CS 671 Automated Reasoning

Extending Nuprl's Type Theory

- 1. Design Decisions for Nuprl's Type Theory
- 2. Product, Union, and List Types
- 3. The Curry-Howard Isomorphism, formally
- 4. Empty and Unit Types

Design Decisions for Nuprl's Type Theory

• Syntax:

- Expressions will be represented in a uniform term syntax
- Term display is independent of the internal syntax

• Semantics:

- Semantics models proof, not denotation
- Semantics is based on judgments and lazy evaluation of noncanonical terms
- Judgments concern typehood, type equality, membership, and typed equality

• Proof Theory:

- Proofs proceed by applying sequent-style refinement rules
- A judgment "t is a member of T" is represented as T ext t
- Propositions are represented as types
 Basic propositions have Ax as only member
- Typehood is represented by a cumulative hierarchy of universes

See Appendix A of the Nuprl 5 manual for details

CARTESIAN PRODUCTS: BUILDING DATA STRUCTURES

Syntax:

Canonical: $S \times T$, $\langle e_1, e_2 \rangle$

Noncanonical: let $\langle x, y \rangle = e$ in u

Evaluation:

$$e \downarrow \langle e_1, e_2 \rangle \qquad u[e_1, e_2 / x, y] \downarrow val$$

$$\text{let } \langle x, y \rangle = e \text{ in } u \downarrow val$$

Semantics:

 $\cdot S \times T$ is a type if S and T are

 $\cdot \langle e_1, e_2 \rangle = \langle e_1', e_2' \rangle$ in $S \times T$ if $S \times T$ type, $e_1 = e_1'$ in S, and $e_2 = e_2'$ in T

Library Concepts: e.1, e.2

See Appendix A.3.2 and the library theory core_2 for further details

LISTS: BASIC DATA CONTAINERS

Syntax:

Canonical: $T \text{ list}, [], e_1 :: e_2$

Noncanonical: $list_ind(e; base; x, l, f_{xl}.up)$

Evaluation:

```
\begin{array}{c} e\downarrow \ [\ ] \\ \hline \text{list\_ind}(e; base; x, l, f_{xl}.up)\downarrow val \\ \\ e\downarrow e_1\!\!::\!e_2 \\ \hline \\ up[e_1, e_2 \text{ list\_ind}(e_2; base; x, 1, f_{x1}.up) / x, , l, f_{xl}]\downarrow val \\ \\ \hline \\ \text{list\_ind}(e; base; x, l, f_{xl}.up)\downarrow val \end{array}
```

Semantics:

- $\cdot T$ list is a type if T is
- \cdot [] = [] in T list if T list is a type
- $e_1: e_2 = e_1' : e_2'$ in T list if T list type, $e_1 = e_1'$ in T, and $e_2 = e_2'$ in T list

Library Concepts:

```
hd(e), tl(e), e_1@e_2 length(e), map(f;e), rev(e), e[i], e[i..j^-], ...
```

See Appendix A.3.10 and the library theory list_1 for further details

DISJOINT UNION: CASE DISTINCTIONS

Syntax:

Canonical: S+T, inl(e), inr(e)

Noncanonical: case e of $\operatorname{inl}(x) \mapsto u \mid \operatorname{inr}(y) \mapsto v$

Evaluation:

$$e \downarrow \mathsf{inl}(e') \qquad \qquad u[e' \ / \ x] \downarrow val$$
 case e of $\mathsf{inl}(x) \mapsto u \mid \mathsf{inr}(y) \mapsto v \downarrow val$
$$e \downarrow \mathsf{inr}(e') \qquad \qquad v[e' \ / \ y] \downarrow val$$
 case e of $\mathsf{inl}(x) \mapsto u \mid \mathsf{inr}(y) \mapsto v \downarrow val$

Semantics:

- $\cdot S + T$ is a type if S and T are
- \cdot inl(e) = inl(e') in S+T if S+T type, e = e' in S
- \cdot inr(e) = inr(e') in S+T if S+T type, e=e' in T

Library Concepts: —

See Appendix A.3.3 for further details

The Curry-Howard Isomorphism, formally

Proposition		\mathbf{Type}
$P \wedge Q$	=	$P{ imes}Q$
$P \lor Q$	=	$P{+}Q$
$P \Rightarrow Q$	=	$P{ ightarrow}Q$
$\neg P$	=	$oldsymbol{P}{ ightarrow}{\sf void}$
$\exists x\!:\!T.P[x]$	=	$oldsymbol{x}\!:\!T\! imes\!P[x]$
$orall x\!:\!T.P[x]$	=	$x\!:\!T{ ightarrow}P[x]$

Need an empty type to represent "falsehood" Need dependent types to represent quantifiers

See the library theory core_1 for further details

EMPTY TYPE void

Syntax:

Canonical: void – no canonical elements –

Noncanonical: any(e)

Evaluation: - no reduction rules -

Semantics:

- · void is a type
- $\cdot e = e'$ in void $never\ holds$

Library Concepts: —

See Appendix A.3.6 and Section 3 of the 1993 CS611 notes for further details

Warning: rules for void allows proving semantical nonsense like

 $x: void \vdash 0=1 \in 2$ or $\vdash void \rightarrow 2$ type

Unit: ONE ELEMENT TYPE

Syntax:

Canonical: Unit, Ax

Noncanonical: - no noncanonical expressions -

Evaluation: - no reduction rules -

Semantics:

- · Unit is a type
- $\cdot Ax = Ax \text{ in Unit}$

Library Concepts: —

Defined type in Nuprl, see the library theory core_1 for further details