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Abstract. Previous work on feature weighting for case-based learning
algorithms has tended to use either global weights or weights that vary
over extremely local regions of the case space. This paper examines the
use of coarsely local weighting schemes, where feature weights are allowed
to vary but are identical for groups or clusters of cases. We present a new
technique, called class distribution weighting (CDW), that allows weights
to vary at the class level. We further extend CDW into a family of related
techniques that exhibit varying degrees of locality, from global to local.
The class distribution techniques are then applied to a set of eleven
concept learning tasks. We �nd that one or more of the CDW variants
signi�cantly improves classi�cation accuracy for nine of the eleven tasks.
In addition, we �nd that the relative importance of classes, features, and
feature values in a particular domain determines which variant is most
successful.

1 Introduction

The k-nearest-neighbor (k-NN) algorithm is among the oldest of classi�cation
schemes for case-based learning. It lies at the heart of many case-based (or
instance-based) learning algorithms. (See, for example, Aha et al. (1991)). Given
a test case described as pairs of features and values, k-NN �nds previously seen
cases with the most similar feature values and uses them to predict the class of
the new instance. The algorithm works well for some tasks, depending on the
type and complexity of the concept to be learned. Researchers have proposed
numerous variations of k-NN in an e�ort to improve its e�ectiveness on more
di�cult tasks. In particular, many proposed schemes employ feature weighting:

the contribution of a feature in calculating the nearest neighbors is scaled ac-
cording to the importance of the feature. The collection of weights, one per
feature, forms a weight vector. See Wettschereck, et al. (1997) for a useful survey
of feature weighting methods.

Many feature weighting methods apply weights globally: they use a single
weight vector that remains constant throughout testing. However, some domains
contain features that vary in importance across the instance space (Aha and
Goldstone, 1992). Local weighting schemes, where feature weights can vary from



instance to instance or feature value to feature value, may perform better for
such applications. For example, Aha and Goldstone (1992) use a combination of
local and global weights for each training instance, and Hastie and Tibshirani
(1994) use weights produced individually for each test instance. Stan�ll and
Waltz's (1986) value di�erence metric (VDM) takes a slightly di�erent approach
by weighting features according to the particular feature values of the test case
and individual training cases. Potentially, local weighting schemes can take into
account any combination of global, test-case, and training-case data. The locality
of particular weighting algorithms can be visualised on a continuum, from global
methods that compute a single weight vector for all cases to extremely local
methods that compute a di�erent weight vector for each pair of test and training
cases. This paper uses the term \local weighting" to describe any scheme in
which the computed weights may vary depending on the classes of the cases
being compared, their feature values, or other variables. The number of locally
varying parameters the metric depends on determines the \degree of locality."

In spite of the existing work on individualized local weighting, less attention
has been paid to local weighting on a coarser scale. While using individualized
feature weights for each training instance or each test instance is a powerful
approach, it may not be the best for all tasks. For example, using individual
weights is unnecessary if the important features are the same across larger groups
of instances. Statistical properties of larger homogeneous groups may simplify
the task of computing appropriate weights.

This paper presents a coarsely local feature weighting scheme, class distribu-
tion weighting (CDW), that allows weights to vary at the class level. Although
classes are certainly not always homogeneous, it is plausible that for many do-
mains the de�ning features of a class are the same for most or all of the instances
belonging to it. Instead of a single global weight vector, CDW computes a dif-
ferent weight vector for each class in the set of training cases using statistical
properties of that subset of the data. Furthermore, the CDW scheme can be
easily modi�ed to generate a family of related feature weighting methods. Thus
we can choose to apply a single set of global weights or to allow �ner scale
localization that accounts for the importance of particular feature value com-
binations. Although the algorithms considered here apply only to features with
discrete (i.e., symbolic) attribute values, they can potentially be generalized for
continuous (i.e., numeric) attributes.

In this paper, we apply CDW and its variants to a collection of classi�ca-
tion tasks, and present evidence that the optimal amount of locality for feature
weighting varies between the di�erent tasks. For nine of the eleven data sets used,
at least one of the CDW weighting schemes signi�cantly improved classi�cation
accuracy. (In the other two, none of the 
uctuation in results was statistically
signi�cant.) With k = 1, the most local technique tested produced the most
accurate results for seven of the nine tasks for which results varied signi�cantly,
but showed signi�cantly lower accuracies for the remaining two tasks. Given the
variability, we conclude that it is advantageous to have a family of related tech-
niques (like the CDW family): the best method for each task can be selected via



cross-validation on the training cases, or can be based in many cases on relatively
simple properties of the task (e.g., the presence of irrelevant features).

