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Abstract

We present a new approach to partial pars-
ing of natural language texts that relies on
machine learning methods. The approach
combines corpus-based grammar induction
with a very simple pattern-matching algo-
rithm and an optional constituent verification
step. The grammar induction algorithm ac-
quires a set of rules for each level of linguis-
tic analysis using a new technique for error-
driven pruning of treebank grammars. The
constituent verification step employs stan-
dard inductive learning techniques as an ad-
ditional precision-enhancing device. We eval-
uate the approach on four partial parsing
data sets and find that performance is very
good (over 93% precision and recall) for ap-
plications that require or prefer fairly simple
constituent bracketing. As the complexity of
the partial parsing task increases, however,
our approach lags the performance of com-
peting approaches. We explain these differ-
ences in terms of the knowledge sources em-
ployed by each method and describe a num-
ber of features that make the approach at-
tractive for large-scale, practical NLP appli-
cations.

1 Introduction

Partial natural language parsers provide a shallow
analysis of the syntactic relationships that exist in a
sentence. Figure 1, for example, compares one possi-
ble partial parse of a sentence with its full syntactic
analysis as provided in the Penn Treebank Wall Street
Journal (WSJ) corpus (Marcus et al., 1993). Partial

parsers produce a fairly flat parse tree in comparison
to their full-parse counterparts, omitting some levels
of linguistic analysis or leaving them for subsequent
modules of the natural language processing (NLP) sys-
tem. Nevertheless, the linguistic relationships that
can be identified by partial parsers are rich enough to
support a number of large-scale natural language pro-
cessing applications including information extraction,
phrase identification in information retrieval, named
entity identification, and a variety of text-mining op-
erations. In addition, partial parsers are typically very
fast when compared to full parsers.

Many shallow parsers (e.g. Abney (1996), Hobbs et
al. (1997)) rely on finite-state pattern-matching tech-
niques to recognize all syntactic and semantic entities
in a sentence (Roche and Schabes, 1997b). Parsing
proceeds in stages: Each stage can be viewed as a
finite-state transducer that regroups or relabels the to-
kens or constituents produced in preceding levels. The
initial stages perform relatively simple tasks including
tokenization, part-of-speech tagging, and simple noun
phrase identification; all linguistic relationships that
require higher-level attachment decisions are identified
in subsequent stages and rely on output from earlier
levels.

The patterns, or grammars, that drive each stage of
processing traditionally have been designed manually
(e.g. Voutilainen (1993), Bourigault (1992)). Also, it
has been difficult to directly compare partial parsing
techniques since most were evaluated by hand on a
small test set. Recent work, however, has attempted
the automatic acquisition of partial parsers and their
evaluation on a large test corpus annotated with cor-
rect parses by an impartial third party. Ramshaw and
Marcus (1998), for example, applied transformation-
based learning (Brill, 1995) to the problem of noun
phrase chunking, a basic step for most partial parsers.



Full parse:

(S (NP-SBJ South Korea)
(VP registered

(NP (NP a trade deficit) (PP of (NP $101 billion)))

(PP-TMP in (NP October)) ,

(S-ADV (VP reflecting (NP (NP the country) ’s economic sluggishness)))) .)

Partial parse:

[Subject [np South Koreal] [v registered] [object [np @ trade deficit]] of [yp $101 billion]
in [np October], [v reflecting] [np the country]’s [object [Np €conomic sluggishness]].

Figure 1: Comparison of a Full vs. a Partial Syntactic Parse for the Sentence: South Korea registered a trade
deficit of $101 billion in October, reflecting the country’s economic sluggishness. The partial parse marks the
subject, verb, direct object, and noun phrase information only.

Their noun phrase bracketer learns a set of transfor-
mation rules. Each transformation updates the noun
phrase bracketings associated with a single word based
on local features, such as neighboring words, part-of-
speech tags, and bracket boundaries. To identify base
noun phrases in a novel text, the learned transfor-
mations are applied, in order, across the entire docu-
ment. Argamon et al. (1998) developed a variation of
memory-based learning (Stanfill and Waltz, 1986) for
two partial parsing tasks — base noun phrase identi-
fication and verb-object recognition. During training,
their MBSL algorithm saves the entire raw training
corpus, which has been annotated with parts of speech,
and noun phrase and verb-object brackets. Gener-
alization of the implicit partial parsing rules in the
training corpus occurs at application time — MBSL
searches the novel text for tag sequences or combina-
tions of tag subsequences (tiles) that occurred during
training in a similar context.

