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Integrating fault tolerance and security is crucial for building trustworthy on-line

services. Such integration is studied in this dissertation through the design and

implementation of COCA (Cornell On-line Certification Authority), a fault-tolerant

and secure on-line certification authority. COCA maintains a service private key

to sign the responses it sends to clients, and achieves availability using replicated

servers that employ threshold cryptography and store shares of the service private

key. Periodic share refreshing, coupled with periodic recovery of server states, de-

fends against so-called mobile adversaries which move from one server to another.

COCA is designed for a weak system model: no assumptions are made about server

speed or message delay, and communications are assumed to employ links that are

intermittent. The result is a service with reduced vulnerability to attacks because,

by their nature, weaker assumptions are more difficult for adversaries to invalidate.

COCA further employs an array of defense mechanisms specific to denial of service

attacks. COCA runs both on a local area network and on the Internet. Performance

measurements of COCA under simulated denial of service attacks demonstrate the

effectiveness of COCA’s defenses.
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Chapter 1

Introduction

A growing reliance on on-line services demands that they be trustworthy—they

must render service despite component failures as well as attacks by adversaries.

Therefore, a trustworthy on-line service must be both fault-tolerant and secure.

Fault tolerance and security started as two separate research fields, leading to

related but different nomenclatures, methodologies, and technologies. In this disser-

tation, we take a step towards unifying the two fields. In particular, we investigate

how to marry fault tolerance and security by undertaking the design and implemen-

tation of a fault-tolerant and secure on-line certification authority.

1.1 Achieving Fault Tolerance

A service is fault-tolerant if it continues to operate correctly, despite occurrences

of certain failures. Failure models characterize classes of failures that might be

tolerated. Here are some common failure models for processors:1

1Other failure models have also been proposed, see [51] for a more complete list.

1
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Byzantine Failures: A faulty processor deviates arbitrarily from its specified

protocols [86, 67]. This class is also called arbitrary failures or malicious

failures.

Crash Failures: A compromised server might halt prematurely. Before it halts,

it behaves correctly [50].

Fail-Stop Failures: A processor fails by crashing, and the failure can be detected

by other processors [96].

Services designed for a specific failure model will work provided the environment in

which that service is deployed conforms to that model. But if failures occur that

are not characterized by the failure model, then the service might fail.

Byzantine failures are the most severe and, not surprisingly, the most difficult to

tolerate. A service that tolerates Byzantine failures is desirable because no assump-

tions are being made about the behavior of faulty components—all failures are thus

admitted by the model. Crash failures and fail-stop failures are often referred to

as benign failures. While benign failures are easier to tolerate, these failure models

often inadequately characterize failures that could and do happen in reality, leading

to failures of services that have been designed for such models.

Fault tolerance typically requires replication [97]. A fault-tolerant service is

implemented by replicating servers that are assumed to fail independently. The

probability that a set of these servers all fail is thus the product of the probability

that each element of the set fails. As the cardinality of the set increases, this

probability becomes lower, eventually becoming negligible.

Protocols coordinate the servers comprising a fault-tolerant service. These pro-

tocols are affected by assumptions related to server speed, message-delivery delay,
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and server-clock drift. Two distinct system models have been used to characterize

the assumptions:

Synchronous System Model: There are known bounds on server speed and

message delay. Every server has a local clock that has bounded drift with

respect to real time.

Asynchronous System Model: There is no bound on server speed or message

delay, nor is there a bound on local clock drift.

A service built for the synchronous system model could fail if the defining as-

sumptions of that model become invalid. In contrast, the asynchronous system

model entails no assumptions, so there is nothing to be invalidated. However, the

design of fault-tolerance services that work in an asynchronous system model is of-

ten difficult and sometimes impossible [34]. And, no real-time guarantees can be

made for services implemented under the asynchronous system model.

The replicated state machine approach [66, 98] is a general way of coordinat-

ing replicated servers. A service is defined as a state machine, and a fault-tolerant

version of the service is obtained by replicating that state machine. Clients submit

requests to the service for processing. The protocols that coordinate the servers en-

sure that all non-faulty servers process the same requests in the same order, thereby

maintaining identical sequences of states. With a sufficient number of non-faulty

servers, responses from faulty servers are masked by voting on outputs produced by

the individual servers for each given request.

The generality of the replicated state machine approach comes with a cost. Its

protocols must implement the following strong guarantees:

• Agreement: All non-faulty servers receive the same requests.
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• Order: All non-faulty servers process requests in the same order.

Agreement and Order are unnecessarily strong for some applications; simpler

and more efficient solutions could instead be used. Here is an example that does

not require such strong guarantees.

Shared Variable Service: A service stores the value for some shared variable.

A copy of the value, together with a version number of that copy, is replicated

on servers that implement the service. The service supports both update and

query operations:

• Clients update the variable by providing a new value and version number.

• Clients query the service for the current value and version number asso-

ciated with the variable.

Clients expect that query returns the value with the largest version number

over all that have ever been written by update.

Although such a service could be implemented using the state machine approach,

a cheaper approach called a quorum system [45, 105, 41] suffices. In a quorum

system, servers are organized into sets called quorums, where every pair of quorums

intersect.2 And, instead of requiring that all non-faulty servers receive and process

the same requests (as in the state-machine approach), a quorum system requires only

that, for each request, some quorum of servers receives and processes the request.

Assuming that there are in total 2t + 1 servers and that crash failures by at

most t must be tolerated, a quorum system Q, where each quorum in Q consists

2Depending on the failure model and the type of services to be implemented, different kinds of

quorum systems with different intersection properties have been proposed (e.g., Byzantine quorum

systems [69] for tolerating Byzantine failures).
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of exactly t + 1 servers, implements the Shared Variable Service, as follows. (Note

that every two quorums in Q intersect because (t + 1) + (t + 1) > 2t + 1 holds):

update Implementation:

1. The client sends to all servers an update request that contains a value for

the variable and a proposed version number.3

2. Each server, upon receiving an update request, updates its copy of the

variable with the new value and version number if and only if the pro-

posed version number is larger than the one that the server currently

stores. The server then sends an acknowledgment back to the client.

The acknowledgment signifies that the value stored by that server has a

version number at least as large as that in the request.

3. Request execution is considered complete when the client receives ac-

knowledgments from a quorum of servers.

query Implementation:

1. The client sends to all servers a query request.

2. Each server, upon receiving a query request, sends to the client the value

and version number the server currently stores.

3How an appropriate version number is picked depends on the application. In cases where

only one client is allowed to update the value, the client might use the value of a local counter

as the version number; that counter is increased after each update request. When multiple clients

can update the value, a client might first query the service for the current version number of the

value and then pick a new version number that is larger than the current version number. Client

identifiers could be attached as the lower part of the version number so that no two clients pick

the same version number, even for concurrent updates.
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3. Request execution is considered complete when the client receives re-

sponses from a quorum of servers and has picked the value with the

largest version number among those received.

The above implementation of the Shared Variable Service ensures that a query

always returns the value associated with the largest version number among those

that have appeared in update requests:4 For any query request, let Q be the quorum

of servers from which the client gets responses for the request, and let Q′ be the

quorum that has processed the update request preceding the query and containing

the largest version number. Because every pair of quorums in Q intersect, there

exists a server that belongs to both Q and Q′. This server must have responded to

the query request with the value of the largest version number; this value is then

chosen by the client as the response for the query request.

1.2 Enforcing Security

Security is concerned with protecting a service against adversaries who launch at-

tacks. Adversary models—analogous to the failure models of fault tolerance—have

been proposed to characterize the power of adversaries. Two such models5 are:

4To simplify the discussion, no concurrent requests are being considered here. The semantics of

the Shared Variable Service becomes considerably more complicated when concurrent requests are

possible. How to define and implement semantics that takes concurrency into account is discussed

in Chapter 3.
5Adversary models used in cryptography usually specify the computational power of adver-

saries. The models here do not. However, assumptions on computational power are implicit in

the cryptographic schemes used in this dissertation. In particular, we assume that an adversary

cannot break the cryptographic schemes used.
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Passive Adversaries: A passive adversary learns information from a system

component but is unable to change the behavior of that component.

Active Adversaries: An active adversary controls the behavior of a system com-

ponent, in addition to learning information from that component. Active

adversaries are also called Byzantine adversaries.

An adversary can attack not only servers, but also communication links.

The notions of Passive Adversaries and Active Adversaries apply to both servers

and communication links. For servers, a passive adversary can steal information

stored on a server, while an active adversary can also cause the server to deviate from

the specified protocols in any way that adversary desires. For communication links,

a passive adversary can eavesdrop on the communication links to gain information

from messages being transmitted; an active adversary can also alter what is being

carried on the link (e.g., inserting, deleting, replaying, reordering, and modifying

messages).

A comparison between failure models and adversary models reveals a fundamen-

tal difference between fault tolerance and security: information disclosure. Of no

concern to fault tolerance, confidentiality, which concerns what information may be

disclosed to which entities, plays a crucial role in security. While replication is a

means to implement fault tolerance, it only makes matters worse for confidentiality.

Other methods are needed. We now survey those.

Confidentiality Through Encryption

Confidentiality can be implemented using encryption that transforms cleartext into

ciphertext. Ciphertext conceals cleartext in a manner that depends on an encryption
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algorithm and a key ; cleartext can be recovered from ciphertext by a decryption

algorithm, again using a key.

There are two classes of encryption/decryption algorithms: secret key cryptogra-

phy (also called symmetric key cryptography) and public key cryptography [29] (also

called asymmetric key cryptography). In secret key cryptography, the same secret

key is used with both the encryption and decryption algorithms. In public key

cryptography, two different keys are used—a private key is used with the decryp-

tion algorithm, and a public key is used with the encryption algorithm. A private

key cannot be inferred from the corresponding public key. Public keys can thus be

broadly disseminated, but private keys should be kept confidential by their owners.

Public key cryptography offers functionality beyond the capabilities of secret key

cryptography. For example, public key cryptography can be used to implement dig-

ital signatures [29, 74] which, analogous to signatures on paper documents, ensure

the authenticity and integrity of the information being signed. A client A can gen-

erate a digital signature for a message by invoking a signature generation algorithm

using A’s private key kA.6 Any client B with knowledge of A’s public key KA can

verify the integrity of the message by applying a signature verification algorithm to

the signature. Because private key kA used to generate the signature is known only

to client A, no one except A can produce such a signature. Any client who knows

KA (presumed to be publicly available) can verify the signature and be convinced

that the message was signed by A and has not been subsequently altered by others.

Use of cryptography requires proper key management. For secret key cryptogra-

phy, two communicating clients must share the same secret key. Manually distribut-

6In practice, a one-way hash function [75] is first applied to a message, and this hash is what is

signed. We ignore such implementation details here.
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ing shared keys for every pair of clients in a large network is unrealistic. Instead,

a trusted key distribution center (KDC) [82] is used. The KDC shares a secret key

with every client it serves and, when requested, creates a new shared secret session

key for use by a pair of clients. Note that, because secret keys shared with clients

are stored by the KDC and because the KDC knows the session keys, compromise

of the KDC is disruptive.

Public key cryptography would seem to eliminate the need for a trusted entity

like the KDC because public keys, which need to be distributed, are not kept secret.

But while confidentiality of public keys is not a concern, integrity is. Consider the

case where A wants to encrypt a message readable only by B. If A somehow becomes

convinced that KC , the public key of an adversary C, is the public key of B and

uses KC for encryption, then the encrypted message could be decrypted by C (and

not B). A is thus led to disclose information to an adversary.

A standard defense against such attacks is to deploy a public key infrastructure

involving a trusted certification authority (CA), whose public key is known to all.

The CA certifies a binding between a name and a public key (and possibly other

attributes) by signing, using the CA’s private key, a certificate [64] specifying this

binding. CA-signed certificates can be verified by clients using the CA’s public key.

And, as long as the private key of the CA remains confidential, no one except the

CA can sign certificates. By using a certificate that binds B to KB to check B’s

public key, A cannot be misled by adversary C.

A binding between a name and a public key could become invalid, for exam-

ple, when the corresponding private key is compromised or disclosed. Standard

approaches to implementing certificate invalidation include attaching unique iden-

tifiers and expiration dates to certificates in conjunction with the CA periodically
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issuing certificate revocation lists (CRLs) that enumerate invalid, but not yet ex-

pired, certificates. But the gap between when the CA learns that a certificate has

become invalid and when users of the certificate find out that fact constitutes a vul-

nerability, because an adversary can exploit the window during which an outdated

binding is taken to be valid.7

One way to reduce such a vulnerability is to consult an on-line CA. Now, clients

can report certificate invalidation immediately, and they can query the on-line CA

about the validity of a certificate just before using that certificate. The main subject

of this dissertation is such an on-line CA. Note that, like KDC, compromise of a CA

could be devastating to the clients served by that CA.

Confidentiality Through Secret Sharing

Encryption does not completely solve the problem of implementing confidentiality.

Encryption simply relocates the confidentiality requirement on the information being

encrypted to a confidentiality requirement on the secret key or the private key used

for encryption [99]. The relocation of the confidentiality requirement is accompanied

by a relocation of trust. For example, when an unencrypted confidential message is

sent over a communication link, trust is being placed on the communication link—

the sender and the receiver trust that the message will not be disclosed while in

transit on the link. If the message is encrypted before being transmitted, then trust

is relocated from the communication link to servers storing the encryption key—a

server is now trusted to keep the encryption key secret, and the communication link

need no longer be trusted to keep the message confidential. Such a relocation of

7Other gaps (e.g., between when a private key is compromised and when the CA learns the

fact) also constitute vulnerabilities.
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trust makes sense when the probability that servers are compromised by a passive

adversary is considered lower than the probability that a communication link is

compromised by a passive adversary.

The use of replication for fault tolerance is based on the premise that the proba-

bility a set of servers all fail is considerably lower than that the probability a single

server fails. Following this same philosophy, confidentiality can be implemented by

distributing a secret to multiple servers in a way that the secret is disclosed only

if some subset of servers are compromised. (The probability of this happening is

presumed to be lower than that of one server being compromised).8 This can be

achieved by secret sharing [7, 101]. Instead of storing the secret at one server, an

(n, t+1) secret sharing scheme divides the secret into n shares in such a way that the

secret can be reconstructed only from t+1 or more shares. If shares are distributed

among the different servers, then confidentiality of the secret is preserved provided

that the number of shares distributed to corrupted servers does not exceed t.

Secret sharing alone is insufficient to defend against mobile adversaries [85] which

attack, compromise, and control a server for a limited period of time before moving

to the next victim. A mobile adversary might not be able to compromise more than

t servers within a short period of time, but it might be able to do so over a long

period of time, thereby obtaining enough shares from servers it has compromised to

reconstruct the secret.

The defense here is proactive secret sharing [57, 54]. Proactive secret sharing

8The argument about probabilities in the context of fault tolerance hinges on the fundamental

assumption that servers fail independently. This independence assumption might not be appropri-

ate for server compromise, because a common vulnerability could lead to a single attack corrupting

all servers. Therefore, it is crucial to create diversity among replicas, for example, by deploying

different servers on different platforms.
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allows servers periodically to generate new shares from old ones and to refresh

old shares with new ones, without disclosing or changing the secret itself. The

new shares are computed in such a way that old shares cannot be combined with

new shares to reconstruct the secret. A mobile adversary is thus challenged to

compromise more than t servers in the relatively short time between executions of

the protocol that refreshes shares.

Finally, it might seem that implementing confidentiality would be of no concern

to services that do not store confidential information. This is not necessarily so. As

long as a service employs cryptography (e.g., for signing messages), confidentiality

may come into play because the secret or the private keys used will need to remain

confidential. In fact, confidentiality of any data maintained by the service can be

reduced to maintaining the confidentiality of the secret or private key of the service—

just encrypt the service-maintained data using that key. An important aspect of

the service presented in this dissertation is how this service manages a piece of

confidential data, namely, a service private key.

1.3 Marrying Fault Tolerance and Security

This dissertation describes the design and implementation of COCA (Cornell On-line

Certification Authority), a fault-tolerant and secure on-line CA. But the significance

of the effort goes beyond just building an on-line CA. COCA served as a vehicle

to explore a general framework for integrating fault tolerance and security and for

investigating issues that arise during the integration of these two essential elements

of trustworthiness. We believe insights from COCA extend to other on-line services

that are required to be highly trustworthy.

COCA uses replication and stores certificates on its servers. Certificates resemble
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variables in the Shared Variables Service. Like the implementation of update and

query sketched in Section 1.1, COCA employs a quorum system rather than the

replicated state machine approach. COCA supports Update and Query requests,

where Update causes a new certificate specifying a binding to be signed and issued,

and Query returns a currently stored certificate.

COCA maintains a service private key for signing certificates and for signing

responses to clients. Secret sharing is used to generate shares for this service pri-

vate key, with these shares distributed to COCA servers. But reconstructing the

service private key on a server before each use would expose the service private key

if that server is compromised, so, COCA employs threshold cryptography [27, 8, 28],

whereby servers store shares of the service private key and perform cryptographic

operations (e.g., generating a digital signature) using that service private key with-

out ever materializing the key from the shares.

COCA is designed for a system model with weak assumptions, thereby exhibiting

reduced vulnerability to attacks. Any assumption that a service relies on adds

to the power of its adversaries, who can then disrupt the service by invalidating

that assumption. For example, a service designed to work under the synchronous

system model might be corrupted by denial of service attacks that delay message

processing or message delivery long enough to violate the defining assumptions of

the synchronous system model. COCA makes no timing assumptions; it is designed

for the asynchronous system model, so it is less vulnerable to such denial of service

attacks. Prior to our work, proactive secret sharing schemes existed only for some

synchronous system model.

Besides weak assumptions, COCA servers employ various defense mechanisms

to lower the impact of denial of service attacks. Vulnerability to denial of service
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attacks often arises when the cost to process a request (or message) outweighs the

cost for an adversary to make the request (or send the message), as previously noted,

for example, in [58, 72, 73]. A defense against denial of service attacks can thus be

based on eliminating the imbalance. This philosophy led us to instantiate in COCA

the following classic defense mechanisms for combating denial of service attacks:

1. Processing only those requests that satisfy authorization checks.

2. Grouping requests into classes and multiplexing resources so that demands

from one class cannot impact processing of requests from another [46, 109, 76,

77].

3. Caching results of expensive cryptographic operations [84, 14].

Although resource-clogging denial of service attacks are not completely ruled out

by COCA’s defenses, this dissertation sheds light on the effectiveness of the classic

defenses by presenting performance measurements for COCA under simulated denial

of service attacks. And our data demonstrate that launching a successful attack

against COCA is harder with these mechanisms in place.

For a long-running service like COCA, servers might get compromised and then

recovered. Ideally, server recovery will occur right after compromise is detected.

However, compromise of a server is not always detected immediately or even ever.

Therefore, periodic server recovery, even when no compromise is detected, is prudent.

Such recovery is called proactive recovery [85].

Proactive recovery effectively reduces the window of vulnerability—the time pe-

riod during which an adversary has to complete its attack in order to disrupt the

service. Proactive recovery divides the lifetime of a service into a series of intervals,

where the interval between any two consecutive executions of the proactive recov-
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ery protocol constitutes a window of vulnerability. Any incomplete attack launched

by an adversary before execution of the proactive recovery protocol is mooted by

proactive recovery; the adversary is forced to re-initiate its attack. Without proac-

tive recovery, the window of vulnerability for a service would be the entire lifetime

of that service, offering adversaries ample opportunities to disrupt a service by com-

promising first one server and then another.

A prototype of COCA has been implemented. This dissertation not only de-

scribes the design and implementation of that prototype, but also documents our

experiences with running it on a local area network and on the Internet (with servers

at the University of Troms (Norway), Cornell, Dartmouth, and U.C. San Diego).

1.4 Road Map of this Dissertation

This dissertation is organized as follows. Chapter 2 describes our proactive secret

sharing protocol for the asynchronous system model. Correctness requirements are

given for proactive secret sharing protocols in the asynchronous system model and

a step-by-step development of the protocol itself is presented.

Chapter 3 presents the design details of COCA. A specification for the service

offered by COCA is described, together with the protocols that realize this specifi-

cation. The presentation emphasizes the technical challenges and how we addressed

them.

Chapter 4 gives implementation details for COCA, as well as describing perfor-

mance evaluation experiments for COCA deployments on a local area network and

on the Internet. Performance both in the normal circumstances and under certain

simulated denial of service attacks is presented and analyzed.

Finally, Chapter 5 contains a general framework, derived from the design of
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COCA, for building a fault-tolerant and secure on-line service. General approaches

that facilitate the implementation of this framework are discussed.



Chapter 2

Asynchronous Proactive Secret

Sharing

Achieving availability and confidentiality of a secret (such as a key) is challenging

when failures and attacks are possible: A secret stored on a single server becomes

unavailable if that server crashes and can be disclosed if that server becomes com-

promised. Replication of a secret on multiple servers increases availability but also

increases the chances of disclosure.

A standard technique for resolving tensions between availability and secrecy is

to use secret sharing. Instead of storing a secret on all servers, a set of shares are

generated from the secret. We call such a set of shares a sharing of that secret. The

shares are then distributed to servers. Proactive secret sharing (PSS), by performing

periodic share refreshing, defends the confidentiality of the secret against mobile

adversaries. During share refreshing, servers create a new and independent sharing

of the same secret and replace old shares with new ones. Old shares are then deleted

from servers, so that these old shares are not exposed to an adversary if these servers

are compromised in the future. Because new shares cannot be combined with old

17
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shares to reconstruct the secret, an adversary is forced to obtain enough shares

during the short period between two consecutive executions of share refreshing.

All PSS protocols appearing in the literature to date assume a synchronous

system model. Any assumption constitutes a vulnerability, and the assumptions

of the synchronous system model, which could be invalidated by denial of service

attacks, is no exception. This chapter introduces a PSS protocol that does not

require a synchronous system model; we refer to this protocol as an asynchronous

proactive secret sharing (APSS) protocol.

Instead of generating a single new sharing from a single old sharing, our APSS

protocol generates up to n new sharings from up to n old sharings. This somewhat

relaxed requirement avoids the need to solve an agreement problem in the imple-

mentation of APSS—this is significant because agreement is known to be difficult in

the asynchronous system model we are assuming. Each of the different new sharings

has a unique label. When carrying out an operation using a sharing, servers use the

label to indicate which sharing is being used.

Our APSS protocol can also be used to construct proactive protocols for thresh-

old cryptography. Because our APSS protocol is constructed using abstract mod-

ules rather than specific cryptographic algorithms, these abstract modules can be

instantiated with concrete implementations from threshold cryptography, leading to

proactive threshold cryptography schemes. As we show in Chapter 3, a proactive

threshold cryptography scheme derived from our APSS protocol has been incorpo-

rated into COCA to defend against mobile adversaries.

