Steps Toward a World Wide Digital Library of
Formal Algorithmic Knowledge !

Robert L. Constable
Stuart Allen
Mark Bickford
James Caldwell
Jason Hickey
Christoph Kreitz

IThis work was supported by the DoD Multidisciplinary Research Initiative
(MURI) program administered by the Office of Naval Research under grant
N00014-01-1-0765

1

Contents

1 Introduction
1.1 Emergence of Information Science/
1.2 Applications to Verification Technology|
1.3 Research Issues
1.4 How People Will Use the Formal Digital Library
1.4.1 Knowledge dissemination and learning
1.4.2 Scholarly and scientific communication
1.4.3 The theory and practice of system verification
1.4.4 Data for a new quantitative logic in the large
1.0 Work Process
1.5.1 Statement of work
1.5.2 Work process L.
1.6 Accomplishments and Productivity Measures
1.6.1 Major accomplishments
1.6.2 Sample results, discoveries, and insights
1.6.3 Productivity measures
1.7 Future Work
1.7.1 New capabilities
1.7.2 Vision
1.7.3 Futwreplans
1.8 Outline of the Book'.

2 The MURI BAA
2.1 Digital Libraries for Constructive Mathematical Knowledge . .
2.2 Working summary of the BAA|.
2.3 Progress Toward Building a Digital Library

11

10
18
18
19
19
20
21
21
22
24
24
25
26
29
29
29
30
32

v

2.3.1

2.3.2

2.3.3

2.3.4

2.3.5

2.3.6

2.3.7

2.3.8

2.3.9

2.3.10

CONTENTS

(BAA-2) Catalog those principal mathematical con-
cepts, together with their formal definitions, which are
used in contemporary computing
(BAA-1) Develop proof-checking and model

checking for certifying proofs of the standard body of
computationally related mathematics
(BAA-3) Investigate suitable base language and logic
within which competing logics can be expressed and
evaluatedo
(BAA-4) Provide automated assistance for routine as-
pects of developing libraries of formal theorems, proofs,
algorithms, and their expressions as programs
(BAA-5) Investigate forms of assured interoperation
for assembling, composing, specializing, and generaliz-
ing algorithmic knowledge
(BAA-6) Investigate reflection for coordination, inter-
operation, and dynamic adaptation
(BAA-7) Study issues of consistency and maintenance
among librarieso
(BAA-8) Address the human/computing aspects of syn-
taxes and concepts that are appropriate for both foun-
dational developers and end-users
(BAA-9) Explore innovative metaphors and protocols
for understanding, using, composing,

searching, authenticating, and validating constructive
results

(BAA-10 and May 2002 Review)

2.4 Proposed Plans oL

24.1
2.4.2
2.4.3
2.4.4

Content creation - theory
Content creation - experiment|
Library infrastructure - theory
Library infrastructure - experiment

3 Critical Infrastructure Protection
3.1 The Issue of Software Reliability and Security]

3.1.1
3.1.2

Importance of software security and reliability|
What is the technology for building reliable systems?

CONTENTS v

3.1.4 Role of an FDL in critical software infrastructure pro-

tectionl 63

3.2 Role of an FDL in the Programming Process 65
3.2.1 Sharing formal mathematics 65
3.2.2 Accounting for validity under change 66
3.2.3 Formal documentation of systems 68
3.2.4 Verification and synthesis at the speed of design 68
3.2.5 Fostering a richer culture of correctness 69

3.3 Integrating an FDL into Verification Technology/ 70
3.3.1 Basic architectureo 71
3.3.2 Integration with verification technology 73
3.3.3 Basis for advanced technologies 74

4 Working Notes on FDL Design 77
4.1 Content vs Infrastructure. 7
4.2 Formal vs Informal 79
4.2.1 Words vs Formality| 80
4.2.2 Bates’sPoint L. 81
4.2.3 Readings. 81
4.2.4 Concise Informal Annotations 82

4.3 Formal Digital Libraries 84
4.3.1 Logical Libraries 84
4.3.2 Multiple FDLso 86
4.3.3 FDL Functions 87

4.4 Repository Data,. o o0 89
4.4.1 Abstract Ids & Closed Maps 89
4.4.2 Closed Map Operations/. 91
4.4.3 Conservation and Destruction 94
4.4.4 Abstract Identifiers (how) 94
4.4.5 Pro-textual Constituents 96
4.4.6 Naming Problems 96
4.4.7 Abstract Id Allocationl 98
4.4.8 Adequacy of Single Id Space 99

4.5 Record Keeping 100
4.5.1 Certificates oL 100
4.5.2 Current Closed Maps 101
4.5.3 Certificate Bias 103

4.5.4 Certificate Significance 104

vi

CONTENTS

4.5.5 Conflicts of Significance 106
4.5.6 Certificate Structure 107
4.5.7 Borrowed Certificates 109
4.5.8 Certificate Identifiers 110
4.5.9 Updating Certificates 110
4.5.10 Assimilation to Certificates 118
4.5.11 Proofs 119
4.6 Initial Closed Map, 125
4.7 Processes 126
4.8 Sharing Formal Mathematics 128
4.8.1 Forms of Sharing Math 128
4.8.2 What Math can be Shared 130
4.9 Scenarios of FDL Usel. L. 131
Selections from the FDL Manual 139
5.1 Introduction 140
0.1.1 Goals.. 141
0.1.2 Use Scenarios, 142
5.1.3 Relationship to National Needs 144
5.1.4 Design Objectives 147
5.1.5 Reference FDL Structure 148
5.1.6 FDL Prototype Circa 2003 149
0.1.7 Programming Practice 149
5.2 Library Data and Operations 150
0.2.1 BasicData 0. 150
5.2.2 Basic Library Operations/. 152
5.2.3 Native Library Language 156
5.2.4 Library State o oo 157
5.3 Sessions and Current Closed Maps 158
5.3.1 Closed Maps. 158
5.3.2 Operations on Closed Maps 159
5.3.3 Stale Certificates 160
5.4 Accounting mechanismso 160
5.4.1 Inferences 161
0.4.2 Certificates L 162
5.4.3 Proof Sentinels 163
5.5 Features of the FDL prototype 164

5.5.1 Library Tables and the File System 164

CONTENTS vii

9.0.2 Transactions/. 165
5.5.3 The Application Server 166
5.0.4 Utilitieso 169
5.5.5 Computational Content 170

5.6 Connecting Theorem Provers and Logical Frameworks 171
5.6.1 Proof Engines 172
5.6.2 Linking and Migrating Libraries 173

5.7 Publishing and Reading 175
6 Logical frameworks and the FDL 177
6.1 Introduction' o 177
6.1.1 Compilers and programming languages 178
6.1.2 Organization 180
6.1.3 Terminology L. 181

6.2 Parsing. 182
6.3 Intermediate representation 183
6.3.1 AST to IR conversion'. 185
6.3.2 CPSconversion 186
6.3.3 Closure conversion 188
6.3.4 IR optimizations 189

6.4 Summary and Future Workl 0. 190
6.5 Related work o 192
7 Sample Hybrid Texts 195
7.1 Excerpt From Event Systems Article 195
7.1.1 Event Systems, 195
712 Worlds 202
7.1.3 Message-Automata 207

7.2 Lessons on Counting 214
7.2.1 Introduction to Counting 214
7.2.2 One-to-One Correspondence 219
7.2.3 Counting Indirectly 223
7.2.4 Counting Ordered Pairs 225
7.2.5 Counting Tuples 228
7.2.6 Counting Dependent Pairs 230

7.3 Formal Implementation of the Red—Black Trees 231
7.3.1 Dependent Record Type 232

7.3.2 Abstract Data Structures 233

viii CONTENTS

7.3.3 Implementations of Data Structures 234

7.3.4 Red-Black Trees 235

8 Future Plans 237
8.1 New capabilities 239
82 Futureplans 240

9 Conclusion 245
9.1 Summaryofourcase 245
9.2 Discussion 246

10 Glossary of FDL Terminology 249

Preface

This book describes the results and plans for future work of the Cornell/
Cal Tech/Wyoming Multidisciplinary University Research Initiative (MURI)
project entitled:

Building Interactive Digital Libraries of Formal Algorithmic Knowledge.

The book addresses these topics: the objectives of our research, the sci-
entific and technical significance of the project, our technical approach and
accomplishments, scenarios for use of such digital libraries, and the relevance
of our work to DoD and Navy missions.

This MURI project was created as part of a Department of Defense (DoD)
initiative to increase the reliability and adaptability of software. The topic
is important because unreliable and insecure software poses a significant na-
tional security risk. The nation’s critical software infrastructure is open to
terrorist attacks, which could be coordinated with those against the popu-
lation and the physical infrastructure on which they depend; simultaneous,
well-planned attacks of this kind could have a devastating impact.

The liabilities of unreliable software have been recognized since the “soft-
ware crisis” of the 1970’s. The cost to the economy, and the cognitive disrup-
tions caused by poor software, remain serious problems, now more significant
because of the ubiquitous nature of software. Society’s response since the 70’s
has included: an elaborate testing methodology, now well established but lim-
ited in effectiveness; a call for improved education, now heeded and also of
limited effectiveness; a call for better software engineering and more science
to support it, also heeded; and finally, modest exploration of advanced devel-
opment and checking tools such as model-checkers, program analyzers, and
interactive theorem provers.

In some cases, these advanced tools have become established in industry,
especially in hardware design and in the front ends of compilers. Gradually
the outlines of a “verification technology” are emerging as a result of steady

2 CONTENTS

DoD, NASA, and NSF funding; and there are deep results from computer
science and mathematics that give it direction and justification. Now that
the stakes are higher, the need to explore advanced technologies is more
urgent. It is clear that the United States must lead in such a technology, and
the more advanced it is the better protection it will afford against terrorists.
In some ways, the protection of cyberspace is similar to the exploration of
outer space; it requires very advanced science and technology, and it offers
enormous strategic advantages.

The authors of this book have worked on verification tools and the science
behind them for many years. We have known for some time that a key piece
of technology is missing — namely a large machine accessible information
resource. The DoD also recognized this gap and our MURI project addresses
the problem directly.

The important role of knowledge, and the information resources from
which it arises, is clear from the behavior of the best system designers and
programmers. They bring extensive knowledge to bear in their reasoning
about designs and code. Large teams share knowledge, and reason in a
coordinated yet distributed manner. However, the tools used to help them
reason and check their inferences do not have access to significant amounts of
knowledge. For instance, the interactive theorem provers that are designed to
assist in reasoning have access to only a few thousand facts, a stark contrast
to the computing cycles they could (but seldom) use. They should have access
to hundreds of thousands of facts. The few people who drive the provers are
the main source of knowledge, and they feel compelled to formalize much of
it before they are comfortable using it.

The time is right to begin creating a massive information resource. First,
the time is right because we need it, but additionally, the past work of multi-
ple groups world wide has accumulated about 50,000 formal definitions and
formally proved theorems. Much of the material is about data structures,
algorithms, and computer systems. In addition, the Web and the emergence
of information science have given us new tools for this hard task. Currently
the knowledge is fragmented; no one system or one verification group has
access to more than a small fraction of it. It is a terrible waste of time and
huge cost for each group to try to recreate every result for themselves. For
many reasons, it is not practical to limit the choices of formalism to apply.
Instead, we believe that we must facilitate logically sound combinations of
results, and we must be able to account for the correctness of these hybrid
results. Our goal is to make it possible for people and machines to share

CONTENTS 3

this knowledge. Achieving this goal is a hard problem with a large payoff —
worthy of MURI funding.

The problem is hard because there are no standard parts, and we don’t
know how to make them. Indeed it may be that for many aspects of rea-
soning no unique standards will ever become established. In addition, the
mechanisms for efficient machine processing of knowledge make accounting
for evidence and truth difficult. It should be noted that there might be
advantages to having mutliple independent logics and systems involved in
checking critical arguments.

Our approach is to enable different systems to share results from dis-
tinct theories and logics, and to account for these differences precisely. We
also recognize the need to connect the formal knowledge to intuitive human
knowledge in transparent ways. This connection introduces mechanisms that
are flexible enough to allow sharing, yet precise enough to guarantee correct-
ness. The connection to intuition at all levels of abstraction is a safeguard,
as well as an opportunity to use the formal knowledge to support education
and software engineering, and thus testing as well.

This book explains our technical approach and research results from the
past 27 months, and it lays out our plans for the next 30 months.

CONTENTS

Chapter 1

Introduction

1.1 Emergence of Information Science

Our work involves building and experimenting with a digital library of ma-
chine checked algorithmic mathematics; we call machine checked mathemat-
ics formal. The appeal of the research agenda for this field is that computers
help us create knowledge and accelerate discovery by processing the infor-
mation on which knowledge is based. Computers reveal patterns invisible to
an unaided mind; they can check claims against vast collections.

This enterprise was only vaguely imaginable a decade ago because there
was so little formal mathematics available. Now, in 2003, there are on the
order of 50,000 theorems along with their proofs and definitions. Nearly
5,000 new ones are added per year. Much of this material results from work
on specifying and verifying computer hardware and software systems, thus
about half of the existing content is closely related to algorithms, data struc-
tures, and computer systems. (There might be another 20,000 uncollected
results that we call dark matter.) This corresponds to over 500 books about
computer science, mathematics, and the science of programming under the
assumption that a typical book has a hundred theorems with proofs. As far
as we know, these results are correct in every detail with respect to particular
logics.

The recent emergence of our enterprise and similar ones to collect all
genomes, all protein structures, and “all articulated human knowledge” in
digital format signals the emergence of a new science which is being called
information science (it is a NATO science category as well as a new major

5

6 CHAPTER 1. INTRODUCTION

at some universities). The subfield of computer science called information
organization and retrieval was a precursor, yet even its leading practitioners
did not imagine the scope of the activity and its galvanizing power across
science and scholarship.

Computers can not only assemble evidence and check extremely detailed
arguments, but now they can suggest new ideas by surveying more informa-
tion than even very large groups of people can. In the case of computer sci-
ence and mathematics, they can not only check every step of a long complex
argument, but they have been used in essential ways in making discoveries
by symbolic computing [89, 135, 123, [71] and they have transformed proofs
of one kind of assertion into proofs of other kinds. They have systematically
transformed small theories by propagating changes of definitions through
all theorems and proofs. This is a template for systematically modifying a
system module or class along with its full formal documentation.

Computers have been executing algorithms, their procedural knowledge,
from the beginning. Gradually this procedural knowledge has been turned
to support the declarative knowledge that we use to organize our thoughts.
For example, the use of hypertext is now pervasive because it is a remarkably
effective way to support the associative structure of ideas intrinsic to human
thought. This form of interdocument reference is critical to our formal digital
library. It is especially suitable to the structure of mathematical documents.

Interdocument reference structure turns out to provide a semantic ba-
sis for processing information, e.g. mathematical symbols can be references
to documents explaining their meaning. The reference structure is a latent
semantics for a collection, and it enables algorithms to create knowledge au-
tomatically on the collection. In the case of mathematics, the formalization
creates another rich associative knowledge structure — a formal one. Here
symbols are connected to their defining axioms, formulas and theorems. Re-
lating the formal knowledge structure to the latent one is becoming a source
of important research questions previously unasked for lack of a framework
in which they were precise. Already these investigations have yielded new
information science techniques that we are using in our project. Note, work
on the semantic web [22] shows that these questions are significant outside
the realm of formal mathematics.

The digitization of mathematical knowledge has opened the way to quan-
tifying features of the mathematical landscape. We can measure the depth
of formal proofs and count all proofs of more than n lines. We can numer-
ically quantify the value of a reorganization of concepts and the numerical

1.2. APPLICATIONS TO VERIFICATION TECHNOLOGY 7

value of a new primitive or a new logical feature, say in producing fewer
concepts or shorter proofs. These ideas apply to theories in our formal dig-
ital library that are used to explain a software system. In due course we
will have enough numerical data to make statistically significant judgements
about mathematical knowledge and about software.

The relevance of our work to critical software infrastructure protection is
most clear in the context of improving the reliability and security of hard-
ware and software systems. We know that testing is important, but testing
is mainly a way to detect bugs. It cannot insure the absense of errors. Know-
ing that chips and code behave as we intend depends on knowing more; it
depends on discoveries of the 70’s that algorithms and systems can be seen
as mathematically precise abstract objects as well as physical objects.

The highest levels of assurance that we can provide about systems comes
from proving the assertions that we make about them during the specification
and design process. It comes from checking carefully what we think we
know about them stated in declarative language and in abstract algorithmic
language. We discuss this approach in more detail in the next section.

1.2 Applications to Verification Technology

Threats The Internet and the Web have created extreme opportunities
(Web services) and extreme vulnerabilities — dependence on insecure and
unreliable software infrastructure. The cost of errors and insecurity is at least
$59.5 billion annually [161]. This situation has been known on a smaller scale
since the mid 1970’s when it was called the “software crisis”. Popular books
such as Fatal Defect [151] and other scholarly studies by McKenzie [115] have
studied the problems and funding initiatives proposed to correct them.

We are all familiar with computer viruses, they have caused serious dis-
ruption and inconvenience, but we have not yet seen a coordinated and seri-
ous viral attack on our software infrastructure. It is not difficult to imagine
what a terrorist hacker cell could do to us if they took the time and gathered

8 CHAPTER 1. INTRODUCTION

the information needed. Such an attack would not look like a simple virus, it
might be more like the 1918 influenza pandemic in the software world. There
might be a silent phase of 18 months when backup systems are being infected
with no trace. Then an attack could be launched that would delete files and
mangle data formats. It would deny service to many industries including the
financial markets and military systems. As backup systems came on line, the
virus would reemerge.

We could see damage on an unprecedented scale in government services,
health care services, institutional functioning across the economy from uni-
versities to insurance companies to the power grid. Damage to disaster re-
covery software might be timed to coincide with a terrorist attack on people
or on physical structures, thus greatly compounding the impact of an attack.

Protection and security Our goal is to use the opportunities (Internet
and Web) to reduce the vulnerabilities. In particular, we are building a formal
digital library (FDL) as a lens to focus information on the vulnerabilities.
We are using information science and technology to provide an information
network of facts about algorithms, data structures and systems. The FDL is a
piece of that network accessible to people and to interactive theorem provers.
These provers will draw computing power from the grid and information
from the FDL and apply it to guarantee that the reasons we think a software
system is reliable and secure are justified. The FDL will add a missing
capability to a new technology for hardening and securing computer systems.

A verification technology is emerging as a result of 30 years of funding
from the government (DoD, NASA, NIST, NSA, NSF). This technology can
solve the problems of the 70’s, but the target has been moving rapidly —
from small programs to concurrent systems to distributed web services. Ver-
ification technology must be correspondingly scaled and advanced. Our FDL
will help do that.

One way to understand the elements of verification technology is to focus
on the so-called stack — the layered collection of hardware and software of
which a complete system is composed. Parallel to this stack is an emerging
verification stack. Its components can be integrated into the programming
tools used at various levels of the stack to help make the resulting layers
much more reliable. The DoD has invested in several components of the
verification stack and has funded some of the research that has brought it
into being.

1.2. APPLICATIONS TO VERIFICATION TECHNOLOGY 9

Verification Technology Stack

/ Formal Digital library —\

Logical Version Control
DO D Proofs as documentation
Prover as synthesizer

Darpa Prover as verifier

Prover as checker T Cornell/CalTech/Wyoming
Model checker

VCG specification language
AFOSR

Program analyzer

Type Checker

ONR Formal Compiler

PSOP
\ Verified Hardware

At every level of the software stack, we see elements of verification tech-
nology being integrated — extended static type checkers, program analyzers,
specification languages, model checkers, and interactive theorem provers. All
of them will benefit from a semantic backbone to the stack provided by our
FDL and Logical Framework for systems.

Our formal digital library (FDL) is an experimental new component start-
ing at the top of this stack and providing a semantic backbone for the whole
thing. It is critical to reliability in itself, and it also improves other elements
of the verification stack. It also facilitates a programming methodology for
large software systems. The FDL holds vital knowledge about a particular
system, and it provides an interface to general knowledge needed to under-
stand, modify it, and relate it to other systems. The FDL holds knowledge
about the algorithms and protocols in the system, about what they do and
how they connect. This knowledge is formally linked to critical components
of the system, and it is linked to general knowledge about algorithms, data
structures, and other systems.

The FDL will enhance the standard technology of trust in several ways.
It will allow a software supported presentation of entire software systems as
reference systems. We are demonstrating this for distributed systems. It will
make proof technology more efficient as we illustrate later. Most critically,
it will make this technology more flexible. It is a lack of flexibility that is
one of the limitations in deploying these tools more generally and at a larger
scale.

10 CHAPTER 1. INTRODUCTION

Just as lower levels of the stack provide networking links that connect a
system to other systems, the FDL connects system knowledge to the network
of knowledge that is essential to understand it and support it. It is also a
basis for quantitative data about the system design.

The FDL is the interface between knowledge that is checked and generated
by machines — formal knowledge — and the kind that can only be checked
and generated by humans — some call it intuitive knowledge, or by contrast,
informal knowledge when it is in the context of formal knowledge.

We describe the role of our tools and results in the chapter on Critical
Infrastructure Protection (Chapter 3).

1.3 Research Issues

The main question we face is how we can assemble and coordinate very large
digital information resources so that computing power can help us create
formal symbolic knowledge and use it to advance science and technology
broadly. In particular, we want to take advantage of a significant body of
formal computational mathematics and use it to substantially improve the
reliability and security of the nation’s software infrastructure in a timely
manner. How might this be done?

Here is a scenario for using our formal digital library and logical frame-
work that suggests one way this will be done.

A programmer must modify a protocol in the event processing
protocol stack of a system, due to changes in the upstream pro-
cesses. The formal documentation of this protocol in the FDL
system/theory entry for the stack states assumptions about the
input stream and invariants of the protocol. It is not clear to the
programmer that the new message stream will satisfy the input
assumptions.

Further investigation of the upstream process, also in the FDL,
reveals that all of the necessary assumptions are satisfied, except
for some assumption P. The programmer asks to reexecute the
proof that the invariant holds under the new assumption. The
tactic is in the FDL and it is executed, revealing the need for an
additional fact about streams of messages of a certain type T.

1.3. RESEARCH ISSUES 11

The programmer proposes a simple modification to the code that
appears to establish the required additional fact, but there is
some uncertainty. The programmer searches the FDL for theo-
rems about streams and finds a fact that would justify a slightly
different code modification, but the proof uses a different logic
than the one the tactic is written for. The programmer asks for
the fact to be translated into the tactic’s logic and then runs
the prover on this fact, which is established automatically. The
programmer is able to make the slightly different modification to
the code and be much more certain that the change is provably
correct even though he or she does not understand formal logic
in depth.

To support such a scenario, we need a way to connect formal knowledge
about a system to the algorithms, protocols, datastructures, classes and in-
terfaces that make up the executable procedural knowledge. This procedural
knowledge is vast, stacked layer upon layer, spanning many levels of abstrac-
tion. The corresponding formal knowledge base would be even more vast —
two to five times larger — and it is connected to a large amount of a ba-
sic knowledge about general mathematics and computing (numbers, strings,
arrays, lists, trees, graphics, stacks, queues, events, automata, etc.).

No one person or one development team or one set of programming tools
will comprehend all this knowledge. It must be connected, even though it
is not homogeneous. For example, formal definitions of an intuitive idea
might not be equivalent in different logics; specifications of a computing task
are not equivalent. Not even the formal general mathematical knowledge is
homogeneous in this sense.

Fortunately, not all elements of a software system are equally critical, and
not all knowledge supporting a system needs to be checkable by computer,
i.e., formal. We need to know what knowledge is critical and thus requires a
dependency analysis — what knowledge depends on what other knowledge.

Also fortunately, well-educated systems analysts and programmers think
clearly and precisely about the elements and structure of software systems.
We know how to design well and explain the design. We know how to solve
computational problems, explain our solutions and use them to guide the
generation of code. We know how to share ideas and share high level algo-
rithms or protocols. How can we share extremely precise ideas, and how do
we share formal ones?

12 CHAPTER 1. INTRODUCTION

One class of reliability problems arises because we don’t save our thoughts,
solutions, ideas, and designs in digital form. We don’t connect them to the
code, and we can’t easily bring ourselves to systematically scrutinize these
ideas for small errors. A related problem is, we make lots of little mistakes
— at every level. Indeed, in formal methods projects run by NASA, every
system scrutinized by formal methods revealed previously unknown errors
[37]. Another related problem is that the programmers who had the original
ideas are not the ones who fix and extend the code. These new people
might introduce incompatible ideas and solutions, and this incongruity is
not discovered until later.

On a small scale, all of these problems can be solved with the current
verification technology (for functional programs). Moreover, we see ways to
scale up this technology from functional algorithms to systems. This requires
scaling up the amount of formal knowledge available to both the automatic
tools and to people, and keeping it related to the informal ideas that guide
the system building. We are attacking that problem.

To create more formal knowledge, it will be possible to share data among
verification systems, not only definitions and theorems, but proofs that can
be replayed in a new context and repaired automatically by local tactics.
We have already done this on a small scale [30]. How can we extend these
methods? Such sharing will significantly lower the cost of creating formal
knowledge, in part by eliminating massive duplication of effort. It will also
be easier to derive the formal knowledge from intuitive knowledge.

To keep the formal declarative knowledge connected to the system, the
executable procedural knowledge, there must be automatic linkages so that
when one element changes, the other does as well. Our project does not
address all these problems, though we have thought about many of them
and have done original work on several. We focus on the means of collecting,
connecting, and significantly expanding formal knowledge.

In our proposal, we described the following categories of work. We pro-
posed to look at library infrastructure issues — how to “automate a logically
sound information management service” for content from diverse theorem
provers, in particular how to allow sound sharing of content. We proposed
to explore this topic experimentally and theoretically.

The second category of our work is content creation, especially content
pertinent to software infrastructure protection. We proposed to create it in
ways that would illustrate the key uses; so we wanted reference algorithms
and datastructures. We also wanted formal classes and promising approach

1.3. RESEARCH ISSUES 13

to reference systems, especially a distributed system. In this category we
would also experiment and develop theory. Thus, our work is characterized
by this matrix:

Library Library
Content Infrastructure
Foundational Theory | (1) CF (3) IF
Experiment (2) CE (4) IE

Here are some of the issues in each of the four categories.
Library Content

For those investigations, especially in the first three years, we proposed
looking at three representative logics and systems producing formal content.
In the United States and in the European Community (EC), there are two
kinds of type theory used: Church’s classical Simple Type Theory (STT)
[41],169], and two versions of constructive type theory. To keep things simple,
we mention only Computational Type Theory (CTT) [118, 119, 48], and type
theory based on Impredicative Inductive Constructions (IIC) [66, 52, 53]. For
each of these theories, there are major interactive theorem provers in both
the US and EC. In the EC, the STT prover is HOL, and the constructive
prover for IIC is Coq. In the US, the classical type theory prover is PVS,
and the constructive prover for CTT is Nuprl. Another major constructive
prover in the US is ACL2 [94] 95].

In addition there are the logical framework systems, Isabelle, Twelf, and
MetaPRL, which are all based on a constructive metalogic; these support a
variety of logics, such as type theories and set theories, although it is the type
theories that are most developed, even in the logical frameworks. Isabelle
supports STT, CTT, and ZFC set theory, and MetaPRL supports CTT and
CZF set theory.