This paper presents a new approach to partial pars-
ing that relies on machine learning methods. The
approach is implemented in a shallow parser called
Empire! that combines corpus-based grammar induc-
tion with a very simple pattern-matching algorithm
and an optional constituent verification step. The
grammar induction algorithm acquires a set of rules
for each level of linguistic analysis using a new tech-
nique for error-driven pruning of treebank grammars
(Cardie and Pierce, 1998). In addition, we add a con-
stituent verification step that employs standard induc-
tive learning techniques as a precision-enhancing de-
vice.

We evaluate our approach on four data sets that com-

IThe name refers to our focus on empirical methods for
development of the system.

prise two partial parsing tasks — base noun phrase
identification and verb-object identification. We find
that the performance of our treebank approach is very
good (over 93% precision and recall) for applications
that require or prefer fairly simple constituent brack-
eting. As the complexity of the partial parsing task in-
creases, however, the treebank approach lags the per-
formance of competing methods. We explain these dif-
ferences in terms of the knowledge sources employed by
each method. Nevertheless, our approach has a num-
ber of features that make it attractive for large-scale,
practical NLP applications:

e both the grammar induction algorithm and the
pattern-matching parser are exceedingly simple;

e the parser is very fast, operating in time linear in
the length of the text when the constituent veri-
fication phase is not used;

e the learned grammars can be easily modified for
use with corpora that differ from the training
texts;

e the approach is very flexible in that it allows sys-
tem developers to choose a performance metric
(e.g. precision, recall, F-measure) with which to
tune the grammar that best supports the goals of
the larger NLP application.

The next section provides a definition for, and exam-
ples of, the two partial parsing tasks. Sections 3 and 4
describe and evaluate the basic grammar induction ap-
proach. Section 5 presents the optional constituent
verification step. Section 6 evaluates the entire ap-
proach. We compare Empire with related work in Sec-
tion 7.



2 Base Noun Phrase and Verb-Object

Identification

We focus on two shallow parsing tasks: base noun
phrase identification and verb-object identification. In
this work we define a base noun phrase (base NP) to be
a simple, nonrecursive noun phrase — a noun phrase
that does not contain other noun phrase descendants.
In the partial parse of Figure 1, for example, a trade
deficit of $101 billion and the country’s economic slug-
gishness are too complex to be base NPs; instead, they
contain four simpler noun phrases, each of which is
considered a base NP: a trade deficit, $101 billion, the
country, and economic sluggishness. For base NP iden-
tification then, the goal of Empire is to take a sentence
as input and produce a version of the sentence in which
all base NPs are bracketed.

Verb-object (VO) recognition amounts to identifying
the main verb and direct object head of each clause
in a sentence. Verb-object identification is performed
on a tag sequence in which the base noun phrases
have already been identified. Here the goal for Em-
pire is to bracket potential verb-object constituents
starting with the main verb token and ending with
the base noun phrase that contains the object token:
South Korea [vo registered a trade deficit] of $101 bil-
lion in October, [vo reflecting the country’s economic
sluggishness|. Following the application of the parser,
a small set of rules is applied to the verb-object “con-
stituent” bracket to extract the verb and object. The
above verb-object bracketing, for example, would pro-
duce the following output where registered/deficit and
reflecting/sluggishness are the verb-object pairs: South
Korea [vo [v registered] a trade [o deficit]] of $101 bil-
lion in October, [vo [v reflecting] the country’s eco-
nomic [o sluggishness]].

3 Grammar Induction

Figure 2 depicts Empire’s approach to shallow parsing
using the base noun phrase relationship as a running
example. To learn to identify a particular linguistic
relationship, REL, Empire requires a corpus that has
been annotated with brackets indicating that relation-
ship. More specifically, we assume that the training
corpus is a sequence of elements (either words or con-
stituents) eq, ea, . .., along with a set of annotations or
brackets b, j,); b(is,jo)s - - -» Where b(; ;) indicates that
elements i through j represent an instance of REL:

s ej].