We describe the APSS protocol as a series of refinements, starting from a simple

protocol that works in a benign environment. Each refinement step enables the

protocol to tolerate more powerful adversaries. The presentation thus makes clear
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why each piece of the protocol is needed and how the various defenses are integrated

into the protocol.

The chapter is organized as follows. Section 2.1 specifies the system model

and the correctness requirements for an APSS protocol. Section 2.2 describes the

cryptographic building blocks used in our protocol. Derivation of our APSS protocol

is presented in Section 2.3, followed by a discussion of related work in Section 2.4.

Finally, concluding remarks are presented in Section 2.5.

2.1 System Model and Correctness Requirements

Consider a service comprising n servers connected through a network. The service

maintains a secret s; shares of that secret are distributed among servers. Each server

has a public/private key pair and knows the public keys of all other servers.

We intend the protocol for use in an environment like the Internet. The protocol

must tolerate failures and defend against malicious attacks that target servers and

communication links, as follows.

Active Server-Adversaries: Servers are either correct or compromised. We

assume a compromised server might stop executing, deviate arbitrarily from

its specified protocols (i.e., Byzantine failure), and/or might disclose or change

information stored locally. We also assume

• At most t of the n servers are ever compromised during each protocol-

defined window of vulnerability, where 3t + 1 ≤ n holds.

• Various cryptographic schemes (e.g., public key cryptography) the service

employs are secure.
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Active Link-Adversaries: We assume an adversary can launch eavesdropping,

message insertion, corruption, deletion, reordering, and replay attacks, pro-

vided the following fair link assumption is not violated: A fair link is a com-

munication channel that does not necessarily deliver all messages sent. But if

a process sends infinitely many messages to a single destination then infinitely

many of those messages are correctly delivered.

Although making even weaker assumptions about communication networks might

be attractive, without making some assumption, comparable to our fair link as-

sumption, an adversary could prevent servers from communicating with each other

or with clients. No protocol could be expected to work there.

Asynchronous System: we assume the asynchronous system model. There is no

bound on message delivery delay, server speed, or local clock drift.

As in prior work on PSS [57], we assume that all keys are stored in a tamper-

proof cryptography co-processor and that all operations involving these keys are

performed by this co-processor. Thus, for any server, the confidentiality of that

server’s private key, as well as the integrity of any public keys used by that server,

cannot be violated, even if that server is compromised. Under this assumption, after

server recovery, which, in the context of this chapter, involves a server rebooting from

a clean copy of the system and having all its shares refreshed by an execution of

proactive secret sharing, all Trojan horses left behind by the adversary are excised.

To eliminate the assumption about storing keys in tamper-proof cryptography

co-processors, servers might refresh all their keys during server recovery. But then

there must be a way for a server p to inform others what its new public key is. Server

p could use its old private key to sign the message that notifies others about its new
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public key. However, if that server’s private key is disclosed, then an adversary

could mislead other servers about p’s new public key. Alternatively, servers could

rely on trusted administrators to propagate new public keys among servers through

secure out-of-band communication channels. One way to establish such a secure

communication channel is to have each administrator maintain a public/private key

pair, with the public key known to all other administrators (and all servers) and

the private key used to sign the notification message for the new public key of that

server. Because the private key is only used to sign the notification messages, it is

reasonable to assume that the private key stays off-line most of time and is immune

to any on-line attacks (such as attacks by mobile adversaries). Other approaches to

refreshing keys have been presented in [10].

2.1.1 Defining the Window of Vulnerability

The duration of a window of vulnerability cannot be characterized in terms of real

time here due to the assumption of an asynchronous system, so the window of vul-

nerability for this service is defined in terms of events related to periodic executions

of the APSS protocol. In theory, using protocol events to delimit a window of

vulnerability affords attackers leverage. Denial of service attacks that slow servers

and/or increase message delivery delays expand the real-time duration for the win-

dow of vulnerability, creating a longer period during which adversaries can try to

compromise more than t servers. But in practice, we expect assumptions about tim-

ing can be made for those portions of the system that have not been compromised.1

Given such information about server execution speeds and message-delivery delays,

1A server that violates these stronger execution timing assumptions might be considered com-

promised, for example.
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real-time bounds on the window of vulnerability can be computed.

To define the window of vulnerability for our protocol precisely, the following

notions are needed. An execution of proactive secret sharing where servers generate

new shares from old ones is called a run. To distinguish new shares from old ones

and to distinguish different runs, version numbers are assigned to shares and runs

as follows (a sharing is assigned the same version number as its shares):

• Servers initially have shares of version number 0.

• If a run is executed with shares of version number v, then this run and the

resulting new shares are assigned version number v + 1.

A server initiates2 a run periodically (e.g., at 8 AM every morning) based on its

local clock3 or when instructed by its administrator (e.g., in response to a detected

compromise). A server p might also participate in a run initiated by another server.

To avoid denial of service attacks that cause frequent invocation of proactive secret

sharing, a server will refuse to participate in the APSS protocols unless enough time

has elapsed on its clock since the protocols last executed.

Run v starts when a correct server initiates or participates in run v. Run v

terminates locally on a (correct) server when that server deletes (i) shares it stores

with version number v − 1 and (ii) any secret information generated directly from

these shares. Run v terminates when this run terminates locally on all servers that

2Here, we also assume that every server is rebooted from clean code when initiating a run or

participating in a run.
3We require that local clocks on correct servers advance at a reasonable rate but not that

local clocks are synchronized. Consequently, servers could initiate the same run at different times,

although in practice differences among local clocks are often small. Note that our use of local

clocks here do not violate our Asynchronous System assumption.
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Figure 2.1: Epoch.

have remained correct since run v started. Every server p maintains current version

number cvnp, which reflects the version number of the last run that has terminated

locally on server p, as follows:

• Initially, cvnp is set to 0.

• When run v terminates locally on server p, cvnp is advanced to v.

Define epoch v to be the interval from the start of run v to the termination of run

v + 1. Because new sharings are independent from old sharings, an adversary must

obtain enough shares that have the same version number in order to reconstruct

the secret. To collect shares of version number v, an adversary must compromise

servers during epoch v—these shares are created in run v and deleted in run v + 1

by servers that remain correct during epoch v. Every epoch thus constitutes a

window of vulnerability. Due to Active Server-Adversaries, there are at most t

servers compromised in every epoch. Figure 2.1 illustrates how epochs relate to

different runs and different versions of shares.

A server is regarded as correct in an epoch v if and only if this server remains

correct throughout this epoch. Similarly, a server is regarded as correct in a run v if

and only if this server remains correct throughout this run. Servers that are correct

either in epoch v − 1 or in epoch v are, by definition, correct in run v, because run

v belongs to both epoch v − 1 and epoch v.
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2.1.2 APSS Correctness Requirements

A service that maintains a secret s, whose shares are distributed to servers compris-

ing the service and are refreshed by a proactive secret sharing protocol, must satisfy

the following correctness requirements:

APSS Secrecy: Secret s remains unknown to adversaries.

APSS Availability: Correct servers together have sufficient shares of secret s to

reconstruct s.

APSS Progress: Every run v eventually terminates, so all correct servers in run

v eventually delete shares they store with version number v−1 and delete any

secret information generated directly from these old shares.

2.2 Cryptographic Building Blocks

Our protocol uses secret sharing, verifiable secret sharing, and share refreshing. Any

implementation of these abstractions could be used to construct a concrete instance

of the APSS protocol described in this chapter. The functionality of the three

abstractions is discussed in this section.

2.2.1 Secret Sharing

A secret sharing scheme defines two operations: split and reconstruct. The split

operation generates a random set of shares from s. These shares constitute a sharing

of s; reconstruct constructs secret s from certain subsets of these shares.

An access structure [55] is a collection of sets of shares, such that a set of shares

can be used to construct the secret if and only if this set belongs to the collection.
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Any collection of sets of shares defines an access structure, provided the following

condition is satisfied: if a set is in the access structure, then so are all its supersets.

Although our APSS protocol could easily be extended to secret sharing with any

access structure, for clarity, the discussion in this chapter is with respect to (n, t +

1) threshold secret sharing, where split generates n shares, and the secret can be

reconstructed from all shares in any set whose cardinality is more than the threshold

t. Therefore, if each of the n shares is distributed to a different one of the n servers,

then the following properties hold:

Threshold Availability: Secret s can be reconstructed by more than t correct

servers.

Threshold Confidentiality: It is infeasible for up to t servers to reconstruct s.

Usually, shares are single values. We call such a secret sharing a standard secret

sharing. There can be many sharings of a secret s, and labels can be used to

distinguish these sharings: s:Λ is used to denote a sharing of secret s labeled Λ, and

[s:Λ]i denotes the ith share of that sharing. How labels are constructed varies; the

construction will be given for each version of the protocol we present. Label Λ is

omitted in cases where there is no confusion.

2.2.2 Combinatorial Secret Sharing

Shares of a secret sharing can also be sets of single values. We call a sharing with

sets as shares a combinatorial secret sharing. To avoid confusion, we use share sets

to denote shares of a combinatorial secret sharing and use “shares” only for the

values comprising a standard secret sharing.
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Combinatorial secret sharing and standard secret sharing are closely related. For

a combinatorial secret sharing, the union of all its share sets constitutes a standard

sharing of the same secret—if the secret can be reconstructed from a set of share sets

in the combinatorial secret sharing, then that secret can certainly be reconstructed

from all shares in the union of these share sets; if a set of share sets is insufficient to

reconstruct the secret, then so are all shares in the union of these share sets. And, a

combinatorial secret sharing can also be constructed using sets comprising shares of

a standard secret sharing. The following describes how the scheme presented in [55]

can be used to construct share sets, one for each server, of an (n, t+1) combinatorial

secret sharing from a standard secret sharing.

Construction of (n, t + 1) Combinatorial Secret Sharing.

1. Create l =
(

n
t

)
different sets P1, ..., Pl of servers, such that each set con-

tains exactly t servers. These sets of servers represent the worst-case

failure scenarios—sets of servers that could all fail under the assumption

that at most t servers are compromised.4

2. Create a sharing {s1, . . . , sl} using an (l, l) standard secret sharing scheme.

Associate share si with failure scenario Pi.

3. Include secret share si in Sp, the share set for a server p, if and only if

p is not in corresponding failure scenario Pi. That is, for any server p,

share set Sp equals {si | 1 ≤ i ≤ l ∧p 6∈ Pi}. Note that, by not assigning

si to any server in a failure scenario Pi, we ensure that servers in Pi do

not together have all l shares to reconstruct the secret.

4Implicitly, our discussion is with respect to an epoch (i.e., a window of vulnerability). This is

because, as shown in Figure 2.1, the lifetime of a sharing is an epoch.
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Also, for any server p, construct an index set Ip = {i | 1 ≤ i ≤ l ∧ p 6∈

Pi}. Obviously, we have Ip = {i | si ∈ Sp} and Sp = {si | i ∈ Ip}.

The index sets provide a sharing-independent description of the share-set

construction.

The construction just described satisfies Threshold Confidentiality. For any set

of t servers, there is a failure scenario Pi comprising exactly these t servers. By

construction, share si, which is associated with Pi, is not assigned to any server

in Pi. Because {s1, . . . , sl} constitute an (l, l) secret sharing, without knowing si,

servers in Pi cannot reconstruct s.

Threshold Availability is also satisfied. Given a set P of more than t servers, it

suffices to show that any share si (1 ≤ i ≤ l) is in the share set for some server in

P . Because Pi consists of only t servers, and |P | > t holds, there exists a server p

such that p ∈ (P − Pi) holds. According to our construction, because p 6∈ Pi, share

si is in the share set for server p.

In summary, given a sharing {s1, s2, . . . , sl}, the constructed share sets satisfy

the following conditions:

A1. For any set P of servers, where |P | ≥ t + 1, the following holds:

(
⋃
p∈P

Sp) = {s1, s2, . . . , sl}.

A2. For any set P of servers, where |P | ≤ t, the following holds:

(
⋃
p∈P

Sp) ⊂ {s1, s2, . . . , sl}.

These conditions in turn establish that the construction results in an (n, t + 1)

combinatorial secret sharing.
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Server (p) Share set (Sp) Index set (Ip)
p1 {s2, s3, s4} {2, 3, 4}
p2 {s1, s3, s4} {1, 3, 4}
p3 {s1, s2, s4} {1, 2, 4}
p4 {s1, s2, s3} {1, 2, 3}

Figure 2.2: An Example of Combinatorial Secret Sharing.

Given any (l, l) standard secret sharing labeled Λ for a secret, the construction

described earlier in this section creates the corresponding share sets that constitute

an (n, t + 1) combinatorial secret sharing for the same secret. We use SΛ
p to denote

the resulting share set for server p.

Figure 2.2 illustrates a (4, 2) (i.e., n = 4 and t = 1) combinatorial secret sharing

based on a (
(
4
1

)
,
(
4
1

)
) = (4, 4) standard secret sharing {s1, s2, s3, s4}. The share set

for each server pi consists of all shares except si. The index sets are also shown.

Threshold Confidentiality holds because no share set for a single server contains all

the 4 shares; Threshold Availability holds because the union of the share sets for

any two servers does contain all 4 shares.

Our construction of an (n, t + 1) combinatorial secret sharing might expand

exponentially the total number l (=
(

n
t

)
) of shares and the size |Sp| (=

(
n
t

)
− t) of

share sets with respect to t. Such exponential expansion is not a major concern

because, for practical applications, t is typically small (e.g., 1 or 2).

Use of a combinatorial secret sharing in place of a standard secret sharing offers

the following benefits.

• Using a combinatorial secret sharing scheme enables simple and efficient re-

covery of share sets. Such recovery might be necessary because some servers

never receive the shares in their share sets or because these servers were com-

promised. As illustrated in Figure 2.2, each share appears in multiple share
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sets and is thus replicated (e.g., s1 appears on servers p2, p3, and p4). There-

fore, a server can obtain shares for its share set by asking other (correct)

servers for these shares.5

• A combinatorial secret sharing is constructed from an (n, t + 1) standard se-

cret sharing, where n = t + 1 holds. Henceforth, this subset of standard

secret sharing is referred to as (l, l) standard secret sharing. Schemes designed

specifically for (l, l) standard secret sharings are usually simpler than those

for the more general (n, t + 1) standard secret sharings (i.e., where n may or

may not be equal to t + 1). For example, Shamir’s (n, t + 1) secret sharing

scheme [101] requires polynomial calculation and interpolation, whereas an

(l, l) scheme could perform modular additions and subtractions only.

• As shown in [55], a combinatorial secret sharing scheme can implement any

access structure, including non-threshold structures. Such more general access

structures might be desirable in cases where servers are not equally vulnerable

(thus making a threshold structure inappropriate).

While a share set for a server describes what shares a server should have, the

following notion captures what shares a server actually stores. A server p is said

to hold a share si if and only if p stores that share. Recall that servers delete old

shares after new shares are generated; a server no longer holds a share after that

share is deleted.

Given an (n, t+1) combinatorial secret sharing built upon an (l, l) standard secret

sharing Λ of version number v, sharing Λ is established if and only if at least t + 1

correct servers in epoch v each holds all shares in its share set of this sharing. For an

5For a server q, a correct server p only sends shares that are in Sp ∩ Sq and does so in a way

(e.g., through encryption) that only q can retrieve these shares.
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established sharing Λ, due to property A1 of combinatorial secret sharings, correct

servers jointly hold all l shares of sharing Λ. Therefore, the following properties

hold:

E1. If a sharing is established, then correct servers in the epoch together have

enough shares to reconstruct the secret.

E2. If a sharing is established, then, for any share of this sharing, there exists a

correct server that holds this share.

2.2.3 Verifiable Secret Sharing

Verifiable secret sharing [24] provides a means for servers to check whether a set of

shares constitute a sharing of a secret, so that erroneous shares from compromised

servers can be detected and discarded. We here adopt Feldman’s style of verifiable

secret sharing [33].6

In this section, we present verifiable secret sharing for (l, l) standard secret shar-

ing schemes. With such verifiable secret sharing, verifying share sets in an (n, t+1)

combinatorial secret sharing is accomplished by verifying each share in the share

sets—the given verifiable secret sharing for the underlying (l, l) standard secret

sharing is used for such verification.

Verifiable secret sharing introduces a function oneWay, which maps confidential

information (e.g., secrets and shares) from a domain D into a new domain R. We

call vc.s = oneWay(s) the validity check of s, vc.s = (oneWay([s]1), . . . , oneWay([s]l))

6Any homomorphic non-interactive verifiable secret sharing scheme [6] (e.g., Pedersen’s scheme

in [87]) will work in our protocol. See [57] for a presentation and comparison of proactive secret

sharing schemes built on Feldman’s verifiable secret sharing and ones on Pedersen’s.
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Figure 2.3: Secret Sharing and Verifiable Secret Sharing.

the validity check of sharing s, and vc.[s]i = oneWay([s]i) the validity check of share

[s]i.

Function oneWay has the property that the function itself is easy to compute, but

its inverse is infeasible to compute. Therefore, disclosure of validity checks does not

expose the corresponding secrets or shares. Function oneWay also has the following

homomorphic property: there exists a function vcConstr : Rl → R, such that the

following holds:

vcConstr(oneWay([s]1), . . . , oneWay([s]l)) = oneWay(reconstruct([s]1, . . . , [s]l))

Figure 2.3 illustrates the relationships between operations split, reconstruct, oneWay,

and vcConstr. Given a secret s, its validity check vc.s is generated using oneWay (i.e.,

vc.s := oneWay(s)). A sharing s is generated from s using split (i.e., s := split(s)).

The validity check vc.s for s is generated using oneWay (i.e., vc.s := oneWay(s)).7

Due to homomorphism, vcConstr(vc.s) = vc.s holds.

Using verifiable secret sharing, a set of shares {s1, . . . , sl} constitutes a sharing

of s provided the following three conditions hold:

(1) oneWay(s) = y,

7We use oneWay(s) as an abbreviation for (oneWay([s]1), . . . , oneWay([s]l)).
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Figure 2.4: Share Refreshing.

(2) oneWay(si) = yi for all 1 ≤ i ≤ l, and

(3) vcConstr(y1, . . . , yl) = y.

Condition (1) ensures that y is the validity check for secret s, condition (2) guaran-

tees that {y1, . . . , yl} is the validity check for s, and condition (3) ensures that y can

be constructed from {y1, . . . , yl} using vcConstr. Usually, y is given to servers during

initialization and stored in ROM (Read Only Memory). Verification of condition

(1) is then unnecessary. Any server can check condition (3) given y and {y1, . . . , yl},

but only servers that store a certain share can verify condition (2) for that share.

2.2.4 Share Refreshing

Share refreshing for a combinatorial secret sharing can be achieved using share

refreshing for the underlying (l, l) standard secret sharing—every new share set

is constructed using the new shares generated by share refreshing for that (l, l)

standard secret sharing.

Figure 2.4 depicts how one might generate a new (l, l) standard secret sharing
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s:v + 1 from an old one s:v: For every old share [s:v]i, a server employs split to

generate {si1, . . . , sil}. (We use sij as an abbreviation for [[s:v]i]j.) We call each sij

a subshare and call {si1, . . . , sil} a subsharing of [s:v]i. Each subsharing corresponds

to a column in Figure 2.4. Here, we assume that exactly one subsharing is generated

from each old share.

Each subshare sij is then propagated to every server q satisfying j ∈ Iq. Every

server q collects subshares s1j, . . . , slj (i.e., the jth row in Figure 2.4) for every j ∈ Iq

and generates new share [s:v + 1]j := reconstruct(s1j, . . . , slj). A new sharing s:v + 1

is so generated, and its shares have been distributed to servers based on Iq for each

server q. Servers then delete the old shares and delete the subshares generated from

these old shares.8

Note that, by definition, a subsharing generated from a share [s:v]i is a sharing

of [s:v]i. We distinguish sharings (of the secret) and subsharings (of a share) to

indicate the different roles they play in the APSS protocol. Put in terms of the

notation for sharings, we would have:

• [s:Λ]i
:λ

: a subsharing, labeled λ, generated from share [s:Λ]i

• [[s:Λ]i
:λ

]j: the jth subshare of subsharing [s:Λ]i
:λ

As a convention, we use upper case Λ (and Λ′, Λi, ...) as labels of sharings and use

lower case λ (and λ′, λi, ...) as labels of subsharings. A share set for a server p

constructed from subsharing λ is referred to as Sλ
p .

8Here, we present one rather general way of achieving share refreshing. Other schemes might

not fully conform to this abstract description. For example, for the scheme presented in [57],

subsharings are generated as a sharing of secret 0, and each new share is generated not only from

a set of subshares but also from the corresponding old share. Our APSS protocol can be easily

adapted to accommodate such schemes.
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A notable difference between sharings and subsharings is that the lifetime of a

sharing is within an epoch (since each subsharing is generated in one run and deleted

in the next run), whereas the lifetime of a subsharing is within a run (since each

subsharing is generated and deleted in the same run). Consequently, a subsharing

generated in run v from shares of version number v− 1 is established if at least t+1

correct servers in run v each holds all subshares in its share set of this subsharing.

Properties E1 and E2 apply to established subsharings, although in this case the

notion of correct servers must be defined with respect to the current run rather than

the current epoch.

2.3 Derivation of the APSS Protocol

The APSS protocol is presented as a series of refinements, starting with a rela-

tively simple protocol that requires strong assumptions. These assumptions are

then relaxed, with new mechanism added to preserve correctness under the new

assumptions.

The protocol is presented for a single run v. Epoch v − 1 is referred to as the

previous epoch and run v − 1 as the previous run, while epoch v is referred to as

the current epoch and run v as the current run. Similarly, version v − 1 shares are

called old shares, while version v shares are called new shares. Version numbers are

omitted in cases where it is the current epoch and the current run that are being

referred to. Unless noted otherwise, correct servers refer to correct servers in the

current run.
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2.3.1 A First APSS Protocol

For the first version of the protocol, the assumptions of Active Server-Adversaries

and Active Link-Adversaries are strengthened to

Passive Server-Adversaries with Crash Failures: A compromised server can

experience crash failures only and can disclose any information stored locally

to adversaries. Up to t servers may be compromised in an epoch.

Passive Link-Adversaries: Links are reliable; that is, a message sent always

reaches its intended recipient. An adversary can only eavesdrop on links.

The protocol we now present extends share refreshing of Section 2.2.4 to work

under this set of assumptions. Multiple servers might hold the same share (e.g.,

in Figure 2.2, servers p2, p3, and p4 all hold share s1). And because split is non-

deterministic, these servers could each generate a different subsharing from this

share. Consequently, having exactly one subsharing generated from each old share,

as assumed in share refreshing of Section 2.2.4, is hard to achieve here:

• Predetermining which server to generate a subsharing for each share does not

work, because the selected servers could be compromised.