For us it is natural to pick the US sytems in each category, Nuprl and
PVS, and to pick the most modern and versatile logical framework, the only
one that can do inter-theory mappings — MetaPRL. By using the US-based
systems of each type, we can more directly support DoD verification efforts,

14 CHAPTER 1. INTRODUCTION

and we can be sure that US systems are included in any EC-based effort
similar to ours.

Our principal new content production was in reference algorithms and
protocols, with a significant part devoted to distributed systems along very
similar lines to NRL work. Most of the new content we collected was cre-
ated in other, separately-funded projects (by DARPA, NSF, and AFOSR)
concerned with reliable adaptive distributed systems and with security pro-
tocols.

We look briefly at our technical approach to each area. Much more detail
is provided in the chapters we reference below.

(1) Theory supporting multi-logic content

The key issues here are how to relate the theories of different content
providers. What is the logical basis for relating and combining results from
different theories? Part of our theoretical work went into understanding key
concepts supporting classes, objects, reflection, and distributed system for-
malization [100] 145, 17, 18]. What we learned is that type theory is especially
good at expressing the structural concepts that lie behind modern program-
ming methods, in particular elements of object-oriented programming. It is
also good at expressing system composition operators and at expressing the
key ideas in aspect oriented programming. In addition, we discovered that
several key concepts from modern computational mathematics could not be
expressed in classical set theory. How could set theory handle these concepts?
Would constructive set theory bridge the gap?

We made a number of discoveries that justify translating results from the
simple type theories used in theorem provers, such as HOL and PVS, into
the constructive type theories used in Alf, Coq, MetaPRL and Nuprl. One of
these results, Moran’s Theorem, opens a new area of theoretical investigation
in logic that will be of significance in support of deep connections between
set theories and type theories [133, 45]. He shows that the Howe map from
types into sets when composed with the Aczel map from sets into types
produces an isomorphism, and this allows many results about sets, including
independence results and large cardinal axioms to be proved in type theory,
where they have a totally different meaning.

What systems and formalisms are most important for formalizing dis-
tributed computing and for expressing security specifications? There is good
evidence that IO automata are an appropriate formalism [178, (68, 113} 84,
175, 4] can they be made more useful if formalized in a very rich type theory?

1.3. RESEARCH ISSUES 15

What kind of certificate can we supply for hybrid proofs in the sense of
the same logic but different systems, e.g., simple type theory in HOL and in
Isabelle HOL? What kind of certificate is needed if the logics are different,
as in HOL and PVS versions of simple type theory?

Is it possible to translate results between all the major theories by using
set theory or classical computational type theory with union and intersection
operations as the semantic base?

(2) Experiments with content

We explored various methods of importing PVS into our FDL. We exam-
ined appropriate term structure for PVS. We explored data exchange formats
for OMDoc. We created API’s among the provers that are now connected to
the FDL, and have designed more advanced versions. We also have explored
further automation of the importation process.

We need to understand further the elements of an API for PVS that
would be completely automatic; is this possible? Is it possible to use the
FDL binding mechanism for certain PVS contexts? What advantage is there
is doing this?

How can we connect formal and intuitive knowledge so that the con-
nection remains unbroken under changes to the formal theory? Can the
formalism help us locate the key ideas in a proof or in an algorithm or in
a system? Can the formalism help identify with more precision the places
where errors are most likely?

What is the right mix of formal and intuitive knowledge for maximum
human readability? This is a typical question for human computer interac-
tion studies, part of information science. The question is even more pressing
when we look at system documentation. For example, certain well-known
programming methods and various very common mathematical facts are best
presented informally, while other steps should be formal. Part of the trade-off
will be a function of cost and risk, another information science issue.

What is the size of a completely formal account of a difficult algorithm or
protocol? Is formal theory size a good indicator of conceptual difficulty, of
work involved in documenting, or of the likelihood of error? Can we answer
such questions for a full system as well? How many hard algorithms are there
in a typical system? In the systems we are formalizing?

Since we are assembling a reference distributed system, we are very keen
to collect formal material related to it and to draw that community into
reading our presentation. We are finding that this is not a simple task; some

16 CHAPTER 1. INTRODUCTION

results are restricted, some are proprietary, some projects are too busy to
cooperate, others see no value in cooperating and others we are too busy to
contact. It is turning out to be an interesting challenge to collect the material
we want from other groups.

Library Infrastructure

For these investigations, we needed to create a prototype formal digital li-
brary. Our proposal detailed our experience in thinking about these matters
and our planned approach to building the prototype library. We followed
that approach, including studying the library mechanisms of other provers,
reading about digital libraries, and writing extensive design notes. The the-
ory and experiment were intertwined. This activity occupied a large part of
the first year.

Our prototype system involves 95,000 lines of code, and we continue to
revise and expand it. Some of the most basic functions were obtained by
modifying library code from Nuprl, however Nuprl and MetaPRL are clients
of the FDL as many provers will be. (Note that at most 18% of our funding
was budgeted for system construction, so our productivity here is very high
indeed.) We have plans to code a second version, depending on the pressure of
other matters; it would be a minimal digital library built in the most generic
way we can imagine. The existing prototype was built to allow experiments
as soon as possible.

(3) Foundations of a formal digital library

We had to explore data formats, reference structures, hypertext support,
name space management, database transactions, accounting mechanisms.
Our May 2002 review presented many of these basic ideas, and we are now
publishing results.

What is the best basis for an FDL; is it a directory structure or a
database? Many theorem provers use a theory directory structure. Au-
tomath pioneered a “tree of knowledge.” But a viable alternative seems to
be a flat basis on which structure is overlaid, the flat structure based on a
persistent object store. Which approach supports the operations that are
most critical to an FDL?

We also went through many scenarios for how users would interact with
the FDL, and what communities would be served by it. The FDL will become
a component of a larger global mathematics resource, assembled with help
from the EC, Japan, and North and South America. Our first ties will be with

1.3. RESEARCH ISSUES 17

the EC. In this role the FDL will enhance the dissemination of knowledge
and learning, and it will become the basis for an international journal of
formalized mathematics. It will support education in computer science and
in the ties between mathematics and the science of programming. In this
way it is already being used by Helm, the Web, and soon the NSDL.

One of the major concerns of people thinking about this area is the proper
format for proofs. We are conducting experiments on this topic, based on
our considerable experience with different proof formats over the years. We
made up proof terms for PVS that match the format we have adopted for
the library; these are the only proof terms for PVS that we know about, and
we have projected them on the Web.

We may need to explore variants of Natural Deduction style proofs if the
HOL and Mizar formats, called Isar, prove compelling. We have experience
with these from the past, and rejected them in favor of refinement style
proofs, closely related to analytic tableau. We have the background needed
to explore this topic to any depth and in any direction, including natural
language translation of proofs [87].

These foundational ideas are directly implemented in the experimental
FDL. They support a variety of services, such as logical dependency track-
ing, renaming, pruning, joining, Web display, dynamic formatting, content
indexing, clustering, searching, annotation, semantic anchoring of text, and
inter-theory translation.

The FDL will also become a resource for system verification, as we are
now demonstrating. We are actively looking for other partners in this aspect
of the enterprise.

(4) Experiments with library services

Ideally all the library services would be available via a Web browser, but
the content providers do not yet have this capability, and we must decide
which services should be made available on the Web first? Can we display
logical dependency metadata on the Web?

One of the most critical and difficult services is a Web presentation of
FDL content, including formal metadata. This is the first service needed to
start creating Web based FDL services. We have exceptional results in this
area, and they will support a whole variety of use of the FDL for knowl-
edge dissemination and learning. It provides the basis for working with the
National Science Digital Library (NSDL) [6].

During work on distributed system verification, we discovered that the

18 CHAPTER 1. INTRODUCTION

persistent object store and complete dependency tracking opened the pos-
sibility of systematically modifying a significant portion of an implemented
theory [28]. The key idea is that the modifications were done in a series of
passes over the theory with tactics designed to automatically repair failed
proofs. Can this technique be applied to larger theories? Can we make it a
more generic service of the library?

We have explored other experimental services that are very advanced, in-
cluding the translations between theories and the cooperative use of theorem
provers to develop distributed system protocols [30]. How would a transla-
tion service be used? How can it be checked? What certificates apply given
the fact that these services maybe rapidly evolving?

We have joined the National Science Digital Library project as an effort to
establish a natural community for certain aspects of this work, those parts of
CIP that involve education and the role of the FDL in scholarly publication.
See the next section for a further discussion.

We summarize these results according to their contributions to the goals
of the BAA in Chapter 2.

1.4 How People Will Use the Formal Digital
Library

The previous section considers briefly the issue of how people will use the
FDL. Since this is a specific question we have been asked a number of times,
we pull together an overview of the ways in this section. Note that in Chapter
4 on Design Notes we have an extensive list of scenarios.

It is worth noting that other people are already using some elements of
the experimental FDL, for example Helm and OMDoc. The verification effort
at Cornell is currently experimenting with FDL services.

There are four major categories of use which we consider in the following
subsections.

1.4.1 Knowledge dissemination and learning

We imagine that readers who are interested in how to create verified algo-
rithms or formally documented code would turn to the FDL for examples.
We have experience with this role from Nuprl, and the FDL contains over a
hundred examples of various kinds.

1.4. HOW PEOPLE WILL USE THE FORMAL DIGITAL LIBRARY 19

We also imagine that readers will want to understand an entire reference
system with its formal reference algorithms, formal classes, and formal doc-
umentation. We are assembling such an artifact, and it might be unique. It
will be possible to examine questions such as: How many critical algorithms
are there in a particular system of size n? For many systems we know, there
are a surprisingly few interesting algorithms compared to the many lines
coding basic tasks and basic datastructures.

These examples support ”excellence in program construction” along the
lines imagined in the proposal and in many computer science department
curricula, especially at the universities represented in this project. Thus
there is strong synergy with the educational mission in computer science.

Our particular approach to this topic illustrates both standard program-
ming practice and the deeper ties with mathematics that are possible when
code is synthesized from constructive proofs. Thus, we encourage the ”deeper
connections between mathematics and the science of programming.”

The FDL will also have a role in the National Science Digital Library
based on a newly funded NSF project.

1.4.2 Scholarly and scientific communication

The Cornell e-Print arXiv in physics and mathematics [65] is an example of
how a digital library can transform the practice of scholarly publication in
areas of physics. We think that the FDL might serve to enable a new area
of scholarly publication, in an emerging field called formalized mathematics.

We are supporting the efforts of Michael Kohlhase, leader of the OMDoc
group, in his proposal to the editors of the Journal of Formalized Mathematics
that it be opened beyond the Mizar logic.

1.4.3 The theory and practice of system verification

This is the main application area for us, and we discuss it extensively in
Chapter 3. We are actually now using the FDL in our work with DARPA
and AFOSR on protocol verification. The DARPA work involves adaptive
protocols and the AFOSR work involves security protocols. We have used
the FDL to share mathematics between MetaPRL and Nuprl, and we are
providing a translation service for PVS theorems that we expect will be
useful in our verification work. Conversely, we are adding content to the
FDL based on the mathematics created for these verifications. This content

20 CHAPTER 1. INTRODUCTION

can be seen in the FDL content section of the project Web page and in the
report by Constable and Bickford [29].

In addition, our work is supporting activity in two other MURI CIP
projects, SPYCE and Language Based Security. In the case of SPYCE,
we are working with Joe Halpern and graduate student Sabina Petride on
knowledge based protocols. We have formulated two such protocols in our
Logic of Events, and we have created a knowledge based protocol based on
the concept of formal algorithmic knowledge [61].

We have also worked with a student of Greg Morrisett, Mat Fluet who
works on language based security and knows how to use interactive theorem
provers. We have used the very dependent type constructor from Jason
Hickey’s work to express properties of programs as types.

Our approach can be characterized as information-intensive infrastruc-
ture protection. The FDL will provide information based services in system
design, implementation, verification, extension, documentation and main-
tainance.

1.4.4 Data for a new quantitative logic in the large

The FDL opens a new class of logical questions, about collections of theo-
ries and the quantitative consequences of various organizations or formula-
tions. For example, once we include theories from Coq, we can ask about the
number of essential lemmas and definitions need to prove the Fundamental
Theorem of Algebra or the Fundamental Theorem of Arithmetic. It is pos-
sible to compare answers to the second question among a number of logics
and provers, and compare the approach of proving the theorem generally
for unique factorization domains (see the Nuprl algebra libraries under [FDL
Content]).

In the previous section we cited another example of this kind, a com-
parison of the total size of two leader election algorithms. When we gain
access to the PVS proofs of these algorithms, we will be able to make several
interesting quantitative comparisons. We can include the time required to
replay the entire verification from scratch as another measure of complex-
ity. In this case we will see the advantage of being able to share proof tasks
among provers since we have done an experiment using Nuprl alone versus
in combination with MetaPRL and JProver [30)].

1.5. WORK PROCESS 21

1.5 Work Process

To give some idea of the work we are doing and the process we use to accom-
plish it, we include the statement of work (SoW) from our proposal in the
first section and our processes in the second.

The work schedule that we proposed has not been subsequently amended
except for encouraging us to find a community of potential users. We dis-
cussed the user community in the previous section and will say more in
Chapter 2.

1.5.1 Statement of work

Year 1: We will improve and implement those library services that allow us
to cooperate in building theories among ourselves at Cornell (office to
office and system to system — Nuprl and MetaPRL). This will involve
detailed work on sentinels, stable tactic code, archival operations and
local web editing. We will also bring MetaPRL to a more advanced
stage and expand our ability to interact with it from the Nuprl logical
library. We will continue to develop the basic library of functions and
data types and illustrate the inter-linking of text, hyper-text, and for-
mal content; and we will continue to apply our LPE to the Ensemble
protocol design and verification.

Year 2: We will extend our cooperation to the three teams working re-
motely. One goal is to be able to merge libraries developed indepen-
dently at the three participating institutions. We will use both the
logical library and multiple refiners remotely. We aim to extend web-
based editing among the group. At this stage we will call the library
a Common Logical Library. We will collectively demonstrate an im-
pact of the Library on one of our major applications, such as Ensemble
verification as well as on the basic library of functions and data types.

Year 3: We will begin to import theories from other remote sites and ex-
port theory building and editing operations. We will bring all of the
capability to bear on the library of functions and data types and appli-
cations. We will also organize a wider experiment with the Common
Logical Library by arranging to support other external efforts as in
HOL, PVS, or ACL2.

Year 4: We will test the tools on a wider group of remote users and bring

22 CHAPTER 1. INTRODUCTION

more capability on-line to support the emerging needs. We will also
automate the process of creating links to text and start planning to
connect the Common Logical Library to an active digital library effort

at Cornell such as NCSTRL.

Year 5: We will link our tools and results to one of the digital libraries such
as NCSTRL, supported at Cornell. The Library will also support the
code base for the subset of ML used in our verification work along with
components of application software such as Ensemble.

1.5.2 Work process

Each of the three sites, Cornell, Caltech, and Wyoming, has a specific focus,
and in addition we work together on certain problems as is demonstrable
from the joint papers, visits, and collaborative software development. There
is close coordination between the groups through joint meetings, attendance
at conferences, and joint work on papers and software.

Proposed task allocation Here is a summary of the task allocation from
the proposal. Cornell University will have the leading role in the proposed
activity. It will provide the core logical library implementation, the logical ac-
counting and library operations. It will also supply formal content in the area
of applications to distributed computing and in the use of reflection. It will
apply and test the new concepts in significant on-going applications to build-
ing reliable software (such as the Ensemble protocol design effort, DARPA
PCES applications, and AFOSR protocol verification). It will continue to
provide a type theoretic semantics for the ML programming language used
in verification work. It will also provide Web support for libraries and for
connectivity with the libraries of other provers. It will provide a connection
to the NSDL project.

Cal Tech will collaborate with Cornell on continued development of
MetaPRL, especially using it to explore inter-theory cooperation and con-
current proof refinement. Together they will design and build an abstract
interface between MetaPRL and the logical library. Cal Tech will also pro-
vide content in the form of formal programming language semantics linked
to formally developed compiler code for ML. They will also explore the use
of a simple core MetaPRL subset of ML to be used as the primitive proof

1.5. WORK PROCESS 23

checker for theories in the library. Cal Tech will also explore applications of
formal classes in content production for areas such as constructive algebra.
The University of Wyoming will provide content in integrating algorithms
extracted from proofs into systems. They will also explore the use of the
ACL2 prover, for example as a proof checker for primitive Nuprl proofs.

Graduate students At each site, a significant part of our work is super-
vision of graduate students and engagement of the students appropriately
in the overall work. We have attracted excellent students to the project,
including one of the first information science PhD students at Cornell. It is
not our practice to ask students to write code unless such a task is in direct
support of their studies. There are three students who are adding formal
mathematics content as part of their thesis work. One of them, A. Kopylov
has worked directly on library services as well.

Theory and design The entire project has participated in design discus-
sions for the FDL, and at Cornell, several seminars have been devoted to this
effort. Two of the graduate students have been critical in this work as well.
We also benefit from interaction with our colleagues at each site who find
the project of interest.

System building At most 18% of our budget is for coding the formal
digital library prototypes, and the three professors are unable to spend time
in this activity. We have been remarkably productive in this effort because
the programmers are also researchers who are involved in the design and use
of the FDL. We have begun to use elements of the FDL to activities funded
by other sources.

Community building Our hope and expectation is that in due course
the FDL will become that natural repository for the results of all the major
theorem provers. We hope to collect substantial segments of the dark matter
we referred to earlier. Our experience is that attracting users and followers
takes time.

It is first necessary to build a system that is very easy to use and beneficial
to certain communities. In the case of the Nuprl system, it took several years
after we had built a polished version before we attracted users and followers.

24

CHAPTER 1. INTRODUCTION

The system was finished in 1986, but only version 4 was widely used, in the
90’s, and 1996 saw the largest number of citations.

1.6 Accomplishments and Productivity Mea-

sures

1.6.1 Major accomplishments

In summary, our major accomplishments are these:

10.

. We developed and wrote a detailed rationale and design for a prototype

FDL.

. We built the prototype system, a large undertaking.
. We established procedures for acquiring content from Nuprl, MetaPRL,

and PVS, and assembled extensive sample content. This was a major
enabling effort which is groundbreaking in a number of ways.

. We created sophisticated Web-publication services in the FDL that

include a Dynamic Math Formatting mechanism, consequently Google
finds our content easily, e.g. our PVS libraries are found as the first
results returned on querries such as “PVS graphs” and “PVS number
theory.”

. We developed an interface with OMDoc and exported FDL content to

Helm.

We created novel content in MetaPRL that supports an object-oriented
way of presenting reference algorithms and applied it to red /black trees.
Cornell and Caltech collaborated on the development of constructive
algebra in Computational Type Theory (CTT), and a formalization in
CSF was explored.

We designed mechanisms for adding dynamic hybrid formal/intuitive
articles to the FDL that will form a basis for explaining proofs, algo-
rithms, and systems. It is a basis for dynamic formal documentation.
These mechanisms will be perfected and deployed in the NSF’s National
Science Digital Library.

. We imported content that supports distributed algorithms and proto-

cols of particular interest to CIP.
We made a significant theoretical discovery that relates the expressive

1.6. ACCOMPLISHMENTS AND PRODUCTIVITY MEASURES 25

power of type theory and set theory, the two major foundational theo-
ries for expressing formalized mathematics.

11. We explored using ACL2 in checking Nuprl primitive proofs.

12. We made a significant advance toward adding a reflection service to
the FDL based on its development in Nuprl.

13. We have built a prototype peer-to-peer server for connecting distributed
FDL fragments.

1.6.2 Sample results, discoveries, and insights

Content — Theory What are the fundamental computational mathemat-
ics concepts? We have shown that polymorphism allows an elegant definition
of records, classes, dependent records, formal classes, and inheritance. Set
theory does not allow function polymorophism, but based on the work of
Howe [91], [90], we know how to add it to set theory, and we discovered how
to add it to the simple type theory of PVS [133]. Generally, we have made
a strong case that type theory is the appropriate language for describing
modern system structure, and it is well suited to describing mechanisms that
support the coherent evolution of systems.

Content — Experiment We have combined two provers in the process
of synthesizing a leader election protocol [30]. We are also able to compare
the size of all results needed for simple leader election compared to the TIP
leader election protocol studied at the NRL [13] 15, [14].

Infrastructure — Theory Which is the best organization basis for an
FDL, a database or a directory structure? We have examined the mecha-
nisms for combining theory development and made a case for a database with
abstract object identifiers. It allows capabilities that a directory system does
not.

Infrastructure — Experiment Is it possible to provide a Web based dis-
play of logical dependency metadata? We have created the tools that allow
this.

We have also studied in depth a formalism for distributed computing
that is widely shared in the verification community, namely 10 automata
and their variants. We have used this in other projects and are working

26 CHAPTER 1. INTRODUCTION

toward supporting it well in the FDL. It is well suited to studying adaptive
systems and system evolution.

1.6.3 Productivity measures
Publications Here is a list of the 23 publications (including two theses).

Stuart Allen. Abstract identifiers and textual reference. Technical Report
TR2002-1885, Cornell University, Ithaca, New York, 2002.

Stuart Allen. Notes on the design and purpose of the FDL. http:
//www.nuprl.org/FDLProject/FDLnotes/, Ongoing, beginning 2002.

Stuart Allen, Mark Bickford, Robert Constable, et al. FDL: A prototype
formal digital library. PostScript document on website, May 2002. http:
//www.nuprl.org/html/FDLProject/02cucs-fdl.html.

Stuart Allen, James Caldwell, and Robert Constable. Interactive Digital
Libraries of Formalized Algorithmic Knowledge. MKM Workshop, 2001.

Brian Aydemir, Adam Granicz, and Jason Hickey. Formal design en-
vironments. In Carreno et al., editors, Theorem Proving in Higher Order
Logics; Track B Proceedings of the 15" International Conference on Theo-
rem Proving in Higher Order Logics (TPHOLs 2002), Hampton, VA, August
2002, pages 12-22, National Aeronautics and Space Administration, 2002.

Eli Barzilay and Stuart Allen. Reflecting higher-order abstract syntax in
Nuprl. In Carreno et al., editors, Theorem Proving in Higher Order Logics;
Track B Proceedings of the 15" International Conference on Theorem Prov-
ing in Higher Order Logics (TPHOLs 2002), Hampton, VA, August 2002,
pages 23-32, National Aeronautics and Space Administration, 2002.

Eli Barzilay, Stuart Allen, and Robert Constable. Practical reflection in
Nuprl. In Phokion Kolaitis, editor, 18th Annual IEEE Symposium on Logic
in Computer Science, June 22-25, Ottawa, Canada, 2003.

Mark Bickford and Robert L. Constable. A logic of events. Tech Report
TR2003-1893, Cornell University, 2003.

Y. Bryukhov, et al. Implementing and automating basic number theory
in MetaPRL Proof Assistant. Accepted to TPHOLs 2003 ”Track B.”

J. Caldwell and J. Cowles. Representing Nuprl proof objects in ACL2:
toward a proof checker for Nuprl. ACL2 Workshop, 2002. In D. Borrione,
M. Kaufmann, and J. Moore, editors, Proceedings of Third International
Workshop on the ACL2 Theorem Prover and its Applications. TIMA Labo-
ratory, 2002.

http://www.nuprl.org/FDLProject/FDLnotes/�
http://www.nuprl.org/FDLProject/FDLnotes/�
http://www.nuprl.org/html/FDLProject/02cucs-fdl.html�
http://www.nuprl.org/html/FDLProject/02cucs-fdl.html�

1.6. ACCOMPLISHMENTS AND PRODUCTIVITY MEASURES 27

Robert L. Constable. Naive computational type theory. In H. Schwicht-
enberg and R. Steinbriiggen, editors, Proof and System-Reliability, Proceed-
ings of International Summer School Marktoberdorf, July 24 to August 5,
2001, volume 62 of NATO Science Series III, pages 213-260, Amsterdam,
2002. Kluwer Academic Publishers.

Robert L. Constable. Information-intensive proof technology; lecture
notes for the marktoberdorf nato summer school. Cornell University, Ithaca,
NY, 2003. nuprl.org/documents/Constable/marktoberdorf03.html.

Robert L. Constable and Karl Crary. Computational complexity and
induction for partial computable functions in type theory. In Wilfried Sieg,
Richard Sommer, and Carolyn Talcott, editors, Reflections on the Founda-
tions of Mathematics: Fssays in Honor of Solomon Feferman, Lecture Notes
in Logic, pages 166—183. Association for Symbolic Logic, 2001.

J. Hickey. Introduction to the Objective Caml Programming Language.
California Institute of Technology, 2003.

Jason Hickey, Aleksey Nogin, Robert L. Constable, Brian E. Aydemir, Eli
Barzilay, Yegor Bryukhov, Richard Eaton, Adam Granicz, Alexei Kopylov,
Christoph Kreitz, Vladimir N. Krupski, Lori Lorigo, Stephan Schmitt, Carl
Witty, and Xin Yu. MetaPRL — A modular logical environment. In David
Basin and Burkhart Wolff, editors, Proceedings of the 16" International Con-
ference on Theorem Proving in Higher Order Logics (TPHOLs 2003), volume
2758 of Lecture Notes in Computer Science, pages 287-303. Springer-Verlag,
2003.

Jason Hickey, Aleksey Nogin, Adam Granicz, and Brian Aydemir. For-
mal compiler implementation in a logical framework. In MERMIN, Second
ACM SIGPLAN Workshop on MEchanized Reasoning about Languages with
varlable biNding, 2003.

Alexei Kopylov. Dependent intersection: A new way of defining records in
type theory. In Proceedings of 18" IEEE Symposium on Logic in Computer
Science, pages 86-95, 2003. To appear.

Christoph Kreitz. The FDL navigator: Browsing and manipulating for-
mal content. Cornell University, Ithaca, NY, 2003. http://www.nuprl.
org/documents/Kreitz/03fdl-navigator.html.

Aleksey Nogin. Theory and Implementation of an Efficient Tactic-Based
Logical Framework. PhD thesis, Cornell University, Ithaca, NY, August
2002.

Stephan Schmitt, Lori Lorigo, Christoph Kreitz, and Aleksey Nogin.
JProver: Integrating connection-based theorem proving into interactive proof

nuprl.org/documents/Constable/marktoberdorf03.html�
http://www.nuprl.org/documents/Kreitz/03fdl-navigator.html�
http://www.nuprl.org/documents/Kreitz/03fdl-navigator.html�

28 CHAPTER 1. INTRODUCTION

assistants. In International Joint Conference on Automated Reasoning, vol-
ume 2083 of Lecture Notes in Artificial Intelligence, pages 421-426. Springer-
Verlag, 2001.

Tjark Weber and James Caldwell. Constructively characterizing fold and
unfold. In 15th International Symposium on Logic-based Program Synthesis
and Transformation (LOPSTR 2003), held August 25-27 in Uppsala, Sweden,
2003.

Xin Yu. Formalizing abstract algebra in constructive set theory. Master’s
thesis, California Institute of Technology, 2002.

Xin Yu and Jason J. Hickey. Formalizing abstract algebra in constructive
set theory. Technical Report caltechCSTR2003.004, California Institute of
Technology, Caltech, CA 91125, June 2003.

Theses One PhD thesis was finished under this project and there are four
others in progress. In addition there was a Masters thesis.

Eli Barzilay. Practical Reflection in Type Theory, PhD Thesis, Cornell
University, 2004.

Alexei Kopylov. Implementing Records and Objects in Type Theory,
PhD Thesis, Cornell University, 2004.

Evan Moran. Adding Intersection Types to Howe’s Model of Type The-
ory, PhD Thesis, Cornell University, 2004.