The goal of the training phase is to create a grammar

[REL Eiy v

for REL based on the training corpus:

1. Run all required lower levels of Empire to assign
a tag, t;, to each element e; in the training cor-
pus. For the base NP relationship, this amounts
to assigning a part-of-speech tag to every token in
the corpus. Verb-object recognition, on the other
hand, requires both part-of-speech and base NP
information: Each element in the training corpus
is assigned either an NP label (for sentence ele-
ments recognized as base NPs) or a part-of-speech
tag (for all tokens outside of base NPs).

2. Extract from each REL b jy in the training cor-
pus its sequence of tags t;,...,t; to form a gram-
mar. In Figure 2, for example, the first base NP
in the corpus, [xp 4], produces the tag-sequence
rule (PRP); verb-object rules contain both part-
of-speech and NP tags.

3. Remowve duplicate rules from the grammar.

The resulting grammar can then be used to identify the
linguistic relationship in a novel text in the application
phase.

1. Run all required lower levels of the parser to as-
sign tags t1, to, . .. to the elements eq, €2, . . . in the
input text.

2. Proceed through the tagged text from left to right,
at each point matching the rules against the re-
maining tags t;,t;+1, ... in the text.

3. If there are multiple rules that match beginning
at t;, use the longest matching rule R. Continue
matching at ;g

With the rules stored in an appropriate data structure,
this greedy “parsing” of constituents is very fast. Un-
fortunately, grammars extracted in this fashion pick up
many “bad” rules due to noise in the training data (in-
cluding annotation errors, part-of-speech tagging er-
rors, and genuine ambiguities). As a result, it has be-
come common practice to assign probabilities to the
rules based on their frequency of occurrence and then
use a probabilistic parser to apply the grammar to un-
seen text (Charniak, 1996). Our grammar induction
framework employs a much simpler solution: we in-
clude a pruning phase to eliminate bad rules from the
grammar and retain the longest-match heuristic.



Training Phase: Grammar Induction

Training Corpus

When [it] is [time] for [their biannual powwow] ,
[the nation] 's [manufacturing titans] typically jet
off to [the sunny confines] of [resort towns] like
[Boca Raton] and [Hot Springs] .
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Tagged Text

When/WRB [it/PRP] is/VBZ [time/NN] for/IN [theil/PRP$
biannual/JJ powwow/NN] ,/, [the/DT nation/NN] 's/POS
[manufacturing/VBG titans/NNS] typically/RB jet/VBP
off/RP to/TO [the/DT sunny/JJ confines/NNS] of/IN
[resort/NN towns/NNS] like/IN [Boca/NNP Raton/NNP]
and/CC [Hot/NNP Springs/NNP] .

Application Phase: Relationship Identification

Novel Text

Not this year. National Association of Manufacturers setfled
on the Hoosier capital of Indianapolis for its next meeting.
And the city decided to treat its guests more like royalty g
rock stars than factory owners.

Lower Level Taggers

and/or Parsers

Tagged Text

Not/RB this/DT year/NN ./. National/NNP
Association/NNP of/IN Manufacturers/NNP settled/VBD
on/IN the/DT Hoosier/NNP capital/NN of/IN
Indianapolis/NNP for/IN its/PRP$ next/JJ meeting/NN ./.
And/CC the/DT city/NN decided/VBD to/TO treat/VB
its/PRP$ guests/NNS more/JJR like/IN royalty/NN or/CC

Grammar Extraction

)
)
)
v
)
v
’
'
’
'
)
'
’
'
)
’
)
V
'
)
’
)
)
)
)
'
)
o

Grammar

<PRP>

<NN>

<PRP$ JJ NN>|
<DT NN>
<VBG NNS>
<DT JJ NNS>
<NN NNS>
<NNP NNP>

rock/NN stars/NNS than/IN factory/NN owners/NNS ./. .

Bracketer

Bracketed Text

Not [this year]. [National Association] of [Manufacturers]
settled on [the Hoosier capital] of [Indianapolis] for [its n¢x
meeting]. And [the city] decided to treat [its guests] morg
like [royalty] or [rock stars] than [factory owners].

