
Guiding Program Development Systems
by a Connection Based Proof Strategy

Christoph Kreitz Jens Otten Stephan Schmitt

Fachgebiet Intellektik, Fachbereich Informatik
Technische Hochschule Darmstadt

Alexanderstr. 10, 64283 Darmstadt, Germany
{kreitz,jeotten,steph}@intellektik.informatik.th-darmstadt.de

M. Proietti, ed., 5th International Workshop on Logic Program Synthesis and Transformation
(LoPSTR’95), LNCS 1048, pp. 137–151, c©Springer Verlag, 1996.

Abstract. We present an automated proof method for constructive logic
based on Wallen’s matrix characterization for intuitionistic validity. The proof
search strategy extends Bibel’s connection method for classical predicate logic.
It generates a matrix proof which will then be transformed into a proof within
a standard sequent calculus. Thus we can use an efficient proof method to
guide the development of constructive proofs in interactive proof/program
development systems.

1 Introduction

According to the proofs-as-programs paradigm of program synthesis the development
of verifiably correct software is strongly related to proving theorems about the satis-
fiability of a given specification. If such a theorem is proven in a constructive manner
then the proof construction implicitly contains an algorithm which is guaranteed to
solve the specified problem. In contrast to ‘deductive’ synthesis for which classical
proof methods are sufficient, however, synthesis techniques based on this paradigm
have rely on constructive logics for their adequacy. Therefore computer systems which
support the development of constructive proofs and the extraction of programs from
proofs are very important for program synthesis.

Such systems (e.g. NuPRL [6], Oyster [5], Isabelle [14], LEGO [15]) are usually de-
signed as interactive proof editors supported by a tactic mechanism for programming
proofs on the meta-level. Most of them are based on a very expressive constructive
theory. To allow a proper interaction between the system and its users this theory is
usually formulated as natural deduction or sequent calculus and includes a calculus
for predicate logic similar to Gentzen’s [8] calculi for intuitionistic logic. It has been
demonstrated that these systems can be used quite successfully, if properly guided,
but the degree of automatic support is very weak. A user often has to deal with
subproblems which appear trivial to him since they depend solely on predicate logic.
A formal proof, however, turns out to be rather tedious since existing tactics dealing
with predicate logic are far from being complete.

On the other hand, theorem provers like Setheo [9], Otter [20], or KoMeT [2] have
demonstrated that formal reasoning in classical predicate logic can be automated
sufficiently well. It would therefore be desirable to integrate techniques from auto-
mated theorem proving into already existing program synthesis tools. This would not
only liberate the users of a proof development system from having to solve problems
from first order logic by hand but would also make it possible to generate simple
(non-recursive) algorithms fully automatically.

Two problems have to be solved for this purpose. Firstly, since a constructive proof
contains much more information than a classical one many of the well known classical
normal forms and equivalences are not valid constructively. Despite of the success in
the classical case there is not yet an efficient proof procedure for constructive logics
and therefore the existing classical proof methods need to be extended. Secondly, we
have to take into account that efficient proof search must be based on some internal
characterization of validity which avoids the usual redundancies contained in natural
deduction and sequent proofs while for the sake of comprehensibility (and for an
extraction of programs in the usual fashion) the proof representation must be based
on the formal calculus underlying the program development system. This makes it
necessary to convert the internal representation of proofs into a more natural one.

We have developed a complete proof procedure for constructive first-order logic
and a technique for integrating it into a program development system based on a
sequent calculus. As a starting point we have used a proof procedure called the
connection method [3, 4] which has successfully been realized in theorem provers for
classical predicate logic like Setheo [9] and KoMeT [2]. It is based on a characteri-
zation for the classical validity of logical formulae which recently has been extended
by Wallen [19] into a matrix characterization of intuitionistic validity. We have con-
siderably extended the connection method according to this characterization and
developed a method for converting matrix proofs into sequent proofs. The combined
procedure, whose structure is depicted in figure 1, is currently being implemented
as a proof tactic of the NuPRL proof development system [6] and will thus sup-
port the efficient construction of proofs and verified routine programs within a rich
constructive theory. It proceeds in three steps.

NuPRL Sequent

LJ (+ . . .)

Formula tree
position-labels,
polarities, ...

Matrix Proof
MJ

(Wallen)

Sequent proof
LJNS

(Fitting’s calculus)

Sequent proof
LJ ?

(extended LJ)

NuPRL proof

LJ

???

T
A
C
T
I
C

--Preprocessing

R

µ
Extended

Connection Method

?

Conversion
MJ 7→LJNS

(no search)

¾¾Simulation LJNS 7→LJ ?

(no search)
-¾

Embedding

(no search)

-¾

Fig. 1. Structure of the combined proof procedure

1. In a preprocessing step a NuPRL sequent will be converted into a formula tree
augmented by information (such as polarities, position labels and type-labels)
which will be helpful for guiding the proof search.

138

2. In the second step we use our extended connection method to search for a proof
according to Wallen’s matrix characterization. While originally we were interested
only in constructing a matrix proof which should be translated into a sequent
proof afterwards our investigations have shown that it is helpful to exploit the
close relation between a matrix proof and a proof in Fitting’s [7] sequent calculus
LJNS

1 and to consider the structure of the corresponding sequent proof already
during the proof search and design our proof procedure as a hybrid method
combining the connection method with the sequent calculus. The result of our
proof search procedure will be a matrix proof which can already be considered
as the skeleton of an LJNS-proof.