Aleksey Nogin. Theory and Implementation of an Efficient Tactic-Based
Logical Framework, PhD Thesis, Cornell University, 2002.

Xin Yu. Formalizing Abstract Algebra in Constructive Set Theory, Mas-
ter’s Thesis, California Institute of Technology, 2002.

Work in progress

Mark Bickford and Alexei Kopylov. Verification of protocols by combin-
ing provers using the FDL, September 2003.

Mark Bickford. Experiments with theory modification in the FDL, Septem-
ber, 2003.

Sabina Petride. Knowledge-based specifications in the logic of events,
draft paper and PRL seminar notes (with Mark Bickford, Robert Constable,
and Joe Halpern), 2003.

Software

1.7. FUTURE WORK 29

The Formal Digital Library (FDL) core (95,000 lines of code)

FDL internal service code (20,000 lines of code)

Dynamic Pure Structure (DPS) editor extensions for FDL

Web Posting code (4627 lines of code)

Dynamic Mathematics Formatting Program (6,000 functions in DPS ed-
itor)

FDL-Embedded-Latex

MetaPRL enhancements for system development

1.7 Future Work

1.7.1 New capabilities

We have explored the value of a new kind of object for the FDL, the hybrid
formal /intuitive document, hyfi document. It is based on the observation
that it is easier to share definitions, theorems, and reference algorithms than
it is to share proofs. We created the kind of document that will allow peo-
ple to more easily include formal definitions, theorems, and algorithms in
their articles. We intend to build substantially more library services for hyfi
documents.

We have produced experimental translations services that we intend to
exploit and make part of an advanced service suite.

We have explored a technique for theory modification that works in mul-
tiple passes. We will see whether this can be made a service as well.

We have begun a more systematic study of clustering methods based on
the hyperlink reference structure and on citations [96, 97, 98].

1.7.2 Vision

Our work on the FDL and the uncovering of its capabilities convinces us that
there will eventually be a federated digital library of formal and informal
algorithmic knowledge from the US, EC, and Japan nucleated by the FDL
and related efforts to come. This information network will be a partner to the
computing grid. A dozen or more powerful interactive theorem provers will
be connected to the grid and the network, and several of those will include
decision procedures and fully automated provers such as JProver, Otter, and
EQP. Provers will have contributed over 100,000 formal theorems and proofs

30 CHAPTER 1. INTRODUCTION

that support many detailed models of hardware, virtual machines like the
JVM, and semantic accounts of programming languages. The provers will
draw computing power from the grid and knowledge from the FDL and thus
extraordinary verification power will be available as needed to protect the
critical software infrastructure.

The FDL and the grid will be used to support several critical infrastruc-
ture software systems. Their core functionality will be hardened by formal
verification and checking, and documentation will be an interactive FDL-
supported mixture of formal and intuitive knowledge.

When extensions are made or when new vulnerabilities in the unhardened
parts are detected, we will be able to coordinate via the formal knowledge
network and the grid a dozen provers and to rapidly harden a system section
in a few months, rather than the few years it would take now. Information-
intensive and computer intensive verification technology will provide an ad-
vanced response capability that is not practical now.

1.7.3 Future plans

Chapter 8 provides a more detailed account of our goals for the next three
years and our future plans. Here we summarize them briefly.

Goals: We want to attract more content providers so that by the end
of the five year effort, several groups are submitting content including PVS
users in distributed protocol verification, HOL users in program extraction,
and so forth. This will be a challenge since there are political and institional
barriers to be overcome. We will need to create the position of a collector as
we proposed.

We intend that we will use the FDL directly in additional CIP activites,
and we expect that at least one other MURI will use the FDL with us. This
is likely given the current state of activity and our relations with two other
MURI efforts.

We want to be a major player in the European Community effort in this
area, which will surely include OMDoc and Helm. Our goal is to have at the
end of five years a federated mathematics library of which our FDL is a part.

We want to attract authors of mathematics and computer science articles.
We will attempt to use the FDL in the context of the FDL to do this.

We want to attract dataminers and machine learning experts to search
the FDL for interesting patterns.

1.7. FUTURE WORK 31

Activities: We intend to automate more FDL services. There will be more
comprehensive API’s to access them. These will include advanced services
such as translations between theories, and we will provide additonal cluster-
ing and search methods.

We will use the FDL increasingly in verification work directly relevant to
CIP/SW, including working with other MURI projects, other DoD research
activities and possibly with the Naval Research Laboratory in particular.

We intend to move more FDL services to the Web, for example, more
dynamic pure structure editing on the Web using the DPS editor that we
are now using internally. We intended to provide text editing facilities that
smoothly access our formal content and thus encourage authors to draw on
the FDL content.

We will create and collect more sample content, including material that
the corporation ATC-NY will pay to have us collect in the FDL.

We have also laid the ground work for building an experimental reference
distributed system on which we can bring together results from HOL, PVS,
Isabelle, and Nuprl on specific protocols. We will be adding considerable
content in this category based on our verification work.

We will remain active members of the Mathematical Knowledge Manage-
ment (MKM) community and its North American branch as well, and remain
active participants in TpHOLs.

We need to decide on whether it is worthwhile to reimplement the FDL in
a very simple generic version, however, we will continue to experiment with
a distributed implementation.

Justification for Optional Funding
Here are seven strong reasons why we should be given the optional two
years of funding:

1. Our proposal and results squarely meet the BAA requirements.

2. Our work contributes a missing piece of verification technology impor-
tant to CIP/SW and to Navy missions (e.g. NRL work).

3. Our work is already being used to help in DoD missions, including
Navy and Air Force missions, for example: AFOSR work in IAI, and
support for NRL work on IO automata in PVS.

4. We are demonstrably very productive in all categories mentioned in the
BAA.

32 CHAPTER 1. INTRODUCTION

5. We have been effective in opening a new fundable research area that
no other agency was funding before our grant.

6. Our continued involvement will speed progress toward the DoD goals
articulated in the BAA.

7. We are highly qualified for this work, and our progress and results are
excellent, as will become more clear as time goes on; for now we can
point to good conferences, invited lectures, and followers.

1.8 Outline of the Book

In Chapter 2, we summarize our results as progress toward the goals of the
BAA. We itemize results in each of the ten research concentration areas. We
have results in all of them. This elaborates Section 1.6 above on accomplish-
ments.

In Chapter |3 we discuss in more detail the role of this work in critical
infrastructure protection. This is a substantial elaboration of Section [1.2/ of
this chapter.

In Chapter 4 we present design notes for the FDL. This elaborates the
discussion above in Sections [1.3 and 1.4\

In Chapter 5 we present highlights of the FDL manual. This chapter also
provides depth to our account in Sections (1.3l and 1.4 above.

In Chapter 6 we present a part of the MetaPRL system library to illustrate
the role of a logical framework in conjunction with the the FDL in critical
infrastructure protection and thus elaborates Section [1.2/ above.

In Chapter 7 we present sample content. This static representation only
hints at the capabilities of the FDL and those of its Web Projection. This is
an illustration of the points we made in Section 1.2 about our reply to the
BAA.

In Chapter 8 we describe the new capabilities provided by the FDL for
the task of system verification, for the creating of reference systems, and for
translating among theories stored in the FDL. We also discuss the next steps
we plan to take in furthering our research in all four quadrants of the chart
used above to organize presentations of our work. This elaborates Section
1.7/ above.

In the short conclusion in Chapter 9, we summarize our case for extending
the project into the final two years. This expands Section [1.7.

Volume 2 contains the following sample papers of the project:

1.8. OUTLINE OF THE BOOK 33

Dependent intersection: A new way of defining records in type theory, by
Alexei Kopylov, 2000.

Formalizing abstract algebra in type theory with dependent records, by Xin
Yu, Aleksey Nogin, Alexei Kopylov, and Jason Hickey, 2003.

Information-intensive proof technology; lecture notes for the Marktober-
dorf NATO summer school, by Robert L. Constable, 2003.

MetaPRL — A modular logical environment, by Jason Hickey, Aleksey
Nogin, Robert L. Constable, et al, 2003.

Representing Nuprl proof objects in ACL2: toward a proof checker for
Nuprl, by James L. Caldwell and John Cowles, 2002.

34

CHAPTER 1. INTRODUCTION

Chapter 2

The Multidisciplinary
University Research Program
in Critical Infrastructure
Protection and High

Confidence, Adaptable
Software

In this chapter we present the Broad Area Announcement (BAA) for this
research program verbatim, and then we organize it according to a natural
work flow. We summarize our accomplishments in each of the ten research
concentration areas presented in the BAA. We demonstrate that we have
made significant progress on all of them.

2.1 Digital Libraries for Constructive Math-
ematical Knowledge

The Topic Area eight BAA follows verbatim, italics ours.

Topic Area #8: Digital Libraries for Constructive
Mathematical Knowledge
Background: Software itself is fundamentally about algorithms. And,

35

36 CHAPTER 2. THE MURI BAA

knowledge about algorithms is derived from discoveries in mathematical sci-
ences that can be expressed constructively. The research community accepts
discoveries as fact only after a lengthy process of review, validation, and
acceptance, which has been remarkably effective. Consequentially, software
assurance depends upon this understanding, trust, and experience in con-
structive mathematics and its expression. Systematically developing an in-
frastructure for this knowledge of algorithms — as in a digital library —
would contribute to higher quality software, greater confidence in program
construction, faster dissemination of knowledge globally, and deeper connec-
tions between mathematics and a science of programming. This development
begins by codifying constructive mathematical knowledge using a view of
computation as deduction, and by engaging the research community in the
pursuit of this national infrastructure.

Objective: To create a digital library of algorithms and constructive
mathematics usable for program and software construction.

Research Concentration Areas: (1) Develop proof-checking and model
checking for certifying proofs of the standard body of computationally related
mathematics. (2) Catalog those principal mathematical concepts, together
with their formal definitions, which are used in contemporary computing. (3)
Investigate suitable base language and logic within which competing logics
can be expressed and evaluated. (4) Provide automated assistance for routine
aspects of developing libraries of formal theorems, proofs, algorithms, and
their expressions as programs. (5) Investigate forms of assured interoperation
for assembling, composing, specializing, and generalizing algorithmic knowl-
edge. (6) Investigate reflection for coordination, interoperation, and dynamic
adaptation. (7) Study issues of consistency and maintenance among libraries.
(8) Address the human-computing aspects of syntaxes and concepts that are
appropriate for both foundational developers and end-users. (9) Explore
innovative metaphors and protocols for understanding, using, composing,
searching, authenticating, and validating constructive results. (10) Examine
models of applicable assurance structures and their economics. This research
draws upon many disciplines including mathematics, logic, computer science,
psychology, modeling and simulation, and software engineering economics.

Impact: Historically, libraries have greatly influenced society. Digital li-
braries of constructive algorithms and mathematics will certainly encourage
excellence in program construction that will benefit the national infrastruc-
tures and, in particular, the information industries.

End BAA

2.2. WORKING SUMMARY OF THE BAA 37

2.2 Working summary of the BAA

Our understanding of this BAA is what informed our proposal. Here is how
we interpreted it.

A formal mathematical understanding of computational tasks, algorithms
to accomplish them, and programs to execute these algorithms has been
indispensable to our ability to verify that algorithms accomplish their tasks
and that programs correctly implement them. This understanding has deeply
informed computer science teaching about programming.

A corresponding formal mathematical understanding at the level of sys-
tems will be indispensable to our ability to make them reliable and secure.
A compelling methodology is to build systems from a library of verified com-
ponents and designs; it will require a digital library of formal algorithmic
knowledge at the level of classes and systems as well as algorithms. The fun-
damental ideas behind such a library will apply beyond computer science to
the study of other complex artifacts and natural systems.

Objective: To create a digital library of formal computational mathemat-
ics and associated verified algorithms, formal classes, and reference systems
that are useful for system building. By demonstration help nucleate a global
resource of this kind that will be widely used.

Here are specific research questions associated with the goal of building
and experimenting with such a digital library.

Research Concentration Areas

(1) Catalog those principal mathematical concepts, together with their
formal definitions, that are used in contemporary software system design and
implementation.

(2) Develop means of certifying a combination of formal and intuitive
reasoning about the concepts of (1) in which the formal reasoning is checkable
by machine and yet connected to intuitive reasoning about the concepts at
the corresponding level of abstraction.

(3) Investigate languages and logics in which systems concepts from (1)
can be most suitably expressed to achieve the goals of (2).

(4) Provide automated assistance for basic services to support a library
of formal definitions, theorems, computational tasks, algorithms, and system
modules appropriate to (1), using the languages and logics of (3) and the
methods of (2).

(5) Investigate means of formally composing algorithmic knowledge about
systems expressed in the languages of (3) that correspond to operations for

38 CHAPTER 2. THE MURI BAA

composing systems. Also assure that concepts and methods of certifying
correctness, from (2), can interoperate across the various logics from (3).

(6) Investigate how reflection might play a role in (5), especially in regard
to adaptable software.

(7) Investigate how a library of formal computational knowledge which
provides the services of (4) and (5) can consistently manage contributions
from multiple logics and verification systems of the kind determined in (2)
and (3).

(8) Determine the features of syntax, language presentation, and proof
presentation that facilitate good human computer interaction, especially
given the goals of (2).

(9) Explore innovative metaphors and protocols for understanding algo-
rithms and systems as presented in a library satisfying (1) through (8).

(10) Take into account in the design of the digital library issues of eco-
nomic viability, intellectual property protection, and permanence.

Impact: Presentation of verified reference algorithms and reference sys-
tems will encourage excellence in programming, system design, system con-
struction and support. Accomplishing these goals will create a new capability
in verification technology. It will also allow a quantitative approach to under-
standing mathematical theories and software systems. Furthermore, sharing
formal mathematical models, formal specifications and proofs of realizabil-
ity from DoD projects will directly advance those projects, e.g. efforts at
AFOSR, DARPA, ONR, including two other MURI projects, SPYCE and
Language-Based Security.

2.3 Progress Toward Building Digital
Libraries for Mathematical Knowledge

Here we outline our progress on the work called for in the BAA according
to its categories. In Section 2.4 we factor the tasks as they were done in our
proposal.

The Statement of Work (SOW) of that proposal remains in effect with
one additional suggestion offered at the May 2002 review requesting that we
look for a community of users. We address this topic last in this section.

It is important to note that our proposal does not undertake the con-
struction of a full-blown, industrial-strength digital library. This would be a

2.3. PROGRESS TOWARD BUILDING A DIGITAL LIBRARY 39

massive undertaking not appropriate for a research project with a large fo-
cus on graduate education. Our stated goal is to explore the issues involved
in creating a large-scale system of this kind and to experiment with one or
more prototypes that will help nucleate a larger world wide effort. Only 15 to
18% of our funding is for actual construction of a prototype software system
(essentially one and a quarter full time equivalent person).

We present the topics in the order of our working understanding of the
BAA. These are directly isomorphic to the BAA concentration areas, and
we give the corresponding number as well, as BAA-n. We cite items on our
project web page (www.nuprl.org/FDLproject) using the button names, such
as [FDL Content], [Algorithms], [CIP], [Talks] and so forth.

2.3.1 (BAA-2) Catalog those principal mathematical
concepts, together with their formal definitions,
which are used in contemporary computing

One needs a formal system or systems in order to catalog the formal defini-
tions. We use three canonical representatives of the major languages, logics,
and systems used in the US and the European Community (EC): one, a stan-
dard classical logic used extensively in program specification, PVS (the EC
uses HOL as well, a very similar prover); two, a constructive logic devoted to
constructive mathematics, Nuprl (Coq is the corresponding EC constructive
prover, it is closely related to Nuprl); three, MetaPRL, a logical framework
having a constructive metalogic (the corresponding EC logical framework is
[sabelle; it also uses a constructive metalogic, however, MetaPRL is the most
modern logical framework, and it has capabilities found in no others). See
FDL content.

Our collection allows experiments with cataloging, clustering, and index-
ing. It includes elements of a newly developed theory of distributed comput-
ing, a logic of events, that is critical in our effort to model actual comput-
ing systems of the kind most critical to the national infrastructure. It also
includes new elements of computational graph theory, dependent records,
red/black trees, constructive algebra, and functional program transforma-
tions. There are seven publications about these contributions

We catalog concepts based on standard categories, and we use automatic
classification. We have compiled an index of concepts covered in the FDL
libraries. There are 1128 PVS definitions, 1925 Nuprl definitions, and at last

40 CHAPTER 2. THE MURI BAA

count over 1000 MetaPRL definitions.
List of papers, talks and implementation work related to this area and
done as part of the project so far.

1. All 79 theories of PVS prelude imported [FDL Content]
2. Graph theory library developed in Nuprl, related to PVS and Leda
[FDL Content]
3. Hybrid protocols imported (DARPA work) [FDL Content]
4. Logic of events imported (NSF, DARPA work) [FDL Content]
5. Finite sets, number theory, div, mod imported from PVS [FDL Con-
tent]
6. Nuprl list library reorganized (undergraduate project) [Algorithms]
7. Twenty two Nuprl libraries displayed with Dynamic Math Formatter
[FDL Manual
8. Abstract Algebra developed in MetaPRL jointly with Caltech
9. Constructive Set Theory in MetaPRL Master thesis at Caltech 02
10. Red/Black trees developed as chapter of PhD thesis at Cornell 03 [Al-
gorithms|
11. Fold and Unfold article at LOPSTR 2003 [176]
12. Boolean Valuations article developed 2003 (Cornell funded)

In addition there is a draft article with Marktoberdorf student Nina Bohr
from Arhus Denmark and R. Constable on using intersection types to define
co-inductive types [31].

It should be noted that the use of MetaPRL and Nuprl was explicitly
mentioned as a component of our proposed work. It is the best way for us
to produce experimental content. These systems are DoD and NSF funded.
Indeed, the project acquires about 90% of this content from DARPA- and
NSF-supported efforts as well as Cornell funded contributions.

We are ahead of the schedule in our proposal in considering PVS already
in the second year instead of the third. The proposal calls for including other
systems such as HOL and Coq in the fourth year. However, the emergence of
a Mathematical Knowledge Management community might make it very easy
to do this by forming a Unified Formal Digital Library with the European
Community. This could also bring into the library the results of the Polish
Mizar system. So far this system has not stressed algorithmic knowledge,
but that might change in the future.

2.3. PROGRESS TOWARD BUILDING A DIGITAL LIBRARY 41

2.3.2 (BAA-1) Develop proof-checking and model
checking for certifying proofs of the standard
body of computationally related mathematics

Cornell, Caltech, and Wyoming have been developers of proof-checking and
property-checking (in the broad sense of SAT solvers) systems. This is a ca-
pability in which we have extensive experience and expertise. For instance,
the Cornell PRL group and Gothenburg University built the first proof sys-
tems for general constructive mathematics. The other major constructive
system, Coq, is closely related to the Cornell system (Chet Murthy of our
project was a major architect of Coq).

The theory implemented by Cornell is Computational Type Theory (CTT),
it is closely related to the Intuitionistic Type Theory (ITT) from Martin-Lof
which is implemented in the Gothenburg provers (such as Alf). The ITT
theory is also implemented in the Isabelle logical framework, and CTT is
also implemented in the MetaPRL logical framework.

The Nuprl book is available on-line from the FDL project web site (it
remains among the top 25 cited objects in CiteSeer).

We benefited from external efforts in improving MetaPRL reasoning and
contributed to some extent from this project both at Cornell and Caltech.
See TPHOLSs ’03 article on MetaPRL and Nogin’s PhD thesis. This work
included adding a new record mechanism and new rules for quotient types.

List of papers, talks and implementation work related to this area and
done as part of the project so far:

MetaPRL article at TPHOLs by the Cornell/Caltech group 2003
Automating Basic Number Theory in MetaPRL TPHOLs article 2003
Reflecting Higher-Order Abstract Syntax in Nuprl, TPHOLs 2002
LICS 2003 demonstration of Nuprl reflection [Talks]

Representing Nuprl Proof Objects in ACL2 ACL2 Workshop 2002
Release of JProver IJCAR 2001

Aleksey Nogin’s PhD thesis

Shared protocol verification Kopylov & Bickford 2003 [FDL Content]

e IR Y

42 CHAPTER 2. THE MURI BAA

2.3.3 (BAA-3) Investigate suitable base language and
logic within which competing logics can be ex-
pressed and evaluated

This concentration seems to call for work on logical frameworks as a base
logic. We have in the past explored metalogical frameworks [19] and the
MetaPRL logical framework [90]. We have also explored per models [7] and
set models [91]. Out of this work a central concern emerged - relating classical
and constructive logics.

We have done fundamental theoretical work in this area, based on Hickey’s
PhD thesis [81] and Howe’s methods. We have also experimented with the
following concepts.

We studied mappings of Sets — Types [81], and we implemented Aczel’s
mapping from CZF into CTT [133].

We studied mappings of Types — Sets. [90, [133], and we will be using
Howe’s implementation of his mapping of HOL into Nuprl.

We studied the composition of these mappings, thus closing the loop:

s

CZF CTT

List of papers, talks and implementation work related to this area and
done as part of the project so far.

1. MODO03 paper on work of Howe, Moran 2003 [45]
2. Nuprl-PVS connection article 2003 [Publications]
3. Translation service experiment 2003 [28]

Moran’s Theorem is a major new discovery from July 2003; see MODO03,
Lecture 3 included among the papers accompanying this book.

Stuart Allen’s work on certificates addresses this area as well, but we
listed it in Subsection 2.3.5

2.3. PROGRESS TOWARD BUILDING A DIGITAL LIBRARY 43

2.3.4 (BAA-4) Provide automated assistance for rou-
tine aspects of developing libraries of formal the-
orems, proofs, algorithms, and their expressions
as programs

MetaPRL and Nuprl provide this automated assistance already. We ex-
panded these methods to work in a multi-logic digital library. The FDL
provides general mechanisms for these routine tasks. In the proposal we
thought we might call this a Common Logical Library. For a list of the
proposed operations, see Goals, Section 1.1

The group at the University of Wyoming (Caldwell/Jechlitschek) is de-
veloping a prototype peer-to-peer system which allows distributed FDLs to
be queried and accessed form a single site. Currently our query language in-
cluded Boolean combinations of component (opids) and named based, but we
intend to extend it to include queries that require inference. This prototype
system can serve as a model for FDL front-ends.

List of papers, talks and implementation work related to this area and
done as part of the project so far.

1. FDL implementation’s extensive services [FDL Manual|, revised 2003

2. The FDL Design Notes discuss additional services 2002 [FDL]

3. The Dynamic Math Formatter is a key service [FDL Manual] improved
2003

4. The Dynamic Pure Structure (DPS) editor is being developed for the
FDL 2003

5. Wyoming peer-to-peer experiments

The FDL implementation is 95,000 lines of code.

The Web project software is 6,000 functions, and the FDL itself contains
20,000 lines of service code.

We have project over 45,000 objects to the Web.

2.3.5 (BAA-5) Investigate forms of assured interop-
eration for assembling, composing, specializing,
and generalizing algorithmic knowledge

The concentration area can be read in three ways. We have results about
interoperation of system components (a goal of DARPA’s PCES project) and

44 CHAPTER 2. THE MURI BAA

interoperation of distinct provers. The second category is the topic of our
proposal. In the FDL we have explored:

(a) Formal translation between theories (CZF to CTT); Hickey thesis (b)
Hybrid proofs (¢) Translation among FDL theories (d) Accounting schemes
that provide assurance, the certificates of our FDL; see FDL Manual and
Design Notes.

In addition, we have studied the idea that formal theories provide the
basis for collaborative articles in ordinary mathematical vernacular that can
interoperate because they are grounded in the same formal definitions. See
the article by Allen and Constable [6].

List of papers, talks and implementation work related to this area and
done as part of the project so far.

1. Abstract Identifiers and Textual Reference 2002
2. Using the FDL for semantic anchoring in the NSDL 2003

The paper by Stuart Allen on abstract object identifiers is fundamental.
It among the papers that accompany this book.

2.3.6 (BAA-6) Investigate reflection for coordination,
interoperation, and dynamic adaptation

We proposed the study of coordination and adaptation of a library to changes
in the basic theories and the systems they support.

We conducted a major study of the difficulties caused by change - the
need to change definitions, theorems, the need to revalidate. We also studied
the impact of improvements to tactics. Our investigation led to several new
concepts for controlling change - abstract object identifiers, closed-maps, and
certificates.

Our investigation into reflection led to a more usable reflection mechanism
for theories based on the FDL term structure with binding; see LICS 03
demonstration and a TPHOLSs paper on higher-order abstract syntax.

List of papers, talks and implementation work related to this area and
done as part of the project so far.

1. Reflecting Higher-Order Abstract Syntax in Nuprl TPHOLs 2002 (re-
peated item)

2. LICS demonstration of reflection 2003 (repeated item)

3. Computational complexity and induction article 2001

2.3. PROGRESS TOWARD BUILDING A DIGITAL LIBRARY 45

2.3.7 (BAA-7) Study issues of consistency and main-
tenance among libraries

We proposed an investigation of ways of maintaining consistency in a multi-
prover library. We have studied the issue of creating dynamic formal docu-
mentation that remains current as software evolves.

List of papers, talks and implementation work related to this area and
done as part of the project so far.

1. FDL Design Notes 2002 (repeated item)
2. FDL Dynamic Latex editor

3. MODO03 paper 2003 (repeated item)

4. Evan Moran thesis draft 2003 [133]

2.3.8 (BAA-8) Address the human/computing aspects
of syntaxes and concepts that are appropriate for
both foundational developers and end-users

MetaPRL and Nuprl use display mechanisms developed by the PRL group
and brought to a stable state in Nuprl 4; see Nuprl 4 Manual.

We have provided more advanced versions of these mechanisms for the
FDL as well by improving the Nuprl display mechanism. We have created a
Dynamic Math Formatting feature as part of the FDL.

We illustrate the capability in the PVS Library, but the real impact comes
from the dynamic redisplay mechanisms and context sensitive display; see
Allen/Manion article [116].

We are also creating a Generic Mathematics Editor for the FDL which
will provide structure editing features and which will benefit from continuing
work on editors for mathematics.

List of papers, talks and implementation work related to this area and
done as part of the project so far.

1. FDL manual on display and syntax (repeated item)

46 CHAPTER 2. THE MURI BAA

2.3.9 (BAA-9) Explore innovative metaphors and pro-
tocols for understanding, using, composing,
searching, authenticating, and validating construc-
tive results

In the past we have based our explanation on the concept of evidence, pro-
ducing a semantics of evidence.

We are now exploring the knowledge metaphor with Joe Halpern. This
work has led to collaboration on the SPYCE project through results of PhD
student Sabina Petride [152]. We are looking at algorithmic knowledge in the
sense of Fagin, Halpern, Moses and Vardi possessed by agents in a distributed
system. The fact that knowledge in logics such as CTT and ITT can be
recorded as types means that it is natural for a protocol to specify what it
currently knows.

The knowledge metaphor has been used by Kripke and was formalized
constructively by Judith Underwood. Related work led to Search Algorithms
in Type Theory by Caldwell, Gent, and Underwood.

List of papers, talks and implementation work related to this area and
done as part of the project so far.

1. Knowledge based protocols in the logic of events draft 2003 [152]

2.3.10 (BAA-10 and May 2002 Review)

At the May 2002 project review at ONR, the outside review panel suggested
that we work to develop a community that would especially value the FDL,
several suggestions were made, including the Naval Research Laboratory.

This was also a lively topic at the first North American meeting of the
newly emerging Mathematics Knowledge Management community. This par-
ticular community is definitely a likely one to encourage. We are already
members, having presented two papers already at these meetings. In addi-
tion, R. Constable has twice been invited to speak at the meetings.

