogram of key values is built on each processor, (ii) a global histogram is formed by performing a prefix
sum for each histogram bucket across all processors, and (iii) all keys are permuted to their new position based on
the global histogram.

†. From [CDMS93]
‡. From [TS91]

Radix sort phase µs/(key/proc)

Split-C† TMC‡

histogramming 2.41 3.11

scanning 1.61 1.21

permuting 23.26 13.59

total 27.28 17.91
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communication gives enough flexibility to implement novel access methods which allow remote access-
es to be pipelined and to overlap computation. Requiring the programmer to explicitly copy remote
data into a separate local variable for frequent use is clearly the main disadvantage of Split-C. The auto-
matic renaming that occurs in the cache of a CC-NUMA architecture allows the program to reference
the local copy with the same address as the remote one.

6.1.3.3 Message passing style programming in Split-C

Algorithms developed for message passing models can often be implemented in Split-C with more ease
and with higher efficiency. The global address space simplifies the access to global data structures, but
more importantly, the combination of the global address space with the explicit synchronization of
transfers allows data to be moved more efficiently than in message passing models where a combination
of message queueing, data copying, and tag matching bears significant costs.

In Split-C the global address space allows the initiator of a data transfer to specify the source and desti-
nation addresses such that the data can be moved directly from application data structures into the net-
work and vice-versa. The novel assignment operators provide more flexible synchronization between
the two processors involved than the various blocking and non-blocking versions of send&receive. Un-
like shared memory, Split-C puts and gets allow the overlap of computation and communication and
stores support the efficient one-way communication that is typically associated with message passing
(but, as discussed in Section 5.1, that only few message passing implementations actually achieve).

For example, the sample Fortran-D code in § 5.1.5.1 can be translated to Split-C by replacing every
message send by a Split-C bulk store. The Split-C version allows the compiler to specify the destination
address to Active Messages with the result that the data is transferred directly into the application data
structure at the destination. In addition, Split-C allows a different compilation strategy in which the re-
cipient requests the data using gets.

A further advantage of Split-C over message passing is that the synchronization is exposed: the source
data for a put is not guaranteed to be sent instantaneously (which often requires copying and message
queueing), instead the semantics of put require the data to remain unchanged until the next synchroni-
zation point (e.g., the next sync statement).

6.1.4 Summary

The Split-C language is built around the libsplit-c communication substrate which abstracts the new
level of the storage hierarchy represented by remote memory into a global address space with a collec-
tion of innovative communication operations. Split-phase remote memory accessors support shared
memory style programming and allows syntactically transparent access to remote data structures in
Split-C while exposing the data layout and remote access costs. The split-phase remote memory access
primitives with explicit synchronization are conducive to efficient implementation and allow the com-
piler to build blocking reads and writes in addition to the split-phase gets and puts. The Split-C lan-
guage does not exploit the full capabilities of libsplit-c due to inevitable syntactic restrictions. A more
sophisticated compilation approach could relieve the programmer from some of the low-level details
and overlap remote accesses more aggressively.

The use of Active Messages has been a catalyzing element in the development of libsplit-c (and Split-C
itself ). The flexibility offered by the Active Message handlers allowed experimentation with a variety of
remote memory accessors before the ones available today emerged. While Split-C’s puts, gets, and stores
are extremely simple and easily implemented in the context of shared memory hardware, no other
shared memory framework supports similar operations. In addition, the current set of accessors ex-
plores only a fraction of the design space: a library of atomic operations on remote data structure ele-
ments is in development and uses the capability to perform simple atomic memory accesses (such as
fetch and add, or enqueue) in the handler more extensively. In this context, the Active Message han-
dlers allow atomic remote memory accessors to be tailored to each data structure.
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Split-C and its associated run-time substrate illustrate the success of the layering model proposed in
Subsection 2.1.2: the libsplit-c run-time builds communication primitives suited to the Split-C compi-
lation process using the Active Messages communication architecture without compromising on per-
formance. The communication performance observed in Split-C programs is directly comparable to the
costs of the Active Message primitives.
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6.2 TAM/Id90

Highly dynamic parallel languages such as Id90, Multilisp, and CST pose a serious challenge to the lan-
guage implementor and the computer architect. If compiled in a straight-forward manner, these lan-
guages require execution models with very short threads—on the same order as basic blocks in
sequential languages—and arbitrary context switches from one thread to the next. Attempts to support
such execution models in hardware lead to dataflow and message driven architectures which, as dis-
cussed in Section 5.2, are not suited to efficient implementation. Mapping these execution models di-
rectly onto conventional hardware is not efficient either because of the high frequency of dynamic
scheduling.