3. In the final step the information gained during proof search will be used to con-
struct a standard sequent proof which is valid in NuPRL. Since our proof search
already yields the structure of a sequent proof in LJNS we are liberated from
having to convert a matrix proof (MJ) into an LJNS-proof. Nevertheless the
proof still needs to be converted since Fitting’s non-standard sequent calculus
LJNS is more complex than the standard Gentzen-like calculus LJ used in pro-
gram development systems. For reasons which we shall discuss in section 4 our
proof transformation will proceed in two smaller steps which do not involve any
additional search.

In the rest of this paper we shall describe the essential components of our proce-
dure. After explaining how to construct the augmented formula tree in section 2 we
shall elaborate the extended connection method in section 3. In section 4 we shall
then discuss the procedure for constructing a standard sequent proof acceptable for
the NuPRL System. We conclude with a few remarks on implementation issues and
future investigations.

2 Constructing the Augmented Formula Tree

In the first step of our procedure a given sequent has to be converted into a formula
tree which then can be investigated by the proof search method. Except for dealing
with a few peculiarities of NuPRL2 this is can be done by a standard procedure
which collects the assumptions (antecedent) of a sequent on the left hand side of an
implication whose right hand side is the sequent’s conclusion (succedent) and adds
universal quantifiers for all the free variables. Constructing a tree representation
of the resulting formula again uses a standard technique. As an example, figure 2
presents the formula tree of the formula

F ≡ (S ∧ (¬(T⇒R) ⇒P)) ⇒ (¬((P⇒Q) ∧ (T⇒R)) ⇒ (S ∧ ¬¬P))
which we shall later use as a running example for our proof procedure.

In this tree each node represents a sub-term of the given formula and is marked
by its major logical connective. In addition to that it is associated with a polarity,
a position label, and a type label. These informations are necessary for guiding the
proof search and can be computed while constructing the formula tree.
1 When developing his matrix characterization for intuitionistic validity Wallen [19] has

used Fitting’s formulation of the sequent calculus as theoretical framework to prove his
characterization theorems.

2 Some of the assumptions declare the type of certain variables or the wellformedness of
certain expressions and may simply be ignored.

139

⇒0

y :∧1

k 3
S1 ⇒1

I µ
P 1¬0

I
⇒1

K ¸
T 0 R1

⇒0

k 3
¬1

I
∧0

I µ
⇒0

K ¸
P 1 Q0

⇒0

K ¸
T 1 R0

∧0

I µ
S0 ¬0

Á
¬1

¸
P 0

a0

A1 A2

β1
a3

A4

β2
a5 A6

A7

a8

A9

β3
a10

A11 a12

a13

A14 a15

β4
a16 a17

A18

a19

Fig. 2. Formula tree with polarities, positions, and type labels

– The polarity (0 or 1) of a node indicates whether the corresponding sub-formula
would occur negated (1) in a normal form of the given formula or not (0). The
polarity of the root is 0 and the polarity of other nodes is determined recursively
by the polarity and the connective of their parents. In figure 2 the polarity of
each node occurs on top of its connective.
Pairs of atomic formulae with the same predicate symbol but different polarities
(so-called connections) correspond to the axioms in a sequent proof and are a
key notion in the matrix characterization of validity.

– While polarities are important for both classical and intuitionistic proof methods
the position labels (positions) are necessary only for constructive reasoning. They
encode the fact that in intuitionistic sequent calculi the order of rule applications
cannot be permuted as easily as in classical logic. Special nodes (⇒ 0, ∀0, ¬0,
and atoms with polarity 0) correspond to rules which – when being used in a
top-down fashion in order to reduce the node – will delete formulae from the
actual sequent. In a proof these rules have to be applied as late as possible.
By analyzing the sequence of positions on the paths from the root to two con-
nected atomic formulae (the prefixes of the formulae) one can determine whether
the two atoms can form an axiom which closes some subproof and in which order
the corresponding rules need to be applied in order to construct this subproof.
Technically this is done by assigning constants (position labels with small letters)
to the special nodes and variables to the others. By trying to unify the prefixes
of two connected atoms one may then check whether both atoms can be reached
by a sequence of rule applications at the same time. In figure 2 we have assigned
positions to nodes containing a negation, implication, universal quantifier, or an
atom. All other nodes are not significant for building prefixes.

– Type labels3 express a property of sequent rules which is important mostly during
proof search. Nodes of type β (i.e. ∧ 0, ∨ 1, and ⇒ 1) are particularly important
since the corresponding rules would cause a proof to branch into two indepen-
dent subproofs. In order to complete the proof each of these subproofs (encoded
by a path) must be closed with an axiom (i.e. a connection). Thus investigating
β-branches not yet closed will help identifying those connections which will con-
tribute to a progress in the remaining proof search. In figure 2 we have marked
β-nodes by circles and labels β1, . . . β4. Nodes of other types remain unmarked.

3 The assignment of types to nodes follows the laws of the tableaux calculus [1].

140

3 The Connection Method for Constructive Logics

After constructing the augmented formula tree a proof search will focus on ‘connec-
tions’ between atomic formulae which can be shown to be ‘complementary’. According
to the characterization of validity all ‘paths’ through the formula tree must contain
such a connection. In our procedure the set of all paths (within a subproof under
consideration) which are not yet investigated will be encoded by the ‘active path’.
This will help to guide the search efficiently. Before describing our procedure in detail
we shall briefly explain the notions of connections, paths, and complementarity and
resume Wallen’s matrix characterization for intuitionistic validity.