We have also determined that the higher-order theorem provers confer-
ence, TPHOLSs, is a very good community for us.

List of papers, talks and implementation work related to this area and
done as part of the project so far.

1. Interactive digital libraries article at MKM workshop, 2001
2. Invited talk at North American MKM meeting 2002

2.4. PROPOSED PLANS 47

3. Invited talk to be given Nov 2003 MKM meeting

In addition we have presented 4 papers at TPHOLSs in the past two years.

2.4 Proposed Plans for Building Interactive
Digital Libraries of Formalized Algorith-
mic Knowledge

In the heading of this section is the title of the Cornell, Caltech, Wyoming
proposal which was the only one selected for funding in this topic area.

In this section we factor our progress report according to the categories
used in the proposal and discussed in the Introduction to this collection. We
quote research issues directly from the proposal. Recall that the two major
categories are content creation and library infrastructure. In both categories
we work on theoretical and experimental issues. The later require extensive
implementation work.

Providing a logical library will result in many significant benefits to sci-
entific practice as well as to the social impact of science. First, we will be
able to increase the reliability of reference material at a low marginal cost
and provide a starting point for the evolution of these mechanism to dramati-
cally lower cost. We can know that collections of definitions and theorems are
correct according to specific designated criteria and are consistent. The cor-
rectness can be established at the highest levels of assurance known, namely
proofs checked by both humans and machines. The process of progressively
providing computer certifications for more and more claims asserted in a col-
lection is a process that we call hardening the collection, and it applies to
the software systems stored in the library as well. The library provides an
arena for gradual formalization.

Second, we contribute to formal mechanisms for guaranteeing the reliabil-
ity of large software systems. We will discuss in Section 2.4.1 how an interac-
tive logical library can be used to develop algorithms and even systems that
are correct-by-construction and documented by the context. Moreover the log-
ical library provides the means to connect intuitive textual documentation
to formal documentation.

Third, a logical library will complement the mechanisms of electronic
publishing and open the way to verify journals that specialize in formalized

48 CHAPTER 2. THE MURI BAA

mathematics [129, [160]. In such journals every result will be checked by
certified theorem provers, including those for which there is a small proof
checker that can be publicly scrutinized (this is a system that obeys the
so-called deBruijn principle).

Fourth, there is significant educational value in formal reference material.
We have used such material in teaching and have studied its impact [44].
In particular one can learn about a particular system in a context where
the design, the specifications, the algorithms and the proofs are all linked to
the relevant literature. Moreover, readers can explore the consequences of
deleting an assumption or strengthening a conclusion. They can watch an
algorithm execute on concrete data and symbolically. They can ask whether
one result depends on another; they can see exactly how or whether a proof
breaks by changing definitions, lemmas, inference steps and justifications.

Fifth, the growing database of formal computational mathematics is a
new resource for studies in artificial intelligence. As one example, members
of the Al group at Cornell generated natural language proofs from parts of
the Nuprl corpus [87]. These methods will now work on the entire FDL.

Sixth, public access to this global interactive digital library of algorith-
mic mathematics will benefit the nonexperts who must use technical results,
and it will empower students and lay persons to explore mathematics inter-
actively and to contribute to these libraries. It will create what we call a
formal forum connecting those interested in formal methods. A much wider
group of people will be able to participate in adding to scientific knowledge,
and we might create communities of volunteer contributors in the same way
(but obviously on a smaller scale) that advances in databases have allowed
20 million naturalists and bird lovers to contribute to the study of nature
through interactions with Cornell’s laboratory of ornithology.

2.4.1 Content creation - theory

One of the themes of our past work was to automate the richest formal
language of computational mathematics that we knew how to design, and
automate in a way that is extensible. Our experience is that expressiveness
greatly leverages theorem proving power.

Based on our past experience, we believe that the case for expressiveness
is clear: formal concepts must match the natural mode of discourse used
by people who want to read the library and interact with it. This means
that ordinary first-order logical language is not sufficient, and in our view,

2.4. PROPOSED PLANS 49

even higher-order logic has benefitted considerably from adding dependent
types, as in PVS, and it would benefit still further from subtyping relations.
These points can be made well in comparing the notion of subtyping and
inheritance used in the type systems of programming languages with that
used in pure mathematics [49]. We see that computational type theory can
express the programming concepts, but traditional set theory can not do so
directly. The FDL will encourage connecting formal statements to their in-
tuitive equivalents, and to the richest formalisms that are related.

We are focusing on two hard problems in formalizing computational math-
ematics. One is the issue of reasoning at a larger scale — about classes, the-
ories and systems rather than about types, theorems and programs. This
forces us to examine even more closely the problem of reflection and metar-
easoning which has been of interest to us since the 80’s. Ideas for solving
these problems have a strong effect on the design of the logical library.

The ability to reason about classes and systems will allow us to explore
the notion that a software system can be thought of as an implemented
constructive theory. We call this idea theories-as-systems, and it is a gener-
alization of the concept of proofs-as-programs that we pioneered. We think
that this approach is supported well by the class theory operations that are
included in the Nuprl type theory [49] [100].

An important issue for building content is establishing links between the
logical library and a variety of proofs systems. This is precisely the issue
of relating theories and proving at a large scale. Our FDL now has the
capability to connect to other processes, and we intend to use this for building
connections to HOL [69], PVS [148], Maude [42], Isabelle [150], and ACL2 [3].

Providing a practical implementation of reflection for open ended com-
putational theories will not only allow us to manage the library and prove
that large scale operations are correct, but it is also a very good route to for-
malizing computational complexity. The fact that computational complexity
facts are not part of the standard libraries reveals a major gap in the founda-
tional basis. We think we can now close this gap [40, 24]. Benzinger’s work
also illustrates the value of connecting theorem provers to symbolic algebra
systems, he uses Mathematica as a heuristic to estimate the computational
complexity of code extracted from proofs (it is not used in proofs). The FDL
will allow us to extend these ideas to all content collected in it.

20 CHAPTER 2. THE MURI BAA

2.4.2 Content creation - experiment

If we are to have a semantically grounded theory of programming “in-the-
large”, then we need a semantics of classes or modules [86, 1, 54, 26], and
it must be related to an account of types. Programming languages such as
Java support a notion of class, but it is not formal and cannot be used as
the basis of a theory. Various ML dialects support modules which do have
a semantic basis, but ML does not support a rich notion of inheritance, and
modules are not objects in the full sense.

A pleasant surprise about constructive type theory is that it supports a
rich theory of classes which can account for modules, formal modules, depen-
dent records, and objects [49, 33, [154]. A formal module is a module which
contains assertions as well as types and methods. The class theory also allows
us to treat theories as objects. For example we could define a computational
number theory as a module built on a discrete nonempty type, D, and con-
taining a successor operation, a zero element, a decidable equality operation
and two recursion combinators, one of type D x A into B and one of type
D x A into P; for A and B arbitrary types in U;. A remarkable feature of type
theory is that this little theory of numbers is also an example of a module
with assertions or of a dependent record whose types are propositions. We
have discovered a very simple way to define these dependent records using
dependent intersection types [100].

Relations and functions on types extend to classes and thus to theories.
For example, a theory morphism is a special kind of function from one theory
to another. Also the subtyping relation on types, A C B, provides an inher-
itance notion for classes and for formal theories. We know precisely what it
means to say that one theory is a subtheory of another (and we see that a
classical version of a theory T is a subtheory of the constructive theory T').

We have found that our use of formal modules in the verification of En-
semble [111] has allowed the components to connect more precisely; it is like
having Lego blocks with many pegs and holes so that they “snap together”
tightly.

Our systems can automatically extract algorithms from constructive for-
mal proofs; these algorithms are correct-by-construction. In a similar way
we can synthesize a communication protocol from its specifications. The for-
mal proofs explain why the algorithm accomplishes the task specified by the
theorem. We pioneered this technology [20), 48, 136, 39] and have been using
it since 1980 with a number of major successes — from digital hardware to

2.4. PROPOSED PLANS o1

distributed system protocols [110]. One of the suggestive slogans used to
describe this work is proofs-as-programs.

In the context of the FDL, we can now expand this proofs-as-programs
concept to the notion of “theories-as-systems” [49]. The notion is that a
small theory, say of managing histories of computational events, becomes the
description of a small system. We are applying this notion in the case of using
a formal theory of transition systems to describe communication protocols.

We propose to develop this idea further to show the value of the concept
of an “active” library of algorithmic mathematics. If it is feasible to maintain
the code base for a module of a real system in the Library and link it to formal
documentation automatically, then the Library will prove itself as a tool in
building better software. We already support parts of MetaPRL code in this
way, but we have not established formal links to theorems that underlie the
design.

Using the above concepts we plan to improve links among different provers.
In some cases the links will be made by simply importing theorems as we
have done for HOL into Classical Nuprl and use them in parts of libraries
where computational content is not required or where classical content is
equivalent. In other cases we will use a semantical embedding of the cor-
responding theories as Hickey has done for constructive set theory. A still
deeper level of connection can arise in cases when we can invoke other provers
in building hybrid proofs. Here are some of the systems that we will examine
as we expand connections to the Common Logical Library.

e The HOL proof system [69], using the HOL/Nuprl link described by
Felty & Howe [90, 91), 63] and the link via Maude [43].

e The PVS system [148], using techniques described in Moran’s forth-
coming thesis [133].

e The formal meta-tool Maude [42], using the link described in [43, 126],
and MetaPRL [77, 127], developed at Cornell.

e The generic theorem prover Isabelle [150] using insights gained in [137].

e The ACL2 system [3].

2.4.3 Library infrastructure - theory

The main purpose of a logical library is to provide formal mechanisms for
guaranteeing the reliability of stored information and for connecting textual
documentation to formal documentation. They will support the creation and

52 CHAPTER 2. THE MURI BAA

manipulation of various kinds of objects with logically significant relations
between them. The correctness of our claims and explanations depends on
these relations which will be accounted for within the library.

Logical Accounting Accounting in the logical library is intended to sup-
port arguments for claims of the following form:

Because the library contains a proof of theorem A which refers to

a given collection of proof rules and inference engines, theorem A

is true if those rules are valid and those engines run correctly.

We will design and implement an accounting system able to determine
how to execute an inference as specified by a tactic. The tactic source code
together with the goal of the inference step refer, directly and indirectly, to
part of the library. This part should suffice for determining how to perform
the inference. The accounting methods are to be defined largely in terms
of such source code and expressions. For example, we define criteria which
guarantee that we know how to deterministically execute tactic code given
that we can find all the library objects referred to. This is what it is for the
code to specify an inference rather than simply being a record to the effect
that somehow, sometime in the past, there was some interpretation of the
code that produced the inference recorded in the proof. Ultimately, knowing
how to execute a piece of tactic code is knowing how to construct an inference
engine for executing it; this is part of what must be accounted for.

2.4.4 Library infrastructure - experiment

The major technical challenges in trying to provide library services arise from
features special to formal logical libraries, mainly:

e Theories contain code in the form of tactics. Arguments about validity
of tactic proofs are partly about the result of executing tactic code,
therefore the meaning of such code should be stable. We also sometimes
want to reliably rerun tactic code in order to recheck objects.

e Dependencies arise from logical connections among objects. Some de-
pendencies are created by executing tactic code which makes it hard
to track them.

e Theories can be very large and might take days to recheck, so there
must be a way to perform local checks and rebuilds. Also, there is a
pressing need for making the tools faster.

2.4. PROPOSED PLANS 93

e The theorems in the library can be created by various tools in different
logical theories with different foundations. We need to be able to ex-
press relations between logical theories in order to be able to translate
theorems between different theories.

e [t is essential to formalize both the object level theories and aspects
of the metalevel, this leads to questions about reflection and metalevel
reasoning which are some of the deepest aspects of formal systems.

Library Structure The logical library is organized as a persistent object
store for formal mathematical knowledge such as theorems, proofs, defini-
tions, algorithms, formal theories, informal items such as documentation or
explanations, and also proof tactics and search heuristics. Ordinarily older
versions of objects will be retained in the library store so they may be re-
covered or even combined with newer versions. These version control meth-
ods are also applied temporarily or locally in order to enable users to undo
changes or recover from session failures. Garbage collection methods are
employed.

54

CHAPTER 2. THE MURI BAA

Chapter 3

Critical Infrastructure
Protection and High
Confidence Software

At first sight it might seem like a far-fetched idea that a formal digital library
of computational mathematics is important to the defense of the nation’s
critical software infrastructure. Nevertheless, that is true, as this chapter
explains.

Understanding this connection starts with knowing that we do not yet
have an adequate methodology or technology for building highly reliable and
secure software systems, although we can build reliable, functional programs
if they are small enough. However, a technology is emerging for building
reliable systems. We will call it a verification technology. One way to under-
stand it is to compare it to the so-called stack — the layered collection of
hardware and software of which a complete system is composed. Parallel to
this stack is an emerging verification stack. Its components can be integrated
into the programming tools used at various levels of the stack to help make
the resulting layers much more reliable. The DoD has invested in several
components of the verification stack and has funded some of the research
that has brought it into being.

Our formal digital library (FDL) is an experimental new component start-
ing at the top of this stack and providing a semantic backbone for the whole
enterprise. The semantic backbone is critical to reliability in itself, and it
also improves other elements of the verification stack. It also facilitates a
programming methodology for large software systems. It will play a role in

95

56 CHAPTER 3. CRITICAL INFRASTRUCTURE PROTECTION

the design phase, in design refinement, in specification, in code and docu-
mentation production, and in the coherent evolution of the system. The FDL
holds vital knowledge about a particular system, and it provides an interface
to general knowledge needed to understand, modify it, and relate it to other
systems. The FDL holds knowledge about the algorithms and protocols in
the system, about what they do and how they connect. This knowledge
is formally linked to critical components of the system, and it is linked to
general knowledge about algorithms, data structures, and other systems.

Just as lower levels of the stack provide networking links that connect a
system to other systems, the FDL connects system knowledge to the network
of knowledge that is essential to understand it and support it. It is also a
basis for quantitative data about the system’s design.

The FDL is the interface between knowledge that is checked and generated
by machines — formal knowledge — and the kind that can only be checked
and generated by humans — some call it intuitive knowledge, or by contrast,
informal knowledge when it is in the context of formal knowledge.

3.1 The Issue of Software Reliability and Se-
curity

3.1.1 Importance of software security and reliability

The NIST sponsored study in 2002 found that errors in software cost the US
economy $59.5 billion annually. We think that is only a lower bound on the
cost. Annual federal government sponsored research on the problem is less
than 0.1% of this cost. We also know that software systems are a significant
part of the nation’s critical infrastructure. Software is used to control air
traffic, the power grid, the Internet, the Web, the stock exchange, banking
transactions and the operations of most large institutions, private, public and
governmental — including the research laboratories and medical facilities on
which we depend in times of crisis.

Vulnerabilities in the software infrastructure propagate into the physi-
cal infrastructure, and the weakest link can bring down many other vital
elements.

Popular books such as Fatal Defect [151] and other scholarly studies by
MacKenzie [115] have studied the problems and funding initiatives proposed
to correct them. Modest federal and industrial funds have been spent for the

3.1. THE ISSUE OF SOFTWARE RELIABILITY AND SECURITY 57

past thirty years to improve programming technology, and there has been
significant improvement. Likewise programming methodology has become
more mathematical and rigorous and programming practice is more informed
by good education.

inputs in advance of execution. Connecting proof technology to program-
ming technology has allowed us to make guarantees at the level of formal
mathematical certainty, the highest level of confidence known. When hard-
ware failures are taken into account, other guarantees can be given to arbi-
trarily high level probability of correctness.

In principle we can even create a ”verified stack” consisting of formal
models and verified processes that correctly transform a verified high level
program into machine code on a verified chip [92, 132, 131} 35, [74]. Research
is slowly expanding this paradigm, and both the hardware industry and soft-
ware industry are investing in it. It is a paradigm created by fundamental
computer science research over a thirty year period.

In spite of these successes on programs, the solutions do not
scale to software systems. An observer of technology transition might
expect that improvements in the technology would have led to a complete
solution to the "software crisis”, within the typical 20 year time frame for
laboratory results to mature in industry [32]. However, none of the ma-
jor components of modern software have been stable over this period. The
hardware platforms on which the software executes have become increasingly
complex, thus the compilers and operating systems change. The applications
software continues to increase in size and complexity, pushing the envelope of
our understanding in areas such as distributed real-time embedded systems.

Thus, fundamental research has been directed at a rapidly moving target
of steadily increasing scale and complerity. At the same time, these systems
have become pervasive, making the problem of reliability more and more crit-
ical to society. This situation has led government and industry alike to invest
more in the problems of software reliability and security — presumably lead-
ing to the BAA on Critical Infrastructure Protection and High Confidence,
Adaptable Software Research, and Topic 8, Digital Libraries for Constructive
Mathematical Knowledge (see Chapter 2, and also our FDL web page).

We will describe the elements of the emerging technology below. We
have been players in creating the standard paradigm, and are known for our
work on the foundations, on tools, and on applications. It is a technology
that has already significantly mitigated the problem (especially in hardware),
and with sufficient funding for further innovation and improvement and with

58 CHAPTER 3. CRITICAL INFRASTRUCTURE PROTECTION

further engagement by industry it can ”catch up” and become a basis for
solving the problem of scale. However, even at the small scale, the emerging
technology is incomplete and progress on the various elements has been un-
balanced. Researchers have spent 30 years building powerful theorem provers
and sharing the symbolic algorithms used in them, and yet they have spent
no time making large collections of formal knowledge that can be shared.
Government and industrial funding have helped create the powerful provers
but there has been essentially no funding for the knowledge base. ONR/OSD
is a leader in this regard.

Our OSD MURI project provides a new element to expand the standard
technology and move it toward entire systems; that element is a formal dig-
ital library (FDL) of formal proofs about algorithms and protocols, and the
mathematics needed to understand and extend them.

3.1.2 What is the technology for building reliable sys-
tems?

The standard approach to providing a programming technology that will
produce significantly more reliable and secure software has these elements.

The basis is a mathematical account of software. It was a major ac-
complishment of the field of formal semantics in the 70’s and 80’s that we are
able to view software as both an artifact of the physical world and an abstract
mathematical object. This fundamental achievement, established by a great
deal of theoretical and empirical work has organized a world-wide common
research agenda of considerable power. Several Turing Awards have been
given for contributions to this agenda, e.g. McCarthy, Hoare, Floyd, Dijk-
stra, Cook, Scott, and Milner. Some of the most respected mathematicians
have also contributed to this approach, e.g. de Bruijn, Bishop, Martin-Lof,
Girard, Barendregt, Aczel. We participated in this foundation phase in the
70’s [59, 47, [51], including writing a book on the topic [50].

The mathematical foundations are fundamental to this MURI effort be-
cause we are collecting the formalized theories distilled from this work. We
also embody the two major strands of work that this agenda calls for. One
is a mathematical methodology of the kind advocated by Hoare and his fol-
lowers and presented at the world famous NATO summer school that he and
Dijkstra founded and Hoare still directs, Marktoberdorf. The other is the

3.1. THE ISSUE OF SOFTWARE RELIABILITY AND SECURITY 59

verification system approach made feasible by Milner and a host of computer
scientists who build formal tools.

The mathematics-based methodology relies on education and access to
well-explained reference algorithms. This approach succeeds for small al-
gorithms, and it has become part of the standard curriculum in European
Community and North American universities. Our FDL supports this ap-
proach by showing how to collect reference algorithms and interconnect for-
mal and informal explanations of them and relate them to the code. One
difficulty with this approach is that as formulated so far, it does not scale
well to systems, because they are more than sets of algorithms. They have
structure.

Parts of software engineering are attempts to scale this approach to the
level of systems, but it is difficult to present "reference systems” as a useful
educational tool. It is not good enough to simply present the code with
informal documentation. There should be tools for tracking the dependencies
of modules on the design invariants and on the global requirements. We think
that the FDL contributes to solving this difficulty, but that is not the main
point of the BAA nor our proposal. The DL topic of the BAA mentions
the mathematical methodology in the prelude and in two of the research
concentration areas (items 2, 9, and possibly 10), but its main thrust is toward

the formal tools and proof systems mentioned in six of the concentration areas
(items 1,3,4,5,6, and 7).

A formal semantics for programs allowed us to build tools that
would support the process of translating specifications and high
level demonstrations of implementability into code. Such tools are
able to guarantee properties of the resulting code base. Some of them can
be easily integrated into standard heavy machinery such as compilers and
version control systems.

The first level of integration is into the type systems because the idea of a
type can be made richer based on the mathematical semantics. For instance,
the type systems of programming languages have become progressively richer
as our mathematical understanding of types has deepened. Now there are
tools that infer types as well as check them — Algol 68, Simula, Ada, ML,
OCaml, Java, C#, CCured, Cyclone form a lineage of programming lan-
guages with ever increasing type richness.

Program analyzers, such as PREfix, CodeSurfer, LCLint, and ASPECT,

60 CHAPTER 3. CRITICAL INFRASTRUCTURE PROTECTION

are used to analyze memory use and find a certain class of simple program-
ming errors. Microsoft has done controlled studies which show the efficacy
of these tools in finding common bugs.

The formal semantics allows us to extend type systems to include
formal expressions that describe important properties of the code.
Among these properties are freedom from deadlock, array reference within
bounds, sensible pointer reference, etc. Tools are made that check for these
properties. This process creates supplemental formal languages that are
called specification languages because they help specify properties of a prob-
lem solution and of code. The semantics for these specification languages is
the formal semantics discussed above.

A formal mathematical semantics for computing tasks allows us to
use computers to ascertain whether design level reasoning is cor-
rect. Specification languages and formal models provide such descriptions
of computing tasks, and they raise the level of abstraction at which computa-
tions and computing problems can be precisely stated. They allow designers,
programmers and managers to talk about solutions and constraints in a pre-
cise way. Because the languages are formal it is possible to translate them
into programs. It is interesting to note that the most primitive kinds of
specifications are test suites, these are finite. Specifications can be seen as
substantial generalizations of test suites.

Specification languages also help create more precise interfaces between
subsystems and between classes (or objects). This is illustrated well in pro-
tocols and classes that also contain assertions. It is quite remarkable that
specification languages can simultaneously raise the level of abstraction and
the degree of precision in a system.

Specification languages also allowed a class of tools called model checkers,
which have been used to locate errors in individual programs and in systems.
They work by attempting to find a computation path in the system that
violates a property required of the system. These tools have been very suc-
cessful in hardware, and they have opened a class of checking methods that
can be applied in other tools as well.

Another class of tool made possible by having a precise mathematical
meaning for programs are the theorem provers. These can also be used to
find errors, a different class of errors than the model checkers can find. The

3.1. THE ISSUE OF SOFTWARE RELIABILITY AND SECURITY 61

PVS system has been designed to work especially well in this error-finding
mode.

Theorem provers are used to demonstrate the absence of errors
and to prove that programs and systems actually solve computing
problems that can be stated in a precise way. By a precise descrip-
tion, we mean one describable by modern mathematics. When operated in
this mode the provers are called verifiers. There are about a dozen of them
being used and studied. They are advanced tools that are expensive to use,
but they are the only tools that can deal with certain critical properties.
These tools are explicitly mentioned in the BAA.

The theorem provers can also be used to synthesize programs that are
known to be correct-by-construction. This is a remarkable capability pio-
neered in the US at Cornell and Kestrel and now also used extensively in the
European Community (EC) as well.

They are tools that play a central role in our proposal and in all of
the EC efforts to build formal digital libraries of computationally related
mathematics. The provers introduce an entire subtechnology that we call
proof technology. 1t is central to the BAA and to our proposal.

One of the salient features of provers is that they are inflexible. They must
enforce every detail of an argument, from exact syntax to exact semantics
and perfect proof rules. They are like space technology in requiring extreme
precision. This makes them rigid and difficult to change. The current way
to determine whether an improvement in a prover is acceptable is to rerun
every proof ever performed by the system. This is not feasible in practice,
so the result is that even the community of researchers using a single prover
becomes disconnected as it evolves. Some people use version n while others
use version n+1 or n+42, etc.

The technology we have described so far is advanced both in its goals
and in the science required to achieve them. There are special cases of it
which are immediately applicable in many of the categories we cited, such
as advanced type systems, extended static checkers, code analyzers, model
checkers and so forth. The versions that are immediately applicable provide
good evidence that the standard technology is on the right track. We expect
that more and more advanced tools will appear as results of basic research
mature, so the solution will be incremental. However it is very important to
have all the key components present so that they can all mature. At present,

62 CHAPTER 3. CRITICAL INFRASTRUCTURE PROTECTION

an FDL component is missing entirely. Because our work is providing a
missing component, it is already generating interest.

In summary, one can summarize the technology we described by nam-
ing the algorithmic tools associated with it. Here are the key elements:
type checkers, type inference algorithms, extended static checkers, program
analyzers (PREfix), model checkers, decision procedures, verification con-
dition generators, program development environments, interactive provers,
automatic provers, and code extractors. To this list we are adding the
formal digital library.

3.1.3 What is a formal digital library?

A digital library is a collection of documents in digital format along with
programs that operate on them to provide user services associated with re-
search libraries, such as storage, classification, search, retrieval, archiving,
and so forth. The tools can provide additional services such as automatic
summarization, transformation, annotation, hypertext linking, presentation
on the Web, and so forth.

We call the collection formal when it contains a substantial number of
documents and services whose meaning is given by a formal mathematical
theory and whose validity can thus be checked by computer programs. Such
libraries provide services based on the meaning as well as on metadata.

Formalized mathematics is an example of content that is completely for-
mal. The axioms and inference rules provide the meaning. Proofs can be
checked for correctness, and they can be assembled with machine assistance.
So a digital library (DL) that stored formalized mathematics is a formal dig-
ital library (FDL). We can see from the above account of modern program-
ming technology that mathematics is what enables the precise semantics of
programming languages, the basis for the entire research agenda in reliable
and secure programming. Formal semantics is the basis of the automated
tools that create the technology of trust.

In the case of formalized constructive mathematics, its definitions and
proofs have computational content, that is, there are implicit algorithms in
the proofs that can be mechanically extracted. We say that the mathematics
is computational if it includes algorithms and proofs about algorithms. The
BAA calls for libraries of constructive mathematical knowledge. We are one
of the world leaders in producing this knowledge using tools such as MetaPRL
and Nuprl.

3.1. THE ISSUE OF SOFTWARE RELIABILITY AND SECURITY 63

3.1.4 Role of an FDL in critical software infrastructure
protection

One reason for our project is that critical software infrastructure protection
(CIP/SW) is important to the DoD, and this is technology is one of the
most advanced ways to attack the problem. Because this is an area in which
the United States must be unsurpassed, since we have more at stake than
anyone, it is essential that we understand and command the most advanced
technology available. The FDL will not only add a new element to the set
of tools, but it will significantly enhance and amplify existing tools, and it
will offer the means to scale both the programming methodology and the
technology for building more reliable systems.

The new capability offered by the FDL is a common repository of defini-
tions, theorems, and proofs in formal computational mathematics. It collects
the formal content from multiple interactive theorem provers such as Coq,
HOL, Nuprl, MetaPRL, PVS and others. A common set of library services
will apply to this collection, which is already quite large (over 15K theorems)
and growing. There is currently no repository of this nature except for our
FDL, although the EC is supporting similar efforts, such as OMDoc/MBase
and Helm.