The Threaded Abstract Machine (TAM) approach described in this section uses powerful compilation
techniques [SCvE91] to reduce the scheduling overhead and pay careful attention to the storage hierar-
chy such that Id90 can be mapped efficiently to conventional multiprocessors. The TAM compilation
approach relies heavily on Active Messages to integrate communication into the code generation pro-
cess5: the compiler generates message sends in-line and produces a custom handler for every message
type to store the arriving data directly into a local variable and enable the appropriate computation.

Active Messages place a number of responsibilities in the compilation system that other communica-
tion models handle within the architecture: memory allocation for messages, scheduling of communi-
cation and computation, deadlock/livelock avoidance, and address translation. The Id90/TAM
approach demonstrates not only that the compilation system can handle these responsibilities, but that
the compiler can exploit and optimize special cases to the point where specialized hardware support in
the form provided in message driven architectures is actually counter-productive. In TAM all storage re-
sources required for communication are allocated in sizable chunks before they are required (e.g., no
dynamic memory allocation occurs on message reception), the run-time substrate maintains a schedul-
ing hierarchy adapted to the language, the restriction to request/reply communication patterns is ob-
served, and pointers to global data structures are integrated into the type system.

The following subsection introduces the storage and scheduling hierarchies which are fundamental to
TAM, relates them to the compilation challenge, and briefly describes the TAM execution model.
Subsection 6.2.2 evaluates the use of Active Messages in Id90/TAM. In particular, the cost of commu-
nication, the influence of tight integration of computation and communication on the dynamic sched-
uling cost, and the pre-allocation of storage are discussed. Further information on TAM can be found
in [CGSvE93], the compilation of Id90 to TAM is discussed in detail in [Sch94], and the mapping to
the CM-5 in [Gol93].

6.2.1 The TAM/Id90 compilation system

The compilation algorithms used in mapping Id90 onto TAM extend the compiler technology devel-
oped in the dataflow community. In particular, Traub’s “compilation as partitioning” framework
[Tra88] and Iannucci’s thread generation for the hybrid architecture [Ian88] demonstrated that it is
possible to reduce the amount of dynamic scheduling required during the execution of such languages.
The Id90/TAM compiler addresses two additional issues as well. First, communication and scheduling
are explicit and subject to compile-time optimization rather than implicit in the execution model. Sec-
ond, storage allocation is explicit and occurs in large chunks, namely activation frames and heap data
structures, and the compiler is responsible for storage management.

6.2.1.1 Storage and scheduling hierarchies

In order to involve the compiler with communication and scheduling, TAM exposes the scheduling
data structures together with a simple cost model for optimizing the relationships between scheduling,
communication, and computation. The TAM storage hierarchy, shown in Figure 6-10, is composed of
the processor registers, the activation frame of the currently executing function, and the heap. At the

5. In truth, implementing TAM on the nCUBE/2 was the initial motivation for developing Active Messages.
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bottom of the storage hierarchy the amount of state available is small, accesses are fast and can be fre-
quent; at the top, the state is large, but accesses are slow and should occur in larger transfer units at low-
er frequency.

The structure of TAM’s scheduling hierarchy parallels the storage hierarchy. At the bottom threads and
inlets represent units of computation and of communication, respectively. Each thread and each inlet is
small but executes quickly and switching from one to the next is cheap. At the next level, groups of
threads that are part of the same function invocation and that execute together form quanta. Thus
quanta are larger but require a heavier-weight scheduling mechanism and switching is more expensive.
At the top, the invocation of activations requires dynamic storage allocation and load balancing.

TAM is based on the principle that operations in the scheduling hierarchy strongly affect the storage hi-
erarchy. Thus, the optimization challenge posed to the compiler is to coordinate the two such that the
constraints of the language model and of the communication architecture are met with the least move-
ments in the storage hierarchy. The mechanisms available to the compiler are described in the following
discussion of the execution model.