Figure 2: Shallow Parsing in Empire. The base noun phrase relationship is used as an example.

3.1 Error-Driven Pruning

Empire’s grammar pruning procedure is shown in Fig-
ure 3. First, we divide the training corpus into two
parts: an extraction corpus and a pruning corpus. The
initial grammar for the linguistic relationship is de-
rived from the extraction corpus as described above.
Next, the pruning corpus is used to evaluate the gram-
mar and produce a ranking of the rules in terms of
their utility in identifying the linguistic relationship.
More specifically, we use the rule set and the longest
match heuristic to find all instances of the relationship
in the pruning corpus. Performance of the rule set is
measured in terms of labeled precision (P):

p_ # of correct proposed RELs
N # of proposed RELs

We then assign to each rule a score that denotes the
“net benefit” achieved by using the rule during parsing
of the pruning corpus. The benefit of rule r is given
by B, = C. — E, where C, is the number of RELs
correctly identified by r, and E, is the number of pre-
cision errors for which r is responsible. Alternatively, a
frequency-based benefit measure can be employed: We
scale B, by the rule frequency to prune low-frequency

Extraction
Corpus

Training
Corpus

Extract Rules

Pruning
Corpus
Improved
Grammar

Discard Rules

Final Grammar

Figure 3: Error-Driven Pruning of Treebank Gram-
mars

low-precision rules before high-frequency rules with
the same precision.

The benefit scores from evaluation on the pruning cor-
pus are used to discard the worst rules from the gram-
mar. In the experiments below, we use two types of
pruning. Each iteration of threshold pruning discards
rules whose score is less than a predefined threshold
T it halts when all rules have a score above T. In-



cremental pruning discards the N worst rules in each
iteration and then selects the grammar that yields ei-
ther the maximum precision or the maximum recall on
the pruning data, depending on the goals of the NLP
application.

For a more detailed description of error-driven prun-
ing, see Cardie and Pierce (1998). The notion of
“pruning” inductive hypotheses has been explored pre-
viously in machine learning. Quinlan (1987), for exam-
ple, presents several methods for simplifying decision
trees using reduced-error pruning and a separate test
set. If Empire’s partial parsing approach is viewed as a
very simple instantiation of case-based learning, then
our pruning technique most resembles instance editing
algorithms that discard training instances with poor
classification accuracies (e.g. IB3 (Aha et al., 1991)).

4 Evaluation of Error-Driven Pruning

Data Sets. In spite of the definitions in Section 2,
there can be substantial differences in how base noun
phrase and verb-object relationships can be encoded
in any corpus. As a result, we created two data sets
for each linguistic relationship, one data set that re-
flects a simple implementation of each relationship,
and one that incorporates additional linguistic com-
plexities. All are derived from the Penn Treebank WSJ
corpus. In the Complex Base NP data set, each base
NP corresponds to a non-recursive noun phrase in the
Treebank parse. In particular, this data set is meant
to duplicate the data used in Ramshaw and Marcus
(1998) except for our handling of possessives. The
Simple Base NP data set further simplifies Treebank
base NPs that contain: (1) nominal conjunctions, (2)
prepositions, (3) possessives, or (4) leading and trail-
ing adverbs and verbs.

In the Complex Verb-Object data set, there is a verb-
object pair for every verb and direct object component
in the Treebank parse. In particular, if the object is
a conjunctive phrase, the data set encodes separate
verb-object pairs for each component of the conjunc-
tion. The Simple Verb-Object data set is meant to du-
plicate the Argamon et al. (1998) data and: (1) simpli-
fies direct objects that are conjunctions or appositives,
(2) simplifies conjunctive verbs, (3) simplifies ditran-
sitives, and (4) omits objects marked by verb particles
and copular verbs. By evaluating on both data sets
for each linguistic task, we can explore the effect of
linguistic relationship complexity on parser accuracy.

Methodology. All experiments are performed on
the 25 sections of the WSJ portion of the Penn Tree-
bank II corpus. Performance is measured in terms of
precision (P) and recall (R):

p_ # of correct proposed RELs
B # of proposed RELs

# of correct proposed RELs
# of RELs in the annotated text

All results are averages using five-fold cross-validation
at the document level; the same fold divisions are em-
ployed across all experiments. All experiments use the
original (Treebank) segmentation for sentences and to-
kens.