3.1 A Matrix Characterization for Intuitionistic Validity

In propositional classical logic a formula F is valid if there is a spanning set of con-
nections for F . A connection is a pair of atomic formulae with the same predicate
symbol but different polarities such as P 1 and P 0. A set of connections spans a
formula F if every path through F 4 contains at least one connection. This charac-
terization also applies to predicate logic if the connected formulae can be shown to
be complementary , i.e. if all the terms contained in connected formulae can be made
identical by some (first-order/quantifier) substitution σQ.

In sequent calculi like Gentzen’s LK and LJ [8] or Fitting’s calculi [7] the differ-
ence between classical and intuitionistic reasoning is expressed by certain restrictions
on the intuitionistic rules. If rules are applied in a top down fashion these restrictions
cause formulae to be deleted from a sequent. Applying a rule (i.e. reducing a sub-
formula) too early may delete a formula which later will be necessary to complete the
proof. Because of this non-permutability of rules in intuitionistic sequent calculi the
order of rule applications must be arranged appropriately. In Wallen’s matrix char-
acterization this requirement is expressed by an intuitionistic substitution σJ which
makes the prefixes of connected atoms identical. A prefix of a node A consists of the
sequence of position labels on the path from the root to A and encodes the sequence
of rules which have to be applied in order to isolate the sub-formula described by A.
The prefix of the atom R0 in figure 2, for instance, is a0a8A9a13a15.

Both the first-order and the intuitionistic substitution can be computed by unifica-
tion algorithms (see section 3.3) and put restrictions on the order of rule-applications
(see [19] or [11]). σJ(B) = b1...bn for instance, means that all the special positions
b1...bn must have been reduced before position B and after its predecessor. Other-
wise certain sub-formulae which are necessary assumptions for applying the sequent
rule corresponding to B would not be available. Similarly σQ(x) = t requires all the
Eigenvariables of t to be introduced by some rule before the quantifier corresponding
to x can be reduced. Together with the ordering of the formula tree the combined
substitution σ := (σQ, σJ) determines the ordering ¢ in which a given formula F has
to be reduced by the rules of the sequent calculus. This ordering must be acyclic since
otherwise no proof for F can be given. If ¢ is acyclic then σ is called admissible.

During the proof search it may become necessary to create multiple instances
of the same sub-formula. The number of copies generated to complete the proof is
4 A path through F is a subset of the atoms of F which corresponds to a horizontal path

through the (nested) matrix representation of F . See [19, p. 215] for a complete definition.

141

called multiplicity µ. Again, a multiplicity may be due to a quantifier or specific to
intuitionistic reasoning. Altogether, the following theorem has been proven in [19].

Theorem 1 (Matrix characterization of intuitionistic validity).
A formula F is intuitionistically valid if and only if there is
– a multiplicity µ,
– an admissible combined substitution σ := (σQ, σJ),
– a set of connections which are complementary under σ

such that every path through the formula F contains a connection from this set.

3.2 Connection Based Proof Search

In Bibel’s classical connection method [3, 4] the search for a matrix proof of a given
formula proceeds by considering connections between atomic formulae whose sub-
terms can be unified. The selection of appropriate connections is guided by the active
path and the set of open goals. Developing a procedure which constructs intuitionistic
proofs on the basis of theorem 1 means extending the key concepts for guiding the
search procedure accordingly. This allows a formulation of our procedure which is
similar to the one of the classical connection method operating on logical formulae
in non-normal form.

Our investigations have shown that during the proof search one should not only
consider paths and connections but also the branching structure of the correspond-
ing (partial) sequent proof. This structure provides valuable informations about the
reduction ordering ¢ to be constructed and helps selecting appropriate connections
guiding the search process. Furthermore, it allows to consider local substitutions (see
[11, section 5]) instead of global ones, i.e. substitutions which can be applied inde-
pendently within sub-proofs of a sequent proof. Such a local view reduces the number
of copies of sub-formulae which have to be generated to find a (global) substitution
and keeps the search space and the proof size smaller. Since it also simplifies the con-
version of the ‘abstract proof’ into a humanly comprehensible sequent proof we have
designed our proof search procedure as a hybrid method which generates a matrix
proof and the structure of the corresponding sequent proof simultaneously.
We shall now describe our search strategy by developing a proof for the formula

F ≡ (S ∧ (¬(T⇒R) ⇒P)) ⇒ (¬((P⇒Q) ∧ (T⇒R)) ⇒ (S ∧ ¬¬P))
whose formula tree has already been presented in figure 2. To simplify our illustration
we shall from now on display only a skeleton of this tree in which only positions
with type label β, branches rooted at such a β-position (i.e. a,b,...,h – also called
β-branches), and atomic formulae are marked.

y :
I µ
S1 β1

I ¸
P 1β2

K ¸
T 0 R1

k 3
β3

I µ

K ¸
P 1 Q0

K ¸
T 1 R0

β4

K ¸
S0 P 0

a b

c d

e f g h

142

Our search procedure will consider connections between atomic formulae whose
sub-terms and prefixes can be unified and build the skeleton of a sequent proof whose
nodes and branches are labeled similarly to the formula tree. The search is guided
by the active β-path and the set of open subgoals in the partial sequent proof. These
notions extend the original concepts mentioned above and are roughly defined as
follows (see [13] for precise definitions).

Definition 1.

1. The β-prefix of an atom A is the set of all (labels of) β-branches that dominate
A in the formula tree.

2. The active β-path Pβ for a branch u in the sequent proof is the set of labels of
branches on the path between u and the root of the proof tree.