6.2.1.2 Execution model

A TAM program consists of a collection of code-blocks, which typically represent functions or loops in
the source program. Each code-block consists of a collection of threads, which correspond roughly to
basic blocks, and of inlets, which are compiler generated Active Message handlers. Two instructions ap-
pear in the same thread only if they can be statically ordered and if no operation whose latency is un-
bounded occurs between them (i.e., threads are straight-line code sequences). Inlets handle all messages
received by the codeblock invocations, transferring data directly into the frame and enabling the
threads using the data.

Figure 6-10: TAM storage and scheduling hierarchies.
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The TAM execution model centers on the activation frame, shown in Figure 6-11, which is the analog
of a stack frame for parallel calls. To invoke a code-block, a frame is allocated on a processor and initial-
ized, and arguments are sent to the frame. In addition to the local variables typically found in stack
frames the TAM activation frame also holds the scheduling queue and the synchronization variables
controlling low-level scheduling. A portion of each frame is used to hold a stack of instruction pointers,
called the continuation vector, representing the enabled threads for the corresponding function invoca-
tion. The compiler can determine the maximum size of this region in a manner much like register allo-
cation. Each processor maintains a scheduling queue of local activations with enabled threads by
linking the frames together.

TAM threads are straight-line code, with synchronization occurring only at thread entry. The basic
control operation is to fork a thread; the fork may be conditional (on a boolean variable) or uncondi-
tional and the thread may be synchronizing (i.e., require multiple forks) or not. Thread synchroniza-
tion is handled using synchronization counters. Each synchronizing thread has an associated counter
which is initialized to the thread entry count, i.e., the number of forks required before the thread can
execute. (The counter is omitted for unsynchronizing threads.) Each fork decrements the counter and
the thread is only enabled if the counter reaches zero.

Each TAM processor contains a frame-pointer register that refers to the currently active frame on the
processor and an instruction-pointer register that refers to the current instruction of the current thread
of the code-block associated with the current frame. In addition, there is a set of general purpose regis-
ters. Distinguishing registers from frame slots allows the compiler to exercise control over the local pro-
cessor storage hierarchy. Registers are not implicitly saved or invalidated when a thread switch or frame
swap occurs; they are explicitly managed by the compiler: registers can be allocated across thread
boundaries and the compiler generates code to save and restore live registers at frame swap boundaries.
TAM instructions are generally of three-address form, with operands drawn from frame slots, processor
registers, or immediates.

Figure 6-11: TAM activation tree.
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Activations communicate arguments and results using explicit messages. A message is formed and is-
sued with the send instruction, which sends a number of data values to an inlet of a potentially remote
frame. The inlet is a stylized compiler generated Active Message handler that receives data from the net-
work and stores it into local variables in the destination frame. It will also post a thread into that frame,
if the entry count is satisfied. Post is analogous to fork, except that it enables a thread for the frame as-
sociated with the message, whether it is currently running, idle, or ready, while fork enables a thread for
the currently running frame. If the activation is idle when the post occurs, it is placed on the scheduling
queue. If it is ready, i.e., already on the queue, it simply accumulates another thread in the continuation
vector. If the activation is currently running, the inlet may take some special action to put the data di-
rectly in registers or it may simply fork the thread.

To minimize the interaction between inlets and the scheduling events within threads, each activation’s
continuation vector is split into two parts, a remote continuation vector (RCV) in the frame and a local
continuation vector (LCV) that is part of the processor, like registers.6 Forks push thread pointers onto
the LCV, whereas posts in inlets push thread pointers onto the RCV. Maintaining the continuation vec-
tor in the frames provides a natural two-level scheduling hierarchy which enhances the locality of refer-
ence within the processor. When a frame is scheduled, the remote continuation vector (RCV) is copied
into the local continuation vector (LCV), from which enabled threads are executed until the LCV is
empty. The set of threads that run during this time is called a quantum.

Global data structures in TAM provide synchronization on a per-element basis to support Id’s I-struc-
ture and M-structure semantics [ANP87]. In particular, reads of empty elements are deferred until the
corresponding write occurs. Accesses to the data structures are split-phase and are performed via special
instructions: ifetch reads an element by sending a message to the processor containing the data which
returns the value to an inlet, istore writes a value to an element, resuming any deferred readers, and ial-
loc and ifree allocate and deallocate I-structures. Access to I-structure elements is performed by a stan-
dard inlet on the processor that is local to the accessed element. It reads the element and its presence
bits, performs the state transition, and replies to the program inlet.