• Having backups that take over when the selected servers are compromised does

not work either, because servers might not be able to detect that a server is

compromised—there is no way to distinguish a server that has crashed from a

server that is correct but slow, due to Asynchronous System.

Our first protocol avoids this problem by allowing multiple different subsharings to

be generated from any single old share by different servers holding that share.
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Figure 2.5: Candidate Sets of Subsharings.

Now, to generate a new sharing, it suffices to choose one subsharing generated

from every share of a sharing, as shown in Figure 2.4. For a given sharing, we call a

set of subsharings a candidate set of subsharings if that set consists of exactly one

subsharing generated from each share of that sharing. A candidate set of subsharings

(s:Λ)
:λ1, λ2, . . . , λl

, {[s:Λ]1
:λ1

, [s:Λ]2
:λ2

, . . . , [s:Λ]l
:λl

},

is labeled λ1, λ2, . . . , λl.

With multiple subsharings being generated from the same old share, there could

be many different candidate sets of subsharings, which in turn leads to many different

new sharings. This is illustrated in Figure 2.5. Starting with sharing Λ, servers

p1, p2, and p3 can generate 6 subsharings from the shares they hold. From these

subsharings, there could be 8 candidate sets of subsharings; two of them are shown

in Figure 2.5: (s:Λ)
:λ2, λ3, λ5

and (s:Λ)
:λ2, λ4, λ5

.

To help decide on a single candidate set of subsharings, this first version of the

APSS protocol postulates a centralized coordinator p, which chooses a candidate

set of subsharings that servers use to construct new shares. So, for this first APSS
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protocol, we assume

Correct Coordinator: Coordinator p is always correct.

Although it is usually a server that also acts as the coordinator, we regard

the coordinator as an independent process on that server in order to distinguish

the different role played by the coordinator. Details of the protocol are presented

in Figure 2.6. Because (only) one new sharing is generated in each run, version

numbers are sufficient to serve as labels of sharings; a subsharing generated from

[s:Λ]i by a server q is labeled Λ ◦ i ◦ q—server q is included in the label because

different subsharings can be generated from the same share by different servers.

An outline of the protocol is given as follows:

1. The coordinator initiates a run by sending an init message to all servers.

2. Upon receiving the init message, servers generate subsharings from the old

shares they hold and propagate these subshares to other servers in establish

messages.

Only subshares needed by a server to construct the new shares in its share set

are propagated to that server. Subshares being propagated are encrypted, so

that only the intended recipient can retrieve the subshares. (Recall, servers

know each other’s public keys. Therefore, they can authenticate each other

and establish shared secret session keys for this encryption.)

Servers then send the coordinator the labels of the subsharings that have been

generated and propagated.

3. Servers generate new shares from subsharings selected by the coordinator.
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1. Coordinator p sends, in an init message, the label Λ of the sharing to be refreshed
to every server. (Here, Λ is v − 1.)

2. Subshare generation and propagation.

Each server q, upon receiving from coordinator p an init message containing a label
Λ, performs the following steps:

2.1. Generate [s:Λ]i
:λ

:= split([s:Λ]i) for each share [s:Λ]i that q holds, where λ is
Λ ◦ i ◦ q.

2.2. For each subsharing λ that is generated, send, in an establish message, all
subshares in Sλ

r , encrypted, to every server r.

2.3. Send coordinator p, in a contribute message, the labels of all subsharings that
q has generated and propagated in steps 2.1 and 2.2.

3. Share generation.

3.1. Coordinator p awaits enough contribute messages, chooses a candidate set of
subsharings with label “λ1, λ2, . . . , λl” from those contained in these contribute
messages, and sends this choice in a compute message to all servers.

3.2. Each server r, upon receiving from coordinator p a compute message containing
a choice “λ1, λ2, . . . , λl”, performs the following steps:

3.2.1. Await establish messages until all encrypted subshares in
⋃

1≤i≤l(S
λi
r ) =

{[[s:Λ]i
:λi

]j | (1 ≤ i ≤ l) ∧ (j ∈ Ir)} have been received and decrypted.

3.2.2. Compute [s:Λ′
]j := reconstruct([[s:Λ]1

:λ1

]j , [[s:Λ]2
:λ2

]j , . . . , [[s:Λ]l
:λl

]j) for
each j ∈ Ir, where Λ′ is v.

3.2.3. Send a computed message notifying p that r holds all the shares in its
share set of sharing Λ′.

3.3. Coordinator p awaits 2t + 1 computed messages and then sends each server
r a finished message, containing Λ′, notifying r that a new sharing has been
established.

4. Each server r, upon receiving from coordinator p a finished message containing the
label of a sharing whose version number is v, deletes all its old shares and subshares,
and updates cvnr to v if cvnr is less than v.

Figure 2.6: The First APSS Protocol.
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3.1. The coordinator picks a candidate set of subsharings from subsharings

that have been generated and propagated. The coordinator then informs

all other servers about the decision.

3.2. Upon receiving the decision from the coordinator, servers wait until they

have received the selected subshares they need. Then, servers construct

new shares in their share sets from these subshares and send the coordi-

nator a confirmation that they have constructed the shares in their share

sets of this new sharing.

3.3. Upon receiving such confirmations from 2t + 1 servers, the coordinator

sends a finished message to all servers.

4. Upon receiving the finished message, servers delete the old shares and sub-

shares, as well as updating their current version numbers.

Now we show that this protocol satisfies the correctness requirements in Sec-

tion 2.1.

Lemma 2.1 The protocol in Figure 2.6 satisfies APSS Secrecy, assuming Passive

Server-Adversaries with Crash Failures, Passive Link-Adversaries, and Correct Co-

ordinator.

Proof Sketch: To prove APSS Secrecy, it suffices to show that an adversary cannot

get all l shares of any sharing by compromising at most t servers in one epoch.

Consider any sharing s:Λ, where Λ is the version number v. Let P be the set

of servers that are ever compromised in epoch v. Because at most t servers are

compromised in an epoch, |P | ≤ t holds. Therefore, due to A2, there exists a share

[s:Λ]i that is not in share set SΛ
p for any p ∈ P . It suffices to show that an adversary

can never learn [s:Λ]i.
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There are three ways an adversary might learn [s:Λ]i:

(1) collect all the l subshares of the subsharing from which [s:Λ]i is computed (in

step 3.2.2 of run v),

(2) compromise a server when that server holds [s:Λ]i, or

(3) collect all the l subshares of a subsharing generated from [s:Λ]i (in step 2.1 of

run v + 1).

Because correct servers generate subsharings randomly (using split), different

subsharings of [s:Λ]i are independent. Therefore, an adversary is unable to learn

[s:Λ]i by combining partial information from multiple subsharings. For example, an

adversary is unable to learn [s:Λ]i from fewer than l subshares of the subsharing

described in (1) and fewer than l subshares of a subsharing generated from [s:Λ]i (as

described in (3)).

For attack (1), let [s:Λ]i
:λ

be the subsharing from which [s:Λ]i is actually com-

puted. Again, due to A2, there exists a subshare [[s:Λ]i
:λ

]j that is not in the share

set Sλ
p for any p ∈ P . According to the protocol, [[s:Λ]i

:λ

]j must be generated by a

correct server in epoch v and will only be distributed to some correct servers in epoch

v. Subshare [[s:Λ]i
:λ

]j will not be exposed during transmission either, because all

subshares being transmitted are encrypted. Therefore, an adversary cannot obtain

this subshare in epoch v. Furthermore, an adversary cannot obtain this subshare

outside of epoch v, because this subshare is both generated and deleted in epoch v

(in run v − 1, to be more precise) by some correct servers of epoch v. The same

argument also applies to attack (3).

Finally, attack (2) would not work for the following reasons:
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(i) An adversary is unable to obtain share [s:Λ]i directly from a server during

epoch v because no compromised server in epoch v has this share stored.

(ii) An adversary is unable to obtain [s:Λ]i directly from a server before or after

epoch v because the share is both constructed and deleted during epoch v. �

Lemma 2.2 The protocol in Figure 2.6 satisfies both APSS Availability and APSS

Progress, assuming Passive Server-Adversaries with Crash Failures, Passive Link-

Adversaries, and Correct Coordinator.

Proof Sketch: The proof that the protocol satisfies APSS Availability and APSS

Progress is by induction. Assume that an old sharing s:Λ, where Λ is version number

v − 1, is established when run v starts. It suffices to show that this run eventually

terminates, that old shares are deleted only after a new sharing has been established,

and that a new sharing of version number v is established both upon termination

of this run and at the start of the next run.

Because sharing s:Λ is established, due to E2, for every share [s:Λ]i, there exists

at least one correct server pi in the previous epoch (and hence correct in this run)

that holds this share. This correct server pi will generate a subsharing [s:Λ]i
:λ

from [s:Λ]i in step 2.1 of the protocol in Figure 2.6, propagate the subshares in

step 2.2, and include λ in a contribute message to the coordinator. Therefore, the

coordinator eventually receives enough contribute messages to choose a candidate set

of subsharings from those whose labels are contained in these contribute messages.

Without loss of generality, assume that coordinator p chooses a candidate set

of subsharings (s:Λ)
:λ1, λ2, . . . , λl

. Due to Passive Link-Adversaries, which assumes

that links are reliable, every correct server r in this epoch will eventually get all

the subshares in
⋃

1≤i≤l(S
λi
r ). Using these subshares, r generates the set of new
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shares SΛ′
r = {[s:Λ′

]j | j ∈ Ir} in step 3.2.2. There are at least 2t + 1 correct servers.

Therefore, the coordinator will eventually get computed messages from 2t+1 servers.

Among these 2t + 1 servers that respond, given at most t compromised servers in

one epoch, we conclude that at least t + 1 servers must be correct in the current

epoch. A new sharing s:Λ′
is thus established, by definition. Because correct servers

in the current epoch do not delete shares of Λ′ until the next run, sharing Λ′ remains

established at the beginning of the next run.

Upon receiving 2t + 1 computed messages, the coordinator sends a finished mes-

sage to all servers. Due to reliable links, every correct server in this run eventually

receives the finished message and deletes its old shares and subshares. Consequently,

this run eventually terminates. APSS Availability remains true because a new shar-

ing has been established when old shares are deleted. �

Note that this protocol works only if n ≥ 3t + 1 holds. This is because, to

preserve APSS Availability, a coordinator sends a finished message, which causes

servers to delete old shares and subshares, only after the coordinator knows that

a new sharing has been established—t + 1 correct servers in the current epoch

must hold the shares in their share sets of this sharing. Because the coordinator

does not know which servers are correct in the current epoch and there are up to

t compromised servers, it must get confirmations (i.e., computed messages) from

(t + 1) + t = 2t + 1 servers (instead of t + 1 servers) in order to be convinced that

a new sharing has been established. Again, because there are up to t compromised

servers, (2t+1)+t = 3t+1 servers are needed in order to ensure that the coordinator

can always get 2t + 1 computed messages in an asynchronous system: If there were

only 3t servers, then the following two cases are problematic.

(1) There are t compromised servers, who refuse to respond to the coordinator.
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The coordinator is thus unable to get more than 3t− t = 2t responses.

(2) There are t compromised servers, who do respond to the coordinator before

correct servers do. If the coordinator only waits for up to 2t responses, then

only t of the responses are from correct servers—this does not guarantee that

a new sharing has been established.

2.3.2 APSS with Multiple Coordinators

The APSS protocol in Figure 2.6 is based on Correct Coordinator, which is an

unacceptably strong assumption. This section describes how to derive a protocol

that does not rely on this assumption.

Without Correct Coordinator, to have a single new sharing generated requires

all correct servers to agree on which candidate set of subsharings to use for that

new sharing. This would, in turn, require solving the agreement problem in an

asynchronous system, which is known to be difficult. Our APSS protocol avoids the

need for such an agreement by allowing multiple sharings—the protocol employs

multiple coordinators. Here, coordinator p and server p are regarded as two separate

processes on the same host p. Coordinator p is correct if and only if server p is

correct. And, communication between coordinator p and server p is always reliable

with no transmission delay.

By letting each server act as a coordinator,9 at least one coordinator will be

correct in each run, ensuring that at least one new sharing will be established. But

having multiple coordinators could cause up to n new sharings to be generated in

9Because only up to t servers may be compromised, having t+1 servers function as coordinators

suffices to ensure that a correct coordinator is always present. Here, we assume that every server

acts as a coordinator to simplify the presentation of the protocol.
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a run and to coexist—different coordinators might select different candidate sets of

subsharings, leading to different new sharings.

With multiple coordinators, multiple instances of the protocol in Figure 2.6, each

with a different coordinator, could be invoked. Each instance is called a thread. A

thread starts when its coordinator initiates the protocol for this thread; a thread

terminates when its coordinator terminates the protocol for this thread.

To accommodate multiple threads, certain changes to the protocol of Figure 2.6

are needed. The first change concerns labels of sharings and subsharings. Version

numbers alone are no longer sufficient as labels of sharings, since there are now

multiple sharings with the same version number. Instead, the label of a sharing will

now be built from the version number and the name of the coordinator of the thread

creating that sharing. The label of a subsharing generated from a share [s:Λ]i by a

server q will remain Λ ◦ i ◦ q, although Λ, the label of the sharing, has changed to

containing both a version number and the name of a coordinator. Servers can now

use labels to specify which new sharing to use when reconstructing the secret.

The second change to the APSS protocol of the previous section concerns the

termination of threads. For the protocol in Figure 2.6, which assumes a single

coordinator that is always correct, the coordinator terminates its thread when it

finishes executing step 3.3 of Figure 2.6. With multiple threads in a run, coordinator

p will terminate its thread whenever it knows that any coordinator has terminated

a thread in the same run (even if p has not finished executing all the steps in its own

thread). This is because, when a coordinator terminates its thread, a new sharing

must have been established, and there is no need for other threads to continue. For

a coordinator to know about the termination of other threads, finished messages are

propagated not only from coordinators to servers (as done in step 3.3 of Figure 2.6),
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but also from servers to coordinators.10 Therefore, in this new protocol, the following

rules govern the propagation of finished messages and the termination of threads:

• A coordinator terminates its thread

(1) when the coordinator obtains 2t + 1 computed messages in step 3.3 of

Figure 2.6 or

(2) when the coordinator receives from a server a finished message indicating

that a (different) coordinator has terminated its thread.

The coordinator propagates finished messages to all servers when terminating

its thread.

• A server carries out step 4 of Figure 2.6 when it receives from a coordinator a

finished message indicating that a coordinator has terminated its thread.

After completing step 4 of Figure 2.6, a server always forwards the finished

message to any coordinator who requests the participation of this server in a

thread of the same run.

Lemma 2.3 The protocol described above preserves APSS Secrecy, APSS Availabil-

ity, and APSS Progress, assuming Passive Server-Adversaries with Crash Failures

and Passive Link-Adversaries.

Proof Sketch: From the proof for Lemma 2.1, for any sharing Λ, there exists a share

[s:Λ]i that cannot be obtained by an adversary either directly or through subshares

of that share, even if the adversary knows all the information on servers that are

10There are other ways of propagating finished messages; for example, a coordinator can propa-

gate finished messages to other coordinators. Our choice is both simple and easily adapted to cases

where links are only fair, as shown in Section 2.3.3.
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compromised. With multiple coordinators, more subsharings and shares could be

generated. We show that, even with more subsharings and shares generated, an

adversary cannot learn share [s:Λ]i.

• Although more subsharings could be generated, these subsharings (even for

the same share) are independent because servers generate them randomly.

Therefore, learning a share from subshares still requires that the adversary

obtain an entire subsharing of that share, which has been proved impossible

in the proof for Lemma 2.1 (Cases (1) and (3) in that proof).

• Although more shares could be generated, an adversary only has access to

shares generated on compromised servers because correct servers do not dis-

close their shares. The shares generated on compromised servers do not add

anything new to the knowledge of an adversary because the adversary is al-

ready assumed to know the subshares (on compromised servers) used to gen-

erate these shares.

To prove APSS Progress, it suffices to show that any correct coordinator p ter-

minates its thread.11 We consider two cases:

• If, during the execution of the thread with p as the coordinator, p receives a

finished message, then p terminates its thread (Case (2) of thread termination

described earlier).

• If no finished message is ever received by p, then no correct server has yet

11It might seem sufficient to have one correct coordinator terminate its thread, because that

coordinator would propagate finished messages to servers upon termination of its thread. However,

it is desirable (and necessary in practice) to have all coordinators terminate their threads, so that

eventually no messages related to this run are sent.
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received a finished message or deleted its old shares and subshares when par-

ticipating in the thread with p being the coordinator. (Otherwise, that server

would send back a finished message in response to a message from p, and p

would eventually receive that message due to reliable links.) The proof for

Lemma 2.2 shows that, in this case, p is also able to terminate its thread

(Case (1) of thread termination described earlier).

The protocol also ensures APSS Availability, because old shares are deleted only

when a finished message is constructed or received. Using the proof for Lemma 2.2,

a new sharing must have been established when such a finished message is created.

�

2.3.3 Defending Against Active Link-Adversaries

We now relax Passive Link-Adversaries and obtain a protocol that defends against

Active Link-Adversaries. Under the new assumption, an adversary could now insert,

modify, delete, reorder, or replay messages. The previous protocol is vulnerable to

these attacks.

Standard defenses can deal with some of these attacks. To tolerate message

modification, senders sign each message they send, and receivers use those signa-

tures to detect and discard compromised messages. To combat replay attacks, each

message includes information (e.g., the version number of the run, the coordinator

of the thread, and the type of the message) that distinguishes that message from

other messages. This way, messages for different runs or for different threads of the

same run can be distinguished and processed accordingly.

But none of these defenses is effective against message deletion. And, progress of

the protocol might depend on the delivery of messages being deleted by an adversary.
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For example, if establish messages sent to a server q in step 2.2 of Figure 2.6 are

deleted, then server q would not be able to proceed in step 3.2.2 because it would

never receive the needed subshares.

Because Active Link-Adversaries assumes fair links, retransmission can be em-

ployed to defend against such attacks. In fact, reliable links can be approximated

by using fair links as follows: Given are a correct sender A and a correct receiver B.

1. A keeps sending a message m to B.

2. B sends back an acknowledgment ack(m) to A whenever B receives m.

3. A stops sending the message when A receives ack(m) from B.

It is easy to see that A eventually receives ack(m) from B. A retransmits message

m infinitely often if it does not receive ack(m) from B. Because links are fair, B will

receive m infinitely often and thus will send ack(m) infinitely often to A. Invoking

the fair link assumption again on ack(m), server A eventually gets ack(m) from B.

In our protocol, a coordinator always sends messages to a group comprising all

servers. Responses from the servers to the coordinator can be regarded as acknowl-

edgments. Therefore, the approximation of reliable links is extended to multicasts

using the following group send primitive.

A group send(p, m, ack , d) by a server p works as follows: For any server q, server

p constructs a message mp→q from m and repeatedly sends message mp→q to q.

Every server q, after receiving mp→q from p and after processing that message, sends

back message ack(mp→q) to p. Server p terminates this group send(p, m, ack , d)

when it receives acknowledgments from d different servers. Note that, because

recipients might be compromised, the initiator of a group send might not receive

acknowledgments from all servers. Moreover, even a correct server might not always
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• p, q, r: servers

• 〈m〉p: message m signed by a server p using p’s private key

• [p −→ q : m]: message m is sent from server p to server q

• [∀q. p −→ q : mq]: message mq is sent from server p to server q for every
server q

• E(m): m is encrypted in a way that only the intended recipient can decrypt
m.

Figure 2.7: Notation Used in Protocol Presentation.

be in a state to process the received message or to send back an acknowledgment.

For example, a correct server might not have the shares of an established sharing in

order to generate and propagate subsharings from these shares (as would be required

in step 2 of Figure 2.6). Consequently, group send(p, m, ack , d) is guaranteed to

terminate if and only if d is chosen to be at most the number of correct servers that

are able to send back acknowledgments.

A group send(p, m, ack , d), upon termination, does not guarantee that d correct

servers have received and processed message m. This is because there are at most

t compromised servers, and t out of the d servers that have responded might be

compromised when or after sending the acknowledgments.

We now revisit each message transmission in the previous protocol and show how

group send is used to get the desired effect. Some segments of the new protocol will

also be presented; the notation used in presenting these segments is summarized in

Figure 2.7.

Recall that a finished message might be sent to a coordinator or a server in

response to any message m from that coordinator or that server.12 This occurs

12Besides being sent between coordinators and servers, finished messages can also be sent from

one server to another server informing the recipient that a new sharing has been established. Such
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when the current run has already terminated locally on the server that receives m.

(No bogus finished message could be sent because we are assuming Passive Server-

Adversaries.) Therefore, a finished message could act as an acknowledgment for a

group send; the group send terminates upon receiving such a finished message—there

is no need for the sender to wait for more responses.13 This possibility is included

with all the group sends employed in our protocol (and is not repeated in each of

the discussions below).

Step 1 of Figure 2.6 is replaced by a coordinator p initiating

group send(p, init, contribute, t + 1).

Thus, contribute messages sent by servers in step 2.3 serve as acknowledgments to

the init messages sent in step 1.

For subshare propagation, step 2.2 of Figure 2.6 is replaced by server q carrying

out the group send described in Figure 2.8, where establish messages are the mes-

sages q repeatedly send to all servers, and servers send back established messages as

acknowledgments. Note that established messages were not needed in the protocol of

Figure 2.6, because establish messages were always delivered due to the assumption

of reliable links.

The protocol in Figure 2.8 for subshare propagation does not ensure that all

correct servers receive subshares of the subsharing being propagated (as would be

achieved by step 2.2 when links are reliable). A correct server r that does not get

propagation of finished messages is especially useful when links are fair but not necessarily reliable.
13As an exception, finished messages sent in step 3.3 of Figure 2.6 from coordinators to servers

cannot be treated as acknowledgments for group sends. However, as we shall show in the correct-

ness proofs, a coordinator p, when propagating a finished message, only needs to ensure that the

corresponding server p receives the message. This is satisfied because the communication between

coordinator p and server p is reliable.
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P-1. To propagate subshares of a subsharing labeled λ, server q employs
group send(q, establish, established, 2t + 1), where

establishq→r = 〈establish, v, λ, q, r, E(Sλ
r )〉q

is the message q repeatedly sends to each server r, and established messages, as
shown in step P-2, serve as acknowledgments to the establish messages.

P-2. Each server r, upon receiving an establish message from q in a format shown in
step P-1, stores the subshares and sends back an acknowledgment in an established
message to q.