The FDL will enhance the standard technology of trust in several ways.
It will capture the precise knowledge that informed design decisions. It will
capture the knowledge used in design refinement. It will allow presentation
of entire software systems and their formal documentation as reference sys-
tems; and it will provide the logical dependency tracking among the modules
needed to make such a reference system useful. We are demonstrating this
capability for distributed systems. The FDL will also make proof technology
more efficient as we illustrate later. Most critically, it will make this technol-
ogy more flexible. It is a lack of flexibility that is one of the limitations in
deploying these tools more generally and at a larger scale.

By achieving flexibility, we also allow provers to share collections of formal
mathematics. This makes them more efficient as well, and makes specification
languages more flexible. Since exact formal specifications of algorithms and
protocols are developed by each prover, these can be shared. Sharing will
shorten the time to develop new specifications that build on previous ones.
In addition the mathematical models used to justify specifications can be
commonly referenced.

The kind of sharing we are talking about is not the ”cut and paste” kind,

64 CHAPTER 3. CRITICAL INFRASTRUCTURE PROTECTION

but each system will be able to incorporate archival elements into its own
developments and even automatically translate specifications from one logic
into another. The amount of savings will depend on the amount of material
that can be shared. In the case of mathematical tasks, where there is a lot
of commonality, the savings are immense — proportional to the conceptual
difficulty, and perhaps on the order of weeks per definition.

The task of interactive theorem proving will benefit significantly from the
FDL. Current provers do not have access to large amounts of knowledge, and
there is a strong tendency to just re-prove many small lemmas, rather than
finding them in another prover’s library. Discoveries in Al have established
the need for large knowledge bases in systems that attempted to exhibit
intelligent behavior [107].

The history of research in theorem provers shows that a great deal of effort
has gone into providing better logical algorithms, such as pattern matchers,
rewrite algorithms, decision procedures, and so forth. But it did not make
sense until recently to fund the creation of massive amounts of content. Al-
though this is not the point of the MURI BAA, it would now make sense
to fund a seven-year program to accumulate a massive amount of ordinary
mathematical knowledge to be shared by the provers. A system such as our
FDL would make this possible.

Now, after almost two decades of steady accumulation of results, there
are over fifty thousand — 50K — theorems available world-wide in digital
form. This is a very large amount, but it has not been collected. We are
building and exploring prototype systems for collecting this material, and
providing library services for it.

e The task of creating correct-by-construction programs and protocols
will be sped up to match the speed of ordinary programming; this will
be a factor of 5 to 7 speed up.

e The process of design, coding, and verification will be supported by
the library so that these activities are automatically interconnected
and cross checked; this will be a new capability.

e A new kind of documentation will be available which will be logically
connected to the code, we call it formal documentation; it will improve
our ability to modify the code without breaking it.

e A Formal Digital Library of computational mathematics has significant
intrinsic value as part of an emerging global knowledge resource. It will

3.2. ROLE OF AN FDL IN THE PROGRAMMING PROCESS 65

accelerate scientific discovery, it will enrich technical education, and it
will enhance our capability to create better software. In particular, it
will be directly applicable in protecting software infrastructure.

3.2 Role of an FDL in the Programming Pro-
cess

3.2.1 Sharing formal mathematics

In principle the idea of sharing formalized mathematical knowledge is sen-
sible and obvious, yet many people who know what is involved think it is
impossibly difficult. Here are some of the challenges that must be overcome.

The problem of different logics

Sharing formal mathematics is not as easy as it might at first seem. Among
eleven significant interactive theorem provers, there are nine different logics
for the four major theories. Five of these use a classical core and four a
constructive one. Thus a statement in one logic might mean something very
different in another. For example, consider the simple statement

1. For all numbers n, Prime(n) or not Prime(n).

This says that every number n is prime or not. In the classical logics
this is a trivial assertion. It is true because by the LEM, law of excluded
middle, every statement P is true or not, that is

2. For any assertion P, P or not P.

In constructive logic, the statement (P or not P) means something very
strong, it means that we can decide whether P is true or not P is true,
and we have a proof of the one that is true.

See the article Information-intensive Proof Technology [45] for a discus-
sion of these issues. It is included in the appendix to this book.

66 CHAPTER 3. CRITICAL INFRASTRUCTURE PROTECTION

3.2.2 Accounting for validity under change

Although it seems like an oxymoron to say it, change is the main invari-
ant of our business. Software systems must change because the world in
which they are designed to function changes. It is not that the mathematical
truths which justify software change, but the computational justifications of
truth change as we learn better and better ways to capture the reasoning
of programmers, mathematicians and computer scientists. As the reasoning
systems improve, the justifications that computers "understand” becomes
more compact. This section illustrates this problem.

The problem of code and state

Some provers use programs as part of their proofs, especially decision proce-
dures for arithmetic. Many use the SupInf procedure. Some use Arith. How
do we know that these programs are correct?

One method is to prove the decision procedure correct. Another method
is to build a primitive proof. MetaPRL supplies these.

Provers are executed in a context that provides theorems that can be au-
tomatically used. In addition, most provers build state as they construct a
proof; this state must be preserved and inspected to track logical dependen-
cies. For example, the prover might build a temporary list of lemmas that
provide typing for subterms.

Many of the provers allow program code as part of the proof. This is
typical of the class of tactic-based provers. For these provers, the validity of
a proof may depend on properties of the programming language for tactics.

If this program code is modified, say, by improving a tactic, then all
previous proofs that used the tactic might change, say become smaller, or
they might fail. Thus when new tactics are added, there is a problem of
knowing that previous results can be recovered.

The problem of name spaces

One problem with collecting formal material from independent authors is
that they use names inconsistently. For example, there might be several
definitions of prime number, or several variants of the fundamental theorem
of arithmetic. When we are working in separate provers or in hierarchical
theory spaces, it is easy to create unique identifiers to disambiguate the
names, such as pvs-peano-arith-prime. But different users of the same theory

3.2. ROLE OF AN FDL IN THE PROGRAMMING PROCESS 67

should not be burdened this way. So we want mechanisms for managing
naming conflicts. We discuss these matters in Chapter 4.

Name space problems do not only arise from inconsistent usages by dif-
ferent users. The problem is that, in current systems, references to objects
(lemmas, definitions, tactics, etc.) are made via symbolic names. But this
means that if, as mentioned in the previous section, a tactic is improved,
it may no longer produce identical results in contexts in which it has been
previously used; if so, proofs may fail when re-run. To avoid this problem it
would be possible to give the new improved tactic a new name and to leave
the name of the older weaker version unchanged. But names are typically
mnemonic — and there may be no appropriately suggestive synonym for the
new tactic. The other option is to go back and repair all the older proofs
so they work with the improved tactic, but this can be a huge effort and
it is not logically necessary. This seemingly trivial problem applies to any
formal artifact, software included, and can become serious in any system
that is around long enough. It does not arise at all if symbolic names are
not the principal means of referring to objects. In the FDL, user selected
names are maps from the symbolic name to the object it refers to. This level
of indirection solves many name space problems that exist in a wide range
of applications today. In the example of the improved tactic, if proofs refer
to tactics by a reference to the abstract identifier of the tactic object itself,
old proofs will still run even after a user has remapped the name to refer to
the new tactic. Persistent, abstract, object identifiers are the basis of the
underlying FDL representation of formalized mathematics.

Need for working space, sublibraries (working maps)

A common problem with all documents is that we distinguish between drafts
and final copies. A draft might be in an inconsistent state. There might
be several different proofs because we are trying out alternative approaches,
looking for the best one.

Another situation that arises with large collections is that we want to use
the same results in many different documents, yet we don’t want to duplicate
them.

The simple act of combining definitions and theorems into a common
collection requires that we solve several of these problems. In order to actu-
ally share results in a meaningful way requires solving all of them. We have
developed an approach to all of these issues, and are experimenting with

68 CHAPTER 3. CRITICAL INFRASTRUCTURE PROTECTION

our proposed solutions. These experiments have led to deeper insights and
improvements in our solutions.
We discuss the above topics in Chapter 4.

3.2.3 Formal documentation of systems

Good systems are developed around a clear set of principles and design in-
variants. Before code is written, a set of computational tasks is derived from
the design; the tasks result from analysis and problem solving. They are then
refined into further subtasks as the result of further problem solving. In the
end, a collection of data structures and algorithms are written and assembled
into a system. However, it is frequently the case that the task specifications,
key problem solving insights, and the reasoning that connects them to the
code are not written and preserved with the code. Even if they are preserved
as separate electronic documents, they are not connected to the code in any
systematic and guaranteed way. It is essentially impossible to recover these
key elements of a system from the code itself.

For example, the code might need to keep a balanced tree. So a version
of red/black trees is implemented. The documentation might mention a
standard algorithm plus a trick used to make it suitable. See our account of
red/black trees.

As code evolves, there is a large danger that it becomes disconnected from
the ideas and reasoning steps that justified the original.

Formal specifications are intended to preserve at least the task require-
ments. They also provide an anchor point for some of the reasoning steps
in the code refinement process. They provide points at which computer
checked reasoning can be directed when the reasoning steps are discovered
to be subtle or critical.

3.2.4 Verification and synthesis at the speed of design

Interactive theorem provers have become extensible. Tactic style provers
are clear examples; those systems can easily incorporate new algorithmic ad-
vances as additional tactics. Thus new rewriting techniques and new decision
procedures are rapidly incorporated into these provers. Also tactics naturally
evolve into clusters that become ”supertactics.” As machine speeds increase
and even the sequential provers can afford to execute more and more com-
prehensive tactics. The concurrent provers such as Nuprl and MetaPRL can

3.2. ROLE OF AN FDL IN THE PROGRAMMING PROCESS 69

afford to run very expensive supertactics in parallel with small ones.

The tactic style provers have provided a path for ever increasing theorem
proving power and a route for advances in other communities, such as SAT
solvers, model checkers, and fully automatic provers, to become components
of large tactic-based provers. These advances have made it possible for tal-
ented users of interactive provers to imagine formalizing the reasoning of a
programmer or designer at speeds close to the time it takes them to carefully
write down their ideas as part of a documentation package.

However, the theorem provers cannot keep up with programmers at the
level of basic factual knowledge about mathematics and data structures.
Thus the prover becomes mired in having to prove many hundreds of facts
that are immediately obvious to programmers. These facts are both of the
very basic kind, say about numbers, lists, trees, and graphs. They are also
about the particular problem domain, such as message structure, network
connectivity, virtual synchrony, fault tolerance, etc.

We have experienced the situation where we could keep up with designers
and programmers. It happened in the area of protocol verification after we
had been working with the Cornell systems group for seven years building a
common vocabulary and a common set of concepts. We eventually reached
the stage where we had enough formalized knowledge that we could verify
and idea in the same time it took to code it. We found mistakes both before
and with the programmers. More significantly, we were able to generalized
the solutions and provide cleaner code in the case where we participated from
the beginning ”at the speed of the designers.”

If each prover had access to the total collection of basic facts used by
others, then formal theorem proving would proceed at a pace very close to
that of informal reasoning. In this case, it would be possible to prove all the
critical reasoning steps in design refinement and store the proofs as part of
the documentation. These proofs would make some of the documentation
formal and connect it to the code. In Chapter 6 we examine how these
reasoning steps are connected to the code in a compiler implementation.
In the appendix, the paper by Constable [45] illustrates how comments are
integrated into correct-by-construction code synthesis.

3.2.5 Fostering a richer culture of correctness

The people who build and use interactive theorem provers are very interested
in correctness. They are trying to build systems that eliminate all errors in

70 CHAPTER 3. CRITICAL INFRASTRUCTURE PROTECTION

logical and mathematical reasoning. They are concerned that their systems
are built correctly and tend not to trust other systems.

This creates a certain culture in which people want to ”double check”
results that they are interested in by proving them in their own systems.
Such an attitude tends to create islands of isolated but very pristine formal
mathematics. It also leads to practices that do not scale, the practice of
"doing it all over again in system X.” The extreme end of this is reproving
in each system that 141 = 2. The FDL is a component that can change
the culture to make it more like the well proven culture of rigorous but not
completely formal mathematics.

What we really care about is a large body of mathematical results in which
we have great confidence and which can be used in software construction. The
top level then are the theorems, the facts, stated in the context of a particular
theory, such a type theory or set theory. Below that is the level of the rules
and logics used to establish these facts. These logics might differ a great deal,
but the details are generally not interesting to the practitioners of software
construction; the facts and the theory suffice. Below the level of the logics
is the level of the deductive systems (or proof engines) that implement the
rules and proofs. This is a very low level of abstraction that is not of interest
even to most mathematicians, but it is the level at which the theorem prover
communities are interacting. The FDL aims to raise this level to that of the
theorems.

3.3 Integrating an FDL into Verification Tech-
nology

We have built a prototype FDL; it was designed to provide the capabilities
needed for critical infrastructure protection according the role we outlined in
the previous sections. It already includes formalized mathematics from four
systems, MetaPRL, Nuprl, JProver, and PVS, and we plan to add more as
we learn how to do that well. We have already learned a great deal from the
year of experiments conducted with the experimental FDL.

A manual for the FDL is available at the project web site, both under Pub-
lications and under FDL Prototype. In addition there are extensive Design
Notes available at the web site which include use scenarios. In this section
we relate the FDL capabilities to the discussion of the previous sections.

3.3. INTEGRATING AN FDL INTO VERIFICATION TECHNOLOGY71

The FDL can be accessed through VNC (see the FDL Prototype link).
In addition we provide a service that posts mathematical content to the Web
and posts key formal metadata that is harvested from the FDL. This service
is discussed below.

3.3.1 Basic architecture

One of the most critical roles of the FDL in software infrastructure protec-
tion arises from its capability of connecting formal knowledge produced with
theorem provers to intuitive knowledge produced and needed by computer
scientists, mathematicians, system architects, and programmers.

Data formats

The FDL must contain formal material from a number of provers. This
requires a formal notation that provides a uniform data format for storing
definitions, theorems and proofs internally and that it accepts data in a
variety of external formats. We accept data in XML and in ASCII. The
internal format we call terms.

The FDL manual provides a description of the data types that support
content and metadata. We only list some of the features to convey the basic
concepts.

1. term structure

2. abstract object identifiers

3. binding structure

4. connection API’s

Accounting mechanisms

Another essential feature of the FDL is that it supports mechanisms that
account for the soundness of results. The results might be from a single
version of a system, from multiple versions of a system, from several systems

72 CHAPTER 3. CRITICAL INFRASTRUCTURE PROTECTION

implementing the same logic, from two logics, from a logic and a program-
ming language, from a logic and a test suite of examples, from a logic and
corresponding informal language and so forth. We have described the use
of certificates and sentinels to provide broad and robust accounting mecha-
nisms.

Library services

Our proposal listed many services that an FDL should support. Many of
them are routine, such as

Store a result

Retrieve a result

Display a result

Extract code from a theorem
Display logical dependencies
Combine closed maps
Display use links

Cluster

© ® N o W N

Search

We present some of the advanced services below.

Presentation services

The FDL should provide extensive links into the web since it will be hold the
broader network of knowledge that provides the context for many items in
the library. Ideally many FDL services will be available from the Web using
large compute servers to drive the computationally intensive tasks.

The work required to obtain a flexible and readable presentation of math-
ematics in HTML and MathML turned out to be exceptional. One of the
technical difficulties is reported in a short note by Allen and Hickey on how
to indent mathematical text in a way usable by the standard browsers.

Here are specimens of text from Nuprl and PVS that illustrate what we
have been able to accomplish. Appendix A contains more.

3.3. INTEGRATING AN FDL INTO VERIFICATION TECHNOLOGY73

Advanced library services

The proposal lists a number of advanced services that we will explore, some
of them are listed in the Goals section of the Introduction. Some are listed
in the FDL manual as well. Here we simply offer the flavor of advanced
operations.

Google provides a translation service that will produce a rough translation
of articles in foreign languages into English. We are experimenting with a
service that translates statements among the logics supported in the FDL.

It is possible to attempt to move a theorem from on theory into another
by attempted to "replay it” in a new context. This is much like translating
a bush or plant from one garden to another. It must be possible to collect
up all the main roots (definitions, axioms, rules, lemmas) and replant them
in a new context. We are experimenting with this service.

3.3.2 Integration with verification technology

Here are some of the elements of verification technology that are supported
by the existing experimental FDL.

Collecting formal semantic theories and mathematical models

We provide sample documents on formal semantics among the booklets stored
in the Nuprl content section. We have included a complete account of the
formal semantics for distributed systems; this is an ongoing effort. We also
have the capability of including a formal semantics for a large subset of the
OCaml programming language, but that work was deemed to be too Nuprl
centric for this effort at this point.

Our distributed system semantics includes formal models of IO Automata
[113] and Message Automata [29]. We are likely to include Security Automata
[166, [60] among these models. When we import more Isabelle HOL, we will
also have a JVM model.

Formal semantics of types and specification languages

The FDL provides the semantics of an extremely rich type system, Com-
putational Type Theory (CTT). We connect this formal knowledge to an
extensive intuitive semantics of the primitive concepts.

74 CHAPTER 3. CRITICAL INFRASTRUCTURE PROTECTION

We also provide a semantics for the Simple Theory of Types which is a
very important logic used by HOL and PVS. Our semantics is complete for
HOL, and in principle it might be made complete for PVS, but that is not
in the scope of this work.

Verified programming tools

The MetaPRL library includes components of a formal compiler which illus-
trates a means for producing a verified and formally documented compiler.

Formal classes

We have experience with classes that also use logical expressions as part of
their interface. We call these formal classes, and we learned in our distributed
verification work that they help classes "snap together” more tightly. We are
storing formal classes in sections of the library and will make them part of
our reference distributed system.

Verified reference algorithms and protocols

Systems consist of many algorithms; typically only a few are critical and even
fewer are novel. Nevertheless, we think it is valuable to include examples of
verified algorithms in the library. We have provided access to over a hundred
algorithms so far which are common in systems. We have also included a few
algorithms whose verification is challenging, such as red /black trees. We will
add more algorithms of this class, such as Dijkstra’s shortest path algorithm
and an algorithm for Higman’s lemma from HOL.

Examples of shared mathematics and translation services

We have experimented with verifications that use results from more than
one prover. One method of sharing involves translating from one theory
into another. We have experimented with this method and are encouraged
enough to continue this line of investigation.

3.3.3 Basis for advanced technologies

The FDL provides the basis for several advanced capabilities. It is an example
of a database that contains several computational symbolic theories. These

3.3. INTEGRATING AN FDL INTO VERIFICATION TECHNOLOGY75

can be used to support investigations in several areas of science in which the
premises and assumptions can be expressed mathematically.

The FDL is very concerned about the links between formal and informal
mathematical texts. Having a large amount of content will allow people to
explore automated ways of producing the links and will even suggest ways
to help people formalize mathematics.

The FDL will also provide a repository of material that can be the target
of methods of translating formal mathematics into natural language. We
have experimented with this task and know that it can be done well.

Once the FDL has collected a very large number of theorems, perhaps
30K or so, it will become a magnet for data mining efforts. This may become
a boon to mathematics education and research in unforeseen ways.

The use of formal theories based on abstract object identifiers will provide
an attractive alternative to file system management.

An FDL will also be a good basis for a multisystem version control system.
We discuss future work on the FDL in Chapter 8.

76 CHAPTER 3. CRITICAL INFRASTRUCTURE PROTECTION

Chapter 4

Working notes on Formal
Digital Library (FDL) Design

These are working notes! explaining the purposes and design of Formal Dig-
ital Libraries. The paper Abstract Identifiers and Textual Reference? [8],
based on these notes, elaborates on our basic concepts and methods for man-
aging inter-referential digitally stored texts with the special aim of accounting
for logical dependencies upon which meaningfulness and correctness of these
“formal” texts depends. We are also especially concerned with safe shar-
ing of formal texts among diverse clients who may not fully agree on what
constitutes meaningful and correct material. These working notes are con-
siderably more detailed than the paper mentioned above, and cover concepts
not discussed in the paper.

[Boldfaced terms outside of headings indicate terms to be found in the
Glossary of FDL Terminology (Chapter [10).]

4.1 Content vs Infrastructure.

The Cornell effort toward developing digital libraries of algorithmic mathe-
matics is explicitly bifurcated. We aim at generation of constructive math
by means we have long developed and employed. But, and this is the topic
of these notes, we also aim to design a repository system, a “Formal Digital
Library” (FDL) that supports content that is radically different from ours,

! the notes are maintained at http://www.nuprl.org/FDLProject/FDLnotes
2 http://www.nuprl.org/documents/Allen/abids_n_ref.html

7

78 CHAPTER 4. WORKING NOTES ON FDL DESIGN

and perhaps even incompatible. Our intention is that our contributions to-
ward content and content creation are but some of many possibilities, and we
strive to avoid bias towards our content and methods. Our established status
as providers of mathematics in a minority (though widely known) genre has
made us sensitive to the possibilities of exclusion. Our suspicion that our
content would be excluded from libraries of mathematics designed by those
whose experience and loyalties lie with more widely employed genres has
caused us to appreciate the need for a more radical inclusiveness. It is not
our desire to use the general system design as a means to unfairly promote
our mathematical preferences. The FDL design is intended to be neutral,
and our content must vie for consideration on its own merits.

This means that we are not obliged to create methods for content cre-
ation generally, but must flexibly anticipate likely methods, including extant
ones, and publish adequate methods to access and contribute to FDL collec-
tions. Because of the variety of semantical intentions and epistemic assump-
tions, sometimes incompatible, underlying different developments, flexible
and stringent accounting methods must be introduced if these mixtures of
content are to coexist.

What we offer are to-some-extent common syntactic structures, storage,
and accounting services, especially accounting for formal facts contributing
to arguments for validity of proofs. See the glossary entries for Text, Cer-
tificate and Proof.

Further, we shall not require a particular logic (even a particular form of
assertion), type theory, tactics, or the use of the ML programming language.
However, it should be noted that our experience with these has led us to
reject a number of presumptions about methods of proof and expression
and left us with an expectation of rather liberal practices. In particular,
we have become accustomed to using a language in which, as in informal
mathematical practice, the sensibleness of expressions is not always obvious,
and must sometimes be demonstrated, and in which some other simplifying
assumptions about notational adequacy are avoided (such as assuming there
is a single domain of all values). Our use of tactics to formalize the notion
of effectively explaining how to make inferences, rather than restricting our
expression of inference to schematic forms, has forced us to deal with issues
pertaining to accounting for reliability of programs. Briefly, we have already
committed ourselves to, and are experienced with, sophisticated methods of
applied logic, and are therefore more likely than we would otherwise be to
anticipate a great variety of formal methods.

4.2. FORMAL VS INFORMAL 79

A major purpose for development of our newest system is to analyze many
concerns about how to simultaneously support independent developments.
Many of these concerns were driven by centrifugal forces within our own
project, whose members represent a variety of different opinions about how
to formulate and develop formal mathematics, sometimes differing even as to
what is legitimate. Our desire despite this to share what we can in various
ways has driven us to a flexible design.

4.2 Formal Artifacts and Informal Understand-
ing.

By the “formal” we mean that which has precise meaning or objective, ideally
computer verifiable, criteria of correctness, based upon the “syntactic” form
of the content. By the informal we simply mean everything else. An informal
practice or artifact may have formal components.

We consider it essential to embed formal Texts (proofs, programs, defi-
nitions, propositions) in a body of informal Texts, recognizing that the use
of the formal material is in any case embedded in informal practices.

If the formal artifacts are completely separated one will not understand
how to apply them. Often these artifacts are formalized counterparts to in-
formal ones. Some benefits of formality are that analysis can be pursued to
great detail, and that combinations and transformations of the formal arti-
facts can often be performed mechanically without need for human interven-
tion in order to make sure the particular intermediate stages of manipulation
are meaningful and correct; systematic and abstract arguments about for-
mal expression can be made reliably (sometimes such argument can itself be
made formally by reflective devices).

Formalization should be introduced where it is economical to do so. A
smooth flow and intricate interweaving between the formal and the informal
is key to correctly deploying formal artifacts.

Complementary to introducing formal artifacts in place of informal ma-
terial is attaching informal material to formal artifacts in order to better
expose them to human understanding, much of which is not in fact formal-
ized. It should be further noted that informal material can be formalized in
various ways, and that the same formal material can be variously organized
informally. Thus many interwoven organizations are natural. See Words vs

80 CHAPTER 4. WORKING NOTES ON FDL DESIGN

Formality and see Readings (section 4.2.3)).

4.2.1 Words and Images vs Formality

We believe that the choice of which names we attach to concepts or objects,
and how expressions are presented to the senses are not normally pertinent
to the Formal significance or correctness of formal artifacts (but see Bates’s
Point (section 4.2.2))). We expect uniform renaming or alteration of notation
to leave formal correctness intact.

On the other hand, our own abilities to understand formal material are
often deeply tied to our habits of notation and nomenclature. Indeed they
are so important that we must neither ignore these matters nor presume to
be able to formalize them. Such habits may vary from person to person,
from circumstance to circumstance, and from time to time. Often there is
dispute over such choices of naming and notation, which need not impinge
on the formalization process.

The use of abstract syntactic structure is widely understood to isolate
structural features of notation pertinent to “formal” correctness. Of course
there is a sense in which to write “3-4” to mean the result of subtracting
three from four (instead of four from three), or to mean the sum instead
of the difference, is wrong, but that is not a matter of formal correctness
as intended here. When we employ formal notation in an informal context,
such errors can be ruinous, and so we must have ways of avoiding them, but
we take this to be a different issue from formal correctness.

Our project conceives formal structure, therefore, to be abstract. In par-
ticular we take the expressions or Texts to be essentially like parse trees of
a very simple grammar, and deem it to be a separate matter how they are
viewed or created or edited by humans.

Similarly, though written natural language is essential and should be in-
cluded among, and intimately interwoven with, formal expression, we con-
sider the meaning and syntax of natural language as a whole beyond the
purview of the FDL project per se. As researchers succeed at formalizing
parts of natural language, those parts may come to occupy more of the for-
mal domain as those formal methods are introduced, but we must not depend
upon that eventuality or put off the incorporation of informal language as
mere uninterpreted text.

The independence of formal structure from notational appearance, epito-
mized by the use of abstract syntax trees instead of strings, eliminates much

4.2. FORMAL VS INFORMAL 81

notational dispute from the formulation of formal expressions. But there
remain the problems of resolving disputes and informal errors involving the
names appearing as atomic components of formal structures. See Formal vs
Informal (section 4.2)), Readings (section 4.2.3), Naming Problems (section
4.4.6), and Abstract Ids & Closed Maps (section [4.4.1).

4.2.2 Bates’s Point: Words could matter to programs
too, though.

Even if appearance of expressions and naming are not normally considered
essential to formal correctness, this, as pointed out to us by Joe Bates, does
not mean they could matter only to humans or be purely informal. It could
well be that some heuristics for performing inference could indeed make use
of how expressions look and how things are named. Still, such data can be
supplied to these programs without building them into the formal material
directly. Indeed, we intend for specifications of how to display expressions
and how to denominate entities to be themselves expressed as texts to be
included as objects in the FDL, and they would therefore be made available
to such proof heuristics as needed.

4.2.3 Readings

The fundamental relations between Formal objects that are accounted for
in the FDL are “internal” ones. For example: the fact that one proof cites
another as a lemma; that a certain definition for an operator is employed
in a proof or procedure; that a certain inference rule is used by a certain
inference engine; that a certain object contains the source code for a given
procedure; that a certain object’s content is used as data in, or is the result
of, a certain computation; that one object refers to another.