3. The active path P for a branch u of the proof tree is the set of atoms whose
β-prefix is a subset of Pβ(u).5

4. The set of open subgoals Cβ is the set of open branches in the sequent proof
structure (i.e. branches which are not closed by an axiom).

To prove F we begin by selecting an arbitrary atomic formula, say P 1, in branch
’e’ of the formula tree and connect it with the atom P 0 in the ’h’-branch. This means
that in a sequent proof we have to reduce two β-positions, namely β3 and β4. Unifying
the prefixes of P 1 and P 0 (see section 3.3) of the two atoms leads to the substitution
σJ ≡ {A9\a17B, A18\Ba10C, A11\Ca19} where B and C are new variables. Within
an intuitionistic sequent proof the node marked by a17 must therefore be reduced
before A9, a10 before A18, and a19 before A11. Furthermore β4 must be reduced
before a17 and A9 before β3 according to the ordering of the formula tree in figure
2. Thus σJ induces the reduction ordering β4 ¢ β3 and we have to split into the
branches ’g’ and ’h’ (corresponding to β4) before we split the ’h’-branch into ’e’ and
’f’ (corresponding to β3). This closes the ’e’-branch in the sequent proof as shown in
figure 3.

y :
I µ
S1

β1

I ¸
P 1

β2

K ¸
T 0 R1

k 3
β3

I µ

K ¸
P 1 Q0

K ¸
T 1 R0

β4

K ¸
S0 P 0

a b

c d

e f g h

g hβ4

(S1 ` S0) β3

(P 1 ` P 0)

e f

?

Fig. 3. The first and second proof step

In the next step we choose the ’g’-branch from the set Cβ = {g, f} of open subgoals.
The active β-path Pβ = {g} for ’g’ induces an active path P = {S1, S0}. The only
atom S0 in the ’g’-branch of the formula tree can therefore be connected to S1 in
the active path without further reductions of β-nodes. The unification of the prefixes
of S1 and S0 consists of a simple matching which extends σJ by {A1\a8a16}. This
closes branch ’g’ in the sequent proof.
5 P is thus the set of atoms (in the formula tree) which can be reached from the root or

any position corresponding to a element of Pβ(u) without passing through a β-position.

143

The only open branch is now the ’f’-branch (Cβ = {f}). In the formula tree this
branch contains the two atoms R0 and T 1. We select R0 and connect it with R1 in
branch ‘d‘ of the formula tree. In the active path P = {S1, P 0, R0, T 1} for ’f’ (Pβ =
{h,f}) this atom is not yet included. Thus we have to reduce β1 which splits the proof
into ’a’ and ’b’ and β2 which splits the ’a’-branch into ’c’ and ’d’. The unification of
the prefixes of R0 and R1 extends σJ by {A2\a8a17D, B\Da3E, A4\Ea13a15, A6\ε}.
Together with the tree ordering (β4 < a17, β1 = A2 < a3, A9 < β3 < a13, A4 = β2)
it induces the reduction ordering β4 ¢ β1 ¢ β3 ¢ β2. Therefore we have to insert the
β-split into ’a’ and ’b’ between the reduction of β4 and β3 (leaving the rest of the
partial sequent proof unchanged), split into the branches ’c’ and ’d’ after reducing
β3, and close the ’d’-branch by the axiom R1 ` R0. The result is shown in figure 4.

y :
I µ
S1

β1

I ¸
P 1

β2

K ¸
T 0 R1

k 3
β3

I µ

K ¸
P 1 Q0

K ¸
T 1 R0

β4

K ¸
S0 P 0

a b

c d

e f g h

β4g h

• β1a b

?β3

•
e f

β2c d

? (R1 ` R0)

Fig. 4. The third proof step

After the third step the two branches ’b’ and ’c’ remain open (Cβ = {b, c}). The
active β-paths for ’b’ (Pβ= {h, b}) and for ’c’ (Pβ= {h,a,f,c}) induce active paths P =
{S1, P 0, P 1} and P = {S1, P 0, T 1, R0, T 0} respectively. To close these branches we
connect P 1 in the ’b’-branch of the formula tree to P 0 in the active path for ’b’ and T 0

in the ’c’-branch to T 1 in the active path for ’c’. Again the unification of the prefixes
consists of a simple matching. It extends σJ by {A7\a3Ea10Ca19, A14\a15a5} which
shows that now every branch in the sequent proof can be closed.

y :
I µ
S1

β1

I ¸
P 1

β2

K ¸
T 0 R1

k 3
β3

I µ

K ¸
P 1 Q0

K ¸
T 1 R0

β4

K ¸
S0 P 0

a b

c d

e f g h

β4g h

• β1a b

(P 1 ` P 0)β3

•
e f

β2c d

(T 1 ` T 0) •

Fig. 5. The fourth and fifth proof step

This concludes the intuitionistic proof for F . All the paths through F contain a
connection which is complementary under σJ . Furthermore, a complete sequent proof
can easily be constructed from the proof skeleton obtained in the process since the
order in which all the other nodes have to be reduced is determined by the reduction
ordering induced by σJ and the ordering of the formula tree for F . The resulting
sequent proof is presented in figure 6.

A full description of the complete proof search strategy for first-order intuitionistic
logic which we just have illustrated is rather complex and shall therefore not be
presented in this paper. Details can be found in [13].