[r −→ q : 〈established, v, λ, r, q〉r]

Figure 2.8: Subshare Propagation Using group send.

certain subshares might be unable to proceed in step 3.2.1 of Figure 2.6. If that is

the case, in step 3.2.1, server r identifies subsharings whose subshares are missing

and recover every such subsharing λ using the group send described in Figure 2.9,

where recover messages are the messages r repeatedly send to all servers, and servers

send back recovered messages as acknowledgments. In the recovered message, only

subshares that belong to share sets of both the sender and the receiver are included,

and these subshares are encrypted, so that only the intended receiver can retrieve the

subshares. Note that neither recover nor recovered messages showed up in Figure 2.6

because subshares were always delivered to the intended recipients when links were

reliable, eliminating any need for subshare recovery.

Finally, to send a compute message in step 3.1, a coordinator p employs

group send(p, compute, computed, 2t + 1).

Here, the computed messages sent in step 3.3 of Figure 2.6 serve as acknowledgments

to the compute messages sent in step 3.1.

With these changes, we now show that the new protocol preserves the APSS

correctness requirements.
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R-1. To recover subshares of a subsharing labeled λ, server r employs
group send(r, recover, recovered, t + 1), where

recoverr→q = 〈recover, v, λ, r, q〉r

is the message r repeatedly sends to each server q, and recovered messages, as shown
in step R-2, serve as acknowledgments to the recover messages.

R-2. Each server q, upon receiving a recover message from q for subshares of subsharing
labeled λ, checks whether it has the requested subshares. If so, q sends to r a
recovered message.

[q −→ r : 〈recovered, v, λ, q, E(Sλ
q ∩ Sλ

r ), r〉q]

Figure 2.9: Subshare Recovery Using group send.

Lemma 2.4 The protocol described above satisfies APSS Secrecy, assuming Passive

Server-Adversaries with Crash Failures and Active Link-Adversaries.

Proof Sketch: Even under the new attacks admitted by Active Link-Adversaries,

correct servers always generate subsharings randomly regardless of what messages

they receive; send subshares, encrypted, to other servers based on share sets; and

never disclose any shares stored locally. Therefore, the proof of APSS Secrecy for

Lemma 2.3 applies. �

Lemma 2.5 The protocol described above satisfies APSS Availability, assuming

Passive Server-Adversaries with Crash Failures and Active Link-Adversaries.

Proof Sketch: Every correct server in this protocol deletes its old shares only

after it receives a finished message. The proof of APSS Availability for Lemma 2.3

shows that, when a finished message is constructed, a new sharing must have been

established. Therefore, APSS Availability holds. �

To prove APSS Progress, we first prove the following lemmas.



53

Lemma 2.6 If the current run terminates locally on a correct server q, then the

current run eventually terminates.

Proof Sketch: Consider any correct coordinator r. We show that coordinator

r eventually terminates its thread. If coordinator r never terminates its thread,

then coordinator r will keep sending messages to all servers (including server q),

and server q will send a finished message to coordinator r as the acknowledgment

(because the current run has terminated locally on server q). Because links are

assumed to be fair, p eventually receives the finished message from server q and

terminates its thread. Therefore, every correct coordinator r eventually terminates

its thread.

Upon terminating its thread, coordinator r sends a finished message to all servers,

including server r. Because the communication between coordinator r and server

r is reliable, server r receives the finished message, and deletes its old shares and

subshares. So, the current run terminates locally on server r for any correct server

r. By definition, since the current run terminates on all correct servers, the current

run eventually terminates. �

Due to Lemma 2.6, if any correct server has deleted its old shares and subshares,

then the current run is guaranteed to terminate. Consequently, the following lemmas

focus on the case where no correct servers have deleted old shares and subshares—we

thus ignore the case where finished messages are sent and received as acknowledg-

ments.

Lemma 2.7 Given a correct server q, the protocol in Figure 2.8 always terminates.

Upon termination, the subsharing being propagated is established.
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Proof Sketch: The protocol in Figure 2.8 is guaranteed to terminate, because

there are at least 2t + 1 correct servers, and every correct server always sends an

established message as an acknowledgment upon receiving an establish message.

The 2t + 1 servers from which q receives established messages might not all be

correct in this run. Even so, 2t+1−t (= t+1) of these 2t+1 servers must be correct

in this run. Therefore, upon termination, t+1 correct servers will have received the

subshares in their share sets of the subsharing, thereby ensuring that the subsharing

is established. �

Lemma 2.8 Given a correct coordinator p, the group send(p, init, contribute, t + 1)

used in step 1 of the protocol always terminates. Upon termination, p can choose

a candidate set of subsharings that have been established based on the contribute

messages that p has received.

Proof Sketch: In the init message, coordinator p must have selected an old sharing

s:Λ that has been established (note that a server knows the label of an established

sharing because the label has been propagated in a finished message generated in

the previous run). By definition, t+1 servers that are correct in the previous epoch

(and hence in this run) each holds all shares in its share sets of sharing s:Λ. These

servers will generate subsharings from these shares and propagate these subsharings

(using the protocol in Figure 2.8). Due to Lemma 2.7, such subshare propagation by

a correct server always terminates. These t + 1 servers will then return a contribute

message to p. Thus, this group send is guaranteed to terminate, at which point

coordinator p must have received contribute messages from t + 1 servers.

Due to E1, these t + 1 servers together must hold all shares of sharing s:Λ. At

least one subsharing is thus generated from each of these shares, and the label of that

subsharing must be included in a contribute message that p has received. Therefore,
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upon termination of this group send, there exists a candidate set of subsharings

whose labels appear in the contribute messages p has received. �

Lemma 2.9 Given a correct server r, the protocol in Figure 2.9 always terminates.

Upon termination, r must have received all the subshares in its share set for the

subsharing being recovered.

Proof Sketch: A correct server r only recovers subshares of a subsharing in a

candidate set of subsharings selected by a coordinator p. And, coordinator p selects

only subsharings whose labels are enclosed in a contribute message. A server includes

the label of a subsharing in a contribute message only after the termination of the

group send (Figure 2.8) for propagating this subsharing. Due to Lemma 2.7, the

subsharing being recovered must have been established.

Let λ be the label of the subsharing to be recovered in this group send. Because

subsharing λ is established, there exists t + 1 correct servers that together hold

all subshares of subsharing λ. These correct servers will be able to send recovered

messages to r, ensuring the termination of this group send for subshare recovery.

Let P be the set of servers from which q has received recovered messages. Because

the group send used in Figure 2.9 terminates when r receives t+1 acknowledgments,

|P | = t + 1 holds. Server r must have received all subshares in
⋃

q∈P (Sλ
q ∩ Sλ

r ) =

(
⋃

q∈P (Sλ
q )) ∩ Sλ

r . Due to A1 in Section 2.2.1,
⋃

q∈P (Sλ
q ) contains all subshares in

the subsharing, thus, server r will hold all subshares in its share set Sλ
r . �

Lemma 2.10 The group send(p, compute, computed, 2t + 1) that is used in step 3.1

by a correct coordinator p always terminates. Upon termination, a new sharing must

have been established.
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Proof Sketch: Due to Lemmas 2.7 and 2.9, all correct servers in this epoch even-

tually receive (either through subshare propagation or through subshare recovery)

the subshares they need to construct new shares in step 3.2.2 of Figure 2.6. There-

fore, every correct server in this epoch is able to respond with a computed message

in this group send, thereby ensuring termination of this group send. As in the case

for subshare propagation (see the proof for Lemma 2.7), this group send guarantees

that the new sharing generated from the selected candidate set of subsharings is

established when the group send terminates. �

Finally, we prove APSS Progress.

Lemma 2.11 The protocol described in this subsection satisfies APSS Progress, as-

suming Passive Server-Adversaries with Crash Failures and Active Link-Adversaries.

Proof Sketch: This follows Lemmas 2.6, 2.8, and 2.10. �

2.3.4 Defending Against Active Server-Adversaries

We finally relax Passive Server-Adversaries with Crash Failures to Active Server-

Adversaries, thereby admitting Byzantine behavior of compromised servers. Com-

promised servers can now launch attacks in a variety of new ways. To motivate the

necessary extensions to the protocol, a few attacks are described here. This is not a

complete list of all possible attacks but, because we prove that our new protocol is

correct under our assumptions, we can have confidence of defense against unlisted

attacks in addition to the ones we explicitly discuss here. The detailed final protocol

is shown in Appendix A.1.
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False notifications. In one class of attacks, a compromised server (or coordi-

nator) could send a false notification (i.e., a bogus contribute or finished message)

claiming that (i) a subsharing or (ii) a sharing is established, even though the sub-

sharing or sharing has not been established. The first type of false notification (using

contribute messages) might invalidate APSS Progress: a server might wait forever

during subshare recovery because no correct servers provide the needed subshares—

the subshares might not have even been propagated to those correct servers. The

second type of false notification (using finished messages) might invalidate APSS

Availability, because servers delete shares and subshares upon receiving such a no-

tification, but these shares and subshares are still needed.

To defend against such false notifications, servers use self-verifying messages.14

A self-verifying message comprises:

• information the sender intends to convey and

• evidence enabling the receiver to verify—without trusting the sender—that

the information being conveyed by the message is valid.

Here, the evidence consists of endorsements from a set of servers, with each endorse-

ment being a message signed by a server.

Two types of self-verifying messages are used in our APSS protocol. The first

(contribute messages) certifies that a certain subsharing has been established.15 Al-

though a subsharing is established as long as t + 1 correct servers each holds the

14Although under different names, the concept of self-verifying messages has been used by a

number of researchers in connection with Byzantine fault-tolerance [62, 15, 1, 30].
15More precisely, the subsharing is established until correct servers delete the subshares, at which

point a new sharing must have been established. Because whether a subsharing is established or not

becomes uninteresting after a new sharing has been established, being imprecise here is harmless.

The same reasoning can be applied to established sharings.
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subshares in its share set of that subsharing, confirmations from 2t + 1 servers are

needed in order to be convinced that a subsharing has been established—up to t of

these 2t+1 servers could be compromised in a run. Therefore, the evidence consists

of 2t + 1 signed established messages (endorsements)—a correct server provides an

endorsement for a subsharing only if that server holds all the subshares in its share

set of that subsharing. Therefore, we have the following lemma:

Lemma 2.12 If a valid self-verifying contribute message for a subsharing λ has

been constructed, then subsharing λ must have been established (before any correct

server delete subshares of that subsharing).

Proof Sketch: A valid self-verifying contribute message for a subsharing λ has as

evidence 2t + 1 signed established messages. A correct server sends an established

message for a subsharing only if that server is holding all the subshares in its share

set of that subsharing. Because there are up to t compromised servers, at least t+1

of these 2t + 1 senders must be correct. These t + 1 correct servers must have held

all the subshares in their share sets of subsharing λ (before any correct server delete

subshares of that subsharing). By definition, subsharing λ is established. �

The second class of self-verifying messages (finished messages) is for notification

that a certain sharing is established. Here, the evidence consists of 2t + 1 signed

computed messages (endorsements)—a correct server provides its endorsement for

a sharing only if the server holds all the shares in its share set. There are at most

t compromised servers in an epoch. Therefore, with 2t + 1 endorsements, at least

t + 1 endorsements are from correct servers in the current epoch. By definition,

these endorsements guarantee that the sharing is established. Therefore, we have

the following lemma:
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Lemma 2.13 If a valid self-verifying finished message for a sharing Λ has been

constructed, then sharing Λ must have been established (before any correct server in

the current epoch delete shares of that sharing).

Proof Sketch: A valid self-verifying finished message for a sharing Λ has as evidence

2t + 1 signed computed messages. A correct server sends a computed message for a

sharing only if that server is holding all the shares in its share set of that sharing.

Because there are up to t compromised servers in an epoch, at least t + 1 of these

2t+1 senders must be correct in the current epoch. These t+1 correct servers must

have held all the shares in their share sets of sharing Λ (before any correct server

delete shares of that sharing). By definition, sharing Λ is established. �

Erroneous shares and subshares. In another class of attacks, a compromised

server sends erroneous subshares to other servers during subshare propagation, lead-

ing to an incorrect new sharing. Self-verifying messages do not help in this case

because a server p’s action (e.g., generating and propagating a subsharing) might

depend on certain secret shares and subshares that p holds. These shares and sub-

shares cannot be made public to all servers. Therefore, other servers cannot always

verify whether p is following the protocol.

Servers use verifiable secret sharing to defend against this attack: Validity checks

are incorporated into labels of subsharings and sharings in order to allow servers to

verify the correctness of shares and subshares.

Use of verifiable secret sharing ensures that it is infeasible to find two different

sharings (or subsharings) with the same validity check. Thus, the validity check is

sufficient to identify a sharing. Besides the validity check, the version number is

also needed to distinguish new sharings from old ones. Thus, a sharing s of version
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number v is labeled v ◦ vc.s, and a subsharing [s:Λ]i is labeled Λ ◦ i ◦ vc.[s:Λ]i.

The following describes how validity checks are generated and used.

• For any subsharing, the server generating that subsharing (in step 2.1 of Fig-

ure 2.6) also generates the validity check for that subsharing using oneWay.

The validity check is then sent as a part of the label in established or recovered

messages (both are used to propagate subshares). A recipient of an establish

message or an recovered message then verifies the subshares it receives using

the validity check of the subsharing.

• For any sharing, because shares of a new sharing are constructed from sub-

shares instead of directly from the secret, the validity check for this sharing is

generated from validity checks of the subsharings (from which this new sharing

is generated) using vcConstr (in step 3.2.2 of Figure 2.6). Correctness of the

shares can then be verified against the validity check.

Conflicting messages. As the final attack we consider, a compromised coordi-

nator sends different init messages (containing different choices of old sharings) or

compute messages (containing different choices of candidate sets of subsharings)

to instruct servers to generate many different subsharings or to generate different

sharings from different candidate sets of subsharings. This attack could lead to

unnecessary resource consumption (both CPU and storage) on servers; it can be

regarded as a type of denial of service attack.

As countermeasure, a server always makes sure that init messages or compute

messages from a coordinator p in a run are the same (i.e., a coordinator should

never make conflicting decisions about which sharing to use or which candidate set

of subsharings to use for constructing a new sharing). Every correct server will
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alert the administrator if conflicting init or compute messages are received from

any given coordinator. Such an alert should be accompanied by evidence (in this

case, two conflicting messages signed by the compromised coordinator) to prevent

a compromised server from sending false alerts to the administrators.

Local detection of inconsistent messages from a coordinator is sufficient to pre-

vent a compromised coordinator from getting more than one new sharing estab-

lished in a run. To see why, assume otherwise—that is, assume a compromised

coordinator causes two new sharings to be established. Because the participation

of 2t + 1 servers are needed to have a new sharing established, this means that

(2t + 1) + (2t + 1) − (3t + 1) = t + 1 servers must have participated in both. At

least one of the t + 1 servers is correct in this run. This contradicts the fact that a

correct server always detects and reports inconsistencies among messages from the

same coordinator.

The same technique is used to prevent a compromised server from having dif-

ferent subsharings for the same share established (by sending conflicting establish

messages).

Theorem 2.1 The APSS protocol presented in Appendix A.1 satisfies APSS Se-

crecy, APSS Availability, and APSS Progress under the system model described in

Section 2.1.

Proof Sketch: For APSS Secrecy, the proof of APSS Secrecy for Lemma 2.4 still

applies for the following reasons:

• Although compromised servers can now exhibit Byzantine behavior, compro-

mised servers cannot influence correct servers regarding the generation of sub-

shares, nor can they cause correct servers to disclose subshares and shares that
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should not be disclosed—any correct server generates subshares randomly re-

gardless of what compromised servers do; a correct server sends subshares,

encrypted, to another server q only if these subshares are in q’s share set; and

no correct server discloses any shares that are stored locally.

• Any new sharing generated in a run is still independent of any old sharing, for

the following reason.

Consider a new sharing Λ′ constructed from a candidate set of subsharings,

where each of the subsharings is generated from a share of an old sharing Λ.

There are at most t compromised servers in a run. Due to A2, there exists

a share [s:Λ]i that is not in share set SΛ
p for any compromised server p. No

compromised server can generate a valid subsharing for that share. Because of

the use of verifiable secret sharing, a compromised server cannot have a bogus

subsharing (for [s:Λ]i) established (i.e., getting 2t + 1 established messages for

that subsharing). Therefore, the new sharing Λ′ uses at least one subsharing

generated by a correct server; that subsharing is thus generated randomly

by that server. This ensures that the new sharing is independent of the old

sharing Λ. Obviously, the new sharing is also independent of any other old

sharing.

• Validity checks, although sent in plaintext, do not disclose corresponding

shares and subshares.

To show APSS Availability, it suffices to show that a new sharing has been

established when a correct server deletes old shares and subshares. According to

the protocol, a correct server deletes old shares and subshares only when it obtains

a valid self-verifying finished message which, according to Lemma 2.13, ensures that
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a new sharing must have been established.

To show APSS Progress, it suffices to show that any correct coordinator even-

tually terminates its thread. With the use of self-verifying messages and verifiable

secret sharing, an erroneous message from a compromised server can be detected

and discarded. This effectively constrains the Byzantine behavior of compromised

servers and makes the proof for Lemma 2.11 in Section 2.3.3 applicable. In par-

ticular, due to Lemma 2.12, every subsharing referenced in a valid self-verifying

contribute message is guaranteed to have been established. Also, the use of valid-

ity checks in the labels of subsharings and sharings prevents from happening any

attacks that lead to inconsistent subsharings and sharings. With this property, a

proof similar to the proof of APSS Progress for Lemma 2.11 can be applied here to

prove APSS Progress. �

2.4 Related Work

What distinguishes our APSS protocol from prior work [54, 57] is the weaker sys-

tem model—our protocols assumes the asynchronous system model and fair links.

Previous schemes assume the synchronous system model and reliable links. Such

a strong model introduces vulnerabilities to denial of service attacks, although the

stronger model does enable the prior work to tolerate more (any minority) compro-

mised servers than does our APSS protocol (which can tolerate only fewer than 1/3

of servers being compromised).

Various proactive threshold cryptography schemes have also been proposed. In

[53], proactive schemes for discrete-logarithm based public key cryptography were

presented. In [37, 36, 89], proactive RSA schemes were proposed. As in [54, 57], all

of these schemes are designed for the synchronous system model.
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Our APSS protocol is presented with respect to a set of abstract operations (e.g.,

split, reconstruct, oneWay, and vcConstr). Therefore, any concrete implementation

extracted from existing schemes (e.g., the ones proposed in [53, 89]) can be used

in our APSS protocol, leading to corresponding proactive protocols that work in

the asynchronous system model. In fact, our APSS protocol has been applied to

the threshold RSA scheme proposed in [89]. The resulting proactive threshold RSA

scheme is used in COCA [111], as described in Chapters 3 and 4, to combat mobile

adversary attacks.

Proactive secret sharing and proactive threshold cryptography are specific in-

stances of proactive security. The notion of proactive security was introduced by

Ostrovsky and Yung in [85], where they studied how to enhance the security of

certain secure multi-party protocols [108, 47, 5, 23]. This pioneering work leaves

the door open for practical solutions to achieve proactive security, with its focus on

general but impractical secure multi-party protocols.

Besides proactive secret sharing and proactive threshold cryptography, other

proactive schemes have also been proposed. In [13], Canetti shows how to construct

a proactive pseudo-random generator with application to secure sign-on. In [25], a

proactive protocol for generating cryptographically secure pseudo-random numbers

is presented. In [12], Canetti presents a proactive scheme for maintaining authen-

ticated and secure links among a set of parties despite mobile adversaries. Naor,

Pinkas, and Reingold [80] propose a distributed Key Distribution Center that is in-

vulnerable to mobile adversaries, while Garay [39] studies Byzantine agreement with

mobile adversaries taken into account. These proactive schemes are vastly different

from our APSS protocol. A survey on proactive security can be found in [11].

In addition to theoretical research in proactive security, implementations of
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threshold cryptography and proactive secret sharing schemes for stronger system

models are also reported in [2, 106, 31, 19]. A proactive scheme for threshold

cryptography, again under the strong synchronous system model, has also been

integrated into the e-vault data repository [56, 40] at IBM T.J. Watson Research

Center.

2.5 Concluding Remarks

While protocols that work under weak assumptions exhibit reduced vulnerability

to malicious attacks, designing such protocols is hard. The design of our APSS

protocol reduces that difficulty by reformulating the problem into one with weaker

requirements. Traditionally, a proactive secret sharing protocol creates a single new

sharing from a single old sharing. Our APSS protocol instead creates multiple new

sharings. The ultimate goals, APSS Secrecy and APSS Availability, remain the

same. With such a requirement weakening, our APSS protocol need not solve the

agreement problem among servers in the asynchronous system model.

While traditionally studied from the perspective of security, a PSS protocol can

also be regarded as a protocol that tolerates Byzantine failures of a subset of the

servers. And, the perspective from fault tolerance was invaluable in this work. The

fundamental impetus for our use of a combinatorial secret sharing scheme is that it

causes shares and subshares to be replicated on servers. Such replication makes ap-

plicable certain traditional fault-tolerance solutions, such as recovering states (shares

and subshares) by querying correct servers, which would not be possible if different

servers have non-overlapping shares and subshares. These fault tolerance solutions

eliminate certain cryptographic operations in traditional PSS protocols, such as

share recovery that involves rather complex multi-party computation, as described,
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for example, in [57]. Another notable use of fault-tolerant mechanisms is the employ-

ment of self-verifying messages, which have traditionally been used in connection

with Byzantine fault-tolerance [67]. By combining self-verifying messages and verifi-

able secret sharing, our APSS protocol allows servers to detect and discard erroneous

messages from other servers, therefore limiting the impact of compromised servers.



Chapter 3

COCA: A Secure Distributed

On-line Certification Authority

In a public key infrastructure, a certificate specifies a binding between a name

and a public key or other attributes. Over time, public keys and attributes might

change—a private key might be compromised, leading to selection of a new public

key, for example. The old binding and the certificate that specifies that binding then

become invalid. A certification authority (CA) attests to the validity of bindings in

certificates by digitally signing the certificates it issues and by providing a means

for clients to check the validity of certificates. With an on-line CA, principals can

check the validity of certificates just before using them. COCA (Cornell On-line

Certification Authority), the subject of this chapter, is such an on-line CA.

COCA employs replication to achieve availability and employs proactive recovery

with threshold cryptography for digitally signing certificates in a way that defends

against mobile adversaries. COCA is designed under a set of qualitatively weak as-

sumptions about communication links and execution timing, making it less vulner-

able to malicious attacks that succeed by invalidating the underlying assumptions.

67
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Various forms of defense against denial of service attacks are also incorporated into

COCA.

This chapter is organized as follows. Section 3.1 discusses our assumptions about

environments in which COCA can be deployed and describes the services COCA

provides. Protocols to coordinate COCA servers are the subject of Section 3.2.

Section 3.3 elaborates on the mechanisms COCA incorporates to defend against

denial of service attacks, followed by a discussion of related work in Section 3.4.

Section 3.5 contains some concluding remarks.