For both base NP and verb-object recognition, part-
of-speech tags were generated using Mitre's version of
the Brill tagger (Brill, 1995). For verb-object identifi-
cation, Empire itself identifies the base noun phrases.
The threshold pruning experiments use T = 1; the
incremental pruning experiments use N = 3 for verb-
objects and N = 10 for base NPs. The verb-object ex-
periments use recall-based pruning; incremental prun-
ing for verb-objects uses the frequency-based benefit
measure and threshold pruning employs the standard
benefit measure.?

Results. Table 1 summarizes the performance of the
Empire parser on both the Complex and Simple cor-
pora for each linguistic relationship using incremental
and threshold pruning. The first row of results for
each data set shows the performance of the initial, un-
pruned grammars. The next two rows show the per-
formance of the automatically pruned rule sets. As ex-
pected, the initial rule set performs quite poorly. For
base NPs, both automated approaches provide signif-
icant increases in recall and precision. Note also the
relatively small difference between the threshold and
incremental pruning methods. For some applications,
the minor drop in performance for threshold pruning
may be worth the decrease in training time. For the
remainder of the paper, we will use threshold pruning
for base NP experiments.

For verb-object identification, the pruning results are
less consistent. Both methods substantially increase
precision; the finer-grained incremental pruning also
increases recall. Threshold pruning, however, provides
mixed results. For verb-object recognition, there are a
few high-frequency, low-precision rules and the coarser

2The frequency-based benefit measure and threshold
pruning with 7' = 1 are not compatible since all rule ben-
efits would be below 1.



Table 1: Evaluation of Error-Driven Pruning for Base NP Identification and Verb-Object Recognition

(P = precision; R = recall)

Linguistic Relationship

Simple Corpus

Complex Corpus

Base NP
unpruned
threshold pruning
incremental pruning

Verb-Object
unpruned
threshold pruning
incremental pruning

.221P/.457R .183P/.353R
.920P/.932R .870P/.896R,
.932P/.934R .893P/.905R,
.199P/.863R .209P/.681R
.661P/.612R .650P/.7T19R,
.569P/.895R .619P/.789R

threshold pruning is not consistent in its handling of
them: Results vary widely on a per-fold basis depend-
ing on whether these rules survive pruning. For the
remainder of the paper, we will use incremental prun-
ing for verb-object experiments.

Table 1 also clearly indicates the effects of linguistic
relationship complexity. As expected, results for the
Complex base NP data set are much lower than those
for the Simple corpus (-5%P/-3.6%R). Since the two
data sets share about 91% of their NPs, this perfor-
mance drop is caused by problems introduced in the
remaining 9%, of which possessives account for 3.6%;
conjunctions, 2.3%; and NPs with leading and trail-
ing adverbs and verbs, 2.4%. Analysis of the errors
indicates that ambiguities introduced by allowing con-
junctions and adverbs/verbs appear to be more diffi-
cult than those introduced by possessives.

Although the verb-object task is more difficult than
the base NP task it subsumes, the results for the Sim-
ple and Complex verb-object data sets appear to con-
tradict the expected trend — there is a large drop in
recall (-10.6%) for the Complex verb-objects, but pre-
cision increases by 5%. One reason for this is that
verb-object pairs with copular verbs are identified in
both experiments but are considered errors for the sim-
ple data set. In addition, the complex data set yields
many more rules (typically longer rules to handle con-
junctions and appositives) that are low-frequency, but
high-precision. Because of Empire’s longest match
heuristic, these long rules prevent Empire from iden-
tifying some erroneous verb-objects that would be se-
lected by shorter, less accurate rules.

For two of the four data sets, our results can be com-
pared to those obtained in evaluations of other ap-
proaches to partial parsing on the Penn Treebank. We
ran an evaluation using as test data, the same sections

Table 2: Direct Comparison to Previous Work (P =
precision; R = recall). Base noun phrases were eval-
uated on section 20 of the WSJ corpus. Verb-object
recognition was tested on section 00 of the WSJ.