But persons and programs normally need much more information about
the organization of formal data (see Formal vs Informal (section 4.2))), “ex-
ternal” relations between objects, and connections to informal concepts. By
a ‘reading” we mean a collection of objects and procedures that provides a
guide to a collection of formal objects. Naturally, a reading is itself stored
in the FDL. Readings provide alternatives to simply following internal links
among formal objects, and would typically include: pages of text mentioning
formal data, hyperlinks to formal objects, to other objects of the reading, and

82 CHAPTER 4. WORKING NOTES ON FDL DESIGN

to material beyond the FDL collection; search utilities for focusing on the
subject material of the reading; objects specifying how to display expressions
to the reader.

Multiple readings may be given for the same material. When content
is developed as a formalization of a conventional body of knowledge, one
should provide a reading of the material using conventional organization.
Other organization is possible as well. For example, presentation and orga-
nization for the purposes of programmers looking for graph algorithms may
require an emphasis that differs somewhat from presentation for graph the-
orists. Formalization itself can reveal aspects of material that suggest other
organizations as well; persons that formalize material may have something
significant to contribute to the explanation and organization of conventional
subjects. One might also tailor presentation to the sophistication of the
audience.

As an adjunct to readings, one may provide data and utilities for the use
of programs employed by those at whom the readings are directed, including
as part of the reading an explanation of how they are to be used.

An example of an external organization would be presenting a collection of
definitions, proofs and programs as being about abstract algebra, say, based
upon a given body of assumptions, and perhaps grouping parts in “modules”
sharing common assumptions and methods. This grouping need not be built
in to the formal objects themselves since, after all, their correctness need not
depend on such grouping. One may well find it efficient or informative to take
a few pieces from variously organized collections of material and recombine
them into a new reading.

4.2.4 Concise Informal Annotations - titles, paraphrases,
domains, roles

Consider the related problems of finding Formal content from an informal
starting point, and giving informal paraphrases of formal content. These are
problems of building bridges between the formal and the informal with the
right endpoints.

If the only utility for search were based on formal content, one utility
which is indeed essential to using a formal library or archives, then searching
for formal content from an informal starting point would be constrained to
judging (often guessing) what formal expressions were likely used for informal

4.2. FORMAL VS INFORMAL 33

concepts. As valuable as this utility would be, it could not be considered
adequate.

The inclusion of “Readings” (section 4.2.3)) in the FDL will provide ex-
planatory Texts that consist largely of words that have embedded in them
references to formal objects they are about. So by employing a content search
on words and phrases we could find these explanatory texts, and by reading
them ascertain the relevant formal objects. This too is a valuable capacity,
but there are three notable inefficiencies in this method: reading a relatively
large text that may discuss and relate several formal objects in order to dis-
cern which are relevant to the search is not automated; if one simply assumes
that all the formal objects may be relevant in order to apply automation in-
stead of reading, this is inefficient in a different way because one must often
expect the assumption to be wrong; and lastly, the production of explanatory
material of the sort we imagine as part of readings is itself rather expensive,
and is not likely always to “reach” all the formal content reliably.

These problems would be mitigated by concise informal annotations of
formal objects. Each “concise” annotation would be about one object, and
would consist of informal words or phrases. This addresses each of the three
inefficiencies mentioned above. Concise annotation focuses the search and
“reaches” more formal material since it’s cheaper and less distracting to
create than discourse.

Two typical kinds of concise annotations are titles and paraphrases. Of-
ten theorems, concepts, or programs have conventional titles which should
therefore be attached to their formalizations. For example “Ramsey’s Theo-
rem,” “Dedekind Infinite,” and “Dijkstra’s Shortest Path Algorithm.” The
paraphrases used as concise annotations would not normally be “read oft”
the formal expression, but rather would complement the formal detail. For
example, one might paraphrase

VENT, r,r0:Ng, 1,922 2. qi-k+11 = qo-k+ry = ¢ = @ & 11 =19

9

as “Integer division is unique,” or paraphrase

Vas,bs,cs:T List. ((as @ bs) @ cs) = (as @ (bs Q cs))

as “List catenation is associative” or “Appending lists is associative.” Some
theorems may be unworthy of paraphrase such as

Vn:Z, as:A List(n). |las|| =n € Z

84 CHAPTER 4. WORKING NOTES ON FDL DESIGN

whose obvious paraphrase, “Lists of a given length have that length,” is silly.
If you want to find a lemma like this, it would be because you were looking
for theorems relating the formal expressions “- List(-)” and “||-||” and you
would already be in the formal domain.

Amanda Holland-Minkley® advises us that these annotations, and others,
useful to search are also useful for proof paraphrasing. The reason is that
while one may develop methods for paraphrasing proof structures principally
by analyzing the structure of the proof and recognizing forms that can be
reorganized into conventional verbal forms, one gets down to a level where
the proper paraphrase is simply not derivable from the internal structure.
When a proof is paraphrased one may want to cite a lemma by conventional
title or to paraphrase its content in a way that is not easily determined by its
formal structure. Further annotations that are concise and useful for search
and paraphrasing are indications of intended domain, and the role in the
larger body of material, such as whether a theorem is intended simply as a
lemma for citation by a particular proof rather than of broader interest, or
whether it is simply a technical device for facilitating formal proof rather
than having a more general cognitive significance.

4.3 Formal Digital Libraries

A Formal Digital Library (FDL) is intended to serve as a repository with ev-
idential aspects, a repository for knowledge as opposed to mere information.
It is also essential to recognize that FDLs will be expected to cooperate in
ways that do not ruin their epistemic value.

4.3.1 Logical Libraries

Our conception for Formal Digital Libraries involves some functions of or-
dinary libraries, but is extended to accounting methods for logical relations
between documents. Ordinary objects, of varying degrees of structure from
informal Text to Formal Proof, are the main content, but the collection
also includes documents that serve as certificates of facts established by the
processes maintaining the collection. Among the kinds of facts certified by
the FDL process are that the ordinary objects it stores were acquired from

3 http://www.cs.cornell.edu/Info/People/hollandm

4.3. FORMAL DIGITAL LIBRARIES 85

specific sources or built by specific means (archival functions). These certi-
fications are represented as certificate objects in the FDL. See Certificates
(section [4.5.1)).

Our project is especially interested in the certification of formal proofs
according to specific (user suppliable) criteria, and when stressing this func-
tion, when thinking of the FDL services as principally directed at supporting
this function, we call it a “logical library.” A particularly esteemed feature
a certificate may exhibit is its making an objective and independently ver-
ifiable claim; this is the ideal for “logical” claims, and is the alternative to
authority. Of course, one might view this as the essence of scientific claims
generally, but the procedures for verifying “logical” claims are largely re-
ducible to automatic methods which are in principle directly verifiable by an
automated text management process since it can itself in principle perform,
and so certify, the computations.

One aspect of ordinary libraries we emulate is theoretical neutrality.
Thus, we do not require that ordinary documents must be “correct,” indeed
there is no privileged criterion for correctness of ordinary texts. Criteria for
correctness (via proof engines, eg) are supplied by the users of the FDL as
contributions to the text collection.

Certificates in the FDL, however, are guaranteed to be correct according
to published criteria; the criteria for certificate correctness must therefore
be understandable to users of the “logical library.” The correctness of some
certificates will be independently verifiable, the ideal for logical claims, but
other certificates may not be practically verifiable because they attest to the
existence of something that is not made practically accessible (an example
being a certificate meaning that there once was a proof of a given formula in
the collection).

When a process, say with a user behind it, accesses a collection, the
“view” is a sub-collection of objects we call the Current Closed Map
served by the FDL and subjected to transformation, perhaps with further
copying from the FDL, and is usually stored back to the FDL (see Abstract
Ids & Closed Maps (section4.4.1))). A subtlety is that since Certificates are
created only by the FDL process itself, when certificates are to be created in
the current closed map, they must be created by the FDL, then added to the
current closed map. And since certificates usually refer to objects they are
about, those objects must also be in the collection. So one is pretty tightly
coupled with an FDL when developing certified content. However, as long as
one is only reading from the collection, the coupling can be loose.

86 CHAPTER 4. WORKING NOTES ON FDL DESIGN

This leads us to the matter of Multiple FDLs. Also see FDL Functions
(section 4.3.3)) for further discussion.

4.3.2 Multiple FDLs

As was pointed out in Logical Libraries, development of certified content (as
opposed to mere use of extant content), requires the use of the FDL process
since the Certificates are “owned” by the FDL.

It would not long be tolerable, however, for multiple developers to have
to yoke themselves together to a single process. After all, different parties
will want to work at least temporarily in isolation, or may want to maintain
independent FDLs. Here is one scenario. Periodically a user connects to
a large shared FDL and downloads parts to be developed onto a laptop
computer. Later they want to contribute the developed content back to
the large FDL. Here is another. For purposes of reliability or speed, an
entire FDL is copied, then both the original and the copy are developed, and
eventually both parties want to combine their content. A combination of
these two: a user wants to draw material from two divergent FDLs that have
not (yet) been combined, and do some local development, eventually making
it available for general use.

In all these scenarios the situation is one in which there is a distributed
repository, namely all the FDL repositories one can connect to, which is rela-
tive to time and circumstance. But these repositories are still distinct because
each repository is responsible for its own certificate objects and cannot be
responsible for the others’. This is rather like a real library system (ie, one
with real books) made of individual libraries that control their own premises,
but cooperate as providers of content. The libraries cooperate but are inde-
pendent; this is fortunate because sometimes a library burns down or loses
books or mismanages its records. It is the mismanagement of certificates
that is of particular concern to our ambitions for “logical” libraries.

The bottom line is that the certificates in the source FDL cannot be sim-
ply copied as certificates into another FDL. What s possible is for an FDL to
create its own certificate containing the foreign certificate’s content, and in-
dicating the foreign source of that content. Let us call this kind of certificate
a “borrowed” certificate. Note that the new “borrowed” certificate will have
different meaning from the original, although the content of the foreign orig-
inal is extractable from it. Parties that trust the source of the certificate can
use the borrowed certificates in lieu of original local certificates, and parties

4.3. FORMAL DIGITAL LIBRARIES 87

that don’t can ignore them or attempt to have fresh local certificates built
with the same content as the foreign certificate. To summarize, a borrowed
certificate is a certificate attesting to the fact that the content was taken from
another specific supposed FDL process, and as such, whatever certification
policies appear to be indicated by the content, and are purported to have
been enforced by the foreign FDL process, are not adopted by the borrowing
FDL.

The local re-establishment of borrowed certificates, ie the attempt to cre-
ate equivalent native certificates, might be a good use of spare cycles in the
background; here’s a place where the “objective” certificates mentioned in
Logical Libraries (section 4.3.1) pay off. On the other hand, managers of sev-
eral large FDLs may aspire to collective trustworthiness, going to great pains
to assure users of reliability of communication with them and of their faith-
ful implementation of certificates, and simply “borrow” each other’s claims
without locally recertifying them except upon explicit demand. See Borrowed
Certificates (section 4.5.7)) for elaboration.

4.3.3 Library, Archival, and Workspace Functions

Continuing the discussion of Logical Libraries (section [4.3.1)), we may regard
services or functions of the FDL we envision as roughly falling into three
overlapping categories: (1) Library functions focussed on maintenance of
collections of items containing information typically thought to be of some
general value; (2) Archival functions directed at maintaining integrity of
interrelated collections of items, many of which are records expressing facts
verified by the FDL process; (3) Workspace functions providing utilities for
the preparation and development of items suitable for collection in the FDL.

The intention that the FDL be oriented towards the maintenance of For-
mal materials, particularly charged with maintaining verified relations be-
tween formal documents such as logical relations between digital documents
and artifacts, compels us to maintain records in the manner of archives (in
the sense of archival science). The point of formal entities is that there are
explicit verifiable criteria for claims about them and relating them, and much
of their value depends on establishing and recording the validation of such
claims; these are essentially archival functions.

A library of Formal documents maintained in isolation without regard to
their relations between each other or without regard to whether the verifiable
relations claimed for them actually obtain, is considerably less useful than

88 CHAPTER 4. WORKING NOTES ON FDL DESIGN

one which maintains records of these verifications. Thus, we would consider
the archival functions to be essential to any Formal Digital Library. And
complementarily, we consider the inclusion of informal material essential to
any large body of formal material to make it widely and repeatedly useful
(see Formal vs Informal (section [4.2))).

Workspace is a different matter, though. Functions supporting the de-
velopment of material for eventual submission to an FDL are not essential
for the use of the FDL as a repository of information and knowledge. In-
deed, the needs of a person or organization or community trying to develop
material may be significantly greater than those who simply need to access
it, and implementation of a workspace facilitating experimental development
and collaboration may go significantly beyond effective implementation of
a digital repository. Thus, we would not expect every FDL to effectively
support development.

However, because of the record-keeping functions of the FDL, effective
development of material that will meet the certification requirements implicit
in the useful submission to an FDL, effective development of formal material
to be submitted requires that the material be developed incorporating the
same record-keeping devices as are needed in the target repository. Archival
scientists have articulated essentially the same principle by holding that the
original record creating institution needs to adopt record creation methods
that anticipate archiving.

This suggests that although not every FDL needs to efficiently implement
workspace functions, it is important that appropriate workspace processes
be implemented. Our FDL design includes workspace functionality, since
the same basic accounting devices should be used for the repository and de-
velopment. Different FDLs may be maintained and differently implemented
with varying emphases on facilitating workspace functions.

One institution might implement an FDL principally for “publication” of
formal material with little support for development. Perhaps this FDL pro-
vides utilities to expedite search and establishes policies for long retention,
but does not allow modification of submitted material, or provide develop-
ment oriented facilities such as multiplexing Inference Engines for heuristic
proof methods. Another organization may implement relatively low storage
capacity FDLs aimed more at development of material to be submitted later
to other FDLs, and may emphasize version control and flexible methods for
collaboration between developers.

Finally, it should be noted that the design of “finding aids” is not an

4.4. REPOSITORY DATA 39

explicit part of the FDL design, and yet without such facilities for finding
content in a repository one can hardly consider the collection to be a library
or an archives. Finding aids are essential, but we consider them to be con-
tent themselves; methods of organizing and finding content are themselves
contributions that can be accessed, innovated and improved upon.

4.4 Repository Data

Identifiers treated abstractly, embedded in texts and used as pointers to
repository objects, form the basic data upon which reference and accounting
methods are based.

4.4.1 Abstract Identifiers and Closed Maps

The abstract use of identifiers for FDL object “names” and as components of
expressions within the text collection is basic to our methods for managing
the collection, especially as regards correctness. The intention is that the
user should treat names or identifiers abstractly, simply taking them to be
discrete and atomic. They fill formal roles normally filled by simple names
(identifiers), but have no informal value, in particular no mnemonic value or
value as conventional nomenclature. See Abstract Identifiers (how) (section
4.4.4)). This is our technique for avoiding disputes or errors concerning names
in the formal content, and how we facilitate essentially arbitrary combina-
tion of objects, avoiding name collision; abstractness of names entails their
uniform replaceability.

We will discuss a variety of issues concerning abstract identifiers, but
here we give an overview of relevant facts about our intended system without
elaborate motivation.

By a “closed map” we mean a function of type D—Text(D) where D is
a finite discrete type of values. The type Text(D) is the class of expressions
where the values of D are “abid.” Here we must digress. Abstractly, for many
purposes of reference and accounting, Text(D) could be any kind of data for
which it is understood what counts as “occurrences” of D-values within the
text. However, the Text structure we adopt is a simple recursive type of
iterated operators on subtexts because the subexpression relation is dominant
in typical computations on expressions in precise notations. In addition to
its subtexts, a text contains a sequence of labeled values presupposed by

90 CHAPTER 4. WORKING NOTES ON FDL DESIGN

the construction of texts, which we call here “pro-textual” values. When we
define the class of texts, the kind of pro-textual values that can occur with
a given label is determined by the label, and is stipulated when that class of
pro-textual values is introduced. Text(D) is the type of texts in which the
possible pro-textual value constituents of form “x:abid” are those such that
x € D. We identify objects in a closed map with indices. See Pro-textual
Constituents (section 4.4.5).

In practice the class D of object indices will be varied continually. For ex-
ample, extending a closed map requires selecting a larger index class. Delet-
ing members of a closed map requires a smaller index class. If the restriction
of a closed map f € A—Text(A) to a subclass X C A is in X—Text(X),
and so is itself a closed map, then we call the restriction a “submap” of f.

Two closed maps f € A—Text(A) and g € B—Text(B) are “equivalent”
when they are simply “renamings” of each other, i.e., when there is a one-one
correspondence between A and B such that for corresponding a € A and b €
B, f(a) and g(b) are identically structured modulo matching abid occurrences
that correspond. See Closed Map Operations (section 4.4.2). The abstract
treatment of object indices entails that whatever criteria of correctness hold
of one closed map hold also of equivalent closed maps.

Dependency management between objects in a closed map f € D—Text(D)
is based upon an explicit criterion of object reference: an expression t €
Text(D) refers “directly” to object (index) z € D just when z:abid is a
pro-textual constituent of the text ¢ (this includes any subtexts of ¢). An
expression refers, perhaps indirectly, (wrt f) to x € D just when either it
refers directly to x or else it refers to some object y € D where f(y) refers to
x. The basic model of working with Closed Maps is to maintain a “current
closed map” (section 4.5.2) as a part of state that is updated repeatedly as
one works.

The FDL is a repository not of closed maps per se, but is rather a repos-
itory of data and instructions for building closed maps modulo choice of
abstract identifiers. One engages the FDL in a Session to help build and
manipulate closed maps and also to store them for later retrieval (modulo
closed map equivalence).

While there are useful notions of dependency between objects that may
arise during a session as part of state outside the current closed map, the
dependencies of enduring value shall be formulated purely in terms of closed
maps (and treat indices abstractly).

Relatedly, while there are useful notions of correctness that can be defined

4.4. REPOSITORY DATA 91

with respect to state, the enduring ones shall be formulated in terms of closed
maps alone. Further, while one can make good use of criteria of correctness of
a proper submap of a closed map that depends upon the full closed map (say
involving a search of the full closed map), we shall attach greater enduring
value to those criteria for correctness of a closed map that depend only on
that submap alone. Such criteria are preserved by monotonic extension of
the closed map to a supermap.

Sometimes our criteria for correctness will depend on how programs (for
example, Tactics) execute. Observe that when identifiers are treated ab-
stractly by the computation system, they cannot be “secretly” computed.
They must be provided as data to the computation either directly or via
the current closed map. Further, since object indices are simple rather than
complex, computation of object indices cannot be hidden by runtime combi-
nation.

Had we defined closed maps concretely as functions of type N —Text(N)
or String—Text(String) then program execution could create references to
objects without its being apparent from the program code. Similarly, had
we defined the closed maps as (A List)—Text(A), even leaving the basic
identifiers abstract but indexing objects by complexes, again one could “hide”
the references to objects in the execution.

4.4.2 Operations on Closed Maps

Here we describe some basic operations on closed maps. Recall that a closed
map is a function of type D—Text(D) for some finite discrete type D. See
Conservation and Destruction (section 4.4.3) for connotations of + and —
prefixes used below.

+ Uniform Renaming. Let the function r* € Text(D)—Text(X), for r €
D— X, replace each abstract id constituent i:abid (for ¢ € D) by r(i):abid
throughout the text. A renaming of a whole closed map f € D—Text(D) is a
closed map ((r*)o for™) € X—Text(X) for inverse functions r € D— X and
r~ € X—D. Two closed maps f € D—Text(D) and g € X—Text(X) are
“equivalent” when they are renamings of each other.

+ Contracting. If X C D then “contracting” a closed map f € D—Text(D)
around X is restricting f to X together with objects referred to by objects in
X (ie, the smallest A C D such that X C A and f(i) € Text(A) foralli € A).
Hence the contraction is the smallest submap including X. So, contracting a

92 CHAPTER 4. WORKING NOTES ON FDL DESIGN

closed map around some of its objects (indices) X is discarding all objects
except those among or referred to by the objects of X.

+ Focusing. If X C D then “focusing” a closed map f € D—Text(D) on X
is “contracting” f around X together with objects that refer to members of
X. So focusing a closed map on some of its objects X is restricting it to the
objects relevant to X.

+ Deleting. If X C D then “deleting X" from a closed map f € D—Text(D)
is finding the largest submap of f excluding X from its indices. That is, the
deletion of some objects (indices) X from a closed map is gotten by removing
X along with all objects whose contents refer to any of X.

— Reassigning. A reassignment of a closed map is a closed map with the
same indices but perhaps different contents for some or all the indices.

+ Zipping Merge. This is a way of merging two closed maps with a
stipulation that certain objects be identified. Zipping can fail.

Assume f € A—Text(A), g € B—Text(B), that A and B are disjoint,
and Z is a collection of pairs in Ax B, and that Z is one-to-one. If t €
Text(A) and s € Text(B) then let us say they “match” just when they have
identical structure except for abstract id occurrences within them; wherever
an abstract id occurs in one, then a possibly different id must occur in the
other. If ¢t € Text(A) and s € Text(B) match then let IdPairs(¢,s) be the
collection of pairs (z,y) € AxB such that = occurs in ¢ where y occurs in
S.

Given a collection Z of pairs in AxB let Z' be the smallest one-to-one
extension of Z such that if (z,y) is in Z’ then f(x) and g(y) match and
IdPairs(f(z),g(y)) is a subcollection of Z’. A procedure for generating Z’
from Z is to iteratively compare contents of corresponding indices, adding
the IdPairs(?,?) of the texts if they do match, or failing when either the texts
don’t match or adding them ruins the one-to-oneness.

To zip ¢ into f along Z, determine Z’ as above, then rename g to ¢’ by
replacing each y € B by « € A when (z,y) is in Z’, then take the union of
closed maps f and ¢’ (recall that A and B are disjoint). We call the Z the
zipper-start. Then f is a submap of the zipping, and ¢ is a renaming of a
submap of the zipping. The bias towards f may be useful when f is the
current closed map of a Session involving some state beyond the current
closed map that mentions objects in f that would impractical to rename in
that state. Then zipping is a way of merging a new closed map into f. Of

4.4. REPOSITORY DATA 93

course, the merge of f into g (along the inverse of Z) is simply a renaming
of the merge of ¢ into f.

A variation on zipping merge would allow A and B to overlap as long as f
and g agree on the intersection of A and B, which would have the same result
as renaming g by some function r to avoid A, then adding pairs (a,r(a)) to
the zipper-start. This corresponds to merging a partial variant into ones
current closed map.

— Folding. Using a method for zipping much like in the Zipping Merge, we
define a way of “folding” a closed map into itself by identifying (with each
other) certain objects within it.

Assume f € A—Text(A) and Z is a 2-place relation on A.

See Merging for definition of “matching” texts and IdPairs(t¢,s). Let Z’
be the smallest symmetric-transitive extension of Z such that if x(Z’)y then
f(z) and f(y) match and each pair of IdPairs(f(x),g(y)) satisfies Z’. A
procedure for generating Z’ from Z is to iteratively compare contents of
already identified pairs of objects, failing when the texts don’t match, or
identifying the IdPairs(?,7) if they do match, then (at each step) taking the
symmetric-transitive closure.

To fold f along Z, determine Z’ as above, then choose a function r €
A— A such that r(z) = r(y) if x(Z")y, and r(z) = x if = is related to nothing
by Z’. (Thus, r picks a canonical representative for each partial-equivalence
class.) The folding of f € A—Text(A) is ((r*)o f) € X—Text(X), where
X C A is the range of r over inputs from A.

Observe that folding a closed map need not result in a submap (modulo
equivalence).

+ Cloning. Cloning a collection of objects is replicating them and replacing
the references to originals within the clones by references to their clones. This
is probably done for the purpose of subsequently modifying some of them. If
A and B are originals with clones A’ and B’, and if B references A, then B’
references A’.

Assume f € A—Text(A) and X C A. To clone X, first choose a class
B disjoint with A, and a bijection » € X—B with inverse r~ € B—X; let
r" € A—B agree with r on X and be identity outside X. Then extend f from
A to r'x(f(r=(b))) for b € B.

+ Splitting. Splitting a closed map is cloning some objects along with
all objects that refer to them, causing the closed map to branch into two

94 CHAPTER 4. WORKING NOTES ON FDL DESIGN

equivalent closed maps, probably for the purpose of subsequently modifying
a branch into a variant.

Not only is the original closed map a submap of the split, but deleting the
cloned objects (and leaving the clones) would leave a closed map equivalent
to the original.

4.4.3 Conservative and Destructive Operations

In the descriptions of Closed Map Operations, some are marked with 4, some
with -. The “4” indicates an operation that is considered conservative with
respect to Certification (section 4.5.1)) in that performing these operations on
the current closed map leaves certificates intact. The “-” indicates that the
operations are not likely to succeed on the current closed map without some
more complex and destructive modifications, especially entailing deletion or
modification of system generated “certification objects.”

Uniform Renaming

Contracting

Focusing

Deleting

Zipping Merge

Cloning

+ + + + + + A

Splitting
- Reassigning
- Folding

See Certificate Bias (section 4.5.3) and Current Closed Maps (section [4.5.2).

4.4.4 Abstract Identifiers - What are they really?

The notion of abstract identifier was introduced in Abstract Ids & Closed
Maps (section 4.4.1). There it was explained that we mean them to be
uniformly renamable, “unowned,” atomic, and discrete.

Obviously the intent is to tightly restrict what operations may be per-
formed upon them, but it has not been suggested how this can be accom-
plished or what values might be used for them.

4.4. REPOSITORY DATA 95

If we were using a single programming language, we might borrow some
method from it. For example, some programming languages admit the in-
troduction of “abstract types” for which one can specify methods of creating
new values and restrict the methods of access. Some programming languages
have a concept of “pointer value” which is extremely similar to what we have
in mind for abstract identifiers as object indices. Even in programming lan-
guages with no built-in methods for creating such values, programming prac-
tices are adopted for treating some values as abstract — different executions
of the program may generate different particular values, but the result may
be the “same” (modulo which values get picked for these “abstract” types).

Using these programming methods one does not so much implement ab-
stract values as one abstractly implements values. When one gets down to
execution, one uses concrete values, but they are used with a discipline that
makes the choice of values irrelevant to the desired effect.

But we do not intend to embed the FDL in a particular programming lan-
guage environment. When an external process connects to the FDL, some
concrete, externally understandable, values must be communicated instead.
We cannot directly enforce a programming discipline upon external processes
to have them treat identifiers abstractly; but we can stipulate that the choice
of concrete values communicated by the FDL during a Session is undeter-
mined prior to that session. In particular, if one stores a closed map, see
Abstract Ids & Closed Maps (section 4.4.1), in one session and then at-
tempts to retrieve it in a later session, there is no guarantee that the same
closed map will be retrieved. The only guarantee is that it is an equiva-
lent closed map, i.e. same modulo uniform change of values chosen for the
“abstract” identifiers.

The freedom to uniformly rename identifiers permits various useful op-
erations on closed maps, especially as regards combining independently or
partially independently developed closed maps, maintenance of multiple ver-
sions, and pursuing alternative lines of development off pre-existing closed
maps. The threat of uniform renaming encourages users to employ well
known methods for treating these identifiers from the FDL abstractly, a dis-
cipline which cannot nowadays be considered onerous. If source code is stored
in the FDL, then tests can be specified by Clients and applied to the source
code to certify that it does treat the FDL identifiers abstractly.

96 CHAPTER 4. WORKING NOTES ON FDL DESIGN

4.4.5 Pro-textual Constituent Values

As explained in Abstract Ids & Closed Maps (section 4.4.1) the method of
inserting primitive or external values into our expression syntax is by means
of components of texts of the form “<value>:<kind>". Examples of pro-
textual values we inject are natural numbers, character strings, and boolean
values.