3.1 System Model and Services Supported

COCA is implemented by a set of servers, each running on a separate processor

in a network. We adopt the same system model described in Section 2.1; that is,

we assume Active Server-Adversaries, Active Link-Adversaries, and Asynchronous

System.

These assumptions endow adversaries with considerable power. Adversaries can:

• attack servers, provided fewer than 1/3 of the servers are compromised within

a given interval,

• launch eavesdropping, message insertion, corruption, deletion, reordering, and

replay attacks, provided that the fair link assumption is not violated, and

• conduct denial of service attacks that delay messages or slow servers by arbi-

trary finite amounts.

The weak system model makes COCA applicable to environments other than the

Internet. In fact, COCA is inspired by the work in [110], which articulates the need
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for an on-line CA to secure an ad hoc network, where mobile hosts communicate

through wireless links and act as routers for other hosts. That paper also argues that

the on-line CA must work in a weak system model because stronger assumptions

might not hold in such a network. COCA can potentially be used as such an CA.

As in Chapter 2, system execution comprises a sequence of protocol-defined

windows of vulnerability. Unless otherwise stated, the discussion in this chapter

always refers to one window of vulnerability. And, a server is deemed correct in a

window of vulnerability if and only if that server is not compromised throughout

that period. A precise definition of this window of vulnerability for COCA will be

presented in Section 3.1.2.

3.1.1 Operations Implemented by COCA

COCA supports one operation (Update) to create, update, and invalidate bindings;

a second operation (Query) retrieves certificates specifying those bindings. A client

invokes an operation by issuing a request and then awaiting a response. COCA

expects each request to contain a nonce. Responses from COCA are digitally signed

with a COCA service key and include the client’s request, hence the nonce1, thereby

enabling a client to check whether a given response was produced by COCA for that

client’s request.

A request is considered accepted by COCA once any correct COCA server re-

ceives the request or participates in processing the request2; and a request is con-

1In the current implementation, requests contain sequence numbers which, along with the

client’s name, form unique numbers. Therefore, the text of the request itself can serve as the

nonce.
2The exact time when a request is accepted can be determined only after the window of vul-

nerability ends, because before then it is unknown whether a COCA server has remained correct
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sidered completed once some correct server has constructed the response. It might,

at first, seem more natural to deem a request “completed” once the client receives

a response. But such a definition would make a client action (receipt of a response)

necessary for a request to be considered completed, and implementing COCA’s

Request Completion: Every request accepted is eventually completed.

guarantee then becomes problematic in the absence of assumptions about clients.

But a correct client that makes a request will eventually receive a response from

COCA.

Certificates stored by COCA are X.509 [17] compliant. It will be convenient here

to regard each certificate ζ simply as a digitally signed attestation that specifies a

binding between some name cid and some public key or other attributes pubK . In

addition, each certificate ζ also contains a unique serial number σ(ζ) assigned by

COCA, and the following semantics of COCA’s Update and Query give meaning

to the natural ordering on these serial numbers—namely, that a certificate for cid

invalidates certificates for cid having lower serial numbers.

Update: Given a certificate ζ for a name cid and given a new binding pubK ′ for

cid , an Update request returns an acknowledgment after COCA has created

a new certificate ζ ′ for cid such that ζ ′ binds pubK ′ to cid and σ(ζ) < σ(ζ ′)

holds.

Query: Given a name cid , a Query request Q returns a certificate ζ for cid such

that:

throughout the entire window of vulnerability. This uncertainty does not constitute a problem,

because the exact time that a request is accepted is uninteresting. What matters is that accepted

requests get processed and that requests that are not yet accepted do not impact the state of the

service.
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(i) ζ was created by some Update request that was accepted before Q com-

pleted.

(ii) For any certificate ζ ′ for name cid created by an Update request that

completed before Q was accepted, σ(ζ ′) ≤ σ(ζ) holds.

By assuming an initial default binding for every possible name, the operation to

create a first binding for a given name can be implemented by Query (to retrieve the

certificate for the default binding) followed by Update. And an operation to revoke

a certificate for cid is easily built from Update by specifying a new binding for cid .

Update creates and invalidates certificates, so it should probably be restricted to

certain clients. Consequently, COCA allows an authorization policy to be defined

for Update. In principle, a CA could always process a Query, because Query does

not affect any binding. In practice, that policy would create a vulnerability to

denial of service attacks, so COCA adopts a more conservative approach discussed

in Section 3.3.

The semantics of Update associates larger serial numbers with newer certificates

and, in the absence of concurrent execution, a Query for cid returns the certificate

whose serial number is the largest of all certificates for cid . Certificate serial numbers

are actually consistent only with a service-centric causality relation: the transitive

closure of relation →, where ζ → ζ ′ holds if and only if ζ ′ is created by an Update

having ζ as input. Two Update requests U and U ′ submitted, for example, by the

same client, serially, and where both input the same certificate, are not ordered by

the→ relation. Thus, the semantics of Update allows U to create a certificate ζ, U ′ to

create a certificate ζ ′, and σ(ζ ′) < σ(ζ) to hold—consistent with the service-centric

causality relation but the opposite of what is required for serial numbers consistent

with Lamport’s more-useful potential causality relation [66] (because execution of
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U is potentially causal for execution of U ′).

COCA is forced to employ the service-centric causality relation because COCA

has no way to obtain information it can trust about causality involving operations

it does not itself implement. Clients would have to provide COCA with that in-

formation, and compromised clients might provide bogus information. By using

service-centric causality, COCA and its clients are not hostage to information about

causality furnished by compromised clients.

Update and Query are not indivisible and (as will become apparent in Section 3.2)

are not easily made so: COCA’s Update involves separate actions for the invalidation

and for the creation of certificates. In implementing Update, we contemplated either

possible ordering for these actions: Execute invalidation first, and there is a period

when no certificate is valid; execute invalidation last, and there is a period when

multiple certificates are valid.

Since we wanted Query to return a certificate, having periods with no valid certifi-

cate for a given name would have meant synchronizing Query with concurrent Update

requests. We rejected this because the synchronization creates an execution-time

cost and introduces a vulnerability to denial of service attacks—repeated requests

by an attacker for one operation could now block requests for another operation.

Our solution is to have Update create the new certificate before invalidating the old

one, but it too is not without unpleasant consequences. Both of the following cannot

now hold.

(i) A certificate for cid is valid if and only if it is the certificate for cid with largest

serial number.

(ii) Query always returns a valid certificate.

And COCA clients therefore live with a semantics for Query that is more complicated
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than one might have hoped for.

3.1.2 Bounding the Window of Vulnerability

COCA is designed to operate provided no more than t servers are compromised

within a protocol-defined window of vulnerability. The duration of this window of

vulnerability is defined in terms of events marking the beginning and completion

of proactive recovery protocols, which are execute periodically, as follows: An ex-

ecution of proactive recovery begins when a correct server executes the protocols

for proactive recovery; the execution terminates when servers that remain correct

from the beginning of the execution all finish executing these protocols. A window

of vulnerability is then defined to be the period of time from the beginning of an

execution of proactive recovery to the termination of the next execution of proactive

recovery. Thus, every execution of the proactive recovery protocols is part of two

successive windows of vulnerability.

Each execution of proactive recovery reconstitutes the state of each COCA server

(which might have been corrupted during the previous window of vulnerability)

and obsoletes keys and shares an adversary might have obtained by compromising

servers. Execution of proactive recovery for COCA involves more than a run of

proactive secret sharing that refreshes shares of a secret maintained by the service.

The following shows the components of proactive recovery.

Limiting the Utility of Compromised Keys

Server Keys. Each COCA server maintains a private/public key pair, with the

public key known to all COCA servers. These public keys allow servers to authen-

ticate the senders of messages they exchange with other servers.
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Public keys of COCA servers are not given to COCA clients so that clients need

not be informed of changed server keys—attractive in a system with a large number

of clients and where a proactive recovery protocol periodically refreshes server keys.

But without knowledge of server keys, clients cannot easily determine the COCA

server that sent a message. This, in turn, precludes voting or other schemes in

which a client synthesizes or counts responses from individual COCA servers to

obtain COCA’s response.

Server keys are refreshed during proactive recovery to ensure that, after proactive

recovery, no adversary could impersonate a server using an old server private key.

How to refresh these server keys has been discussed in Section 2.1 (the last paragraph

before Section 2.1.1).

Service Key. There is one service private/public key pair. It is used for signing

responses and certificates. All clients and servers know the service public key.

The service private key is held by no COCA server, for obvious reasons. In-

stead, different shares of the key are stored on each of the servers, and threshold

cryptography is used to construct signatures on responses and certificates. To sign

a message:

(1) each COCA server generates a partial signature from the message and that

server’s share of the service private key;3

(2) some COCA server combines these partial signatures and obtains the signed

3COCA employs a combinatorial secret sharing, which has been described in Chapter 2. A

share of a server is thus a set of shares, and a partial signature has to be generated using every

share in that set. And, t + 1 sets of these partial signatures, each generated by a server, are used

for constructing a signature.
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message.4

With (n, t + 1) threshold cryptography, t + 1 or more partial signatures are needed

in order to generate a signature. An adversary must therefore compromise t + 1

servers in order to forge COCA signatures.

During proactive recovery, these shares are refreshed using the proactive secret

sharing protocol described in Chapter 2, instantiated with modules from the thresh-

old cryptography scheme used.

Server State Recovery

In addition to generating new server keys and new shares of the service key, COCA

also periodically refreshes the states of its servers. This is done as part of proactive

recovery. The state of a COCA server consists of a set of certificates. In theory,

this state could be refreshed by performing a Query request for each name that

could appear in a certificate. But the cost of that becomes prohibitive when many

certificates are being stored by COCA. So instead, during proactive recovery, a list

with the name and serial number for every valid certificate stored by each server is

sent to every other. Upon receiving this list, a server retrieves any certificates that

appear to be missing. Certificates stored by COCA servers are signed (by COCA)—

a certificate retrieved from another server can thus be checked to make sure it is

not bogus. The certificate serial numbers enable servers to determine which of their

4One might think partial signatures could be combined by clients (instead of COCA servers) to

obtain signed messages, but that introduces a vulnerability to denial of service attacks. Lacking

COCA server public keys, clients do not have a way to authenticate the origins of messages convey-

ing the partial signatures. Therefore, a client could be bombarded with bogus partial signatures,

and only by actually trying to combine these fragments—an expensive enterprise—could the bona

fide partial signatures be identified.
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certificates have been invalidated (because a certificate for that same name but with

a larger serial number exists).

There is one non-obvious point of interaction involving the protocols used to

refresh server keys and service key shares. To satisfy Request Completion (of Sec-

tion 3.1.1), an accepted request that has not been completed when a window of

vulnerability ends must become an accepted request in the next window of vulner-

ability. Such a request can be regarded as part of the state that needs to be prop-

agated to other servers during server recovery. More specifically, a correct server,

when executing the proactive recovery protocol, resubmits to all servers any request

that is then in progress and makes sure that it receives acknowledgments from at

least t + 1 servers. This ensure that some server that is correct in this next window

of vulnerability will receive that request. (Recall that this execution of proactive

recovery also belongs to the next window of vulnerability.) Thus, by definition, in-

progress accepted requests in the previous window of vulnerability remain accepted

in the next one. To avoid new requests delaying the completion of an execution of

proactive recovery (a potential way of launching denial of service attacks), servers

could choose to ignore all messages except those used for proactive recovery during

execution of the proactive recovery.5

In practice, windows of vulnerability tend to be long (viz. days) relative to the

time (seconds) required for processing a Query or Update request. It is thus extremely

unlikely that a request restarted in a subsequent window of vulnerability would not

be completed before proactive recovery is again commenced.

5Ignoring (a finite number of) messages is allowed by Active Link-Adversaries—for example, a

client cannot distinguish between an ignored request and one that never reached COCA. It is not

a problem in practice either, because the execution time for the proactive recovery protocol should

be short.
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3.2 Protocols

In COCA, every client request is processed by multiple servers and every certificate

is replicated on multiple servers. The replication is managed as a dissemination

Byzantine quorum system [69], which is feasible because we have assumed 3t+1 ≤ n

holds. In a dissemination Byzantine quorum system, servers are organized into

quorums satisfying:6

Quorum Intersection: The intersection of any two quorums contains at least

one correct server.

Quorum Availability: A quorum comprising only correct servers always exists.

And every client request is processed by all correct servers in some quorum.

Detailed protocols for Query and Update appear in Appendix A; in this section,

we explain the main ideas. The technical challenges are:

• Because requests are processed by a quorum of servers but not necessarily

by all correct COCA servers, different correct servers might process different

Update requests. Consequently, different certificates for a given name cid are

stored by correct servers. Certificate serial numbers provide a solution to the

problem of determining which of those is the correct certificate.

• Because clients do not know COCA server public keys, a client making a

request cannot authenticate messages from a COCA server and, therefore,

cannot determine whether a quorum of servers has processed that request.

6Provided there are 3t + 1 servers and at most t of those servers may be compromised, the

quorum system {Q : |Q| = 2t + 1} constitutes a dissemination Byzantine quorum system. For

simplicity, we assume n = 3t+1 holds; the protocols are easily extended to cases where n > 3t+1

holds.
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Figure 3.1: Overview of Client Request Processing.

The solution is for some COCA servers to become delegates for each request.

A delegate presides over the processing of a client request and, being a COCA

server, can authenticate server messages and assemble the needed partial sig-

natures from other COCA servers. A client request is handled by t+1 delegates

to ensure that at least one of these delegates is correct.

• Because communication is done using fair links, retransmission of messages

may be necessary.

Figure 3.1 summarizes this high-level view of how COCA operates by depicting one

of the t+1 delegates and the quorum of servers working with that delegate to handle

a client request.

Protocol Details

Certificate Serial Numbers. The serial number σ(ζ) for a COCA certificate ζ is

a pair 〈v(ζ), h(Rζ)〉, where v(ζ) is a version number and h(Rζ) is a collision-resistant
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hash of the Update request Rζ that led to creation of ζ. Version numbers encode

the service-centric causality relation as follows.

• The first certificate created to specify a binding for a name cid is assigned

version number 0.

• A certificate ζ ′ produced by an Update given certificate ζ is assigned version

number v(ζ ′) = v(ζ) + 1.

Because different requests have different collision-resistant hashes, certificates cre-

ated by different requests have different serial numbers. The usual lexicographic

ordering on serial numbers yields the total ordering on serial numbers we seek—an

ordering consistent with the transitive closure of the → relation.

Note that, even with serial numbers on certificates, the same new certificate will

be created by COCA if an Update request is re-submitted. This is because the serial

number of a certificate is entirely determined by the arguments in the request that

creates the certificate. So, Update requests are idempotent, which proves useful for

tolerating compromised COCA servers.

Determining a Response for Query. COCA Update requests are processed by

correct servers in some quorum and not necessarily by all correct COCA servers.

Consequently, a correct COCA server p can be ignorant of certificates having larger

serial numbers than p stores for a name cid . Part (ii) in the specification for Query

implies that all completed Update requests (hence, all certificates) are taken into ac-

count in determining the response to a Query request Q. To satisfy this, a quorum

of servers must be engaged in processing Q. All servers are contacted and responses

from a quorum of servers are expected. Each server in a quorum Q responds with

the certificate (signed by COCA) having the largest serial number among all cer-
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tificates (for cid) known to the server. The certificate ζ that has the largest serial

number among the correctly signed certificates received in the responses from Q is

the response to Q.

This choice of ζ satisfies parts (i) and (ii) in the specification for Query. Part (i)

stipulates that a certificate returned for Query is created by an accepted Update. This

condition will be satisfied by ζ because a certificate is signed by COCA only after the

Update request creating that certificate has been accepted. The (n, t + 1) threshold

cryptography being employed for digital signatures requires cooperation (collusion)

by more than t servers in order to sign a certificate. Given our assumption of at most

t compromised servers, we conclude that there are not enough compromised servers

to create bogus signed certificates. Therefore, when a certificate is signed, a correct

server must have participated in processing the request that created the certificate;

the request creating the certificate had to have been accepted. The signature on

certificates also prevents a compromised server from submitting a bogus certificate

with an arbitrarily large serial number during the processing of a Query request

without being detected.

Part (ii) of the Query specification requires that, for any Update request U naming

cid and completed before Q is accepted, σ(ζ ′) ≤ σ(ζ) must hold where ζ ′ is the

certificate created by U . This holds for the implementation outlined above due to

Quorum Intersection, because some correct server p in Q must also be in the quorum

that processed U . Let certificate ζp be p’s response for Q. Because p always chooses

the certificate for cid with the largest serial number, σ(ζ ′) ≤ σ(ζp) holds. Because

ζ is the certificate that has the largest serial number among those from all servers

in Q, σ(ζp) ≤ σ(ζ) holds. Therefore, σ(ζ ′) ≤ σ(ζ) holds.
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The Role of Delegates. After making a request R, a client awaits notification

that R has been processed. Every request is processed by all correct servers in some

quorum; the client must be notified once that has occurred. Direct notification

by servers in the quorum is not possible because clients do not know the public

keys for COCA servers and, therefore, have no way to authenticate messages from

those servers. So, instead, a COCA server is employed as a delegate to detect the

completion of request processing and then to notify the client, as follows.

• To process a Query request Q for name cid , the delegate obtains certificates

from a quorum of servers, picks the certificate ζ having the largest serial num-

ber, and uses the threshold signature protocol to produce a signed response

containing ζ:

1. Delegate forwards Q to all COCA servers.

2. Delegate awaits certificates for cid from a quorum of COCA servers.

3. Delegate picks the certificate ζ having the largest serial number of those

received in step 2.

4. Delegate invokes COCA’s threshold signature protocol to sign a response

containing ζ; that response is sent to the client.

• To process an Update request U for name cid , the delegate constructs the

certificate ζ for the given new binding (using the threshold signature protocol

to have COCA digitally sign it) and then sends ζ to all COCA servers. A

server p replaces the certificate ζcid
p for cid that it stores with ζ if and only if

the serial number in ζ is larger than the serial number in ζcid
p :

1. Delegate constructs a new certificate ζ for cid , using the threshold sig-

nature protocol to sign the certificate.
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2. Delegate sends ζ to every COCA server.

3. Every server, upon receipt, replaces the certificate for cid it had been

storing if the serial number in ζ is larger. The server then sends an

acknowledgment to the delegate.

4. Delegate awaits these acknowledgments from a quorum of COCA servers.

5. Delegate invokes COCA’s threshold signature protocol to sign a response;

that response is sent to the client.

Quorum Availability ensures that a quorum of servers are always available, so step 2

in Query and step 4 in Update are guaranteed to terminate. Since quorums contain

2t + 1 servers, compromised servers cannot prevent a delegate from using (n, t + 1)

threshold cryptography in constructing the COCA signature for a certificate or a

response. Thus, step 4 in Query and steps 1 and 5 in Update cannot be disrupted

by compromised servers.

A compromised delegate might fail to complete the protocol just outlined for

processing Query and Update requests. COCA ensures that such behavior does not

disrupt the service by enlisting t+1 delegates (instead of just one) for each request.

At least one of t + 1 delegates must be correct, and this delegate can be expected

to follow the Query and Update protocols. So, we stipulate that a (correct) client

making a request to COCA submits that request to t+1 COCA servers; each server

then serves as a delegate for processing that request.7

With t+1 delegates, a client might receive multiple responses to each request, and

each request might be processed repeatedly by some COCA servers. The duplicate

responses are not difficult for clients to deal with—a response is discarded if it is

7An optimization discussed in Chapter 4 makes it possible for clients, in normal circumstances,

to submit requests to only a single delegate.
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received by a client not waiting for a request to be processed. That each request

might be processed repeatedly by some COCA servers is not a problem either,

because COCA’s Query and Update implementations are idempotent.

But a compromised client might not submit its request to t+1 delegates, as is now

required. We must ensure that Request Completion is not violated. The problem

occurs if the delegates receiving that request R execute the first step of Query or

Update processing and then halt. Correct COCA servers have now participated in

the processing of R, so (by definition) R is accepted. Yet no (correct) delegate

is responsible for R. Request R is never completed, and Request Completion is

violated.

We must ensure that some correct COCA server becomes a delegate for each re-

quest that has been received by any correct COCA server. The solution is straight-

forward:

• Messages related to the processing of a client request R contain R.

• Whenever a COCA server receives a message related to processing a client

request R, that server becomes a delegate for R if it is not already serving as

one.

The existence of a correct delegate is now guaranteed for every request that is

accepted.

Self-Verifying Messages. Compromised delegates could also attempt to produce

an incorrect (but correctly signed) response to a client by sending erroneous messages

to COCA servers. For example, in processing a Query request, a compromised

delegate might construct a response containing a bogus or invalidated certificate and

try to get other servers to sign that; in processing an Update request, a compromised
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delegate might create a fictitious binding and try to get other servers to sign that; or

when processing an Update request, a compromised delegate might not disseminate

the updated binding to a quorum (causing the response to a later Query to contain

an invalidated certificate).

COCA’s defense against erroneous messages from compromised servers is self-

verifying messages, as introduced in Section 2.3.4. More specifically, in COCA,

every message a delegate sends on behalf of a request contains a transcript of rele-

vant messages previously sent and received in processing that request (including the

original client request). Because messages contained in the transcript are signed by

their senders, a compromised delegate cannot forge the part of the transcript con-

tributed by correct servers. And, because the members of the quorum participating

in the protocol are known to all, the receiver of such a self-verifying message can

independently establish whether messages sent by a delegate are consistent with the

protocol and the messages received.8

Returning to the erroneous message examples given earlier, here is how the self-

verifying messages used in COCA prevent subversion of the service:

• Compromised delegates cannot cause COCA to sign a Query response contain-

ing a bogus or invalidated certificate, because messages instructing servers to

sign such a response must contain signed messages from a quorum of servers,

where these signed messages contain the certificates submitted by servers for

this Query.

8In [49], Gong and Syverson introduce the notion of a fail-stop protocol, which is a protocol that

halts in response to certain attacks. One class of attacks is thus transformed into another, more

benign, class. Our self-verifying messages can be seen as an instance of this approach, transforming

certain Byzantine failures to more-benign failures.
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• Compromised delegates are prevented from creating a certificate that specifies

a fictitious binding, because every message pertaining to an Update request

must include the original client-signed request. COCA servers check that

request before signing a new certificate.

• Compromised delegates that do not disseminate some new certificate to a

quorum are foiled, because every subsequent message the delegate sends in

processing this request must contain the signed responses from a quorum of

servers attesting that they received the new certificate.