144

g h

•
•
•
•

•
•

⇒ -intro (a0)

⇒ -intro (a8)

∧ -elim (unmarked)

∧ -intro (β4)

¬-intro (a17)

axiom (A1, a16): S1 ` S0

•⇒ -elim (β1)
•
• •
¬-intro (a3)

¬-elim (A9) ¬-elim (A18)

a b

•
axiom (A7, a19): P 1 ` P 0

•∧ -intro (β3)

•
axiom (A11, a19): P 1 ` P 0

•
• •
⇒ -intro (a10)

¬-elim (A18) ⇒ -intro (a13)

e f

•⇒ -elim (β2)c d

• •
axiom (A14, a5): T 1 ` T 0 axiom (A6, a15): R1 ` R0

Fig. 6. Complete representation of the resulting sequent proof

3.3 Prefix-Unification

The efficiency of the proof search procedure described above strongly depends on
the efficiency of the unification algorithms computing both the first-order and in-
tuitionistic substitutions. While the first-order substitution σQ can be computed by
well-known efficient unification algorithms we had to develop a specialized string-
unification procedure for computing the intuitionistic substitution σJ .

In general string-unification is very complicated and no efficient algorithm could
be given so far. Fortunately, however, we do not have to unify arbitrary strings but
only strings corresponding to the prefixes of two connected atoms. This enables us
to put certain restrictions on the pairs of strings which have to be unified.
1. Since the prefix of a node is the sequences of position labels on the path from

the root to the node we know that a position label (i.e. either a variable or a
constant character) occurs at most once in the prefix string. Thus we only have
to consider strings without duplicates.

2. Secondly prefixes correspond to branches in a formula tree. Therefore in two pre-
fixes equal position labels can occur only at the beginning . Once the two prefixes
diverge the remaining substrings are completely disjoint.

These two restrictions will cause prefix-unification to be much simpler than general
string unification. We may simply skip common substrings at the beginning of the
two prefixes and know that the remaining substrings will not have any variables in
common. Prefix-unification can be realized as an extension of bidirectional matching
where variables of one string will be matched against substrings of the other and, if
necessary, vice versa.

Using bidirectional matching we can already compute a unifier for the prefixes
of P 0 (a0a8a17A18a19) and P 1 (a0a8A9a10A11) in the first step of our proof search.
A9 can be instantiated by a17, A18 by a10, and A11 by a19. In most cases, how-
ever, unification will be more complex. The prefix a0A2A7 of the atom P 1 in the
‘b‘-branch, for instance, contains two adjoint variables. There are several possibilities
for unifying it with the prefix of P 0: the variable A2 may be instantiated with ei-
ther ε, a8, a8a17, a8a17A18, or a8a17A18a19 and A7 will receive values correspondingly.
Thus in general there will be more than one unifier for each pair of prefix-strings.

145

Furthermore we have to consider the fact that during proof search our unification
procedure will be called several times and may yield different strings to be assigned
to a given variable. The variable A9, for instance will receive a value both by uni-
fying the prefixes of P 0 and P 1 in the first step and by unifying the prefixes of R0

and R1 in the third. Therefore we should make sure that the strings assigned to
a variable by our unification procedure are not already too specific since otherwise
we will run into contradictions. The prefixes of P 0 and P 1 could also be unified by
σJ = {A18\a3a10, A9\a17, A11\a19} which is much more compatible with the unifier
required for the prefixes of R0 and R1. The unification algorithm should therefore
create only the most general unifiers of two prefixes and thus leave room for spe-
cializations in the following steps of our proof search. A most general unifier (short
mgu) takes into account that the strings assigned to variables within the two prefixes
may overlap. In the case of P 0 and P 1 it would have to express that the end of (the
string assigned to) A9 may overlap with the beginning of A18 and that the end of
A18 may overlap with the beginning of A11. The only fixed information is that A9

must begin with a17, A11 must end with a19, and A18 must contain a10. All these
informations can be encoded by introducing two new variables B and C and setting
the most general unifier to {A18\Ba10C, A9\a17B, A11\Ca19}.

Taking the above considerations into account our prefix-unification algorithm
tries to compute the most general descriptions of all the possibilities for overlapping
two prefix strings. We shall now describe this algorithm by an example unification
of the prefixes a0A2a3A4A6 of R1 and a0a8A9a13a15 of R0 (which is the same as
a0a8a17Ba13a15 because of the earlier assignment {A9\a17B}).

Our procedure starts by writing down the string a0A2a3A4A6 in a way such that
constants will receive a small slot (one character) and variables will receive slots of
variable size (it suffices to reserve a slot of the size of the second string). In the rows
below we write down the second string such that (except for the common substring
a0) each constant occurs in the range of a variable while the range of variables
(e.g. B) may be stretched arbitrarily to make this possible. In the first row we begin
by stretching the variables as little as possible. Below we will then systematically
enumerate all the possibilities for extending the range of one or more variables.
The most general unifier can then easily be computed: the assignment of constants
is obvious and new variables will have to be generated if two variables overlap. For
unifying the prefixes if R1 and R0 the most general unifiers are constructed according
to the following diagram.

a0 A2 a3 A4 | A6 σJ

a0 a8 a17 B a13 a15 ε {A2\a8a17D, B\Da3E, A4\Ea13a15, A6\ε}
a0 a8 a17 B a13 a15 {A2\a8a17D, B\Da3E, A4\Ea13, A6\a15}
a0 a8 a17 B a13 a15 {A2\a8a17D, B\Da3A4F, A6\Fa13a15}

The simple procedure illustrated above does in fact compute all the most general
unifiers for two prefix-strings in a way which is considerably more efficient than the
one presented in [10]. Among other advantages it generates unifiers step by step
instead of computing them all at once.6 Since it will seldomly be the case that we

6 There may be up to 1
2

(2n)!