The remainder of this paper describes the algorithms and their performance.
Section 2 describes CDW and its variants. Section 3 analyzes the results of ap-
plying the di�erent algorithms to a set of classi�cation tasks, and discusses why
certain algorithms perform better than others in speci�c tasks. Finally, Sect. 4
discusses related work, including other coarsely local weighting algorithms, and
Sect. 5 concludes with possible further extensions of CDW.

2 Class Distribution Weighting Algorithms

The class distribution weighting (CDW) algorithmand its variants start from the
premise that the features that are important to match on are those that tend to
have di�erent values associated with di�erent classes. An ideal feature would take
on a unique set of values for each class. If it existed, that feature would provide
all class information readily. In most applications, of course, ideal features are
not available, but we can measure the degree to which each feature approximates
the ideal. We then weight each feature proportionally to this measurement of
the amount of information it provides.

We measure the usefulness of a feature for classi�cation by comparing the
distributions of the feature values across various subsets of the training cases.
CDW computes a di�erent set of weights for each class in the training set. The
weights for a particular class on a given feature are based on a comparison
between the distribution of feature values for the cases in that class and the
distribution of values for cases in all other classes. If the distributions are highly
similar, the feature is considered not useful for distinguishing that class from
others, and it is assigned a low weight. If the distributions are highly dissimilar,
the feature is considered useful, and it is assigned a high weight.

During classi�cation, we use a variation of the standard weighted k-NN algo-
rithm for symbolic features. Given a test case � , the proximity to each training
case tk is calculated by

D(tk; � ) =
mX
i=1

�fi (tk; � )WfiCl(tk) (1)

where WfiCl(tk) refers to the weight of feature fi as computed for the class of tk,
and

�fi(tk; � ) =

�
1 if Val(fi; tk) = Val(fi; � )

0 otherwise
: (2)

Training instances with higher scores are considered closer to the test instance.
For each class Cj there exists a separate vector



Wf1Cj

; :::;WfmCj

�
of weights

for each feature. The weightsWfiCj
are calculated as follows. Let T = ft1; :::; tng

be the set of training examples, and let F = ff1; :::; fmg be the set of features
describing cases in T . Suppose that feature fi takes on the ri di�erent values
vfi1; :::; vfiri across the entire training set. We then de�ne the distribution of



feature values for feature fi over an arbitrary subset S = ftq1 ; :::; tqsg � T as a
vector 	 (fi; S) = ha1; :::; arii of length ri such that

ah(fi; S) =
1

jSj

jSjX
k=1

�hik (3)

where

�hik =

�
1 if Val(fi; tqk) = vh

0 otherwise
: (4)

In other words, ah is the fraction of instances across S where fi takes on the
value vh.

Let C1; :::; Cp be subsets of T grouped by class (i.e.,C1 consists of all training
cases in class 1, etc.). To �nd the raw weight for feature fi and class Cj, we
compare the distribution of values for Cj to that of the rest of the training
examples:

RfiCj
= k	 (fi; Cj)� 	 (fi; T �Cj)k1 =

riX
h=1

jah(fi; Cj) � ah(fi; T �Cj)j : (5)

This yields a raw weight vector


Rf1Cj

; :::; RfmCj

�
for each class Cj.1 The �nal

weights


Wf1Cj

; :::;WfmCj

�
used are simply the raw weights normalized to sum

to 1.
During classi�cation, the k nearest neighbors are calculated using (1). In case

of ties, more than k cases may be returned. (In fact, to account for 
oating point
rounding errors, all cases with scores within a small � of the kth closest case are
returned.) The retrieved cases then vote on the classi�cation, and ties are broken
by taking the �rst instance returned.