Communicating using Fair Links. Active Link-Adversaries assumes only fair

links. As in Section 2.3.3, retransmissions are used to approximate reliable commu-

nication using fair links. More specifically, the protocols in COCA are structured as

a series of multicasts9, with information piggybacked on the acknowledgments. A

client starts by doing a multicast to t+1 delegates; the signed response from a single

delegate can be considered the acknowledgment part of that multicast. A delegate

then interacts with COCA servers by performing multicasts and awaiting responses

from servers. For the threshold signature protocol, t + 1 correct responses suffice;

for retrieving and for updating certificates, responses from a quorum of servers are

needed. Thus, with at least 2t + 1 correct servers, COCA’s multicasts always ter-

minate due to Quorum Availability since a delegate is now guaranteed to receive

enough acknowledgments at every step and, therefore, eventually that delegate will

finish executing the protocol for a request.

9Each multicast is an instance of group send introduced in Section 2.3.3.
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3.3 Defense Against Denial Of Service Attacks

A large class of successful denial of service attacks work by exploiting an imbal-

ance between the resources an attacker must expend to submit a request and the

resources the service must expend to satisfy that request, as has been noted, for

example, in [58, 72, 73]. If making a request is cheap but processing one is not,

then attackers have a cost-effective way to disrupt a service—submit bogus requests

to saturate server resources. A service, like COCA, where request processing in-

volves expensive cryptographic operations and multiple rounds of communication is

especially susceptible to such resource-clogging attacks.

COCA implements three classic defenses: request-processing authorization, re-

source management, and caching, as outlined in Section 1.3, to blunt resource-

clogging denial of service attacks. The details for COCA’s realizations of these

defenses constitute the bulk of this section.

Note, however, that our Asynchrony System assumption is an important defense

against denial of service attacks, too. An attacker stealing network bandwidth

or cycles from processors that run COCA servers is not violating the assumption

needed for COCA’s protocols to work. Such a “weak assumptions” defense is not

without a price, however. Implementing real-time service guarantees on request

processing requires a system model with stronger assumptions than we are making.

Consequently, COCA can guarantee only that requests it receives are processed

eventually. Those who equate availability with real-time guarantees (e.g., [46, 109,

76, 77]) would not be satisfied by an eventuality guarantee.

Finally, COCA employs connectionless protocols for communication with clients

and servers, so COCA is not susceptible to connection-depletion attacks such as

the well-known TCP SYN flooding attack [100]. But the proactive secret sharing
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protocol in the current COCA implementation does use SSL (Secure Socket Layer)

[38] and is, therefore, subject to certain denial of service attacks. This vulnerability

is not inherent to the protocol and could be eliminated by restricting the rate of

SSL connection requests, by reprogramming the proactive secret sharing protocol,

or by adopting the mechanisms described in [58].

3.3.1 Request-Processing Authorization

Each message received by a COCA server must be signed by the sender. The server

rejects messages that

• do not pass certain sanity checks,

• are not correctly signed, or

• are sent by clients or servers that, from messages received in the past, were

deemed by this server to have been compromised.

An invalid self-verifying message, for example, causes the receiver r to judge the

sender s compromised, and the request-processing authorization mechanism at r

thereafter will reject messages signed by s (until instructed otherwise, perhaps be-

cause s has been repaired).

Verifying a signature is considerably cheaper than executing an Update or Query

request (which involves threshold cryptography and multiple rounds of message ex-

change). But verifying a signature is not free, and an attacker might still attempt

to flood COCA with requests that are not correctly signed. Should this vulnerabil-

ity ever become a concern, we would add a still-cheaper authorization check that

requests must pass before signature verification is attempted. Cookies [59, 84], hash
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chains [61], and puzzles [58] are examples of such checks.10

Of course, any server-based mechanism for authorization will consume some

server resources and thus could itself become the target of a resource-clogging at-

tack, albeit an attack that is more expensive to launch by virtue of the additional

authorization mechanism. An ultimate solution is authorization mechanisms that

also establish the origin of the request being checked, since fear of discovery and

reprisal is an effective deterrent [84].

3.3.2 Resource Management

Because requests are signed, COCA servers are able to identify the client and/or

server associated with each message received. And this enables each COCA server

to limit the impact that any compromised client or server can have. In particular,

each COCA server stores messages it receives in one of a set of input queues and

employs some scheduler to service those queues. The queues and scheduler limit the

fraction of a server’s cycles that can be co-opted by an attacker.11 Others have also

advocated similar approaches [46, 109, 76, 77].

Our COCA prototype has a configurable number of input queues at each server.

A round-robin scheduler services these queues. Client requests are stored on one or

10A related notion is proofs of work [32], which requires a client to attach with each request

(or message) a proof that the client has consumed a certain amount of resource (often on a hard

computational problem) for this request or message. This increases the resource consumption on

the client side and limits the ability of a client to launch a successful denial of service attack.
11Clearly, this offers no defense against distributed denial of service attacks [94] in which an

attacker, masquerading as many different clients, launches attacks from different locations. If the

clients involved in such an attack can be detected, then their requests could be isolated using

COCA’s queues and scheduler. But solving the difficult problem—determining which clients are

involved in such an attack—is not helped by this COCA mechanism.
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more queues, and messages from each COCA server are stored on a separate queue

associated with that server. Duplicates of an element already present on a queue

are never added to that queue. Each server queue has sufficient capacity so replays

of messages associated with a request currently being processed cannot cause the

queue to overflow (since that would constitute a denial of service vulnerability).

In a production setting, we would expect to employ a more sophisticated sched-

uler and a rich method for partitioning client requests across multiple queues. Clients

might be grouped into classes, with requests from clients in the same administrative

domain stored together on a single queue.

3.3.3 Caching

Replays of legitimate requests are not rejected by COCA’s authorization mecha-

nism. Nor should they be, since the assumption of fair links forces clients to resend

each request until enough acknowledgments are received. But attackers now have

an inexpensive way to generate requests that will pass COCA’s authorization mech-

anism, and COCA must somehow defend against such replay-based denial of service

attacks.

There are actually two ways to redress an imbalance between the cost of making

requests and the cost of satisfying them. One is to increase the cost of making a re-

quest, and that is what the signature checking in COCA’s authorization mechanism

does. A second is to decrease the cost of processing a request. COCA also embraces

this latter alternative. Each COCA server caches responses to client requests and

caches the results of expensive cryptographic operations for requests that are in

progress, as also suggested in [84, 14]. Servers use these cached responses instead of

recalculating them when processing replays.
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The cache for client responses is managed differently than the cache for in-

progress cryptographic results. We first discuss the client-response cache. Each

COCA server cache has finite capacity, so all responses to clients cannot be cached

indefinitely. If the server cache is to be effective against replays submitted by clients,

we must minimize the chance of such replays causing cache misses (and concomitant

costly computation by the server). The solution is to ensure that client replays are

forced to exhibit a temporal locality consistent with the information being cached.

In particular, by caching COCA’s response for each client’s most recent request,12 by

restricting clients to making one request at a time, and by having clients associate

ascending sequence numbers with their requests, older requests not stored in the

cache can be rejected as bogus by COCA’s authorization mechanism.

Because requests are processed by a quorum of COCA servers—and not nec-

essarily by all COCA servers—a given server’s cache of client responses might not

be current. Thus, a replay request signed by client c to some server s might have

a sequence number that is larger than the sequence number for the last response

cached at s for c. The larger sequence-numbered request would not be rejected by s

and could not be satisfied from the cache—the request would have to be processed.

But with quorums comprising 2t + 1 of the 3t + 1 COCA servers, at most t such

replays can lead to computation by COCA servers. COCA’s implementation further

limits susceptibility to these attacks. Whenever a COCA server sends a response to

a client, that response is also sent to all other COCA servers. Each server is thus

quite likely to have cached the most recent response for every client request.

Clients are not the only source of replay-based denial of service attacks. Com-

12In a system with a million clients, this client cache would be roughly 5 gigabytes because

approximately 5K bytes is needed to store a client’s last request and COCA’s response.
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promised servers also could attempt such attacks. COCA’s defense here too is a

cache. Servers cache results from all expensive operations, such as computing valid-

ity checks of subshares for proactive secret sharing and computing partial signatures

for in-progress requests. The cache at each server is sufficiently large to handle the

maximum number of requests that all COCA servers could have in-progress at any

time. A total of 60K bytes suffices for a cache to support one client request, when

X.509 certificates do not exceed 1024 bytes (which seems reasonable given observed

usage).

COCA limits the number of requests that can be in-progress at any time by

having each delegate limit the number of requests it initiates. Of course, a compro-

mised delegate would not respect such a bound. But recall that COCA servers are

notified when responses are sent, so a server can estimate the number of concurrent

requests that each server (delegate) has in progress. COCA servers can thus ignore

messages from servers that initiate too many concurrent requests.

3.4 Related Work

Systems. A fault-tolerant authentication service [92] for supporting secure groups

in the Horus system appears to be the first use of threshold cryptography along

with replication for implementing a CA. That led to the design and implementation

of Ω [93], a stand-alone general-purpose CA having more ambitious functionality,

performance, and robustness goals. Unlike COCA, this early work was not intended

to resist denial of service attacks or mobile adversaries. And, as discussed below,

some vulnerability to denial of service attacks seems to be inherent. On the other

hand, Ω does provide clients with key escrow operations, something that COCA
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does not currently support.13

Ω was built using middleware (called Rampart [90, 91]) that implements pro-

cess groups in an asynchronous distributed system where compromised processors

can exhibit arbitrary behavior. The Rampart middleware manages groups of repli-

cas and removes non-responsive members from process groups to ensure the system

does not stall due to compromised replicas. However, it is impossible to distinguish

between slow and halted processors in an asynchronous system, so Rampart uses

timeouts for identifying processors that might be compromised. A correct but slow

server might thus be removed from a process group, which constitutes a denial of

service vulnerability. In addition, because making group membership changes in-

volves expensive protocols, an adversary can launch denial of service attacks against

Rampart by instigating membership changes. Furthermore, neither Rampart nor Ω

employs proactive recovery, so these systems are vulnerable to mobile adversaries.

An approach related to Rampart is embodied in the Byzantine Fault Tolerance

work (BFT) discussed in [15]. BFT extends the state machine approach [66, 98]

to tolerate arbitrary failures in an asynchronous system. State machines are more

powerful than the dissemination Byzantine quorum systems used by COCA. The

additional power is not needed for implementing COCA’s Query and Update but

would be needed if the specification of Update were changed to take a less service-

centric view of causality than COCA now takes. BFT also is extremely fast because,

wherever possible, it uses MACs (message authentication codes) instead of public

key cryptography. This replacement would also boost COCA’s performance, al-

though executing some public key cryptographic operations is inevitable in COCA

13The same threshold decryption and blinding [20, 21, 22] that Ω uses for supporting this addi-

tional functionality would allow COCA to support these features too.
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for signing certificates and responses to clients.

As with COCA, BFT employs proactive recovery [16]. Even though BFT replicas

do not store shares of a service private key, these replicas do need to refresh their key

pairs and shared secret keys to combat mobile adversaries—secure co-processors are

assumed for this task. BFT takes denial of service attacks into account and employs

defenses similar to the mechanisms discussed for COCA in Section 3.3 [14]. A

performance comparison would be interesting but no suitable data for BFT are yet

available.

The PASIS (Perpetually Available and Secure Information Systems) architec-

ture [107] is intended to support a variety of approaches—decentralized storage sys-

tem technologies, data redundancy and encoding, and dynamic self-maintenance—

that have been used in constructing survivable information storage systems. Once

PASIS has been implemented, it should be possible to program COCA’s Query and

Update in any number of ways. What is not clear is whether PASIS will support

COCA’s optimizations (see Chapter 4) or defense against denial of service attacks,

since doing so would depend on PASIS selecting a weak model of computation and

supporting access to low-level details of the PASIS building-block protocols.

Replication and secret sharing are the basis for a fault-tolerant and secure key

distribution center (KDC) described in [48]. In this design, each client/KDC-server

pair shares a separate secret key. The KDC allows two clients to establish their

own shared secret key, and does so using protocols in which no single KDC-server

ever knows that shared secret key. In fact, an attack must compromise a significant

fraction of the KDC’s servers before any keys the KDC establishes to link clients

would be revealed.

Also related to COCA are various distributed systems that implement data
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repositories with operations analogous to Query and Update. Phalanx [70] is par-

ticularly relevant, because it is intended for a setting quite similar to COCA’s (viz.

asynchronous systems in which compromised servers exhibit arbitrary behavior) and

can be used to implement shared variables having similar semantics to COCA’s cer-

tificates. (COCA’s certificates can be regarded as shared variables that are being

queried and updated.)

Phalanx [70] supports two different implementations of read (Query) and write

(Update) for shared variables. One implementation is optimized for honest writers,

clients that follow specified protocols or exhibit benign failures (crash, omission, or

timing failures); a second implementation tolerates dishonest writers, clients that

can exhibit arbitrary behavior when faulty. Phalanx employs a masking Byzan-

tine quorum system [69] for dishonest writers and employs a dissemination quorum

system for honest writers.14

In Phalanx’s honest writer protocol, writers must be trusted to sign the objects

being stored. Although, as with this honest writer protocol, COCA also uses a dis-

semination quorum system, COCA’s protocols do not require clients to be trusted—

COCA servers store objects (certificates) that are signed by COCA’s service key,

and that prevents compromised COCA servers from undetectably corrupting objects

they store. Another point of difference between COCA and Phalanx is the manner

in which clients verify responses from the service. In Phalanx, every client must

know the public key of every server, whereas in COCA each client need know only

the single public key for the service.

14In a masking Byzantine quorum system, Quorum Intersection is strengthened to stipulate

that the intersection of any two quorums always contains more correct replicas than compromised

replicas. A masking Byzantine quorum system can tolerate compromise of as many as one fourth

of servers. A dissemination quorum system tolerates one third of its servers being compromised.
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The e-vault data repository at IBM T.J. Watson Research Center implements

Rabin’s information dispersal algorithm [88] for storing and retrieving files [56, 40].

Information is stored in e-vault with optimal space efficiency. But the e-vault pro-

tocols assume a synchronous model of computation and, thus, involve stronger as-

sumptions about execution timing and delivery delays than we make for COCA.

Such stronger assumptions constitute a denial of service vulnerability—an attacker

that is able to overload processors or clog the network can invalidate these assump-

tions and cause protocols to fail. Like with COCA, clients of e-vault communicate

with the system through a single server (there called a gateway).

Public Key Infrastructure. Most previous work on public key infrastructure

(e.g., [42, 104, 68, 60]) advocates an off-line CA, which issues certificates and cer-

tificate revocation lists (CRLs). Trade-offs associated with CRLs and related mech-

anisms are discussed in [95, 78, 63, 35, 71]. Stubblebine [103] compares different

mechanisms to deal with revoked certificates and argues that a single on-line service

is impractical for both performance and security reasons, advocating a solution with

an off-line identification authority and an on-line revocation authority. COCA could

be used to implement such a solution.

Alternatives to using an off-line CA include on-line certificate status checking

(OCSP) [79, 78, 63] and on demand revocation lists [71]. These rely on some sort of

trusted on-line service (a responder, a validation authority, and so on) and therefore

our experience implementing and deploying COCA is directly applicable.
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3.5 Concluding Remarks

Off-line operation of a CA—an air gap—is clearly an effective defense against

network-borne attacks. For that reason, the traditional wisdom has been to keep a

CA off-line as much as possible. This approach, however, trades one set of vulnera-

bilities for another. A CA that is off-line cannot be attacked using the network but

it also cannot update or validate certificates on demand. Vulnerability to network-

borne attacks is decreased at the expense of increased client vulnerability to attacks

that exploit recently invalidated certificates.

By being an on-line CA, COCA makes the trade-off between vulnerabilities dif-

ferently. COCA’s vulnerability to network-borne attacks is greater, but its clients’

vulnerability to attacks based on compromised certificates is reduced. Marrying

COCA with an off-line CA would achieve the advantages of both [68, 103, 79].

The off-line CA would issue certificates for clients, and COCA would validate (on

demand) these certificates. Revocation of a certificate would thus be achieved by

notifying COCA; issuance of a new certificate would require interacting with the

off-line CA.

COCA, in composing mechanisms for fault-tolerance and security, implements

a secure multi-party computation [108, 47, 5, 23]. Just as agreement protocols and

their kin have become part of the vocabulary of system builders concerned with fault-

tolerance, so too must protocols for secure multi-party computation if we aspire to

build trustworthy systems. Query and Update have relatively simple semantics. For

building richer services that are fault-tolerant and secure, we must become facile

with implementing richer forms of secure multi-party computation—protocols that

enable n mutually distrusted parties to compute a publicly known function on a

secret input they share without disclosing the input or what input shares are held
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by the parties.

Careful attention paid to the assumptions that characterize COCA’s environ-

ment led to a system with inherent defenses to denial of service attacks. While

additional denial of service defenses are described in Section 3.3, enumerating and

countering specific attacks can be unsettling as a sole means of defense: What if

some unanticipated attack is launched? Defenses based on weak assumptions are,

by construction, accompanied by a characterization of the vulnerabilities—the as-

sumptions themselves. And, by their very nature, weak assumptions are difficult to

violate.



Chapter 4

COCA Implementation and

Performance Measurements

Our COCA prototype is approximately 35K lines of new C source; it employs a

threshold RSA scheme and a proactive threshold RSA scheme [89] (using 1024-bit

RSA keys) that we built using OpenSSL [83]. Certificates stored on COCA servers

are in accordance with X.509 [17], with the COCA’s serial number embedded in the

X.509 serial number.

Much of the cost and complexity of COCA’s protocols is concerned with toler-

ating failures and with defending against attacks, even though failures and attacks

are infrequent today. We normally expect:

N1: Servers will satisfy stronger assumptions about execution speed.

N2: Messages sent will be delivered in a timely way.

Our COCA prototype is optimized for these normal circumstances. Wherever pos-

sible, redundant processing is delayed until there is suspicion that assumptions N1

and N2 no longer hold.

98
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In particular, our COCA prototype sequences when servers start serving as del-

egates for client requests already in progress. This reduces the number of delegates

when N1 and N2 hold, hence it reduces the cost of request processing in normal

circumstances. The refinements to the protocols of Section 3.2 are:

• A client sends its request only to a single delegate at first. If this delegate does

not respond within some timeout period, then the client sends its request to

another t delegates, as required by the protocols in Section 3.2.

• A server that receives a message in connection with processing some client

request R and that is not already serving as a delegate for R does not become

a delegate until some timeout period has elapsed.

• A delegate p sends a response to all COCA servers, in addition to sending

the response to the client initiating the request, after the request has been

processed. After receiving such a response, a server that is not a delegate for

this request will not become one in the future; a server that is serving as a

delegate aborts that activity.

A cached response will be forwarded to a server q whenever q instructs p to

participate in the processing of a request that has already been processed.

Upon receiving the forwarded response, q immediately terminates serving as

a delegate for that request.

A more general description of such an optimization with applications to the threshold

signature protocol and to the APSS protocol can be found in Section 5.3.

This chapter is organized as follows: Section 4.1 describes performance measure-

ment results for COCA deployment on a local area network. COCA performance

on an Internet deployment is the main subject of Section 4.2. In Section 4.3, COCA
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Table 4.1: Performance of COCA over a LAN.
COCA Operation Mean (msec) Std dev. (msec)

Query 629 16.7
Update 1109 9.0
PSS 1990 54.6

performance under various simulated denial of service attacks is reported and ana-

lyzed.

4.1 Local Area Network Deployment

These experiments over a local area network (LAN) involved a COCA prototype

comprising four servers (i.e., n = 4 and t = 1) communicating through a 100Mbps

Ethernet. The servers were Sun E420R Sparc systems running Solaris 2.6, each with

four 450 MHz processors. The round-trip delay for a UDP packet between any two

servers on the Ethernet is usually under 300 microseconds.

Table 4.1 gives times for COCA functions executing in isolation when assump-

tions N1 and N2 hold. We report the delay for Query, for Update, and for a round

of proactive secret sharing (PSS). The reported sample means and sample standard

deviations are based on 100 executions. All samples are located within 5% of the

mean.

To better understand the origin of these delays, we report in Table 4.2 the (per-

centage) contribution of certain CPU-intensive cryptographic operations. For Query

and Update, we measured the time spent in generating partial signatures and in

signing messages. For proactive secret sharing, we measured the delay associated

with the one-way function (oneWay)1, with message signing, and with computation

1The one-way function involves expensive modular exponentiation and is needed to implement

verifiable secret sharing, as described in Section 2.2.3.
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Table 4.2: Breakdown of Costs for COCA over a LAN.
Query Update PSS

Partial Signature 64% 73%
Message Signing 24% 19% 22%

One-Way Function 51%
SSL 10%
Idle 7% 2% 15%

Other 5% 6% 2%

involved in establishing an SSL (Secure Socket Layer) connection to transmit con-

fidential information between servers. Notice that improved hardware for perform-

ing cryptographic operations could have a considerable impact. Idle time, because

servers must sometimes wait for one another, is also listed in Table 4.2. Only 2% to

6% of the total execution time is unaccounted. That time is being used for signature

verification, message marshaling and un-marshaling, and task management.

To evaluate the effectiveness of the optimizations outlined above for when as-

sumptions N1 and N2 hold, Figure 4.1 compares performance with and without the

optimizations. The results summarize 100 executions; very small sample standard

deviations were observed here. The optimizations can be seen to be effective.

4.2 Internet Deployment

Communication delays in the Internet are higher than in a local area network; the

variance of these delays is also higher. To understand the extent, if any, this affects

performance, we deployed four COCA servers as follows.

• University of Troms, Troms, Norway. (300 MHz, Pentium II)

• University of California, San Diego, CA. (266 MHz, Pentium II)

• Cornell University, Ithaca, NY. (550 MHz, Pentium III)
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Figure 4.1: Effectiveness of Optimization.

• Dartmouth College, Hanover, NH. (450 MHz, Pentium II)

All ran Linux.2 Figure 4.2 depicts the average message delivery delay (measured

using ping) between these servers. Delivery delays on the Internet vary consider-

ably [65] but the values observed during the experiments we report did not differ

significantly from those in Figure 4.2.

Table 4.3 gives measurements for the Cornell host in our 4-site Internet deploy-

ment. In comparing Table 4.1 and Table 4.3, we see the impact of the Internet’s

longer communication delays (which also lead to longer server idle time). The sam-

ple standard deviation is also higher for the Internet deployment, due to higher load

variations on servers and due to the higher variance of delivery-delays on the Inter-

2Beggars can’t be choosers. For making measurements, we would have preferred having the same

hardware at every site, though we have no reason to believe that our conclusions are affected by

the modest differences in processor speeds. For a real COCA deployment, we would recommend

having different hardware and different operating systems at each site so that common-mode

vulnerabilities are reduced.
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Figure 4.2: Deployment of COCA Servers over the Internet.

Table 4.3: Performance of COCA over the Internet.
COCA Operation Mean (msec) Std dev. (msec)

Query 2270 340
Update 3710 440
PSS 5200 620

net; all samples are located within 25% of the mean. See Table 4.4 for a breakdown

of delays (analogous to Table 4.2) for our Internet deployment of COCA.