We leave it open-ended which values are considered pro-textual con-
stituents; adding a new class of such values involves implementation. A
class of values is introduced when we are not normally interested in what
expression-like structure they might be given, because their significance is
determined by external uses. Future extensions may well require the intro-
duction of new pro-textual values. We are also motivated to introduce “bit
files” or “blobs” (binary large objects) as values to manage the relation be-
tween, say, program source code and it compilation (related ideas have been
implemented by the Vesta® project). We would “outsource” the compilation
process, but record the fact that a certain file is the result of compiling the
given source code. The <kind> place is treated further in Initial Closed Map
(section 4.6)).

4.4.6 Problems with Naming

Individuals and traditions can disagree over the proper use of names infor-
mally, as well as whether a particular formalization of an informal named
concept is appropriate. On such occasions, it may be important to change
names. With appropriate technology, it would not be necessary to resolve
such disputes; the parties could select the names they prefer and operate in-
dependently with regard to naming. Similarly, a person may come to regret
their own name choices and desire to change them. This is most acute when
a name belongs to an informal concept that does not match a formal use of
the name, probably as a result of a mistake. And yet the material may be
formally correct and worth preserving and using further, just with a better
nomenclature.

Another form of dispute over names might be thought of as a property
dispute. When two persons have independently developed formal material
using the same name for different formal concepts, they may well agree that
both are correct, but cannot formally combine their work because of the

4 http:/ /research.compaq.com/SRC /vesta/

4.4. REPOSITORY DATA 97

unfortunate coincidence of naming. The parties must agree to renaming if
they are to unite their work formally.

The name collision problem becomes particularly intense when programs
operate on names as data and come to depend on them, and here it is not
the human-mnemonic value of names but their role as identifiers that is our
concern. While we may tend to think of renaming mathematical concepts
or identifiers in programs as paradigmatic, when names are runtime data
the problem becomes more difficult. If we attempt to combine programs by
resolving name conflicts in their code, we may still be left with name collisions
in their execution because they may generate names as runtime data that we
cannot avoid by static renaming. See Abstract Ids & Closed Maps (section
1.4.1).

The above remarks treat the names as essentially interchangeable because
they focus on the problems of maintaining formal correctness under change
of names, and assume the desirability of methods for freely changing names.
But there is also the problem of informal correctness. The names must be
assumed often to matter to the human ability to understand and apply the
formal material. This means that name changes must not be imposed on
individuals without their control. Each user must be empowered to man-
age their own assignment of names, albeit with advice provided for naming
objects and concepts they did not themselves create.

As suggested in Words vs Formality (section 4.2.1)), by design we separate
the nomenclature from formal content, making it changeable without effect
on the formal content, and use objects in the FDL to specify for any given
Session how to attach informal names to objects and concepts. This exposes
naming (and renaming) to management by those that depend on it. Just as
users may rely on stability of formal content, so they may rely on stability of
nomenclature as they see it, and yet cannot impose on others their nomen-
clature for formal content. (Note that even informal nomenclature within
informal documents may be made variable by picking an abstract name for
use within the document, and binding it to a concrete name by user choice
using the same mechanisms as for naming formal objects. This would be like
using TEX macros in a document source, but applying systematic methods
for managing nomenclature choices throughout the system.)

98 CHAPTER 4. WORKING NOTES ON FDL DESIGN

4.4.7 Abstract Id Allocation

Keep in mind that assignment of concrete mnemonics to Abstract Identifiers
(section 4.4.1)) is extrensic to the existence of abstract ids. Concrete names,
when desired, are assigned for whatever purpose by specifying the connection
in an object whose content, a table perhaps, stipulates the assignment. Such
assignment can be altered without altering occurrences of the abstract ids.

We have decided to identify object indices and abstract identifiers. We
shall discuss this below. But first let us consider some scenarios in which
abstract identifiers are allocated for various purposes.

Suppose while developing a certain closed map (a function mapping object
indices to object contents) one decides to add a new definition for some
mathematical operator, say for GCD. If names were concrete, and users chose
them, then allocation of a new name for this operator would comprise the
user’s coming up with a name not already used in the current closed map, and
which one hopes will be acceptable in the future. (Complications involving
errors and disputes could arise as mentioned in Naming Problems (section
1.4.6).)

But in our abstract identifier scenario, this name is selected by the system
being employed to maintain the current closed map, and is not a subject of
dispute. The user says “give me a new abstract id to work with,” then
proceeds to employ it, say by giving a definition intended to describe the
GCD function, and proving some theorems about it. The user might also
create a new object explaining the intended meaning of the new operator
informally, as well as stipulating how to show instances of the new operator
consonant with its intended meaning.

It is then feasible to later retain the definition and proofs involving this
operator while rejecting or altering the informal explanations and advice that
refer to it.

Names are needed for things besides mathematical operators, of course.
Programming operators, macros, procedure names; command interface com-
ponents; and, especially, objects in the FDL, where most of the content is
expressed. Examples of FDL objects are: definitions of constants, operators
and macros, proofs, source code for programs, specifications for how to con-
cretely display abstractly structured expressions, data used as arguments to
user-defined programs, informal documents, data stipulating external rela-
tions between formal objects, Readings (section 4.2.3)).

We have chosen to identify abstract identifiers with object indices in

4.4. REPOSITORY DATA 99

“Closed Maps” (section 4.4.1). In doing so we identify object allocation
with identifier allocation. To add a new object to a closed map is to add
a new object index and extend the closed map with a new object content
assigned to that index. To get a new abstract identifier is to add a new
object, which will be indexed by this new identifier. See Adequacy of Single
Id Space for arguments that this collapse of all abstract identifier spaces to
the space of object indices is without loss of generality.

4.4.8 Adequacy of a single space of Abstract Identi-
fiers, as object indices.

Here we consider a couple of reservations about the identification of abstract
identifiers and object indices. First, is it okay to have a single class of abstract
identifiers rather than several independent spaces? Second, if we do have a
single space of abstract ids, is there something wrong with assigning an object
to every one?

The possibility that one might want multiple independent spaces of ab-
stract ids is solvable by reduction. To introduce a new class of abstract ids,
pick a new abstract id from the basic system to represent the new abstract
id space, and implement abstract ids of this space as pairs of basic abstract
ids, one being the space identifier, the other identifying the member of the
space. Thus allocation of ids in separate spaces is easily implemented on top
of the allocation of basic ids.

As for the assignment of object content to each allocated abstract id, the
worst case is that an “empty” content must be distinguished as a way of
coercing unattached ids to object ids, i.e. persons who wish they could have
ids without assigned objects could for their own purposes interpret object
indices with empty content as such. But we think it is actually quite natural
to associate content proper with abstract ids. For example, when a new
operator is introduced (as either defined or primitive) it seems most natural
to associate with its identifier the formal object that gives its definition or
that declares it primitive. In such cases, each occurrence of this new operator
would directly refer to its definition (or declaration). When one introduces
an abstract id for a procedure name, it would be quite natural to have that
name refer to the object containing the source code that defines it. If one
introduced an abstract id for a special purpose variable, it would be natural
to associate an informal explanation of how that variable is intended to be

100 CHAPTER 4. WORKING NOTES ON FDL DESIGN

used. In all these cases, it is good to associate with an abstract id some
data explaining, either formally or informally, its use. Of course, the most
common reason for introducing abstract ids will be in order simply to refer
to objects in the first place.

4.5 Keeping Records in the Repository

We elaborate in some detail how facts are established and recorded by the

FDL.

4.5.1 Certificates

Among the objects included in closed maps are “certificates.” Certificates
belong to the system, ordinary objects belong to the Client. Be warned that
the notion of certificate discussed here is generic, although explicitly formu-
lated, and provides merely a form for accounting for facts. The substance
lies in the design and implementation of particular kinds of certificates.

Clients can create and modify ordinary object content pretty much free
form. But they cannot force a certificate with a certain content to be created
or altered or, when objects referenced by a certificate are altered, to be pre-
served; certificates are a kind of derived content. The client can delete them,
with consequences, and request certification services such as attempting to
create certificates of specified kinds. The client can also create content that
refers to certificates, just like to any other objects. See Current Closed Maps
(section 4.5.2).

Certification services and kinds of certificates are open-ended, subject to
extension by implementation. The basic significance of each kind of cer-
tificate must be explained when it is introduced, and provides a basis for
promises and correctness claims on the part of the system implementors.
See Certificate Significance (section 4.5.4) and Certificate Structure (section
15.6).

The dominant kinds of certificates we have been anticipating are for for-
mal proof certification (section 4.5.11.1), recording claims that certain in-
ferences have been validated via specified methods. The basic intention we
anticipate is that a kind of certificate is designed with the aim of support-
ing claims about closed maps based upon the existence and content of those
certificates. Here is a strong paradigm case: the client may infer from a cer-

4.5. RECORD KEEPING 101

tificate about a formal proof that it conforms to specific methods of inference,
and could test this claim.

Consider also an example of a form of certificate which has no value, its
being simply an extreme possibility: suppose that a certain kind of certificate
can be created willy-nilly by the system and added to the client’s current
closed map, and that it has no content except the indication of its kind;
there is nothing of interest that one may infer from the existence of such a
certificate.

Another kind of certificate that would be useful: the client may ask that
a certain compiler be run on some source code object in the current closed
map; the system then runs the compiler according to the specification, saves
the output as a new object in the current closed map, and adds a certificate
of this kind that points to the source-code object as well as to the new load-
module object (say); if one later wanted to execute the code, one might
use the existence of this compilation certificate to justify later claims about
execution of this program involving the load-module.

Another: a certificate kind could be designed to mean that, by some spec-
ified method, a date and client identity for a Session have been ascertained
when a certain object has been updated or created.

In each of these scenarios it is possible for multiple certificates of various
content and import to be created by the system. Thus, a Proof or In-
ference Step might be validated by several independent (in various ways)
Inference Engines, each certified; different compilers might be applied to
the same source code, the certificates indicating them and their outputs;
different means of establishing date and identity might be employed, with
perhaps with varying degrees of credibility.

We give preferred treatment, described in Certificate Bias (section 4.5.3),
to certifications of facts about closed maps that are abstract, monotonic, and
“localized.”

4.5.2 Current Closed Maps

As was mentioned in Abstract Ids & Closed Maps (section [4.4.1), in a Ses-
sion a Client develops a current closed map, normally by initializing it from
the FDL, transforming it through a sequence of operations to generate new
closed maps, then storing it back into the FDL in such a way that it can
be later retrieved easily. Our focus here is on sequences of closed maps that
may constitute the current closed map’s history, especially with regard to

102 CHAPTER 4. WORKING NOTES ON FDL DESIGN

Certificates, rather than on interaction with the FDL.

Some operations on closed maps which will be used to modify the current
closed map are listed in Conservation and Destruction (section 4.4.3). Basi-
cally they involve “conservative” operations that leave certificates intact, and
operations that may force modification of certificates. Whether an object is
a certificate is conceived here as a distinctive property of the content.

It should be kept in mind that during a Session the current closed map is
part of the session’s state, and that the map will typically include programs
that can operate on the state.

When a kind of certificate is implemented, policies for creation and al-
teration are stipulated, and the “internal” significance of the existence of a
certificate object is that the current closed map has been developed from
an Initial Closed Map (section [4.6) (inherent to the FDL) by a sequence of
transformations enforcing policies implicit in the rules for introducing or al-
tering certificates in the FDL. Actually, we must weaken the claim slightly
to say that the current closed map could have been so developed, since it
may have been initialized from an FDL, and so part of being an FDL of
closed maps is that any maps extracted from it could themselves have been
built from the initial closed map by a sequence of transformations.

Design of certificate policy is nontrivial, especially as regards incremen-
tal reconsideration of doubtful certificates, and proposals follow (start with
Altering Certificates (section 4.5.9.1)). But one part is simple, namely some
generic operations that cannot be constrained by certificate policies:

e One can always delete a collection of objects as long as every object
referring to an object in the collection is itself in the collection.

e One can always uniformly rename objects, so long as no distinct ob-
jects become identified (references in all objects are altered as part of
the renaming).

e One can always add a new object with any non-certificate content you
please.

e One can always “clone” any collection of objects. Cloning some ob-
jects means making a new collection of objects with identical contents
except that the clone references replace the original references.

Let us call these operations “conservative.” Conservative operations are sim-
ple, whereas other operations can force change of certificates - see Altering

4.5. RECORD KEEPING 103

Certificates (section 4.5.9.1).

4.5.3 Certificate Bias

As was mentioned at the end of Certificates (section 4.5.1)), we give preferred
treatment to certifications of facts about Closed Maps that are abstract,
monotonic, and “localized.” Elsewhere we shall address the questions of
what kinds of certificates are likely to be preferred, and which disfavored,
and why we give this preferential treatment. But, here we address: What
constitutes this preferential treatment?

When the user’s current closed map is modified, the FDL interface sys-
tem is responsible for deleting or altering certificates, and advising the user
about problems, especially to avoid surprising de-certification which could
be expensive to recover from by recertification.

Setting aside the issue of how to forestall undesired damage to a current
closed map, what happens to certificates normally? We shall use program
execution in some scenarios because the problems should be familiar, and
because some methods of proof (eg, Tactics) involve execution of programs
from a general purpose programming language.

Here are the features of certificates about closed maps mentioned above,
and examples of disfavored kinds of certificates. Following each explanation
of a feature is a description of undesired consequences of using certificates
lacking the feature; the fact that such undesired consequences arise con-
stitutes the system’s bias towards violated features, ie, the system treats
certificates having those features more favorably.

Abstractness: This means abstractness with respect to object identifiers
(see Abstract Ids & Closed Maps (section 4.4.1) and Abstract Identifiers
(how) (section [4.4.4)). When a closed map is uniformly renamed or is re-
trieved from the FDL, which is only guaranteed modulo renaming, there is
no rechecking of certificates; they are treated like any other objects.

Suppose, for example, that during a session, a person goes out or their
way, and against advice, to store a program whose execution depends on
the concrete values that happened to be used in that session for object ids,
and has the system execute that program and certify a result. Then if that
current closed map is saved and reloaded (modulo name change) in a later
session, that certification object will cease to entail that the old connection
between the program and result has been preserved.

104 CHAPTER 4. WORKING NOTES ON FDL DESIGN

Monotonicity: Similarly, suppose one wrote a program whose execution
involves a heuristic search of the whole current closed map, whatever it may
be at execution time. Then executing the same program on a extension of the
same closed map may well have different results, thus a certification of the
result of executing in one closed map will not certify the result in an enlarged
closed map.

But, again, the system will not modify a certification object when the
current closed map is enlarged.

Locality: Locality of a claim based on a certificate is dependence of that
claim only upon the certificate and objects referred to by the certificate.
A localized claim will also be monotonic since extending the map doesn’t
change what a localized claim about a certificate depends on.

Suppose that one cuts down the current closed map to a submap by
Contracting or Focusing (see Closed Map Operations (section 4.4.2)). For
example, suppose one picks a certification object and Focuses on it, deleting
every object that is irrelevant to it (ie, no reference path between them).
The certificate will not be modified or checked. The problems are the same
as for monotonicity above.

See Conservation and Destruction (section 4.4.3) for a list of some closed
map operations that leave certificates intact.

4.5.4 The Significance of Certificates

The “internal” significance of Certificates (section 4.5.1) in a closed map is
determined by the policies for how they are created, deleted and altered.
Some policies for the effects upon certificates of various closed map opera-
tions are suggested in Certificate Bias and in Conservation and Destruction
(section 4.4.3). Thus, the existence of a certificate in a current closed map
directly indicates merely that at some time it was created in a current closed
map according to a creation-policy implemented for that kind of certificate,
and has not been deleted by various subsequent alterations of the current
closed map, and that any alterations to the certificate’s content has been ac-
cording to the policy implemented for certificates of its kind. As usual with
formal and computational data, further significance is attached externally
based upon understanding the “internal” significance.

The only general policy for changing certificate content that we currently
expect to adopt was alluded to in Certificate Bias (section 4.5.3); the system

4.5. RECORD KEEPING 105

can change the content of a certificate by marking it as “stale” and possibly
deleting object references within it to no-longer extant objects. Such a vesti-
gial certificate thus signifies merely the past existence of a certificate having
certain content. These vestigial certificates will, therefore, tend to have little
formal value, and are expected to serve as hints about previous situations,
which may have some heuristic value. See Certificate Structure (section 4.5.6)
and Stale Certificates (section [4.5.9.2) for detail on certification policy.

A simple content alteration policy, one might deem it the default, is
extreme sensitivity to the content and number of objects referred to by the
certificate. It is this: if the content of any object the certificate refers to is
changed, then the certificate must be deleted (or its content must be altered
to mark it vestigial); its fate will be the same should multiple references
within the certificate get “identified,” by Folding (section 4.4.2)), say.

For example, if a proof “goes bad” because of some alterations to un-
derlying content, say a change of definition or deletion of an inference rule
upon which it depended, or through forced identification of two “primitive”
notions, then the objects certifying it as a well-formed proof (according to
whatever standards) will be deleted or marked as stale. If they are altered
to these vestigial forms rather than deleted, they may be useful in further
attempts to attach new certificates to the proof.

A more permanently useful vestigial certification would be a certificate
of object creation. An object creation certificate might be implemented to
indicate that an object it refers to was created at a certain time in a certain
Session. Then, as we can infer from the general policies mentioned above,
a vestigial certificate of this kind still signifies that the object was created
at the specified time but may have undergone a change of content. So some
vestigial certificates do retain their significance.

One might also implement kinds of certificates that are insensitive to some
alteration of content in referenced objects. For example, one might adopt a
criterion for mere annotation of programs or formal data that does not affect
correctness, and leave “annotation insensitive” certificates intact if objects
they refer to are altered merely in their annotations.

Returning to external significance of certificates, it is also possible for us
to be mistaken or in disagreement about the external significance we have
attributed to a kind of certificate. This lies beyond the responsibility of the
closed map management system. For a scenario exploring this situation see
Conflicts of Significance (section 4.5.5).

The most important promise implementors can make with regard to cer-

106 CHAPTER 4. WORKING NOTES ON FDL DESIGN

tification is that the policy for creation and update of each kind of certificate
is permanent, once implemented. If a new policy is needed or desired, a new
kind of certificate must be implemented.

4.5.5 Conflicts of Certificate Significance - a Scenario

Continuing the discussion of internal and external significance of certificates
begun in Certificate Significance, it is possible for us to be mistaken or in
disagreement about the external significance we have attributed to a kind of
certificate. For example, suppose we have employed a kind of certificate for
generating or verifying formal inference steps; the certificate policy might go
something like this: invoke a specified inference engine, building it first (per-
haps compiling its code) if need be, and apply it to an inference step object
in the current closed map; if the inference engine says the step is “good,”
create the certificate, whose content will refer to the inference step. This
is the “internal” significance. External significance to some persons might
comprise the conformance of the inference step to a certain independently
understood class of inference rules. For a person who judges all these rules to
be correct, the external significance may further comprise the validity of the
certified inference step. Of course, maybe it will be later discovered or sus-
pected that the inference engine is flawed and doesn’t simply implement the
inference rules it was thought to implement. Then that external significance
is lost.

Let us continue with this example of the flawed proof engine, and consider
a recovery scenario. Suppose that further study and improvement of the
inference engine leads to the judgement that there is an easy bug fix, and
that there is a simple test that detects at least the bad inferences that the
older version of the engine erroneously okayed. Now we have fallen into doubt
about already certified proofs. One simple fix is to employ a similar form of
certificate, the difference being that it invokes the new engine rather than the
old one, and simply try to certify all the old inferences with the new form of
certificate. The old certificates need not be deleted, although perhaps they
may be eventually.

Consider now a more sophisticated scenario. Stipulate a form of certificate
that is created this way: given an inference step, first look and see if there
is a certification for it (pointing to it) of the old sort that uses the defective
engine; if there is no old-engine certificate then use the new engine; if there
is an old-engine certificate then apply the test for possibly-bad inferences

4.5. RECORD KEEPING 107

postulated above for this scenario; if the inference is possibly-bad then use
the new engine, but otherwise, simply point to the old-engine certificate. If
there were many proofs with the old engine but the bulk of inferences were
okay according to the new test, and if running the engine is often expensive,
then this method could represent a significant efficiency as a corrective.
Let’s do a quick survey of when these various certificates are appropriate.
Let’s also make the more interesting assumption that whether the engine is
flawed is not agreed upon by all parties. Persons who think the old engine
was correct will still accept the old certificates with their original significance
for correctness. Persons who think the new engine is correct and that the test
for possibly-bad cases is an accurate assessment will accept both new-engine
certificates and also the hybrid certificates that depend on the old engine.
Persons who think the new engine is correct but don’t trust the test for
possibly-bad cases will insist on the simple new-engine certificates. All these
certifications can coexist, even if their external significances are in dispute.

4.5.6 Certificate Structure and Internal Significance

Continuing from the discussion in Certificate Significance (section 4.5.4) we
elaborate upon what counts as a certificate, and how certification procedures
are determined by certificate content.

Before getting specific, let us sketch the design. The principal, dominant
form of certificate indicates two Native Language programs, the first being
the procedure invoked to create the certificate (and others like it), and the
second being a procedure to be applied when “reconsidering” (section/4.5.9.1)
the certificate later. These native language programs are pointed to by the
certificate, and to understand them along with understanding the general
method for reconsidering Stale Certificates (section 4.5.9.2) is to understand
the “internal” or direct significance of the certificate. In order to facilitate
Borrowing Certificates (section 4.5.2), we admit a special kind of certificate
that has the same content as a normal “native” certificate, but which cannot
be updated and can be created only by copying from a foreign FDL. A third
kind of certificate-like object is a “certificate identifier” which may exist in
the FDL ab initio, but is a distinguished object created as part of the FDL
in order to identify other certificates by their content.

The unifying characteristic of these certificates is that their content is
strictly regulated by the FDL, unlike ordinary objects whose content is what-
ever the Clients make it. We defer discussion of Certificate Identifiers (sec-

108 CHAPTER 4. WORKING NOTES ON FDL DESIGN

tion 4.5.8)), stipulating here that the FDL classifies each certificate identifier
as either “native” or “borrowed.”

Both native and borrowed certificates of the ordinary kind, ie not cer-
tificate ids, have as content a Text whose operator consists of two object
references, the first being a certificate identifier and the second being a ref-
erence to an appropriate code specifying object. The intention is that this
second object contain the Native Language programs for creating and up-
dating certificates referring to it in this way. This pair (C, K) of references
constituting the certificate contents’ operator may the considered the cer-
tificate “kind,” and it can never be altered in an object once created. The
content of K cannot be altered as long as K is part of the certificate kind
for any existing certificate; this policy is part of what makes the FDL trust-
worthy. If you want better code and the old code still matters to someone,
you must make a new object K’ and employ a new certificate kind (C, K”).

A certificate with kind (C, K), where C' is a native-certificate identifier,
can only be created by interpreting the first subtext of object K, applied
to some specified arguments. If this execution returns a Text T, then a
new object is created whose operator is (C, K) and whose first subtext is T'.
There may be other subtexts as well indicating generally useful information
as determined by the FDL implementors, such as dates or other transaction
related data. How the native language program is interpreted is determined
by the C' in a way inherent to the FDL process. Thus, within an FDL,
there may be multiple native language interpreters indexed by the certificate
id. If one needs to add a native language to an FDL or improve a native
language of an FDL, then a new certificate identifier should be introduced for
the new interpreter. Once an interpreter is employed it must be unaltered
if clients are to be able to trust the FDL. Similarly, different FDLs may
have different implementations of a native language, perhaps with different
execution results either intentionally or accidentally, or may support different
native languages. Thus, native certificates must never be transferred as such
between FDLs if client trust is to be maintained.

A certificate with kind (C, K), again where C' indicates native, can be
updated only under circumstances explained in Stale Certificates (section
4.5.9.2). Then the second subtext of the content of object K is executed as a
native language program according to C, applied to arguments as stipulated
in Stale Certificates (section 4.5.9.2). If the procedure returns a text, then
that becomes the new first subtext of the extant certificate. Again, any other
subtexts are updated as the FDL implementors choose. We shall consider

4.5. RECORD KEEPING 109

Borrowed Certificates in more detail.

4.5.7 Borrowed Certificates

In Certificate Structure it is explained how creation and update code are de-
termined for “native” certificate identifiers. Here we explain how certificates
are borrowed from other purported FDLs.

A certificate with kind (C, K), where C is classified by the FDL as in-
dicating a borrowed rather than a native certificate, cannot be updated —
reconsideration of borrowed certificates always fails, which means that if
they get in the way they should be replaced by native certificates. When
one wishes to locally “re-establish” a borrowed certificate, one requests the
creation of a native certificate stipulating a native certificate id C’ which
one thinks will execute the native code of K similarly to the way the foreign
FDL is supposed to have interpreted it. FDLs that hope to cooperate and
share Clients would do well to provide a standard collection of similar native
languages and interpreters; multiple instances of a common implementation
will, of course, minimize coding in this regard.

A certificate with kind (C, K'), where C' is a borrowed-certificate identifier,
is created by Merging (section4.4.2) a Closed Map from a foreign FDL into
the local FDL. When a merge is attempted one specifies a correspondence
between objects that should be identified. If one stipulates that certificate id
C' in the local FDL is to be identified with C” of the foreign FDL, then the
merge fails if any new certificates of kind C' would have gotten imported; ie,
foreign certificate ids can only be identified with native certificates ids if the
certificates depending on them were already in the local FDL.

How can a cross-FDL correspondence between identifiers, certificate iden-
tifiers in this case, be established when each space of identifiers is “internal”
to its own FDL? In general, a Client of an FDL might establish an associa-
tion between abstract identifiers of the FDL and other values (which might
themselves be either concrete values or abstract identifiers), by storing in the
FDL a text serving as a table pairing the values with the abstract identifiers.
One FDL, say A, could borrow from another FDL, say B, by becoming its
Client and creating two tables, one in A and another in B. One concrete
value for each cross-FDL abstract id pair would be generated, and these
values would mediate the two tables in A and B.

Establishing such cross-FDL abstract identifier correspondences, to facil-
itate certificate borrowing or other content sharing more generally, should

110 CHAPTER 4. WORKING NOTES ON FDL DESIGN

be so common that it should be “internalized” as an FDL service and obvi-
ate the need for exposing the intermediate concrete values that coordinate
cross-FDL pairings. Further, significant efficiencies are likely in explicitly
recognizing a mutual client relationship between FDLs. Hence there is a spe-
cial role for FDLs as clients of other FDLs, essentially supporting federation,
that is worth making efficient.

4.5.8 Certificate Identifiers

The content of a certificate identifier is a Text whose operator is simply a
reference to itself, and the subtexts, if there are any, may contain whatever
is convenient or necessary to execution of Native Language programs as
explained in Certificate Structure (section 4.5.6). The content of certificate
identifier cannot be changed as long as any certificates mention it, hence the
certificate identifier serves as an authentic indicator of how the certificates
referring to it were established.

The classification of an abstract identifier as a certificate identifier must
be inherent to the FDL, as is its further classification as indicating normal
certificates as opposed to indicating Borrowed Certificates (section 4.5.7).
Certificate identifiers for borrowed certificates must be bound by the FDL
to a Process Identity Certificate (section [4.7) for a foreign FDL, and to a
cross-FDL abstract id correspondence as described in Borrowed Certificates
(section 4.5.7).