2.1 CDW Variants

CDW weights locally by class level groupings. Thus it should perform well in
domains with homogeneous classes that are distinguished by di�erent features
particular to each class. The same approach can be applied to compute weights
for groups more �nely or coarsely grained than individual classes. For example,
if a particular class was de�ned by the disjunction of two distinct subconcepts,
then one might wish to compute di�erent weights for the two sets of instances
belonging to each subconcept. Unfortunately, subclass groupings are generally
not known a priori, and computing appropriate groupings is not a straightfor-
ward problem. Because of these di�culties, we have not pursued this particular
approach further. Instead, we examined three variants of the CDW algorithm:
one that eliminates locality by using global weights derived from the local CDW
weights, another that uses �ner-grained locality by associating di�erent weights
with each individual feature value, and a third that is a straightforward combi-
nation of the �rst two.
1 In (5), we could use the 2-norm or any Minkowski p-norm. Our tests indicate that
the resulting algorithm behaves similarly to standard CDW on most data sets. In all
results presented in this paper we use the standard form given above.



Global Mean CDW To go from the local CDW weights to a global weight
for all features, we average the feature weight vectors across all classes to get
a single global weight vector. This variant can be expected to perform well in
domains where the relevant features are the same for all classes (e.g., LED-24
from the UCI repository (Merz and Murphy, 1996)). The global weights can be
computed by taking a simple mean over all classes or by an average weighted by
the class frequency in the training data. The latter approach gives comparable
overall results, but tends to bias predictions toward the most common classes.
Because recent work has emphasized the importance of minority class predictions
(Fawcett, 1996), we present only results for the simple mean here. We call this
method global mean CDW (GM-CDW).

In domains with only two possible classes, CDW and GM-CDWwill calculate
the same set of weight vectors because CDW itself produces identical weights
for the two classes. An examination of (5) reveals the reason: T �C1 = C2 and
T�C2 = C1 if C1 and C2 are the only classes. Thus (5) degenerates to equivalent
expressions for each class.

Expanded Feature CDW For some classes, particular feature values may be
more signi�cant than other values of the same feature. For example, the target
class in theMonks-2 data set is de�ned by the concept \exactly two features have
the value 1." Thus another potentially useful form of local feature weighting al-
lows the weights to vary locally according to the values of the test instance. A
simple transformation of the case base allows the CDW algorithm to exploit this
form of locality. Speci�cally, the feature set is expanded so that each instance
is described by a set of binary features corresponding to all the feature value
possibilities in the original training set. If instances in the training set T are
described by the set of features F = ff1; :::; fmg, and feature fi takes on values
Vfi = fvfi1; :::; vfirig across the entire training set, then instances in the trans-
formed training set T 0 are described by the feature set F 0 = Vf1 [Vf2 [ :::[Vfm.

Since the transformed data set has a separate feature for each original feature
value in the training cases, the CDW algorithm applied to it generates weights
that vary for individual feature values. This can be described as a new form of
local distance metric on the original data set, where the distance contribution
from each feature is weighted according to the class of the training instance, and
the feature's value in the two cases being compared:

D(tk; � ) =
mX
i=1

dfi(tk; � ) : (6)

Here the separate weight and � function from (1) have been subsumed into the
single weighted distance term

dfi(tk; � ) = (�fi (tk; � )� 1)
�
WVal(fi;tk)Cl(tk) +WVal(fi;�)Cl(tk)

�
+

riX
j=1

WvfijCl(tk)

(7)



where WvfijCl(tk)
is the weight assigned to the binary expanded feature vfij for

the class of the training case tk. In other words, dfi(tk; � ) is the sum of all the
value weights WvfijCl(tk)

minus the value weights for the training and test case
if their values di�er. This method, which we call expanded feature CDW (EF-
CDW) has �ner locality than the standard CDW since it varies with individual
feature values. It should perform best on tasks in which some but not all values
of a feature are important, and where the importance of each value varies from
class to class.

EF-CDW is identical to CDW for domains whose features all have binary
values, e.g., LED-7 and LED-24. This is because feature expansion on binary
features makes two new features with similar distributions. (One is the mirror of
the other.) The two expansion features are each assigned weights that are half
the normal CDW weights, and the relative distances are unchanged. The relative
ranks of unweighted k-NN distances are also unchanged by feature expansion.

Global Mean Expanded Feature CDW This variant is a straightforward
combination of GM-CDW and EF-CDW. The instances are transformed to the
expanded-features format, the standard CDW algorithm is applied, and the
expanded-feature weights on the classes are averaged to get global weights for
each expanded feature. This variant exhibits test case locality but not class lo-
cality. It should do especially well on tasks where only certain feature values are
relevant, but the relevant values do not vary from class to class (e.g., Monks-2).