Base NPs
Ramshaw and Marcus (R&M) || .931P/.935R
Argamon et al. || .916P/.916R
R&M (no lexical information) || .901P/.902R
Empire (incremental pruning) || .889P/.900R
Verb-Objects
Argamon et al. || .771P/.898R
Empire (incremental pruning) || .610P/.935R

of the Treebank as previous experimenters; the results
are in Table 2.3 Our results on Complex Base NP
corpus lag the best published results (Ramshaw and
Marcus, 1998) by 3-4%. Note, however, that we make
no use of context or lexical (word-level) information;
the best results on this data set were obtained using
transformation-based learning, which employs both.
By controlling for lexicalization in transformation-
based learning, Empire performs more comparably (-
1.2%P/-0.2%R). Empire also falls short of the best re-
sults to date on the Simple Verb-Object corpus. Arg-
amon et al. (1998), however, make use of context to
determine verb-object brackets. We address this issue
for Empire in the next section.

3To match the conditions of the Argamon et al. eval-
uation, these tests were performed using the tags directly
from the treebank rather than from the Mitre/Brill tagger.



Table 3: Sample Verb-Object Constituent Verification Case for Many traders predict the U.S. currency will
remain stuck in the near term. VB refers to a base form verb; NN is a singular noun; MD is a modal verb.

Sentence Elements

Attribute  Value

[np Many traders]

[vo [v predict] [xp the U.S. [o currency]]]

will
remain
stuck in ...

tag-prev2  nil

tag-prevl NP
verb-tag VB
object-tag NN
tag-foll MD
tag-fol2 VB

Class: bad

5 Constituent Verification

Although the role of context and lexicalization has
not, been fully explored for shallow parsing, both are
known to improve the performance of a number of
language learning tasks. The accuracy of Empire’s
shallow parsing algorithm is therefore likely to im-
prove if context and lexical information can be suit-
ably exploited. This section describes one method for
extending Empire to incorporate context and lexical-
ization without sacrificing the overall simplicity of the
shallow parsing approach. We use standard inductive
learning techniques in a constituent verification step
to evaluate the correctness of each proposed linguistic
relationship: Those deemed correct will remain in the
bracketed output of the shallow parser; those deemed
incorrect are discarded. This post-processing stage is
clearly a precision-enhancing device: For cascaded par-
tial parsers, it is important that each level of analysis
be as accurate at possible. In addition, some NLP ap-
plications will benefit more from output that has high
precision and reasonable recall (e.g. identification of
linguistic relationships for information retrieval) than
the converse.

We have examined three machine learning algorithms
for constituent verification: decision tree induction us-
ing C4.5 (Quinlan, 1992), an unweighted k-nearest
neighbor (K-NN) classifier (e.g. IB1 (Aha et al.,
1991)), and a K-NN classifier that uses the value-
difference metric as the similarity measure (Stanfill
and Waltz, 1986). The goal of the training phase is to
produce a set of training cases, each of which describes
one proposed linguistic relationship and its context.
A sample verb-object constituent verification case is
shown in Table 3. Each case is a set of six features:
the tags for the two elements that precede and that
follow the bracket; and tags for the main verb and di-
rect object head. A similar case representation is used

for base NPs. Note that the current case representa-
tion contains no lexical information — the actual word
tokens that comprise the bracket and its context are
not included in the cases. It should be clear, however,
that lexical information is easy to incorporate — in ad-
dition to the tags used in the current representation,
cases would also include the token that represents the
element. Finally, each training case has a class label
(“good” or “bad”) indicating the correctness of the
proposed relationship.

Training instances are created automatically from the
pruning corpus. For the K-NN variations, the value
for k is learned automatically during training; during
testing, we use a simple majority vote to determine
the class label.