(n!)2
∈O(22n

√
n

) mgu’s where n is the depth of the formula tree.

146

will have to check all possible unifiers during a proof search7 it leads to a very efficient
proof search procedure. A complete description of the unification algorithm and its
properties can be found in [12, 13].

4 Conversion into Standard Sequent Proofs

While the connection method is very efficient for finding proofs according to the
matrix characterization of validity its results cannot directly be used for the con-
struction of programs from the proof. Therefore it is necessary to convert matrix
proofs back into sequent proofs which are closer to ’natural’ mathematical reasoning.
This is comparably easy for classical propositional logic but becomes rather diffi-
cult for predicate or intuitionistic logic (see e.g. [16, section 3]) since the reduction
ordering ¢ induced by σQ and σJ has to be taken into account.

Fortunately, our proof search procedure described in the previous section already
constructs a sequent proof in Fitting’s [7] non-standard sequent calculus LJNS .
In contrast to standard sequent calculi like Gentzen’s LJ [8] which are used in
program development systems it allows the occurrence of more than one formula
in the succedent of a sequent. Thus for integrating our procedure into an program
development system we only have to convert this LJNS–proof into a proof within a
standard sequent calculus.

To understand the differences between these calculi consider the rules shown on
the left half of figure 7 where Γ and ∆ are sets of formulae. When using the two calculi
in an analytic manner (i.e. reading the rules from the conclusion to the premises) the
different treatment of succedents results in different non-permutabilities of the rules
in a sequent proof. The ¬–elim rule in LJ , for instance, would cause a deletion of
the actual succedent formula C and a standard proof could not be finished if C is still
relevant. The application of the corresponding LJNS–rule, however, does not cause
any problems. On the other hand the ¬–intro rule could stop LJNS–proofs because
relevant succedent formulae ∆ which are not involved in the reduction itself would
be deleted. The corresponding rule in the standard calculus is not dangerous in this
sense and does not cause any non-permutabilities in the LJ–proofs.

LJ: LJNS : LJ ?:

Γ,¬A ` A

Γ,¬A ` C
¬–elim

Γ,¬A ` A, ∆

Γ,¬A ` ∆
¬–elim

Γ,¬A ` A ∨∆S

Γ,¬A ` ∆S
¬(∨)–elim

Γ, A `
Γ ` ¬A

¬–intro
Γ, A `

Γ ` ¬A, ∆
¬–intro

Γ, A `
Γ ` ¬A

¬–intro

Γ ` ¬A ∨∆S
∨–intro 1

Fig. 7. Example rules of LJ and LJNS and the simulation of LJNS-rules in LJ ?.

In [17, chapter 2] we have shown that because of the strong differences between
the rules of the calculi LJNS and LJ it is not possible to transform every LJNS–
proof into a corresponding LJ–proof without changing the structural information
contained in the proof. Thus a transformation of LJNS–proofs into standard sequent
proofs would require an additional search process. To solve this problem we have
7 This will only be necessary if unification fails in some later step of the proof search.

147

extended Gentzen’s calculus LJ into an extended standard sequent calculus LJ ?

which is compatible with LJNS . This calculus essentially simulates a set of formulae
in the succedent by a disjunction of these formulae and thus uses only sequents
containing at most one succedent formula. On the other hand it is a simple extension
of LJ since it requires only a few rules in addition to those of the calculus LJ. For
example the LJNS–rule ¬–elim (figure 7) will be simulated by such a new rule ¬(∨)–
elim in the calculus LJ ? (where ∆S is the disjunction of the elements contained in
∆). The simulation of the ¬–intro rule of LJNS does not require new rules since it
can be expressed by existing LJ–rules as shown in figure 7. All additionally rules
which are required to extend LJ are summarized in figure 8. The only structural
rule ∨–change Ai ensures that it is sufficient to reduce only the leftmost formula of
the succedent disjunction ∆S . For detailed presentation of the development of these
rules and its correctness we refer again to [17].

Γ ` Ai ∨ (∆S \\Ai)

Γ ` ∆S
∨–change Ai

Γ,¬A ` A ∨ (∆S)

Γ,¬A ` ∆S
¬(∨)–elim

Γ, A⇒B ` A ∨ (∆S) Γ, B ` ∆S

Γ, A⇒B ` ∆S
⇒ (∨)–elim

Γ ` A ∨ (∆S) Γ ` B ∨ (∆S)

Γ ` (A ∧ B) ∨ (∆S)
∧(∨)–intro

Γ ` A ∨ (B ∨ (∆S))

Γ ` (A ∨ B) ∨ (∆S)
∨(∨)–intro

Γ ` A[x/t] ∨ ∃x.A

Γ ` ∃x.A
∃(∨)∗–intro t

Γ ` A[x/t] ∨ ((∃x.A) ∨ (∆S))

Γ ` (∃x.A) ∨ (∆S)
∃(∨)–intro t

Fig. 8. The additionally required rules of LJ ?

Using the complete rule set of LJ ? and the rule mapping procedure guiding the
application of these rules (depending on the actual succedent of the LJNS–proof)
the non–permutabilities of each non–standard proof could be simulated exactly in an
LJ ?–proof. Figure 9 shows an informal presentation of the transformation procedure.
Its input is an LJNS–proof of a given formula which is represented as a list of
LJNS rules.8 From the output of the procedure we obtain a corresponding LJ ?–
proof, i.e. a list of LJ ? rules. The proof structure (by which we mean the multi-set
of axiom formulae) will not be violated by such a transformation.