3 Results of Testing

We use a variety of classi�cation tasks to test the di�erent weighting algorithms.
Because we hypothesize that di�erent data sets will require di�ering degrees of
locality for greatest accuracy, we include a range of arti�cial and real-world do-
mains. The data sets used are shown in the leftmost column of Table 1. The �rst
six of these (LED-7, LED-24, Monks-2, Lymph, Promoters, and Soybean)2 are
from the UCI machine learning repository (Merz and Murphy, 1996). The tasks
selected are a subset of those proposed as a benchmark by Zheng (1993). Tasks

2 LED-7 is the task of identifying the digit on a standard 7-LED digital display, with
approximately 10% of the features 
ipped (to simulate random noise). Due to the
noise, the optimal probability of a correct classi�cation is about 74%. LED-24 is the
same task with an additional 17 irrelevant features that serve as distractors. The
data sets used for these tasks each have 250 instances. Monks-2 is an arti�cial data
set with 6 features, where the class description to be learned is \exactly two features
have the value 1." It has 432 test instances, of which 169 are designated as training
cases. Lymph is a set of 159 medical cases provided by Zwitter and Soklic. The task is
to predict a medical diagnosis given 18 descriptive features. Promoters is a set of 106
E. coli DNA sequences, where the task is to predict whether the sequence will act as
a promoter. Soybean is a collection of crop disease records. The task is to predict the
disease given 35 features providing information about the growing conditions. This
task has 307 designated training instances, and 376 designated test instances.



from the benchmark with continuous features were discarded. Also, NetTalk was
not used because of its similarity to the NLP datasets described below, and
Mushroom was found to be too easy.

We also include an arti�cial task constructed speci�cally to exhibit feature
importance that varies locally at the class level, and several problems from nat-
ural language processing (NLP) (Cardie, 1993a; Cardie, 1993b). Construct is an
arti�cially constructed 200-instance data set designed to showcase the strength
of the CDW algorithm. It consists of ten features with random values from 0 to
9, with one feature set at random to 10. The class of an instance is the number
of the feature that is set at ten. POS, Gen-Sem, Spec-Sem, and Concept are
NLP data sets of unknown words and are described in detail in Cardie (1993a).
Brie
y, the learning task involves predicting the part of speech, general and
speci�c semantic class, and concept activation respectively for unknown words
drawn from the MUC business joint venture corpus (MUC-5, 1994). In addition
to the class value, each case is described by 34 features that encode information
about the local and global context of the unknown word (Cardie, 1993b).

In the experiments below, ten-fold cross-validation was used for all tasks, ex-
cept for two domains with designated training and test sets (Monks andSoybean).
For these tasks, the designated sets were used to provide consistency with pre-
vious work.

3.1 Discussion

The results of the tests performed are shown in Table 1. Parentheses around an
entry indicate that a particular test is degenerate with one of the other variants,
as noted above. Bold face type indicates signi�cance of at least .10 with respect
to k-NN in a chi-square test, and footnotes indicate greater signi�cance where
applicable. Italic type indicates a signi�cant decrease in accuracy.

Except for two tasks for which no results are statistically distinguishable
(LED-7 and Soybean), at least one of the CDW variants signi�cantly outperforms
the k-NN baseline. While the results tend to favor increased locality in weighting,
no single variant is clearly superior for all tasks. Although Scha�er has shown
theoretically that no single learning algorithm is best for every task (Scha�er,
1994), our results show empiricially the e�ects of local variation in the distance
metric on typical tasks. For some of the tasks we use, locally varying metrics
bring no signi�cant improvement in accuracy. Because the methods we compare
are all variants of a single technique, we suggest that the lack of improvement
stems from the intrinsic nature of these domains.

In particular, the CDW algorithm should attain higher accuracies for tasks
where feature importance varies according to the class. For example, CDW shows
high accuracy on Construct which is designed to exhibit varying feature impor-
tance. Interestingly, CDW performs signi�cantly worse on all the NLP tasks.
We suspect that the important features for these tasks are unrelated to the class
of the instance. CDW may be basing its weights on spurious patterns in the
training data, lowering its accuracy.