6.2.2 Evaluation

This subsection analyses statistics on dynamic scheduling and communication to evaluate the effective-
ness of the Id90/TAM compilation system for conventional multiprocessors. The programs are com-
piled to TAM instructions by the Id90 compiler and then translated by the TAM back-end to Sparc
assembly language on the CM-5. TAM uses a variation on the CMAM communication architecture
and generates the code to send and receive messages directly in-line. Although the message formats are
the same as in CMAM and the code sequences are similar, TAM does not use the Sparc register win-
dows nor the standard calling sequence. Instead, it uses only a single window as a flat 32-register file
and reserves eight registers for inlets (e.g., Active Message handlers).

The results presented here are adapted from a comparison of mechanisms for fine-grained parallel pro-
grams in the J-Machine and the CM-5 [SGS+93] and stem from six benchmark programs described be-
low. TAM-level dynamic instruction distributions are collected by running an instrumented version of
each program on the CM-5. The translator inserts in-line code to record roughly a hundred specific sta-
tistics on each processor, which are combined at the end of the program. These are grouped into the ba-
sic instruction categories in Figure 6-12a. ALU includes integer and floating-point arithmetic, messages
includes instructions executed to send and handle messages, heap includes global I-structure and M-
structure accesses, and control represents all control-flow instructions including moves to initialize syn-
chronization counters.

The frequencies of the various operations comprising each of the programs are then used to weight the
cycle cost of each of the operations. The result is a graph which shows the relative contribution of each
operation category to the overall execution time of the programs. This statistical method is similar to

6. Alternatively, inlets may execute on a separate processor that is closely coupled to the thread processor. Still it is
valuable to minimize the interactions between the two.
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Figure 6-12: Dynamic program execution statistics

The top bar graph shows the TAM instruction mix for two versions of each program: the “df” version uses dataflow compila-
tion techniques while the “tam” version includes TAM-specific compiler optimizations. The bottom bar graph shows the
Sparc cycle count breakdown for the same programs.
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narrow spectrum benchmarking [SB92] and has the advantage that different—even hypothetical—ma-
chines can be compared: for each new machine only a cost vector capturing the average cycle cost for
executing each primitive needs to be developed. Weighting this cost vector by each program’s statistics
yields a prediction of the execution time on the new machine.

This methodology is used below to evaluate the cost of dynamic scheduling and of communication.
Comparing the normal CM-5 to a hypothetical CM-5/J-Machine hybrid machine gives an indication
of the improvements possible with specialized hardware. The cost vectors for the hybrid machine are
adapted from [SGS+93] where it is developed by modifying the J-Machine to include Sparc features
such as an on-chip cache, an on-chip floating-point unit, and 32  integer registers. Adding these “mun-
dane” architectural features to the J-Machine creates a machine equivalent to a CM-5 with an on-chip
network interface and message handler dispatch in hardware.

The six benchmark programs range from 50 to 1,100 lines. QS is a simple quick-sort using accumula-
tion lists. The input is a list of random numbers. Gamteb is a Monte Carlo neutron transport code
[BCS+89]. It is highly recursive with many conditionals. Paraffins [AHN88] enumerates the distinct
isomers of paraffins. Simple is a hydrodynamics and heat conduction code widely used as an application
benchmark, rewritten in Id90 [CHR78, AE88]. Speech determines cepstral coefficients for speech pro-
cessing. MMT is a simple matrix operation test using 4x4 blocks; two double precision identity matri-
ces are created, multiplied, and subtracted from a third. The programs toward the left of Figure 6-12a
and b represent fine-grained parallelism. They are control intensive and make frequent remote referenc-
es, as opposed to the blocked matrix multiply which is dominated by arithmetic. The Id90 implemen-
tations of comparable programs take about twice as long on a single processor as implementations in
standard languages like C or Fortran [CSS+91]. Some of this overhead (mostly seen in the amount of
control in Figure 6-12) is inherent in any parallel implementation and not specific to Id90.

The evaluation of TAM using Active Messages proceeds in three parts. The dynamic scheduling cost
demonstrates the effectiveness of the compiler optimizations in reduce the overall cost of scheduling,
the storage allocation scheme avoids memory allocation on message arrival, and the communication
cost highlights the success in integrating communication into the compilation process as well as the val-
ue of hardware support for communication.