A Note on Scalability

The performance results presented above show that processing a client request

(Query or Update) is expensive, which in turn would seem to limit the number of

clients that COCA can support. While the performance of COCA could be enhanced

by adopting faster machines, by using hardware implementation for cryptographic

operations, or by having multiple processors on each server to enable parallel com-

putation, we here point out some directions for architectural improvements that

could potentially lead to better scalability. More research is needed to explore the

feasibility and the impact of these proposals.
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Table 4.4: Breakdown of Costs for COCA over the Internet.
Query Update PSS

Partial Signature 8.0% 8.7%
Message Signing 3.2% 2.5% 2.6%

One-Way Function 7.8%
SSL 1.6%
Idle 88% 87.7% 87.4%

Other 0.8% 1.1% 0.6%

Hierarchy. As proposed in [42], we can construct a hierarchy, where each node

in the hierarchy is a CA. Each CA at the lowest level is in charge of a small subset

of clients, and each CA is a client of its parent CA which is located at the next

higher level. COCA could be used to implement any CA in the hierarchy. To decide

whether a specific CA should provide on-line capabilities, we have to assess the

frequency of certificate invalidation—if the bindings between the CA’s clients and

their public keys change often, then the CA could employ COCA to reduce the risks

related to invalidated certificates; if certificates are relatively stable, then the CA

could stay off-line, thereby eliminating risks related to on-line attacks. Therefore, a

sensible configuration could be to implement each CA at the lowest level as an on-

line CA using COCA—because the certificates of its clients are likely to be dynamic.

But since the service key pair of a lowest-level CA does not change regularly, it might

suffice to have any CA at a higher level off-line. Using this scheme, we could achieve

better scalability because each lowest-level CA, which is implemented using COCA,

is in charge of only a small subset of clients.

Recency requirement. Instead of querying COCA for up-to-date certificates,

clients have the freedom to decide, based on the perceived risks and security policies,

whether to trust a certificate that has previously been verified. One way is to employ

recency requirements [103, 95] that specify the maximum time that may elapse before
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validity of the certificate is rechecked. Most applications do not require that the

validity of a certificate be checked before each use. Consequently, these applications

will associate a non-zero recency requirement with these uses, thereby reducing the

load on COCA and improving the scalability of COCA.

To support recency requirements, we have to strengthen our assumption of the

asynchronous system model and assume approximately synchronized clocks. Such

strengthening introduces new vulnerabilities—if an attacker can slow client clocks,

then the use of a compromised certificate is prolonged without violating any recency

requirements. And an attacker that prevents COCA servers from maintaining syn-

chronized clocks also succeeds. Clients have to take these factors into account when

specifying their recency requirements. When the risks of these new vulnerabilities

are beyond their tolerance, clients could always employ on-demand validation (i.e.,

setting recency requirement to be zero).

4.3 COCA Performance and Denial of Service At-

tacks

Any denial of service attack will ultimately involve some combination of compro-

mised clients and/or servers (i) sending new messages, (ii) replaying old messages,

and (iii) delaying message delivery or processing. COCA defends against these at-

tack manifestations with a combination of request-processing authorization, resource

management, and caching. To evaluate how effective these classical defenses are,

we simulated certain attacks. The results of those experiments for our local area

network deployment of COCA are discussed in this section.
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4.3.1 Message-Creation Defense

New messages sent by servers are not nearly as effective in denial of service attacks

against COCA as new messages sent by clients. This is because messages from

servers are rejected unless they self-verify. Such messages must contain a correctly

signed client request as well as correctly signed messages from all servers involved in

previous protocol steps—the collusion and compromise of more than t COCA servers

is thus required to get past COCA’s request-processing authorization mechanism.

Moreover, once any message from a given server is found by a COCA server p to

be invalid, subsequent messages from that server will be ignored by p, considerably

blunting their effectiveness in a denial of service attack to saturate p.

In contrast, a barrage of requests from compromised clients, if correctly signed,

cannot be rejected by COCA’s request-processing authorization mechanism (unless

the identities of these compromised clients are already known by the receiver). The

impact of such a barrage should be mitigated by COCA’s resource management

mechanism, which ensures that messages from a small set of senders do not monop-

olize server resources. How effective as a defense this mechanism is depends on the

exact configuration of COCA’s resource management mechanism: the number of

input queues, on which input queues various clients are grouped, and the scheduler

used in servicing these input queues.

To measure the effectiveness of COCA’s resource management mechanism, it

suffices to investigate the simple case of two clients. A compromised client sends a

barrage of new requests to the service at rates we control;3 a correct client sends

3Because the compromised client does not await responses before sending additional requests,

these experimental results apply directly to the case where a group of compromised clients all share

the same input queue on each server.
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a request, awaits a response or a timeout4. Of interest is by how much the correct

client’s requests become delayed due to requests the compromised client sends, since

this information can then be used in predicting COCA’s behavior when there are

more than two queues and clients.

Once a client’s request R is appended to some input queue on a (correct) COCA

server, two factors contribute to delay processing R. The first source of delay arises

from multiplexing the server as it processes a number of requests. This number of

requests is referred to as the level of concurrency. Assuming a modest load from cor-

rect clients, the delay due to sharing the processor with other, concurrent requests

is not affected by actions an attacker might take and thus is not of interest here; our

experiments therefore assume servers process requests to completion serially (viz.

the level of concurrency is 1). The second source of delay is affected by the compro-

mised client’s barrage of new messages—requests in input queues whose processing

will precede R. A mechanism to defend against a barrage of client requests must

control this source of delay, and it is this delay that we measure.

Our first experiment adjusted the rate of requests from the compromised client

while measuring the performance of requests from the correct client. To start, each

server was configured to store all client requests on a single input queue. The

capacity of this queue was 10 requests. We found that the correct client would get

no service whenever the compromised client sent requests at a rate in excess of 10

requests per second. At 10 requests per second, requests from the compromised

client fill the (fixed capacity) input queue virtually all the time—a Query request

from the correct client has a 9 in 10 chance of being discarded because it arrives

when there is no room in the input queue, and an Update request has half that (due

4The timeout is 1 second for Query and 2 seconds for Update.
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Figure 4.3: Performance of Query under Message-Creation Attacks.

to the 1 and 2 seconds timeout respectively). Needless to say, the denial of service

attack is a success.

For the next experiment, each server was configured to have separate queues for

the correct client and the compromised client. A round-robin scheduler serviced the

two queues. Figures 4.3 and 4.4 show performance of Query and Update requests

from the correct client for various rates of requests from the compromised client.

Every reported data point is the average processing time over 100 experiments; the

error bars depict the range for 95% of the samples.

The curves for Query and Update in Figures 4.3 and 4.4 comprise two segments.

In the first segment, an increase in the rate of requests that the compromised client

sends causes an increased delay for requests from the correct client. As the rate

of requests from the compromised client increases, so does the probability that

COCA—with its round-robin servicing of input queues—will have to process one of

those requests R before processing a request from the correct client. The processing
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Figure 4.4: Performance of Update under Message-Creation Attacks.

of R thus increases the processing time for a request from the correct client. We

see in this segment almost identical wide ranges of samples for each rate measured.

The worst case occurs when the request from the correct server arrives just after

a request from the compromised client starts to get processed, while the best case

occurs when the request from the correct server arrives when no request from the

compromised client is being processed. Even though we see the same worst and best

case, the mean of samples increases as the rate of requests from the compromised

client increases, reflecting an increasing probability that the request from the correct

client has to wait for the processing of a request from the compromised client.

Once the compromised client is sending requests at approximately the same

rate as the normal client (i.e., approximately 1 request per second for Query and 0.5

requests per second for Update), the second segment of the curve begins. Throughout

this segment, further increases in the request rate from the compromised client do

not further degrade the processing of requests from the correct client. This is because



110

requests from the two clients are being processed in alternation, and the delay for

requests from the correct client remain at about double what is measured when there

is no compromised client. Note that, as the rate of requests from the compromised

client increases, more and more of those requests are discarded by servers—the

fixed-capacity input queue for the compromised client is full when those requests

arrive.

COCA’s request-processing authorization mechanism starts saturating at 100

requests per second and thereafter the server would have diminished processing

capacity to execute protocols for Query and Update.

In an actual deployment, clients will be partitioned over a set of input queues.

But the worst-case performance for this case is easy to bound in light of the above

experiments for two clients. Suppose b queues are serving only compromised clients,

c queues are serving only correct clients, and d queues are serving both kinds of

clients. Requests from compromised clients will starve requests from correct clients

that share the same input queue, because the first experiment above established

that if the rate of requests to a single input queue from compromised clients exceeds

10 requests per second then requests from correct clients to that input queue are

unlikely to succeed. And the second experiment established that COCA’s resource-

management mechanisms will guarantee that c/(b+c+d) of each server’s processing

time and other resources are devoted to processing requests on the queues that serve

only correct clients.

4.3.2 Message-Replay Defense

COCA employs caching to defend against denial of service attacks involving message

replays. We do not consider replays of client requests in our experiments, because
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their impact on COCA is considerably smaller than the impact of processing new

requests from a compromised client. Specifically, for new requests, COCA must

expend resources in executing the protocol for the operation being requested, but

for replays of client requests, processing (by design) involves considerably fewer

resources—the request is one that can be rejected because its sequence number is

too small, one that can be satisfied from the server’s cache, or one that can be ignored

because it is already being processed. The curves of Figures 4.3 and 4.4 thus give

the bounds we seek on the worst-case performance of COCA when client-request

replays form the basis for a denial of service attack.

Replays of messages from servers in COCA are not immobilizing, because rela-

tively expensive cryptographic computations are cached. To validate this, we sim-

ulated an attacker replaying server messages at varying rates to all other COCA

servers. The message being replayed was designed to cause a defenses-disabled

COCA server to compute partial signatures, which takes approximately 200 mil-

liseconds on a 450 MHz Sun E420 Sparc server—a relatively expensive operation

and thus particularly effective in a denial of service attack.

We measured the average delay for Query, Update, and proactive secret sharing

as a function of the rate of message replays sent by the compromised server. We

compared the performance in the case where caching is enabled to that in the case

where caching is disabled. This information appears in Figures 4.5 through 4.7.

For the case where caching is enabled, the average delay for each operation is

largely unaffected as the rate of message replay increases, because caches satisfy

most of the computational needs in handling those messages. We witnessed a slight

increase in the average delay when the rate of message replay reaches 100 messages

per second. This is the point where the request-processing authorization mechanism
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Figure 4.5: Performance of Query under Message-Replay Attacks.

becomes saturated by incoming messages.

For the case where caching is disabled, each curve consists of two segments.

The first segment (which ends at approximately 3 replays per second for Query and

Update, and 10 replays per second for PSS) resembles the first segment in the curves

of Figures 4.3 and 4.4, and it reflects the increased use of processing resources by

replays to recompute values that were not cached as the replay rate increases. The

second segment only gradually increases. Over this range, additional computation

is not required (so additional delay is not incurred) since the resource management

mechanism bounds the number of attacker messages that are processed.

Even without the compromised server launching the attack (i.e., when the rate

of replay messages is 0), the average delay for each operation in the case where

caching is enabled is lower than that in the case where caching is disabled. This is

because, with one fewer server participating, repeated executions of certain expen-

sive operations is necessary since normal circumstances assumption N1 no longer
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Figure 4.6: Performance of Update under Message-Replay Attacks.

holds, so correct servers are unable to finish processing in an optimized execution.

The switch back to the fault-tolerant version causes repeated executions of certain

expensive cryptographic operations, which can be avoided when caching is enabled.

4.3.3 Delivery-Delay Defense

To measure the impact of message transmission and processing delays on the perfor-

mance of COCA, we added code to the implementation so that messages delivered

to a client or server could be delayed a specified amount before becoming available

for receipt. We investigated both the case where messages sent to one specific server

are delayed and the case where messages sent to all servers and clients are delayed.

Figure 4.8 gives the average time and the interval containing 95% of the samples

for COCA to process three operations of interest—Query, Update, and a round of

proactive secret sharing—when messages from a single server are delayed. The case

where this server is unavailable is also noted as inf on the abscissa.
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Figure 4.7: Performance of PSS under Message-Replay Attacks.

As delay increases, the processing time is seen to move through three phases.

During the first phase, as server p (say) increases its delay in processing messages,

so does the delay for the operation of interest. This occurs because COCA protocols

initially assume normal circumstances assumptions N1 and N2 hold, and the opti-

mized protocols require participation by p. A delay in messages from p thus delays

the protocols.

The second phase is entered after the delay for p causes servers to suspect that

normal circumstances assumptions N1 and N2 do not hold. These servers initiate

redundant processing, creating additional delegates for in-process operations, for

example. Participation by p is no longer required for the operation to terminate;

increasing the delay at p does not delay completion of the operation. But p will

continue to send messages requiring servers to compute replies. The time that

servers devote to generating these replies decreases as the delay for p increases,

simply because p sends fewer such messages when the delay is greater. Servers thus
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Figure 4.8: Performance of COCA vs. Message Delay for One Server.

have more cycles to devote to generating replies for servers other than p; these are

the replies needed in order for the protocols to terminate. So, the increasing delay

for p frees server resources to speed the termination of the protocol, and average

processing time decreases in this second phase.5

The third phase—a plateau in response time—is reached when the delay for p is

sufficiently high so that it imposes little load on other servers.

Figure 4.9 gives average measured delay and the interval containing 95% of the

samples when message delay increases at all servers and clients. Observe that the

execution time increases linearly with the increase of message delay. The curves are

consistent with how the protocols operate: processing a Query involves 6 message

5We see that the decrease in processing time is more significant in the case of proactive secret

sharing than in the cases of Query and Update. This is because, in the case of proactive secret

sharing, processing messages from server p involves some new (therefore not cached) expensive

cryptographic operations, while, in other two cases, expensive cryptographic operations can be

avoided due to caching.
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Figure 4.9: Performance of COCA vs. Message Delay for All Servers.

delays, processing an Update involves 8 message delays, and a round of proactive

secret sharing involves 6 message delays.



Chapter 5

Conclusion

This dissertation not only describes the design and implementation of a specific on-

line certification authority (COCA), but also offers a general framework for building

trustworthy on-line services that demand both fault tolerance and security. The

framework comprises the following components:

Replication. Employ replication to achieve fault tolerance. Create sufficient di-

versity among servers that implement the service, so that server compromise can be

regarded as independent. Design protocols for coordinating servers to implement

the intended semantics of the service under the given system model. Different ap-

proaches (e.g., replicated state machine approach or Byzantine quorum systems)

can be adopted for implementing different services under different system models.

Secret sharing and secure multi-party computation. For any secret main-

tained by the service, instead of storing that secret on every server, use a secret

sharing scheme and only distribute shares of that secret to servers. Employ se-

cure multi-party computation schemes (e.g., threshold cryptography schemes) so

that servers can compute functions (e.g., generating a digital signature) using these

117
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shares without the need to reconstruct the secret.

Proactive recovery. Employ proactive recovery to reduce the window of vulnera-

bility of the service. Each execution of the proactive recovery protocol reconstitutes

local states of servers, refreshes shares—stored on servers—of any secret maintained

by the service, and refreshes any secret that is local to a server (e.g., the private key

of a server).

Defense against denial of service attacks. Identify vulnerabilities to denial

of service attacks by pinpointing imbalances between the cost for an adversary to

submit a request and the cost for a server (or the service) to process that request.

Deploy defense mechanisms (e.g., request-processing authorization, resource man-

agement, and caching) against denial of service attacks accordingly.

To be fault-tolerant and secure, an on-line service should assume a weak system

model. The weaker the system model, the harder it is for failures and adversaries to

compromise the service by invalidating assumptions in the system model. However,

a service that works in a weaker system model is usually harder to design, because

of the wide variety of adversary attacks such a model admits; all these attacks

have to be taken into account. Furthermore, a service for a weak system model

could exhibit poor performance, due to expensive mechanisms required to tolerate

failures and attacks. Good performance is challenging to achieve but necessary for

a service to be practical. Our experience with COCA demonstrates approaches for

addressing these challenges, as well as revealing future research directions related to

these approaches. The remainder of this chapter elaborates.
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5.1 Successive Model Weakening

In the design of the APSS protocol of Chapter 2 and the COCA protocols of Chap-

ter 3, we employed a single technique for controlling complexity of protocol design

for a weak system model—evolve the protocols by considering a series of more and

more malicious adversaries: A first protocol is designed for a strong system model

characterizing a relatively benign environment. That protocol is then repeatedly

revised to work in a (weaker) system model that admits more malicious adversaries,

until a protocol for the intended system model is obtained. The complexity of pro-

tocol design is thus managed through a form of divide-and-conquer—at each step,

a designer focuses on a small number of additional attacks now permitted in the

newly weakened system model.

This idea of deriving a protocol is not new. For example, it has been proposed

in [9, 26, 102, 81, 3, 4] as a way to obtain fault-tolerant protocols for different fail-

ure models. Prior work proposes mechanical transformations between protocols for

different system models. Although theoretically interesting, the mechanical trans-

formations too often yielded unnecessarily complex and inefficient protocols. This is

because such transformations, due to their generality, are unable to take advantage

of semantics in doing optimization.

The design of COCA extensively employs successive model weakening. The

following identifies two examples where this technique was applied.

(1) In Chapter 2, a first APSS protocol was constructed for the strong system

model in which Passive Server-Adversaries with Crash Failures, Passive Link-

Adversaries, and Correct Coordinator were assumed. This first protocol was

then revised to work in a weaker system model that did not assume Correct

Coordinator holds. Next, the assumption of Passive Link-Adversaries was re-
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laxed to that of Active Link-Adversaries, thereby allowing attacks that could

insert, delete, modify, reorder, and replay messages in transit on links. Fi-

nally, the assumption of Passive Server-Adversaries with Crash Failures was

weakened to that of Active Server-Adversaries, thereby admitting Byzantine

failures of servers.

(2) In Chapter 3, Update and Query protocols were first proposed for a system

model assuming a correct delegate and reliable links. Then, these protocols

were improved to tolerate crash failures of delegates. Next, new protocols

were derived to work in a system model that admits also Byzantine failures of

delegates. Finally, the protocols were revised to work with fair links.

Different sequences of system models were used to guide the derivation of the

APSS protocol and the Update and Query protocols, respectively. Deciding the

sequence of gradually weakening system models is a crucial and often the most

challenging step of this design process. It remains more an art than a science.

Certain weakening of a system model showed up repeatedly; for example, from

Passive Link-Adversaries (which assumes reliable links) to Active Link-Adversaries

(which assumes fair links), and from crash failures to Byzantine failures. And,

similar mechanisms are used for transforming protocols with respect to the same

weakening of a system model; for example, retransmissions (e.g., in the form of

group send) are used for protocols to cope with fair links assumed by Active Link-

Adversaries, while self-verifying messages are used for protocols to constrain Byzan-

tine failures. Gaining additional insight into these mechanisms is likely to be a

valuable endeavor, because the mechanisms could prove effective for building other

trustworthy services—especially when the same system model is assumed for these

services.
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5.2 Circumventing Agreement

Although a service designed for the asynchronous system model exhibits reduced

vulnerability to denial of service attacks, achieving agreement in the asynchronous

system model is known to be problematic. The need to achieve agreement seems

to arise naturally when designing a replicated service, because (correct) servers, as

replicas, are generally assumed to be in consistent states—maintaining such consis-

tency often seems to require agreement among these servers.

COCA is a replicated service but does not require an agreement protocol for

coordinating servers. Here is how COCA circumvents the need for an agreement

protocol.

(1) For the APSS protocol in Chapter 2, servers are not expected to generate a

single new sharing of the service private key from an old sharing in an execution

of that protocol—requiring that a single new sharing be generated seems to

require an agreement among servers on which subshares to use for generating

that single new sharing. Rather, multiple new sharings can be generated, each

with a unique label. Having multiple new sharings generated turns out not to

be a problem—when constructing a signature for a message, servers use the

label to indicate which sharing should be used.

(2) As described in Chapter 3, COCA accepts and processes Query and Update

requests; each of COCA’s servers stores a copy of every client’s certificate. It

seems convenient to think of (correct) servers as identical replicas and thus

always storing the same set of certificates. So, a natural implementation would

be to use the replicated state machine approach, which ensures that (correct)

servers agree on the requests to be processed and on the order of the requests
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to be processed. The need for an agreement in such an implementation is

evident.

Instead, by adopting a Byzantine quorum system, COCA ensures only that

(correct) servers in some quorum have processed each request. The need for

an agreement protocol is thus averted. COCA also does not guarantee that

(correct) servers process requests in the same order. Instead, COCA associates

with each certificate a unique serial number that encodes certain causality in-

formation and orders certificates for the same cid accordingly. By taking ad-

vantage of some specific properties of Query and Update (e.g., idempotence),

these guarantees, although weaker than what a replicated state machine pro-

vides, are sufficient for implementing the intended semantics of COCA.

Pondering on how COCA circumvents agreement leads to some interesting re-

search questions:

• COCA has demonstrated that, in certain cases, a seemingly necessary agree-

ment can be avoided. It would be interesting to identify the general circum-

stances where agreement protocols can be excised and also to identify exactly

what can or cannot be achieved without agreement.

• Our APSS protocol avoids establishing agreement by allowing multiple new

sharings to be generated in each execution. It remains an open question

whether agreement is necessary to have a single new sharing generated in

an APSS protocol.

• Although a Byzantine quorum system can be implemented even in the asyn-

chronous system model with Byzantine failures of servers, a Byzantine quorum

system provides a weaker semantics than a replicated state machine. In which
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cases are Byzantine quorum systems applicable and what are the limitations

of Byzantine quorum systems in comparison with the replicated state machine

approach?

5.3 Normal-Case Optimization

A fault-tolerant and secure service might well exhibit poor performance, because

achieving fault tolerance necessarily involves redundancy and because defending

against attacks often requires the use of expensive cryptographic schemes. These

mechanisms are only needed for the service to survive in worst-case scenarios. And,

in reality, worst-case scenarios are rare. In normal circumstances, when there are

no failures or malicious attacks, mechanisms for fault-tolerance and security are

unnecessary.

Ideally, a service would incur the cost of fault tolerance and security mechanisms

only when they are needed (e.g., when components are failing or under attack). Such

ideal behavior could be approximated as follows.

Consider a service implemented by a set of protocols that work in some intended,

weak, system model. These protocols will be referred to as heavyweight protocols,

because they require expensive mechanisms to defend against failures and attacks

admitted by the weak system model.

For each heavyweight protocol, deploy a corresponding lightweight protocol that

accomplishes the same task but only in a strong system model expected to hold under

the normal circumstances. Each lightweight protocol, when run in a strong system

model, will exhibit better performance than the corresponding heavyweight protocol.