Table 4 shows the performance of the three learning al-
gorithms using 10-fold cross validation on data sets of
1000 cases derived from each of the linguistic relation-
ship corpora. In terms of relative accuracy, the three
learning algorithms perform comparably on each data
set.* Since the goal for constituent verification is to
increase precision, however, we hypothesize that the
learning algorithm with best combination of a high
accuracy and low false positive rate would provide
the greatest improvement in precision for the partial
parsing tasks: the K-NN+VDM alternative has this
property for the data sets studied here. We also be-
lieve that classification for constituent verification can
be improved by controlling the characteristics of the
training set — the training data for both linguistic
tasks is skewed w.r.t. class distribution; no attempt

4x? and two-tailed ¢ tests indicate that K-NN and K-
NN+VDM outperform C4.5 (p < .10) for the Simple Base
NP corpus; K-NN+4+VDM outperforms K-NN and C4.5
(p < .10) for the Simple Verb-Object corpus; and K-
NN+VDM outperforms K-NN and C4.5 (p < .10) for the
Complex Verb-Object corpus.



Table 4: Performance of Inductive Learning Algorithms for Constituent Verification. Results are shown in terms
of accuracy (% correct) with standard deviations. False positive rates are provided in italics.

Data Set C4.5 K-NN K-NN 4+ VDM
Simple Base NP 90.5+2.2 91.9+ 2.6 91.6 +1.8
false positive rate 7.4 8.1 6.8
Complex Base NP 86.7+ 3.3 87.4+29 87.0+2.1
false positive rate 10.8 12.8 9.0
Simple Verb-Object 68.6+5.2 68.1+4.7 70.6 +4.9
false positive rate 19.0 24.4 19.4
Complex Verb-Object || 74.1+2.5 73.7+£4.0 75.9+ 3.1
false positive rate 15.9 22.0 15.5

was made to balance the data sets for the experiments
reported here.

6 Combining Pruning and
Constituent Verification

Table 5 shows the effect of constituent verification on
base NP and verb-object identification. For these ex-
periments, the learning algorithms for constituent ver-
ification were trained on 1000 cases derived from the
associated pruning corpus. As hypothesized, the in-
crease in precision is greatest for the K-NN+VDM
variation. The results also show that constituent verifi-
cation is a more effective way to integrate context and
improve precision for verb-object identification than
for base NP identification: For both the Simple and
Complex verb-object data sets, more precision was
gained than recall lost (+12.0% precision vs. -9% and
-6% recall, respectively). Constituent verification pro-
vides much smaller precision gains for base NP recog-
nition. One explanation is that the skewed training
data for constituent verification limited performance.
It is also likely that accurate verb-object identification
simply requires more context, e.g. to distinguish direct
objects from subjects of subordinate clauses as in the
examples below. In preliminary experiments, however,
we find for all of the partial parsing data sets that the
precision-recall tradeoff can be further manipulated by
controlling the balance of “good” and “bad” cases in
the training set: As the percentage of “good” cases is
decreased, precision rises and recall falls.

In spite of the addition of context, Empire still falls be-
low the best reported results on the verb-object task:
Even after re-training Empire using perfect tags (to
match the Argamon et al. (1998) training procedure),
precision remains about 6 precision points lower at the

same level of recall (72.5P/87.5R). Only by assuming
both perfect tags and perfect NPs can Empire surpass
their results. We would expect to recover some of this
discrepancy by replacing the longest-match heuristic
with one that chooses the best combination of possi-
ble bracketings. For base NP identification, precision
gains are modest, leaving Empire still shy of Argamon
et al.’s results.

We conclude this section with an example of the con-
stituent verification step in action: Table 6 shows a
proposed verb-object pair that is correctly discarded
(on the left) and the top-ranked case retrieved in re-
sponse to the test case (on the right).

7 Related Work and Conclusions

In the evaluation sections above, we compared Empire
to two other machine learning methods that have been
applied to partial parsing — Ramshaw and Marcus’s
transformation-based bracketer and Argamon et al.’s
MBSL. In addition to differences in recall and preci-
sion, the methods also vary in other ways. For exam-
ple, the transformation-based bracketer requires the
most training time, with one pass through the training
data for each candidate template for each new trans-
formation. Empire needs only a handful to a few hun-
dred passes for pruning (for threshold and incremental
pruning, respectively), while MBSL trains in a single
pass over the training data. In terms of runtime speed,
the Empire longest-match bracketer is the fastest, us-
ing a quick linear time algorithm. The transformation-
based bracketer can be equally fast, provided that the
transformations are precompiled into a single finite-
state transducer (Roche and Schabes, 1997a). Em-
pire’s increase in running time for constituent verifi-
cation depends on the learning algorithm used. We