6.2.2.1 Dynamic scheduling cost

The cost of dynamic scheduling is reflected in the frequency of control instructions which handle basic
control flow among threads (fork, switch, stop, and swap instructions) as well as asynchronous events
due to message arrival (post instructions). In TAM the compiler attempts to reduce the dynamic sched-
uling cost by producing as large threads as possible (thereby lowering the frequency of thread switches)
and by specializing each scheduling operation to its context of use (to avoid the expensive general case).

The effect of compiler optimizations7 to produce longer threads is demonstrated in Figure 6-12 which
shows dynamic TAM instruction and Sparc cycle distributions with and without optimizations: the
version of each program labeled “df” uses standard dataflow thread generation while the version labeled
“tam” is optimized for TAM’s scheduling. The TAM instruction mix in Figure 6-12a shows that the
number of arithmetic instructions, heap accesses, and messages is not affected by the optimization but
the number of control instructions is reduced by 60% on average. Figure 6-12b shows the number of
Sparc cycles executed for each of the programs. A new cycle category, operands, represents the cycles
spent accessing operands in the activation frame. The cycle counts show that the reduction in TAM in-
structions translates into fewer clock cycles for both, control and data access. The overall reduction in
execution time by 25% demonstrates that the new optimizations enabled by exposing the scheduling to
the compiler result in significant savings.

Beyond reducing the frequency of control operations, the compiler also specializes each scheduling op-
eration. Table 6-3 shows the costs of the many variants on each of the control operations in terms of ex-
ecution cycles on the CM-5 and on the hypothetical CM-5/J-Machine hybrid. Dynamic scheduling

7. The details of the compiler optimization is the subject of Klaus Schauser’s Ph.D. thesis [Sch94].
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among threads within the same function is cheap. To fork a new thread, the address of the thread is
simply pushed onto the LCV. When a thread stops, a pop-jump removes the next thread from the LCV
and starts it. Coordination among threads uses the synchronization counters which are decremented by
forks to synchronizing threads. Synchronization counters are implemented as locations in the frame
which must be initialized to the entry count of their associated thread. This initialization incurs the cost
of a memory write.

Table 6-3.  Cost of TAM synchronization and scheduling instructions

For most operations several different versions reflect the various compiler optimizations or run-time conditions,
such as whether a fork can be combined with a stop into branch, whether the target thread is synchronizing, and
whether the synchronization was successful or not.

The CM-5/Hybrid is a hypothetical machine consisting of a CM-5 augmented with the J-Machine on-chip net-
work interface and automatic handler dispatch on message arrival. (The numbers are adapted from a comparative
study of the J-Machine and the CM-5 [SGS+93].)
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The compiler specializes most forks into fall-throughs and branches, which eliminates the correspond-
ing stop at the end of the thread. The remaining forks translate into a push onto the LCV. A pointer to
the top of the LCV is kept in a register. The top portion of Table 6-4 shows the cost of the specific code
sequences, depending on the position of the fork in the thread and whether the destination thread is
synchronizing or not. Taking the dynamic frequencies of these cases into account, the average cost of a
fork is about 8 cycles on the CM-5. Nonetheless, forks account for roughly half of the cost of control
operations.

The instruction sequence executed for post depends not only on whether the target thread is synchro-
nizing or not but also on the state of the activation frame. When the frame is idle or ready, the pointer
to the top of the RCV must be used; it is contained in the frame, not a register. Also, if the frame is idle
it must be placed on the ready queue. However, if a thread is enabled (e.g., the synchronization suc-
ceeds) the thread is being posted to the running frame, it can simply be pushed onto the LCV, like a
fork.

An important consideration in the implementations of fork, post, and stop is atomicity. Inlets and
threads interact in that they share the synchronization counters, the continuation vector, and the frame
ready queue. Thus, the implementation must guarantee that all scheduling operations (e.g., fork, stop,
and swap) are atomic with respect to inlet execution, in particular with respect to the post instructions.
On the CM-5, the compiler inserts polls into the threads to allow for message reception which incurs a
cost of 18 cycles for each poll but ensures that fork, stop, and swap run atomically relative to post.
Eliminating the cost of polling by implementing an interrupt-based approach on the CM-5 is imprac-
tical for fine-grained parallelism. This is due to the high cost of an interrupt, about the same as 10 polls.