The lightweight protocol, however, might fail to do its job when assumptions of the

strong system model are violated.
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Each lightweight protocol is assumed to come with mechanisms to detect viola-

tions to the strong system model. The detection mechanisms must work in the weak

system model, especially when the strong system model no longer holds, because

that is the case where violations need to be detected.

The service runs the lightweight protocols first. If and when a violation to

the strong system models needed by these lightweight protocols is detected, the

heavyweight protocols are activated. Assuming the strong system model is rarely

violated, the service would be running the lightweight protocols most of the time.

Therefore, the service would exhibit performance symptomatic of the lightweight

protocols, without sacrificing defense against failures and attacks—the detection

mechanisms guarantee the heavyweight protocols would be invoked when failures

and attacks do occur.

This optimization is not without costs, though. When the strong system model

is violated, the performance of the service could be worse than that of executing

only the heavyweight protocols, because of the overhead of executing the lightweight

protocols and the overhead of the detection mechanisms. However, the performance

improvements achieved by the lightweight protocols in cases where the strong system

model does hold should outweigh this cost.

Here are two examples of the lightweight/heavyweight optimization from this

dissertation.

Optimization of the threshold signature protocol. In the original heavy-

weight threshold signature protocol in Chapter 3, the same partial signature could

be generated by multiple different servers using the same share. (Recall that, for a

combinatorial secret sharing, the same share of the underlying standard secret shar-

ing might be distributed to share sets of different servers, as shown in Figure 2.2.)
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Such redundancy is necessary for fault tolerance.

For a corresponding lightweight threshold signature protocol, the strong system

model assumes the following:

• For every server contacted by the (correct) initiator of the protocol, the ini-

tiator receives partial signatures from that server within a certain period of

time (based on the local clock of the initiator).

• Partial signatures the initiator receives from servers are correct.

Given this strong system model, for a lightweight threshold signature protocol,

the initiator requests that, for every share of the selected sharing, only a single

partial signature be generated and submitted. (This avoids redundant computation

of partial signatures.) And, the lightweight threshold signature protocol detects

violations to the strong system model using the following mechanisms.

• The initiator starts a timer1 for every message it sends. If requested partial

signatures fail to arrive within a specified bound, then the timeout of the timer

indicates that the strong system model does not hold.

• After receiving all needed partial signatures, the initiator combines these par-

tial signatures to obtain the signature for the message being signed. The

initiator verifies the correctness of the generated signature. If bogus partial

signatures have been received and used, then the verification fails and a vio-

lation to the strong model is detected.
1Here, we are assuming that the timer on a correct server cannot be subverted and that the timer

always advances at a reasonable rate, even in the weak system model. Similar assumptions are

implicit for COCA’s heavyweight protocols (e.g., COCA’s servers are assumed to start proactive

recovery periodically based on their local clocks). Therefore, the assumption about timers at

correct servers is not new.
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Whenever the initiator detects a violation to the strong system model, it starts

the heavyweight protocol and requests additional partial signatures to be generated

and submitted.

Optimization of APSS protocol. The heavyweight APSS protocol in Chapter 2

invokes multiple threads, causes multiple new subsharings to be generated from the

same old share by different servers, and has multiple new sharings generated by

different threads. Such redundancy is needed for fault tolerance.

For a corresponding lightweight APSS protocol, we stipulate a strong system

model that assumes the following:

• A designated coordinator p carries out its thread to have a new sharing estab-

lished.

• Every correct server q (say) receives from coordinator p a finished message

signifying the termination of p’s thread. The message arrives within a certain

period of time from when q started execution of the APSS protocol, based on

q’s local clock.

• When requested, every server will correctly generate subshares from the se-

lected shares and propagate these subshares.

• For any message that the coordinator sends, the coordinator receives the re-

sponse from the intended recipient of that message within a certain period of

time.

The lightweight APSS protocol can then execute as follows. Coordinator p,

in its thread (the only thread for the lightweight APSS protocol), requests that,

for every share of a selected sharing, a single subsharing is generated from that
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share by a server. Subshares of these subsharings are then used to construct a new

sharing. This results in a single new sharing being established when execution of

the lightweight APSS protocol terminates. Thus, the lightweight APSS protocol

eliminates the unnecessary cost of generating other subshares and new sharings.

The lightweight protocol is equipped with some detection mechanisms.

• Both the coordinator and the servers use timers, as in the threshold signature

protocol shown earlier, to detect messages that fail to arrive within a specified

period of time.

• As with the original heavyweight APSS protocol, coordinator p sends self-

verifying finished messages, so that any bogus notification from p will be de-

tected.

Similarly, each server is required to use the self-verifying contribute messages as

notifications that a subsharing has been generated and propagated correctly,

so that a bogus notification from that server will be detected.

Note that, even in the weak system model, an adversary cannot forge a bogus

self-verifying message without being detected.

• Verifiable secret sharing is used with the subsharings and the sharings to enable

detection of bogus subshares and shares that are generated and propagated.

Note that, since verifiable secret sharing is used in the heavyweight protocols,

employing it as a detection mechanism for the lightweight protocols does not

involve strengthening the system model.

In the combined heavyweight/lightweight protocol, if the coordinator detects

the strong system model was violated, then it requests participation of more servers
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in its thread and requests that more subsharings be generated and propagated, if

necessary. And, if a server detects violation to the strong system model, then the

server starts functioning as a new coordinator and starts its own thread.

Issues in Designing Optimization

Although conceptually simple, lightweight/heavyweight optimizations are hard to

discover. Picking an appropriate strong system model for a lightweight protocol is

often challenging. A promising approach is to start by identifying possible detection

mechanisms. This is relatively easy, because many detection mechanisms are stan-

dard. Examples for COCA include timeouts for detecting any violation to timing

assumptions, digital signatures for detecting bogus partial signatures, self-verifying

messages for detecting bogus messages, and verifiable secret sharing for detecting

bogus shares and subshares. Often, these mechanisms (e.g., self-verifying messages

and verifiable secret sharing) can be found in the heavyweight protocols.

Each detection mechanism checks violations to a certain assumption. That

assumption might then be considered a candidate for the strong system model.

Whether or not to include the assumption in the strong system model can depend

on other factors, such as whether that assumption holds in normal circumstances

and whether making that assumption leads to significant performance gain for a

lightweight protocol.

Detection mechanisms in a lightweight protocol need not be accurate. It suffices

that those circumstances where the lightweight protocol could fail are detected. But

the mechanism can be conservative and raise false alarms when the strong model

actually holds. A conservative detection mechanism thus can cause an unnecessary

switch to a heavyweight protocol. Such switches do not endanger correct operation
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of the service, because the heavyweight protocol will work in the strong system

model. There is an obvious performance penalty for false alarms, though.

As an example of a conservative detection mechanism, consider a strong system

model that assumes that a server eventually receives a certain message. No detection

mechanism can accurately detect a violation to this assumption within a finite period

time. Instead, a timer can be used, so the switch from lightweight to heavyweight

protocol occurs if the server does not receive that message within a certain finite

period of time. But a false alarm will be raised if the message is delivered after

the timeout. To reduce a performance penalty, choose the timeout period to be

sufficiently large, so that false alarms are rare in normal circumstances.

Finally, note that, in the earlier examples of the threshold signature protocol

and the APSS protocol, detection mechanisms run on each individual server and

make decisions (about violations) based on local information available to that server

(e.g., a local timeout, signature verification failure, or detection of an ill-formed

self-verifying message). When a violation to the strong system model is detected

locally, a server starts the heavyweight protocol (e.g., by sending new messages or

by starting a new thread) without coordinating with other servers. Having both

violation detection and protocol switching performed locally avoids coordination

among servers. Such coordination is often complicated and expensive, because it

necessarily involves distributed protocols. But one could imagine having a system-

wide mode shift occur in response to detecting a violation to the strong system

model.
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5.4 Final Remarks

This dissertation represents our first step in investigating how to marry fault tol-

erance and security when building a trustworthy on-line service. Our experience

with COCA has enabled us to identify interesting issues surrounding the problem,

to propose a general framework that addresses these issues, and to demonstrate the

feasibility of the framework. We believe that extending our experience with COCA

to other fault-tolerant and secure services, with richer semantics, is likely to foster

new insights.



Appendix A

Complete COCA Protocols

This appendix presents the details of the COCA protocols, including the APSS

protocol, the client protocol, the threshold signature protocol, the Query processing

protocol, and the Update processing protocol. The following notational conventions

are used throughout the appendix:

• p, q, r: servers

• c: COCA client

• 〈m〉k: message m signed by COCA using its service private key k

• 〈m〉p: message m signed by a server p using p’s private key

• 〈m〉c: message m signed by a client c using c’s private key

• PS (m, [s:Λ]i): a partial signature for a message m generated using share [s:Λ]i

• [p −→ q : m]: message m is sent from server p to server q

• [∀q. p −→ q : mq]: message mq is sent from server p to server q for every

server q
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• E(m): m is encrypted in a way that only the intended recipient can decrypt

m.

Each message includes a type identifier to indicate the purpose of the message. These

type identifiers are presented in the sans serif font. Note that the mechanisms and

optimizations described in Section 3.3, Chapter 4, and Section 5.3 are not included

in this presentation.

A.1 APSS Protocol

This section describes the APSS protocol. Only the protocol for one thread with

p being the coordinator is given; protocols for other threads are identical. Certain

operations are to be performed whenever a server receives a message from other

servers. These operations are factored out and presented as general actions. To

clarify the protocol, we also present two sub-protocols (subshare propagation protocol

and subshare recovery protocol) separately.

General actions:

G-1. For each message a server (or coordinator) q receives, q first checks whether the

message is a valid finished message (the format of a finished message is shown

in step 3.3 of the main protocol) showing that a sharing of version number v′

has been established, with v′ higher than cvnp, the current version number of

q. If so, q stores this finished message (and removes any other finished messages

that are stored) and updates cvnp to v′. If q is a coordinator, then q terminates

its thread and forwards this finished messages to all servers. If q is a server,

then q deletes the old shares and subshares.
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G-2. For each message a server q receives from a server (or coordinator) r, if the

message is not a finished message, then, let v′ be the version number of the run

for which the message is sent (such information is included in each message),

server q checks whether v′ < cvnq holds. If so, then q sends its stored finished

message to r (M ′ is given in step 3.3 of the main protocol and p could be any

server).

[q −→ r : 〈finished, v, p, M ′〉p]

Subshare propagation protocol:

To propagate shares of a subsharing [s:Λ]i
:λ

, where Λ = (v − 1) ◦ vc.s:Λ and

λ = Λ ◦ i ◦ vc.[s:Λ]i
:λ

, server q invokes the following protocol:

P-1. Server q employs group send(q, establish, established, 2t + 1), where

establishq→r = 〈establish, v, λ, q, r, E(Sλ
r )〉q

is the message q repeatedly sends to each server r, and established messages,

as shown in step P-2.3, serve as acknowledgments to the establish messages.

P-2. Each server r, upon receiving an establish message from q in a format shown

in step P-1, performs the following steps:

P-2.1. Check whether it has received a conflicting establish message from q (that

is, one that propagates a different subsharing generated from the same

share). If so, alert the administrator with the conflicting messages as

evidence and ignore the message.

P-2.2. Check whether the following conditions hold:1

1Note that the validity checks for the sharing and the subsharing are contained in the label λ

sent in the established message.
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• vcConstr(vc.s:Λ) = y, where y is the validity check for secret s,

• vcConstr(vc.[s:Λ]i
:λ

) = vc.[s:Λ]i, and

• oneWay([[s:Λ]i
:λ

]j) = vc.[[s:Λ]i
:λ

]j for every j ∈ Iλ
r .

If not, alert the administrator with the signed establish message as evi-

dence and ignore the message.

P-2.3. Store the subshares, together with the validity check for the subsharing,

and send the following established message to q.

[r −→ q : 〈established, v, λ, r, q〉r]

P-3. Upon termination of the group send in step P-1, server q obtains 2t + 1 estab-

lished messages, which serve as the endorsements to a compute message in step

2.3 of the main protocol.

Subshare recovery protocol:

To recover subshares of a subsharing [s:Λ]j
:λ

, where Λ = (v − 1) ◦ vc.s:Λ and

λ = Λ ◦ i ◦ vc.[s:Λ]i
:λ

, server r invokes the following protocol:

R-1. Server r employs group send(r, recover, recovered, t + 1), where

recoverr→q = 〈recover, v, λ, r, q〉r

is the message r repeatedly sends to each server q, and recovered messages, as

shown in step R-2, serve as acknowledgments to the recover messages.

R-2. Each server q, upon receiving a recover message from r for subshares of [s:Λ]j
:λ

,

checks whether it holds the requested subshares. If so, q sends r a recovered

message.

[q −→ r : 〈recovered, v, λ, q, E(Sλ
q ∩ Sλ

r ), r〉q]
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R-3. Upon termination of the group send in step R-1, server r obtains all subshares

in Sλ
r . (Again, the validity of these subshares are checked using validity checks

enclosed in the label.)

Main Protocol:

1. Coordinator p selects an established sharing labeled Λ, where Λ = (v − 1) ◦

vc.s:Λ, and employs group send(p, init, contribute, t + 1), where

initp→q = 〈init, v, Λ〉p

is the message p repeatedly sends to every server q, and servers send back

contribute messages (in step 2.3) as acknowledgments to the init messages.

2. Subshare generation and propagation.

Each server q, upon receiving from coordinator p an init message choosing a

sharing labeled Λ, performs the following steps.

2.0. Check whether it has received a conflicting init message from p that selects

another sharing of version v − 1. If so, alert the administrator with the

two conflicting messages as evidence and ignore this message.

2.1. Generate [s:Λ]i
:λi

:= split([s:Λ]i) from each old share [s:Λ]i that q holds, if

no subsharing has been generated from [s:Λ]i. Also, generate the validity

check vc.[s:Λ]i
:λi

using oneWay:

∀j : (1 ≤ j ≤ l). vc.[[s:Λ]i
:λi

]j := oneWay([[s:Λ]i
:λi

]j).

Here, λi is Λ ◦ i ◦ vc.[s:Λ]i
:λi

.

2.2. Initiate the subshare propagation protocol to propagate each subsharing

[s:Λ]i
:λi

that q has generated but has not propagated to other servers.



136

2.3. Notify coordinator p, in a contribute message, that all the subsharings

in {[s:Λ]i
:λi

| i ∈ Iq} have been established. For each such subsharing,

attach the label of that subsharing, together with the aggregation of the

2t+1 established messages obtained in the subshare propagation protocol

as the endorsements, to the contribute message. We use Mq to denote

the set consisting of every such aggregation for every subsharing q has

generated.

[q −→ p : 〈contribute, v, p, q,Mq〉q]

3. Share generation.

3.1. Coordinator p chooses a candidate set of subsharings {[s:Λ]i
:λi

| 1 ≤ i ≤ l}

from subsharings whose labels are enclosed in the contribute messages that

p has received. p then employs group send(p, compute, computed, 2t + 1),

where

computep→q = 〈compute, p, λ1, λ2, . . . , λl〉p

is the message p repeatedly sends to every server q, and servers send

computed messages in step 3.2.3 as acknowledgments to the compute mes-

sages.

3.2. Each server r, upon receiving from p a compute message in the form

shown in step 3.1, performs the following steps.

3.2.0. Check whether it has received a conflicting compute message from

p. If so, alert the administrator with the two conflicting messages as

evidence and ignore this message.

3.2.1. Check whether it has received all subshares in⋃
1≤i≤l

(Sλi
r ) = {[[s:Λ]i

:λi

]j | (1 ≤ i ≤ l) ∧ (j ∈ Ir)}
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If not, initiate the subshare recovery protocol to recover the missing

subshares.

3.2.2. Compute new shares

[s:Λ′
]j := reconstruct([[s:Λ]1

:λ1

]j, . . . , [[s
:Λ]l

:λl

]j),

for each j ∈ Ir.

Compute the corresponding validity check for the new sharing

vc.[s:Λ′
]j := vcConstr(vc.[[s:Λ]1

:λ1

]j, . . . , vc.[[s:Λ]l
:λl

]j)

for each 1 ≤ j ≤ l.

Here, Λ′ is (v, vc.[s:Λ′
]j).

Let y be the validity check of the secret the service maintains, check

whether the following conditions hold:

• vcConstr(vc.s:Λ′
) = y

• oneWay([s:Λ′
]j) = vc.[s:Λ′

]j for each j ∈ Ir

If not, alert the administrator with the compute message as evidence

and ignore the message.

3.2.3. Send a computed message notifying p that r holds all shares in its

share set of sharing Λ′.

[r −→ p : 〈computed, Λ′, r〉r]

3.3. Upon termination of the group send in step 3.1, coordinator p stores the

2t + 1 computed messages and constructs the following self-verifying fin-

ished message containing a set M ′ of the 2t + 1 computed messages for

new sharing Λ′ as endorsement.

〈finished, v, p, M ′〉p
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Coordinator p executes step G-1 as if it receives this finished message.

A.2 COCA Client Protocol

Every client request has the form:

〈type, c, seq , parm, cred〉c,

where type indicates the type of the request, c is the client issuing the request, seq

is the sequence number for the request, parm refers to the parameters related to the

request, and cred contains the credentials that authorize the request.

Clients use the following protocol to communicate with COCA.

1. To invoke Query for the certificate associated with name id , client c composes

a request:

R = 〈query, c, seq , id , cred〉c

To invoke Update to establish a new binding of key with name id to replace

an existing certificate ζ ′ for id , client c composes a request:

R = 〈update, c, seq , ζ ′, 〈id , key〉, cred〉c

2. Client c sends R to t + 1 servers. It periodically re-sends R until it receives a

response to its request. For a Query, the response will have the form 〈R, ζ〉k,

where ζ is a certificate for id . For an Update, the response will have the form

〈R, done〉k.
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A.3 COCA Threshold Signature Protocol

The following describes a threshold signature protocol threshold sign(m,E),2 where

m is the message to be signed and E is the evidence used in self-verifying messages

to convince receivers to generate partial signatures for m. As detailed in Appen-

dices A.4 and A.5, different types of evidence are used in the protocols for Query

and Update.

1. Server p sends to each server q a sign request message with message m to be

signed and evidence E, as well as the label Λ of an established sharing to be

used.

[∀q. p −→ q : 〈sign request, p, Λ, m, E〉p] (i)

2. Each server q, upon receiving a sign request message (i), verifies evidence E

with respect to m and ignores the message if E is invalid. If E is valid, then

q checks whether the version number of the selected sharing Λ is lower than

cvnq. If so, then q executes step G-2 of the APSS protocol and ignores the

message. Otherwise, q generates a partial signature using every share in its

share set SΛ
p and sends the partial signatures back to p.

[q −→ p : 〈sign response, q, p,m, E, {PS (m, [s:Λ]i) | [s:Λ]i ∈ SΛ
p }〉q]

3. Server p repeats step 1 until it receives t + 1 sign response messages or until

it receives a finished message containing a version number that is higher than

cvnp.

2While this protocol is appropriate for schemes such as threshold RSA, the protocol might not

be applicable to other threshold signature schemes, such as those based on discrete logarithms

(e.g., [18, 52]). Those schemes may require an agreed-upon random number in generating partial

signatures. Our protocol can be modified to work for these schemes, though.
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If a finished message is received, then p executes step G-1 of the APSS protocol

and restarts the threshold signature protocol using a new sharing.

If t + 1 sign response messages are received, then p uses the partial signatures

in these messages to construct signature 〈m〉k. If the resulting signature is

invalid (which would happen if compromised servers submit erroneous partial

signatures), then p repeats step 1 for more sign response messages and tries

partial signatures from another set of t + 1 servers.3 This process continues

until the correct signature 〈m〉k is obtained.

A.4 Query Processing Protocol

We describe the Query protocol initiated by a delegate p, although there might be

more than one delegate processing the same request. This convention also applies

to the Update processing protocol described in Appendix A.5.

For both Query and Update processing protocols, at any point of the protocol

execution, if servers start participating in a new execution of proactive recovery,

then servers notify the delegate (such notification acts as an acknowledgment for

any message from the delegate). Upon receiving such notification, the delegate then

propagates any in-progress accepted client requests to ensure that these requests

be accepted in the new window of vulnerability. After the execution of proactive

recovery is completed, the delegate restarts the protocols to process these in-progress

client requests.

1. Upon receiving a request R = 〈query, c, seq , id , cred〉c from a client c, server p

3In the worst case, p must try
(
2t+1
t+1

)
combinations. The cost is insignificant when t is small.

There are robust threshold cryptography schemes [44, 43] that can reduce the cost using error

correction codes.
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first checks whether R is valid based on the credentials cred provided. If it is

valid, then p sends a query request message to all servers:

[∀q. p −→ q : 〈query request, p,R〉p] (ii)

2. Each server q, upon receiving a query request message (ii), checks the validity

of the request. If the request is valid, then q fetches the current signed local

certificate associated with name id : ζq = 〈id , σ(ζq), keyq〉k. Server q then sends

back to p the following message:

[q −→ p : 〈query response, q, p,R, ζq〉q]

3. Server p repeats step 1 until it receives the query response messages from a

quorum of servers (including p itself). p verifies that the certificates in these

messages are correctly signed by COCA. Let ζ = 〈id , σ, key〉k be the certificate

with the largest serial number in these query response messages. Server p

invokes threshold sign(m, E), where m is (R, ζ) and E is the query response

messages collected from a quorum of servers, thereby obtaining 〈R, ζ〉k.

4. Server p sends the following response to client c:

[p −→ c : 〈R, ζ〉k].

A.5 Update Processing Protocol

1. Upon receiving a requestR = 〈update, c, seq , ζ ′, 〈id , key〉, cred〉c from a client c,

server p first checks whether R is valid, based on the credentials cred provided.

If it is valid, then p computes serial number σ(ζ) = (v + 1, h(R)) for a new

certificate ζ, where v is the version number of ζ ′ and h is a public collision-free
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hash function, and invokes threshold sign(m,E), where m is (id , σ(ζ), key)

and E is R, thereby obtaining ζ = 〈id , σ(ζ), key〉k.

2. Server p then sends an update request message to every server q.

[∀q. p −→ q : 〈update request, p,R, ζ〉p] (iii)

3. Each server q, upon receiving an update request message (iii), updates its cer-

tificate for id with ζ if and only if σ(ζq) < σ(ζ), where ζq is the certificate for

id stored by the server. Server q then sends back to p the following message:

[q −→ p : 〈update response, q, p,R, done〉q]

4. Server p repeats step 2 until it receives the update response messages from a

quorum of servers. p then invokes threshold sign(m, E), where m is (R, done)

and E is the set of update response messages collected from a quorum of servers,

thereby obtaining 〈R, done〉k.

5. Server p sends the following response to client c:

[p −→ c : 〈R, done〉k]
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