Table 5: Effect of Constituent Verification (P = precision; R = recall)

Data Set No Coustituent | Constituent Verification Using
Verification C4.5 K-NN K-NN+VDM
Simple Base NP 920P/.932R | .922P/.925R  .920P/.931R  .928P/.919R
Complex Base NP .870P/.896R | .879P/.877TR  .872P/.893R  .896P/.830R
Simple Verb-Object .569P/.895R | .678P/.750R  .655P/.7T96R  .690P/.806R
Complex Verb-Object .619P/.789R | .727P/.701R  .692P/.758R  .741P/.728R

Table 6: Sample Verb-Object Constituent Verification Case for ... said they ...
In the case representation, VBD is a past tense verb; PRP is a personal

they discovered an antibody that. . . .

in Two Japanese scientists said

pronoun; VO is a verb-object pair; IN is a preposition or subordinating conjunction. The right-hand column

shows the top-ranked retrieved case.

Test Case Case Representation Retrieved Case

Sentence Elements Attribute Value Sentence Elements
tag-prev2 nil

[Np Two Japanese scientists] tag-prevl NP [xp Clinton Gas Systems Inc.]

[VO [V said] [Np [o they]]] verb-tag VBD [VO [V said} [Np [o it]]]
object-tag PRP

[vo [v discovered] [np an antibody]] | tag-foll VO | [vo [v received] [np a contract]]

that ... tag-fol2 IN from ...

Class: bad

believe MBSL to be the slowest bracketer, compar-
ing multiple tiling covers to score each potential NP.
In addition, the runtime space burden for MBSL is
very large because the memory-base stores the entire
training corpus. In contrast, the transformation-based
and Empire bracketers store only a few hundred to a
few thousand transformation or grammar rules at run-
time (for verb-object and base NP recognition, respec-
tively).5

Finally, Empire’s main training product — a tag-
sequence grammar — can be modified for new genres
of text without retraining. This level of portability
is impossible with MBSL, which creates no explicit
constituent grammar; and adding or deleting transfor-
mations to handle new text genres would likely yield
unpredictable results with the transformation-based
bracketer. In Empire, individual rules can easily be
removed from or added to the grammar.

®Daelemans et al. (1999) present a learning algorithm
for base NP chunking that is similar to MBSL in its
memory-based approach. Their results, however, are not
comparable to those reported here: They measure perfor-
mance in terms of the number of words correctly bracketed
rather than measuring the number of completely correct
noun phrase brackets.

In conclusion, we presented a new approach to partial
parsing of natural language texts that combines error-
driven pruning of treebank grammars and an optional
classsification-based constituent verification step. In
an evaluation on four data sets, we find that error-
driven pruning provides substantial increases in recall
and precision over the unpruned rule sets; constituent
verification provides additional increases in precision,
but works especially well for the more complex par-
tial parsing tasks. The approach also has a number of
attractive features: the grammar induction algorithm
and the pattern-matching parser are exceedingly sim-
ple; the parser is very fast; the learned grammars can
be easily modified for use with corpora that differ from
the training texts. In addition, the approach is very
flexible in that it allows system developers to choose
a performance metric with which to tune the gram-
mar that best supports the goals of the larger NLP
application.

Furthermore, we believe that the treebank approach to
grammar acquisition may be general enough to tackle
other natural language learning tasks including the ac-
quisition of patterns for information extraction and for
higher-level text-mining operations. It might also be
applied to tasks outside of natural language process-



ing applications including learning simple languages
for agent communication or in grammar-based biology
problems.

Finally, we believe that there are a number of exten-
sions and improvements that could be made to ob-
tain additional performance gains at the possible ex-
pense of some added complexity: The naive longest-
match heuristic can be replaced by a dynamic pro-
gramming algorithm that considers all combinations
of constituent brackets; machine learning algorithms
could be used to correct, rather than discard, erro-
neous bracketings; lexicalized features can be added
to the case representation; the constituent verification
phase could be incorporated directly into the prun-
ing algorithm; training data for constituent verifica-
tion can be better balanced with respect to positive
and negative instances.
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