Table 1. Accuracy of CDW Variants Compared to 1-NN and 10-NN

Data Set NN CDW GM-CDW EF-CDW GMEF-CDW k Value

LED-7 64.80 63.20 63.20 (63.20) (63.20) k = 1
72.40 70.40 68.80 (70.40) (68.80) k = 10

LED-24 44.40 64.00z 64.40z (64.00)z (64.40)z k = 1
59.60 73.60z 77.20z (73.60)z (77.20)z k = 10

Monks-2 70.83 68.52 (68.52) 75.00y (75.00)y k = 1
66.90 65.97 (65.97) 62.73y (62.73)y k = 10

Lymph 81.43 84.29 83.57 86.43 86.43 k = 1
82.86 83.57 81.43 83.57 83.57 k = 10

Promoters 85.00 90.00 (90.00) 91.00 (91.00) k = 1
78.00 87.00y (87.00)y 89.00z (89.00)z k = 10

Soybean 88.03 88.83 88.56 87.50 89.89 k = 1
80.59 80.32 81.91 78.72 83.24 k = 10

Construct 64.00 98.00z 58.00y 100.00z 99.50z k = 1
85.50 100.00z 76.50z 100.00z 100.00z k = 10

POS 89.45 88.04y 91.00y 91.73z 93.63z k = 1
88.67 86.87z 90.61z 93.63z 93.53z k = 10

Gen-Sem 64.59 61.72z 67.46z 71.25z 75.63z k = 1
67.02 62.40z 69.36y 75.63z 75.19z k = 10

Spec-Sem 71.79 69.36z 72.28 81.81z 78.70z k = 1
75.92 72.91z 76.85 78.70z 80.64z k = 10

Concept 91.39 88.57z 91.44 93.43z 92.17 k = 1
92.95 92.07 93.24 92.17 93.39 k = 10

Key: Results in parentheses are duplicates of other tests. Bold face type indicates
signi�cance with respect to NN of at least .10. Italic type indicates a signi�cant decrease
with respect to NN. y Indicates signi�cance with respect to NN of at least .05. z

Indicates signi�cance with respect to NN of at least .01.

The GM-CDW algorithm should do best in domains where the important
features are the same regardless of class. As expected, it performs well in LED-

24, demonstrating its ability to discard globally irrelevant features. In tasks
like LED-7, where all features are important, neither GM-CDW nor any of the
other CDW variants should have any particular advantage over k-NN, and the
results re
ect this. The remarkable uniformity of the Soybean results may seem
to indicate a similar uniformity in feature importance. More probably, however,
the case space is densely populated enough for this task that k-NN does not
su�er in comparison with more sophisticated techniques. Wettschereck et al.
(1997) report unexpectedly high accuracy for k-NN on a di�erent task due to
this e�ect.

The majority of the domains show the most improvement for the two bi-
narized variants (EF-CDW and GMEF-CDW), which yield the most locally-
tailored feature weights. The Monks-2 results favor EF-CDW, which is not sur-
prising because its concept de�nition explicitly refers to speci�c feature values.



Promoters, Construct, Lymph, and the four NLP data sets also respond well
to the expanded-feature variants. It is worth noting that GMEF-CDW tends to
work well for precisely the same tasks as GM-CDW and EF-CDW. This suggests
that the relationships of feature importance to class and to particular feature
values are independent of each other.

It may seem likely that many real-world tasks, due to their complexity, will
respond well to increased locality in feature weighting. Our results show that
while this conjecture is often true, it does not hold in all cases. In the results for
k = 1, the most localized algorithm (EF-CDW) yields the highest accuracies for
seven of the data sets tested (LED-7, Monks-2, Lymph, Promoters, Construct,
Spec-Sem, and Concept). Four other tasks (LED-24, Soybean, POS, and Gen-

Sem) show the best results with other algorithms for k = 1, and the di�erence
is signi�cant for the two NLP tasks. Choosing k carefully may help, since the
pattern for k = 10 is slightly di�erent. Still, the LED and NLP tasks provide
evidence that allowing for variation that does not exist in the data can decrease
accuracy on some tasks. Naturally these results may not extend to other tasks
and algorithms not tested. However, based upon our results, we recommend pre-
testing via cross-validation with varying types of locally-dependent metrics in
order to empirically determine the optimum for a particular task. Alternately,
expert knowledge, if available, can be used to select the best approach to use.

Each of the CDW variants has several tasks at which it performs well. This
lends support to the \family of algorithms" approach. Overall, we �nd that CDW
and GM-CDW are good at tasks with irrelevant features, and EF-CDW and
GMEF-CDW are particularly good at tasks with partially relevant or interacting
features. Together, they can handle many types of classi�cation problems.