Consider, for instance, the following application of the ⇒ –elim rule in LJNS :
∀x.A(x) ∨B(x) ` ∃y.A(y), ∃x.B(x) ∀x.A(x) ∨B(x), ∃z.¬A(z) ` ∃x.B(x)

∀x.A(x) ∨B(x), ∃y.A(y)⇒∃z.¬A(z) ` ∃x.B(x)

In the left subgoal two succedent formulae were generated. We have shown in [16] that
these two succedent formulae cannot be simulated within an LJ-proof. Consequently
we will have fundamental differences in the resulting proof structures. In contrast
to this, our transformation procedure transforms any complete LJNS–proof of the
above sequent into an LJ ?-proof while preserving the structure of the LJNS-proof
(i.e. using the same instances of the axiom formulae). Figure 10 gives an example of
such a proof generated by our procedure.
8 After branching into two independent subproofs the proof of “left” subgoal precedes the

proof of the “right” one in this list. So we can avoid a more complicated list structure for
representing the branching structure of the LJNS–proof.

148

function transform (LJNS-list, LJ ?-list)
let r the head of LJNS-list and t the tail of LJNS-list
let r′ the corresponding LJ–rule
if for the actual succedent 9|∆| = ∅ then

append [r′] to LJ ?-list
else

if for the actual succedent |∆| = 1 then append

l =

[op(∨)–elim], if r = op–elim, op ∈ {⇒ ,¬}
[∃(∨)∗–intro], if r = ∃–intro
[ε10], if r = ∨–intro
[r′], otherwise

to LJ ?-list
else

if for the actual succedent |∆| > 1 then append

l =

[op(∨)–elim], if r = op–elim, op ∈ {⇒ ,¬}
[∨–change11, op(∨)–intro], if r = op–intro, op ∈ {∃,∨,∧}
[∨–change,∨–intro1, r′], if r ∈ {⇒ –intro,¬–intro,∀–intro, axiom}
[r′], otherwise

to LJ ?-list
fi fi fi
if t 6= [] then call transform (t,LJ ?-list) else return LJ ?-list fi

call transform (LJNS-list, nil)

Fig. 9. The transformation procedure LJNS 7−→ LJ ? .

The concept of proof structure, the calculus LJ ?, and the transformation of
LJNS–proofs into LJ ?–proofs have been investigated in detail in [17, chapter 2].
Altogether we have proven the following properties.

Theorem 2.

1. The calculus LJ ? is a standard calculus which is sound and complete.
2. Each LJNS–proof can be represented in LJ ? in a structure-preserving way.
3. Each rule of LJ ? can be simulated by applying a fixed set of LJ–rules (including

the cut).

Using the proof of theorem 2 we have embedded the calculus LJ ? into the NuPRL
proof development system [6] by simulating its rules via proof tactics guiding the
application of LJ–rules. Furthermore we have implemented a procedure transforming
LJNS–proofs into LJ ?–proofs which is comparably simple (in contrast to the one
presented in [18]) and keeps the size of the resulting proof small. As a consequence
we can transform matrix proofs into standard sequent proofs without any additional
search and integrate our proof search method into larger environments for reasoning
about programming and many other kinds of applied mathematics.

9 ε denotes the empty rule which does not affect the actual sequent in the LJ ?–proof.
10 The application of the ∨–change rule additionally requires the formula which has to be

changed to the leftmost succedent position. This formula is uniquely determined by the
actual LJNS–rule r and has been omitted here for simplicity.

11 By this we mean the actual succedent ∆ in the LJNS–proof wrt. to the rule r.

149

A(a) ` A(a)

A(a) ` A(a) ∨ (∃y.A(y) ∨ ∃x.B(x))
∨–intro 1

A(a) ` ∃y.A(y) ∨ ∃x.B(x)
∃(∨)–intro a

Subgoal 1

A(a) ∨ B(a) ` ∃y.A(y) ∨ ∃x.B(x)
∨–elim

∀x.A(x) ∨ B(x) ` ∃y.A(y) ∨ ∃x.B(x)
∀–elim a

Subgoal 2

∀x.A(x) ∨ B(x), ∃y.A(y)⇒∃z.¬A(z) ` ∃x.B(x)
⇒ (∨)–elim

Subgoal 1:
B(a) ` B(a)

B(a) ` B(a) ∨ (∃x.B(x) ∨ ∃y.A(y))
∨–intro 1

B(a) ` ∃x.B(x) ∨ ∃y.A(y)
∃(∨)–intro a

B(a) ` ∃y.A(y) ∨ ∃x.B(x)
∨–change ∃x.B(x)

Subgoal 2:

A(a) ` A(a)

A(a) ` A(a) ∨ ∃x.B(x)
∨–intro 1

B(a) ` B(a)

B(a) ` B(a) ∨ (∃x.B(x) ∨ A(a))
∨–intro 1

B(a) ` ∃x.B(x) ∨ A(a)
∃(∨)–intro a

B(a) ` A(a) ∨ ∃x.B(x)
∨–change ∃x.B(x)

A(a) ∨ B(a) ` A(a) ∨ ∃x.B(x)
∨–elim

∀x.A(x) ∨ B(x) ` A(a) ∨ ∃x.B(x)
∀–elim a

∀x.A(x) ∨ B(x),¬A(a) ` ∃x.B(x)
¬(∨)–elim

∀x.A(x) ∨ B(x), ∃z.¬A(z) ` ∃x.B(x)
∃–elim a

Fig. 10. The resulting LJ ?–proof 12

5 Conclusion

We have developed an automated proof procedure for intuitionistic logic and a tech-
nique for integrating it into proof/program development systems based on the sequent
calculus. For this purpose we have extended Bibel’s connection method for classical
predicate logic [3, 4] into a procedure operating on formulae in non-normal form which
is complete for first-order intuitionistic logic and developed an efficient algorithm for
the unification of prefix-strings. Furthermore we have designed an extended standard
sequent calculus which makes it possible to convert the abstract proof into a proof
acceptable for the program development system without any additional search. Our
method is currently being realized as a tactic for solving subproblems from first-order
logic which arise during a program derivation.