On the CM-5/J-Machine hybrid no polls are necessary due to the automatic dispatch on message arriv-
al; however, atomicity becomes a problem. Rendering fork and stop atomic relative to posts would re-
quire bracketing each expansion with interrupt disable/enable instructions. This would incur a four
cycle cost on every thread scheduling operation! Instead, the expansion of post in the case the corre-
sponding activation is running (i.e., in the case atomicity is an issue) is modified to push the thread
onto the RCV instead of the LCV. When the LCV is empty, instead of switching to the next activation,
the RCV is double checked to pick-up threads posted during the quantum.

The CM-5 implementation of post is straightforward, as described above. The net result of specializing
the post instruction is that the most common case, posting to a running frame, costs only 2 cycles more
than a fork instruction. For example, in Gamteb the posts to a running frame account for 51% of the
posts. The cost of a post is reduced further in inlets that handle an ifetch response. For the case that the
element being fetched is local and present, the response inlet is inlined directly into the thread. This
eliminates all the inlet overhead and as a result turns the post into a fork. The result of all the specializa-
tions is that the average post instruction takes between 9 and 13 cycles depending on the application
program.

Control in fine-grained parallel programs involves the integration of asynchronous events with the con-
trol flow internal to the computation. In TAM, the two are closely related as the compiler generates the
code for both scheduling levels. With this kind of coupling, the compiler can partition the available
registers by convention; hardware partitioning into distinct contexts can restrict how registers can be
used and can prevent certain optimizations. The close relationship between the two levels also requires
that asynchronous scheduling be complemented by efficient atomic operations on shared resources.
Polling for messages avoids this issue and is acceptable for fine-grained parallelism. For instance, in our
benchmark programs, polling accounts, on average, for 4% of execution time. It may, however, consti-
tute unnecessary overhead for coarser-grained computation.

6.2.2.2 Communication cost

Communication is handled using explicit send instructions and inlets to handle message arrival.
Table 6-4 shows the cost of sending and receiving a message using synchronous reception on the CM-5
and asynchronous reception on the CM-5/J-Machine hybrid. The start-up cost for sending a message
to a remote processor is 3.5 times as high on the CM-5 as on the hybrid, mainly due to the status regis-
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ter check. The per-word cost is twice as high on the CM-5, due to the cost of stores across the MBUS.
Periodic polling is required in the synchronous reception models. The start-up cost for receiving a mes-
sage includes the dispatch and the return to the interrupted computation. It is roughly twice as high on
the CM-5 with synchronous reception. However, the extremely high receive start-up cost for the asyn-
chronous reception on the CM-5 shows that the user-level interrupt which comes with the hardware
dispatch is a dramatic improvement. The 100 cycles for the kernel trap on the CM-5 is an approxima-
tion and assumes that, on average, two to three messages are received back-to-back per interrupt. No-
tice that the asynchronous model also increases the cost of local messages, in that local messages must
be atomic with respect to remote messages. A remote ifetch involves two messages (request and reply),
and a remote istore involves a single message.

Given the high message cost on the CM-5, it is advantageous to treat local messages as a special case in
software if their frequency is non-negligible, i.e., to exploit send to local frames and ifetch and istore to
local structures. The required destination check costs two cycles per message. The “local messages” col-
umn of Table 6-4 shows the resulting costs for local messages. The local ifetch and istore entries show
that optimizing for local messages can enable further optimizations: the access portion of the ifetch is
performed directly in the thread and if the data is present the threads which use it can be enabled
cheaply.

The implementation costs highlight three key points: the J-Machine integration of the network inter-
face close to the processor reduces the communication costs substantially, receiving is more expensive
than sending on both machines, and optimizing for local messages can be valuable. On Simple, where
93% of the messages are remote, the CM-5 spends three times as much time on messages as the CM-
5/J-Machine hybrid. However, on Gamteb where 30% of the messages are local the CM-5 spends only
twice as much time. Note, however, that the improvement on the CM-5/J-Machine hybrid is mostly
due to the on-chip network interface and less to the special communication instructions.

Several factors cause message reception to be more expensive than sending. Sending is synchronous to
the computation whereas reception is logically asynchronous. Thus values to be sent are typically avail-
able in registers, whereas values received must be stored in memory until the waiting computation can
be scheduled8. Reception involves a dispatch, while sending does not. Finally, stores to the CM-5 net-
work interface (to send a message) can take advantage of the write buffer, while loads (to receive) see the
full network interface access latency. 