4 Related Work

Several surveys consider locality in k-NN variants. Atkeson et al. (1997a) survey
locally weighted learning algorithms for numeric (e.g., continuous-valued) func-
tions, including k-NN variants. A companion paper examines the application of
various locally weighted techniques to practical robotic control problems (Atke-
son et al., 1997b). Researchers have also examined local similarity metrics based
upon domain-speci�c knowledge (Cain et al., 1991; Skalak, 1992).

Wettschereck et al. (1997) survey lazy learning algorithms, which include
k-NN algorithms. One of their dimensions for comparing algorithms is the gen-
erality of the weighting scheme. They cite several studies reporting good results
for locally weighted techniques (see Hastie and Tibshirani (1994) and Friedman
(1994)), and conclude that the subject merits more research. Although they com-
pare algorithms along several of the dimensions they de�ne, the test results they
present do not focus on comparing algorithms with di�ering degrees of locality.

Several previously introduced classi�ers share similarities with CDW and its
variants. For example, Stan�ll and Waltz's (1986) VDM computes the feature
value distributions, but unlike CDW the weights it computes do not depend on
the class of the training instance. VDM computes di�erent distances between



symbolic feature values, and also weights the features based on the feature value
of the test case. This can be viewed as weighting features locally based on both
the training and test cases, although the computed distance between any two
given feature values is the same across the entire data set. Of the methods
presented here, VDM is most similar to GMEF-CDW.

Several feature weighting classi�ers have used weights that, like CDW, vary
at the class level. Per-category feature importance (PCF) (Creecy et al., 1992)

binarizes features in the manner we have been calling \feature expansion", and
then computes weights according to the formula

WfiCj
= P (Cjjfi) : (8)

Thus it assigns high weight to features that are highly correlated with the class.
Unlike CDW, PCF fails to distinguish between a feature that tends to take on a
particular value across the entire data set and one which tends to be on only for
a particular class. Mohri and Tanaka (1994) report that PCF is biased toward
predicting the majority class for data sets with a skewed class distribution.

Aha's IB4 classi�er also calculates a di�erent weight vector for each class
(Aha, 1992). It attempts to learn feature weights by cycling through the train-
ing instances and adjusting their values. Weights are strengthened if feature
values match for instances of the same class, and weakened if the values match
but the instances are of di�erent classes. Unlike CDW, IB4 is sensitive to the
presentation order of training instances, and it assumes that the irrelevant fea-
ture values are uniformly distributed (Kira and Rendell, 1992). Aha reports that
IB4 outperforms 1-NN in some domains with irrelevant features, and the fact
that weights are learned allows it to change its bias to match that required by a
particular task (Wettschereck et al., 1997).

5 Conclusions

We have developed a family of feature weighting techniques that vary in the
degree of locality with which the feature weights are calculated. We present
results of tests showing that at least one of the CDW variants signi�cantly
improves classi�cation accuracy for nine of eleven benchmark classi�cation tasks.
Because no single technique proved to be the best in every task, we conclude
that di�erent tasks require di�ering degrees of locality in feature weighting. This
justi�es the use of a family of techniques, and suggests that some pre-testing
using cross-validation on a particular task is necessary in order to determine the
amount of locality required.

We are considering a number of improvements and extensions to the CDW
algorithms. First, the CDW weighting algorithm could be extended to process
numeric features in addition to symbolic ones. The most straightforward way
to do this is to partition numeric features into histogram buckets. However,
this discards some of the information present in the numeric values. A better
extension would take into account the continuous nature of numeric features



while preserving the paradigm that the weight of a feature should be based
directly on its usefulness in distinguishing classes.

In addition, researchers have noted the superior performance of adaptive
weight learning techniques, which attempt to adjust their bias to match that
of the task (Wettschereck et al., 1997). Cross-validation on the training data
to �nd the optimal level of locality may be 
exible enough for most purposes.
However, other feedback systems could be developed based upon the wrapper
model introduced by John et al. (1994).

Finally, we would like to take advantage of the 
exibility of CDW by using
criteria other than the instance class to divide the training set into regions.
Di�erent criteria may divide the case base into more homogeneous groups in
terms of feature importance. Applying the techniques of CDW to appropriate
groupings should yield further improvements in accuracy.
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