Our work demonstrates that it is possible to make techniques from automated
theorem proving directly applicable to program synthesis. By an emphasis on connec-
tions and open branches in the proof structure the search space is drastically reduced
in comparison with methods based on natural deduction or sequent calculi while a
very compact proof representation avoids the notational redundancies contained in
them. Since we also construct the skeleton of a sequent proof already during the proof
search the transformation of the resulting ‘abstract proof’ into a humanly compre-
hensible sequent proof turns out to be comparably easy. Thus our proof-technology
combines the strengths of well-known proof search methods (i.e. completeness and
efficiency) with those of interactive, tactics supported proof development systems
(i.e. safety, flexibility, and expressivity of the underlying theory) and thus extends
the deductive power of these systems in a safe and efficient way.
12 For better overview we omit the axiom rules

150

Although we have based our implementation on the NuPRL proof development
system [6] our methodology can also be used to guide other systems based on natural
deduction or sequent calculi. Due to the similarity of intuitionistic logic and modal
logics it could also be extended to automate reasoning in these logics. Very likely the
same proof-technology will be, at least in principle, usable for some subset of linear
logic and calculi which describe formal methods in software engineering (although a
matrix-characterization for validity still has to be developed). Besides exploring these
possibilities our future work will focus on techniques for improving the efficiency of
the proof search like the preprocessing steps used in Setheo [9] and KoMeT [2] and the
use of typing information during unification. Furthermore we shall investigate how
inductive proof methods can be integrated into program synthesis systems by the
same technology. All these steps will help a user of a program development system
to focus on the key ideas in program design while being freed from having to deal
with all the formal details that ensure correctness.

References

1. E. W. Beth. The foundations of mathematics. North–Holland, 1959.
2. W. Bibel, S. Brüning, U. Egly, T. Rath. Komet. In Proceedings of the 12th CADE,

LNAI 814, pp. 783–787. Springer Verlag, 1994.
3. W. Bibel. On matrices with connections. Jour. of the ACM, 28, p. 633–645, 1981.
4. W. Bibel. Automated Theorem Proving. Vieweg Verlag, 1987.
5. A. Bundy, F. van Harmelen, C. Horn, A. Smaill. The Oyster-Clam system. In

Proceedings of the 10th CADE, LNCS 449, pp. 647–648. Springer Verlag, 1990.
6. R. L. Constable et. al. Implementing Mathematics with the NuPRL proof develop-

ment system. Prentice Hall, 1986.
7. M. C. Fitting. Intuitionistic logic, model theory and forcing. North–Holland, 1969.
8. G. Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift,

39:176–210, 405–431, 1935.
9. R. Letz, J. Schumann, S. Bayerl, W. Bibel. Setheo: A high-performance theorem

prover. Journal of Automated Reasoning, 8:183–212, 1992.
10. H. J. Ohlbach. A resolution calculus for modal logics. Ph.D. Thesis (SEKI Report

SR-88-08), Universität Kaiserslautern, 1988.
11. J. Otten, C. Kreitz. A connection based proof method for intuitionistic logic. In Pro-

ceedings of the 4th Workshop on Theorem Proving with Analytic Tableaux and Related
Methods, LNAI 918, pp. 122–137, Springer Verlag, 1995.

12. J. Otten, C. Kreitz. T-String-Unification: Unifying Prefixes in Non-Classical Proof
Methods. Report AIDA-95-09, FG Intellektik, TH Darmstadt, 1995.

13. J. Otten. Ein konnektionenorientiertes Beweisverfahren für intuitionistische Logik.
Master’s thesis, TH Darmstadt, 1995.

14. L. Paulson. Isabelle: The next 700 theorem provers. In Piergiorgio Odifreddi, editor,
Logic and Computer Science, pp. 361–386. Academic Press, 1990.

15. R. Pollack. The theory of LEGO – a proof checker for the extendend calculus of
constructions. PhD thesis, University of Edinburgh, 1994.

16. S. Schmitt, C. Kreitz. On transforming intuitionistic matrix proofs into standard-
sequent proofs. In Proceedings of the 4th Workshop on Theorem Proving with Analytic
Tableaux and Related Methods, LNAI 918, pp. 106–121, Springer, 1995.

17. S. Schmitt. Ein erweiterter intuitionistischer Sequenzenkalkül und dessen Anwendung
im intuitionistischen Konnektionsbeweisen. Master’s thesis, TH Darmstadt, 1994.

18. G. Takeuti. Proof Theory. North–Holland, 1975.
19. L. Wallen. Automated deduction in nonclassical logic. MIT Press, 1990.
20. L. Wos et. al. Automated reasoning contributes to mathematics and logic. In Pro-

ceedings of the 10th CADE, LNCS 449, p. 485–499. Springer Verlag 1990.

151