8. Moving computation into the inlet, as in a message-driven model, does not help because it replaces memory ac-
cesses for storing message data with memory accesses for retrieving local operands.

Table 6-4. Cost for sending and receiving messages.

†. Cost when the element is present for an ifetch, or empty for a istore.

TAM operation CM-5 Cycles CM-5/J-Machine
hybrid cycles

synchronous reception asynchronous reception

remote messages local messages all message

Send N-word message 25 +4  4 +N 7 +N

Receive N-word message 13 +12  4 +4 5 +7

Poll  9  — —

Ifetch message 93  16 or 4† 24

Istore message 60  4 or 2 15

N
2----

N
2----

N
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N
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6.2.2.3 Storage allocation

The Id90/TAM implementation pays careful attention to storage allocation to ensure that memory al-
location on message arrival is not required. This is mainly achieved by preallocating storage within each
activation frame to hold all data destined for that activation.

Each function receives its arguments via messages sent to a set of inlets and the results returned by child
invocations arrive via messages as well. In both cases, storage for the data is pre-allocated in the frame in
the same manner as for ordinary local variables. The values returned by remote memory fetches are
handled similarly.

There are two situations that are more difficult to handle: deferred ifetches and remote frame alloca-
tion. When an ifetch request is received, the ifetch handler inspects the I-structure element tags and
must enqueue the request if the element is empty. Enqueuing the request clearly requires storage which
cannot be foreseen. Fortunately, all enqueued requests require the same amount of storage: four 32-bit
words holding the requesting processor number, the frame pointer, the inlet number, and a link to the
next enqueued request. The strategy adopted in the TAM implementation is to allocate a large number
of deferred ifetch descriptors at a time such that only every few hundred-th deferred ifetch incurs the
memory allocation cost.

Activation frames are typically allocated on a remote processor in order to balance the load. The current
implementation performs the memory allocation within the message handler. The frame allocator used
maintains separate bins for frequently used frame sizes such that in most cases the allocation is very
cheap. In order to guard against memory overflow problems, the compiler generates two distinct inlets
to which the remote allocator can respond. One of the inlets indicates success and receives the pointer
to the new frame while the other indicates failure and retries the allocation on another node. The over-
all frequency of frame allocation messages is low enough that the time taken for the memory allocation
in the handler is not of great concern.

6.2.3 Conclusions

Dataflow and message driven architectures have been proposed to allow the efficient execution of high-
ly dynamic parallel languages such as Id90. The Id90/TAM compilation system described in this sec-
tion takes a different approach and uses Active Messages on conventional multiprocessors to expose
communication and scheduling to the compiler. This allows the entire compilation process, in particu-
lar code generation, to take communication and scheduling into account and to optimize each special
case. The result is that the frequency of dynamic scheduling is reduced dramatically and the cost of each
specialized scheduling event is far lower than the general case implemented in message driven hardware.

The comparison of communication costs on the CM-5 with the J-Machine (in the form of a hypothet-
ical CM-5/J-Machine hybrid) show that bringing the network interface close to the processor is highly
beneficial, but that the J-Machines’s novel hardware scheduling mechanisms are not satisfactory. This is
mostly due to insufficient attention to atomicity issues: the tight integration of computation and com-
munication which results from the optimized compilation strategy requires the scheduling of computa-
tion to be atomic relative to message arrival. The frequency of these scheduling operations makes the
cost of forming an atomic section critical and polling, especially if well implemented, appears as an at-
tractive solution.

The TAM approach relies heavily on the versatility and flexibility of Active Messages in all aspects of
the compilation. The compiler generates message handlers which efficiently couple communication
and computation. Each handler contains specialized code sequences to store the message data into the
right variables in the activation frame and to enable (post) the appropriate thread. In particular, the
code sequence for the post takes the type of thread (synchronizing or not) into account and performs
different actions depending on the state of the activation frame (running, ready, or idle). The combina-
tion of the Active Messages efficiency and of the optimized scheduling constructs brings the cost of dy-
namic scheduling down to a point where specialized hardware support is questionable.
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The Id90/TAM approach also demonstrates that the responsibilities Active Messages places on the
compilation system can be taken into account. All communication is one-way or round-trip such that
deadlock and livelock is avoided, and storage is preallocated in sizable chunks such that no memory al-
location is necessary on message arrival (while a few exceptional cases requiring allocation remain, their
frequency is kept low).