4.5.9 Updating Certificates

It is possible to manage the modification of certificate objects by methods
specific to the kind of certificate. The point is that when large numbers of
inter-related objects are created by means of automated procedures, such as
proof generators, it will often be desirable to create slight variants of large
data that should have rather localized effects. An economy can be achieved
when this localization can be effectively detected and managed automati-
cally. Of course, one is always free to stipulate kinds of certificate that are
unmodifiable once created.

4.5. RECORD KEEPING 111

4.5.9.1 Altering Certificates

In Current Closed Maps (section 4.5.2) we specified some operations on the
current closed map considered “conservative.” Conservative operations are
simple, whereas other operations force reconsideration of some Certificates
(section 4.5.1) which may have become “stale” as a result. The assumption
here is that certificates are normally intended to attest to some facts about
the contents of, or identity between, objects and so may fall into doubt when
those change. Rather than simply deleting or discounting certificates that
become doubtful, we anticipate a more incremental processing of doubtful
certificates that might rehabilitate some certificates or even leave them intact.
The presence of stale certificates in the current closed map corresponds to an
“inconsistent” state in a database, and part of completing an operation on
the current closed map is to eliminate staleness. Reconsidering a certificate
can result in its modification or deletion, which can force reconsideration
of further certificates that depend on it, and so a protocol is needed for
resolving these cascades of certificates going stale. See Stale Certificates
(section 4.5.9.2).

As explained in Certificate Structure (section [4.5.6)), to implement a kind
of certificate one adopts a procedure for creating new certification objects of
that kind, and a procedure for reconsidering a certificate. When a reconsid-
eration procedure for a certificate is executed to (successful) completion, the
certificate object is either left intact, updated, or deleted. These certifica-
tion procedures, in addition to creating certificates or modifying contents of
“reconsidered” certificates, may create or delete other objects, and may alter
the contents of non-certificates. But some basic operations may have cascad-
ing consequences on the FDL, beyond the control of any specific certification
procedure:

e Execution of a certificate creation procedure is a basic operation on
the current closed map, and the content of the certificate will include
an indication of its kind. Creation procedures can take arguments
supplied at execution. The indication of certificate kind is beyond
the reach of the certificate creation procedure stipulated for the kind
itself, and is controlled by the system.

112 CHAPTER 4. WORKING NOTES ON FDL DESIGN

e Execution of a reconsideration procedure for a kind of certificate is a
basic operation that can be applied to any extant certificate of that
kind. Again, the content cannot be altered to omit the fact that it is
a certificate of its kind.

e The content of any non-certificate can be changed to any content
except that it cannot have the form characterizing certificates.

e Object indices can be identified with each other (see Folding (section
14.2)).

e When any object’s content is altered other than by conservative op-
erations (see Conservation and Destruction (section 4.4.3)), be it a
certificate or not, each certificate object referring to it in certain lim-
ited ways (section 4.5.9.3) will be “reconsidered” according to the
procedure specified for its kind. If reconsidering a certificate alters its
content, then certificates referring to it must themselves be marked
for reconsideration. If reconsidering a certificate leaves it intact, then
it engenders no further marking for reconsideration.

e Similarly, when multiple objects are identified with each other (see
Folding (section 4.4.2))), any certificate that contains references to
more than one of them gets marked for reconsideration.

See also Assimilation to Certificates (section 4.5.10).

Of course, there are practical issues of making these current closed map
transformations convenient. For example, users must be able to abort trans-
formations and get advice about consequences of proposed transformations.

4.5.9.2 Stale Certificates

In Altering Certificates the notion of “stale” Certificate (section4.5.1) was in-
troduced as a sort of database “inconsistency” induced by various operations
and resolved by certificate “reconsideration” procedures. Here we elaborate
on the methods for inducing and resolving staleness.

We do not consider the staleness of certificates in the current closed map
to be part of the map, but rather part of the state of the Session to which
the current closed map belongs. As will be explained, other data pertinent
to reconsidering a stale certificate are also maintained along with the mark
of staleness.

4.5. RECORD KEEPING 113

Some quick orientation: At the level of interaction via a Session with the
FDL process, current closed maps have no stale certificates; every operation
on the current closed map at this level is automatically followed by reconsid-
eration of all certificates marked stale. If an operation is attempted which
induces staleness in any certificates, and those certificates are not recertified,
rehabilitated or deleted, then the operation fails leaving the current closed
map as it was.

There is a procedure stipulated as part of a certificate’s kind (section
4.5.1) for reconsidering a stale certificate of that kind, and it is the execution
of this procedure that effects the recertification, rehabilitation, or deletion or
the certificate.

The operations on the current closed map that can induce staleness in
pertinent certificates are updating the content of an object, identifying two
or more objects that were previously distinct (see Folding (section [4.4.2)),
stipulation of a set of objects to be “shunned” in anticipation of deletion,
and direct stipulation that a certificate is to be considered stale. When one
of these occurs, data which may help to rehabilitate the certificate is saved
as well, such as the old content of an object that has been changed.

Not all certificates that may eventually become stale as the result of a
change to the current closed map are necessarily marked stale at first; this
makes it possible for some certificates to serve as buffers against various
changes deemed “irrelevant” by other, more remote, certificates. When re-
considering a certificate object results in its alteration, pertinent certificates
which depended on it in turn will are marked stale, thus a cascade of staleness
marking is possible.

This presents the following issues:

e What are the “pertinent” certificates for reconsideration when an ob-
ject is altered, multiple objects become identified, or a set of objects
is to be shunned?

e When a staleness inducing operations occurs, what data are saved for
pertinent certificates?

e How is a certificate’s reconsideration procedure applied in order to
reconsider the certificate?

See Pertinence, Extra State (section 4.5.9.4), and Resolving Staleness (sec-
tion [4.5.9.6).

114 CHAPTER 4. WORKING NOTES ON FDL DESIGN

4.5.9.3 Certificates’ Pertinence to Objects (stipulation)

Here is a key concept used in propagation of Stale Certificates. It is based
on the reference relation (section 4.4.1) between objects:

An object X refers “simply” to an object Y just when X refers (per-
haps indirectly) to Y via a reference path with no interior certificate
references. That is, either X refers directly to Y or X refers directly
to a non-certificate object Z that refers “simply” to Y.

As will be seen in Staleness (extra state) (section 4.5.9.4), the certificates
pertinent to operations involving some change to a set of objects are those
that simply refer to objects in that set. Certificates are intended normally
to be directly “about” the content and identity of the objects to which they
simply refer, and they get marked for reconsideration as a result of changes
to such content or identity.

This strategy is adopted rather than one of two more obvious ones for the
following reasons. A simpler strategy would be to force reconsideration for
all certificates that refer at all to the affected objects because they are, after
all, about those objects and so could go wrong. However, we expect many
certificate kinds to be designed to be independent of various features of the
objects they refer to, for example such as what “comments” may be adorning
their contents. When the reconsideration procedure stipulated for that kind
of certificate is executed, it may ascertain that the referenced objects have
not changed in ways it considers relevant and simply resolve the certificate
by leaving it intact; then our staging strategy avoids forcing reconsideration
of other certificates on account of changes to this one.

This staging strategy enables the use of certificates as buffers against
certain changes to their subjects. We shall use the term “buffering certificate”
to mean certificates that remain intact when reconsidered due to certain
changes to the objects they simply refer to. In order to make a certificate
unaffected by certain changes to objects, rather than having it simply refer
to those objects, one can have it refer to such “buffering” certificates that
refer to those objects; then such changes will not even induce reconsideration
beyond the buffering certificates.

That expensive strategy of reconsidering all (indirectly) referring certifi-
cates would at least have been useful, and indeed is equivalent to our staging
strategy when buffering certificates are not employed, since if no certificates
remain intact after reconsideration then all the (indirectly) referring certifi-
cates will eventually get reconsidered (unless there is a failure earlier).

4.5. RECORD KEEPING 115

Consider another extreme strategy we have not adopted. Suppose that
rather than forcing reconsideration of all simply referring certificates, we were
to force reconsideration of only directly referring certificates. Under such
a regime, certificates must be designed to carefully restrict their attention
to those objects they directly refer to, which would fail to exploit a major
convenience of our closed map design, namely allowing free and easy access to
all the content one can reach from a small collection of object identifiers, i.e.
allowing small expressions to refer (indirectly) to large numbers of objects.

4.5.9.4 Certificate Staleness Processing State

The management of Stale Certificates (section [4.5.9.2) involves some extra
state beyond which certificates of the current closed map are deemed stale.
Recall that the ordinary state of the current closed map is that there are no
stale certificates, and that staleness is intended as a temporary state; failure
to eliminate staleness results in failure of the original operation and restores
the current closed map to its original “prestale” state.

In addition to the finite collection of stale certificates, there is for each
stale certificate a collection of those objects that it simply (section 4.5.9.3)
refers to whose contents have changed since the prestale current closed map;
and each of those entries in the “changed object” collection is paired with the
prestale value, which the certificate was presumably originally about. The
purpose of this, as explained in Staleness (pertinence) (section [4.5.9.3), is to
anticipate reconsideration procedures that leave the certificate intact based
upon some relation between the old and new values that is deemed irrelevant
to the the correctness of the certification. It is also possible that even if
reconsideration does change the certificate content, thus forcing propagation
of staleness to further pertinent certificates, knowing the difference between
the old and new contents of simply (section 4.5.9.3) referenced objects may
permit a more efficient incremental recertification than simply rerunning the
certificate’s origination procedure.

When the content of any object is updated, each certificate simply (sec-
tion [4.5.9.3) referring to it is marked stale if it is not already so marked.
Further, for each of these certificates the object is added to its “changed
object” collection along with the prior content, unless it is already in the
collection, in which case it is left as is.

Another operation on the current closed map that changes the staleness
state is Folding (section [4.4.2), which “identifies” some distinct object iden-

116 CHAPTER 4. WORKING NOTES ON FDL DESIGN

tifiers with each other. For each stale certificate there is a “folded object
collection” of the objects that it simply (section 4.5.9.3) refers to that re-
sulted from such an identification of originally distinct identifiers. Similarly
to the content change case above, the purpose is to admit the possibility of
leaving the certificate intact or enable a more efficient incremental recertifi-
cation.

Upon Folding (section [4.4.2) the current closed map, any certificates that
simply (section 4.5.9.3) refer to any of the newly “identified” objects are
marked stale if not already so marked, and the identified objects get inserted
in this folded object collection. It should also be noted that the extant
“changed object collections,” “folded object collections” and the stale object
collection must themselves be collapsed to reflect the new identifications.

Another operation is simply to mark a certificate as stale even if nothing
it simply (section 4.5.9.3) refers to changes in order to express doubt for ex-
ternal reasons. In order that the nature of this doubt may be communicated
to the procedure for reconsideration, this operation takes a Text as argument
to be saved with the stale certificate. With each stale certificate, therefore, is
associated a (finite) collection of these “staleness fiats;” this operation then
consists of marking a certificate as stale, if it’s not already, and adding the
given “staleness fiat” to the collection for that certificate.

Next we consider certificate deletion.

4.5.9.5 Staleness Processing State Continued - shunning
objects and deleting certificates

We continue the discussion of State for processing stale certificates. There
we introduced state and operations for incrementally adapting certificates to
change of object content and identity. Here we introduce state and operations
for facilitating incremental anticipation of object deletions.

In addition to the operations described in Staleness State (section/4.5.9.4),
another operation is to indicate that some objects should be “shunned,”
which is simply a device for passing another set of objects to the certificate’s
reconsideration procedure, but the intention is that the reconsideration pro-
cedure should try to update the certificate content in such a way that it
avoids reference to the “shunned” objects. The purpose of this operation is
its use prior to deleting (section 4.4.2) a collection of objects from the cur-
rent closed map. When objects are deleted so are all objects that depend on

4.5. RECORD KEEPING 117

them; by “shunning” the objects beforehand, the reconsideration procedure
has a chance to rebuild the certificate to avoid referring to the objects whose
deletion is to come, which would otherwise simply delete the certificate as
well. Shunning an object thus makes any certificate referring simply (section
4.5.9.3) to it stale, if it’s not already, and adds itself to the “shunned object
collection” for each of those certificates.

Finally, because reconsideration of a certificate may result in deletion of
the certificate, and because we want to forestall deletion of such certificates
until other certificates depending on them have had a chance to shun them,
another part of the staleness processing state is a set of certificates marked for
later deletion. When the reconsideration of a certificate requires its deletion,
it is marked for deletion then shunned rather than being immediately deleted.
When no stale certificates remain, certificates marked for deletion are deleted
along with every object that refers to them. Of course, if any reconsideration
procedures fail, then this point is never reached, and indeed this device could
be exploited to protect an object from accidental deletion by referring to it
with a certificate whose reconsideration procedure always fails.

See Staleness State (section 4.5.9.4) and Resolving Staleness.

4.5.9.6 Resolving Stale Certificates

As indicated in Altering Certificates (section [4.5.9.1), rather than simply
adopting the expensive policy of simply deleting, or permanently marking
as obsolete, Certificates (section 4.5.1) that fall into doubt, we permit the
stipulation of a “reconsideration” procedure as part of defining a kind of
certificate.

The arguments to the reconsideration procedure are the (object id of the)
certificate to be reconsidered and various values attached to that certificate
object described in Staleness State (section 4.5.9.4) and Staleness and Dele-
tion (section 4.5.9.5), namely: the “changed object collection,” along with
the “prestale” contents associated with each member of the collection; the
“folded object collection” of objects; the collection of “staleness fiats;” and
the “shunned object collection.”

When a stale certificate is reconsidered, this procedure is applied and the
disposition of the certificate is determined by its result. If the procedure
fails then the certificate remains stale, and presumably control passed to
wherever the failure is caught. If the procedure completes, it returns one
of three values: “intact,” “delete,” or a “new content” text. In any case

118 CHAPTER 4. WORKING NOTES ON FDL DESIGN

the certificate is no longer stale; if the result of reconsideration is “intact”
then that’s it for that certificate and no further staleness is induced by this;
if the result is “delete” then the certificate is marked for deletion (section
4.5.9.5) and and the certificate is then shunned (section [4.5.9.5); if the result
is a “new content” text then that text becomes the new content (except
for the part indicating the certificate kind) of the certificate and pertinent
certificates depending on it go stale.
Let us emphasize a few points:

1. Although the Client can force deletion of a certificate (along with
everything that refers to it) from the Current Closed Map of the
Session, the only way to modify its content is by reconsideration.

2. Part of a certificate is an indication of its kind, which determines its
creation and reconsideration procedures, and that part is beyond the
reach of the reconsideration procedure (or the creation procedure for
that matter).

3. Certificates will not be deleted until no stale certificates remain; they
can only be marked for deletion until then.

4. Changing a certificate’s content or marking it for deletion will make
any pertinent certificates referring to it stale, thus it is possible for
reconsideration to cascade.

5. The difference between leaving a certificate “intact” upon reconsidera-
tion andusing its old content as its new content is that the latter will
induce staleness in pertinent certificates referring to it.

4.5.10 Assimilating Ordinary Objects to Certificates

We have presupposed a distinction between ordinary FDL objects and cer-
tificate objects. It would be possible to treat non-certificate objects as a
specific kind degenerate of certificate object. To do this we would have to
allow reconsideration procedures for certificates to take optional arguments;
whether there would be some benefit other than contriving this assimilation
remains to be seen.

Let the creation protocol take as argument a possible content, and let
executing it simply be using that argument as the new certificate’s content.

4.5. RECORD KEEPING 119

The “reconsideration” procedure would take an optional argument; if the
optional argument is not supplied, then leave the object intact, otherwise
update the content to the specified argument.

Of course, if we were to do this assimilation to a single kind of object, we
should drop the terminology of “certificate” in our general exposition, and
simply say each object kind has creation and reconsideration procedures. The
fact that simple reconsideration of our “degenerate” kind of object leaves its
instances intact means that their being marked for reconsideration would
have no effect.

4.5.11 Proofs

We consider how to deploy certification systems to represent proofs.

4.5.11.1 Proof Organization and Certification - indepen-
dence of inference steps

Different organizations of Inference Steps into proof structures and certi-
fications are possible. We shall assume that the inference steps of a proof
are organized into a dag. For convenience of discussion we assume the dag
has a single root, i.e., a node having no parents, and that the proof purports
to justify the conclusion of the root from the premises of the leaf nodes, i.e.
the conclusion of the proof is the conclusion of the root inference and the
premises of the proof are the premises of the leaf inferences; more generally
any dag could also be construed as the collection its rooted subdags. An
extreme form of proof organization would be to represent a proof as a rooted
dag of certificates each certificate comprising the conclusion of the inference,
references to the root certificates of the proofs of the premises of the infer-
ence, and an indication of a justification (such as an inference schema or
Tactic code) of the conclusion from the premises. The principle drawback
of this simplest organization of proofs would be that it does not anticipate
the potential costs of justifying an inference.

In a realistic proof system one can expect the cost of inference to domi-
nate, whereas the organization of inferences into a rooted dag is cheap. There
are reasons to certify individual inferences independently of other inferences
in the larger proof, so let us assume that each inference will be represented as
the content of an Inference Step object (a non-certificate), comprising the

120 CHAPTER 4. WORKING NOTES ON FDL DESIGN

conclusion and premise Propositions, and a Justification, which is simply
an expression used by an Inference Engine to help recognize the inference.

By making the inference step content external to certification content it
becomes possible to have multiple certifications by different engines for the
same inference. By making the proof structure external to the inference step
content, i.e. by not having the inference step point to proofs of its premises,
we make it possible for the same inference to be used in multiple proofs
without recertification. While one might imagine having two otherwise un-
related proofs sharing an inference step, the main sharing would be across
time among intermediate partial proofs being developed toward a single large
proof, or across versions of a proof. Observe that if certifying an inference
step in a proof required certifying the proofs of the premises as well, building
a proof top down, i.e. by progressive arguments for premises, one would ei-
ther require repeated certification of inferences as the subproofs were built or
one would have to forestall certification of each inference until the whole proof
was finished, both of which would be absurd. Another interesting potential
of this proof organization is the development of hybrid proofs, in which dif-
ferent kinds of inferences can be performed by distinct inference engines on
the various steps in a certified proof. A procedure for “passively” certifying a
proof would not certify inferences, but rather would simply involve collecting
extant certifications of inference steps if possible. Passive certification of a
proof would take as argument a rooted digraph of inference steps and a test
for acceptability of inference certificates. It proceeds by checking to see that
the children of the root inference have as their conclusions the premises of
the root; also it checks to see that there is a certificate object verifying the
root inference and which passes the test for acceptability; then the procedure
is applied recursively to each of the subgraphs for the children of the root; if
all this succeeds then build a proof certificate comprising the specification for
acceptable inference certificates, references to an acceptable root certificate
and to each of the recursively created proof certificates for the children of the
root. Note that if this procedure terminates, then it describes a dag of in-
ference certificates for inference steps with the right correspondence between
parent premises and child conclusions. Obviously, rather than recursing per-
haps forever, we would use a loop detecting variant that would fail on loops
in the digraph.

A procedure for “actively” certifying a proof would be similar, taking
as a further argument a procedure for certifying inferences for which no
acceptable certificate exists. Instead of simply failing when it cannot find an

4.5. RECORD KEEPING 121

appropriate inference certificate, it invokes on the uncertified inference the
creation procedure specified for active proof certification. Indeed, the passive
proof certification would simply be this active certification procedure where
the procedure for certifying unacceptable inferences simply fails. At the
other extreme, if the active procedure is employed with the stipulation that
the only acceptable inference certificates are those it creates itself during that
run, then its success would entail certifying anew every inference reachable
from the root of the digraph.

The above method depends on little about how inference engines work,
but this account is deficient with regard to inferences that cite lemmas, and
we cannot expect a uniform solution independent of the inference engines
that might be supplied by FDL clients because they may have been based
on differing choices about how they treat lemmas.

4.5.11.2 Inferences Citing Lemmas

When one cites a lemma as justification for an inference, correctness may
depend not just upon “internal” syntactic relations between the conclusion
and premises (if any), but also upon the correctness of the lemma. And of
course, lemma citation between proofs must be well-founded (hence acyclic).

There is a subtlety here. In Proof Organization (section4.5.11.1) we have
given reasons of efficiency to make inference objects independent of the proofs
they are part of, based on the assumption that inference checking dominates
cost over proof organization, and we assumed inference step certification to
be independent of proof certification. But when an inference cites one or
more lemmas, then justifying the inference depends on justifying the entire
proofs for those lemmas, so in order to maintain the economy of independent
inference step certification we must allow inference step certification to fall
short of full justification to the extent that lemmas are cited. We modify
proof certification to require certification of lemmas cited by an inference
just as it requires certification for proofs of children of an inference.

But how is the FDL process supposed to determine which lemmas are
cited by an inference? Different Inference Engines supplied by FDL clients
might treat lemmas rather differently. A fine grained solution is possible if the
inference engine reports which lemmas it depends on for a step; in that case
the certification procedure invoking the engine can store in the certificate the
list of lemmas as reported by the engine. If, on the other hand, the possible
lemmas were to be supplied by the FDL process to the inference engine as

122 CHAPTER 4. WORKING NOTES ON FDL DESIGN

part of certification, then again these can be listed as part of the certificate.
A coarser solution would be to assume that any proof referred to by the
justification part (section 4.5.11.1) of the inference content might be cited as
a lemma and so must be certified in the course of certifying the citing proof.

A second subtlety is implicit in the proof certification procedure extended
to lemma citation as described above. Although with “normal” proof meth-
ods, one expects the cited lemmas to be proved by the same methods, some
systems of proof may not be “uniform,” i.e. they may require that certain
lemmas cited in certain inferences be proved by a more restrictive method.
This means that in order for the FDL process to certify a proof citing lem-
mas, one must know how to certify the lemma, which in turn means that
along with each lemma cited in an inference step certificate, one may need
to indicate the certification criteria to be used for the lemma. Of course, the
default is just to use the same criterion as for the citing proof.

This same mechanism can be adapted for combining proof methods that
are not compatible at the level of individual inference, and so could not par-
ticipate together in the sort of hybrid proof mentioned in Proof Organization
(section 4.5.11.1).

Another interesting distribution of verification involves shifting some lemma
certification dependencies into the records of how the inference engine was
built. It could be practical to create certain inference engines containing
a specification of a large ground set of lemmas that were certified by the
time the engine was created; this would obviate the need, when the engine is
applied, to check those lemmas explicitly (or to mention them in the infer-
ence certificate) because: the certification of the inference refers to a process
identity certificate (section 4.7) for the engine, which in turn refers to the
certifications of its base set of lemmas; consequently the whole chain of cer-
tificates from that inference down to each base lemma can be assumed to
remain intact.

4.5.11.3 Proof Sentinels

If one were building inferences according to a single uniform logic processed
by a single inference engine, then assembling proofs would amount to col-
lecting inferences into a dag and aligning conclusions of some inferences with
premises of their parent inferences; all inferences may enter into proofs. But
in a collection of inferences that may employ a variety of logics and infer-
ence engines that cannot be simply combined, collection into proofs requires

4.5. RECORD KEEPING 123

something else, and recognizing when proofs or inferences are acceptable for
a given purpose or by a given person requires further accounting for accept-
ability of inferences according to how they were validated. These are the
purposes of “proof sentinels;” the connotation of “sentinel” is that it guards
against the intrusion of untrusted entities into an inference. A logic can be
represented by sentinel expressions that certify its inferences.

We shall temporarily make one oversimplifying assumption while we dis-
cuss the content and use of sentinels, namely, that all the inference steps
in a proof dag must have certificates containing the same sentinel. Thus, a
sentinel is used as the a standard of coherency between different inferences.

A sentinel is an expression, and we sometimes emphasize this by calling
it a sentinel expression. The sentinel is intended to represent a class of basic
logical resources and methods as opposed to derived ones. For example, one
might build an inference engine which takes as a parameter a primitive rule
set; then a sentinel expression appropriate to inference certificates invoking
this engine would indicate the kind of inference engine invoked along with
the primitive rule set. The presumed external meaning of these inference
certificates is that the engine restricts its dependency upon primitive rules
to those mentioned in the sentinel (plus, perhaps, some “built-in” rules that
need not be mentioned explicitly in the sentinel expression).

The sentinel is not a general indication of resource restriction. Inferences
citing lemmas, or definitions, or derived rules or, in the case of tactic provers,
sources for tactic code, do not require extension of the sentinel. Resources
can be developed and employed based upon a sentinel without altering the
sentinel. Thus, while one may wish for some reason to restrict the resources
actually used by a particular inference certification, and while one may want
to make a record of resources actually used in a particular inference certifi-
cation, neither of these should be effected by choice of sentinel. The purpose
of the sentinel is to express a common basis for acceptable inference (which
may differ on different occasions).

Another part of the sentinel expression is an indication of when an infer-
ence engine itself is acceptable. While one could build a sentinel that depends
upon a particular running inference engine process, this would not normally
be practical since one normally builds many inference engine processes, over
the course of time according to each method for doing so. Therefore, it is
more practical to build into the sentinel the method for building (or finding)
individual inference engines of the appropriate kind. Indeed, the reason that
an individual inference engine process is trusted in the first place is really

124 CHAPTER 4. WORKING NOTES ON FDL DESIGN

that it was built according to certain methods, so there would be little point
in stipulating a specific running process (rather than the method for creating
one) as the engine for a proof sentinel.

The sentinel expression becomes the basic epistemic focus for users. The
hard work on the part of a person or community of persons is coming to trust
the basic inferences endorsed by a sentinel expression, and the FDL process
should support this connection by retaining the user recognizable sentinel ex-
pressions in certificates for inferences. The intention is that persons become
familiar with particular sentinels which they come to trust. Thus, it must be
possible for a sentinel expression to be expressed briefly and be recognizable;
and yet since in fact there will often be some complex structure to the mean-
ing of the sentinel expression, this means that abbreviation of expressions is
key.

Use and Structure of Proof Sentinels A sentinel expression is used to
direct certification of inferences and assembly of proofs from inference steps,
and occurs in records identifying inferences and proofs as having been cer-
tified accordingly. In its role as identifying a way to certify an inference, a
sentinel expression must identify a method for finding or creating a suitable
Inference Engine and it must provide any data (such as pointers to prim-
itive inference rules) to be supplied to the inference engine in addition to
the content of the Inference Step. These are specified as programs in a
Native Language of the FDL.

In Proof Sentinels we supposed for the sake of explanation that all in-
ference steps of a proof dag were certified according to some given sentinel;
we now drop that supposition. In anticipation of the practice of extending a
logic, we stipulate that a sentinel expression X determines which other sen-
tinel expressions shall be accepted in assembling proofs according X, i.e. X
inherits all the inferences passed by those other sentinels. A search for cer-
tificates according to a sentinel X should normally also find those certificates
whose sentinels are inherited by X. Again, this can be specified by a program
of the FDL’s Native Language.

Typical motives for stipulating sentinel inheritance would be: implemen-
tation of an inference engine which is believed to be equivalent to an extant
implementation; supplying an inference engine with more primitive resources
(such as inference rules); the desire to explicitly unite distinct inference meth-
ods, simply inheriting them both, and specifying an order to try them when
trying to create new certifications according to the union.

4.6. INITIAL CLOSED MAP 125

When an inference step is certified, the sentinel expression according to
which it was certified is stored as a distinguished component of the inference
certificate. When a proof is certified (section 4.5.11.1), either passively or
actively, the sentinel expression determines whether the certificate for a step
may be incorporated into the certificate for the whole proof.

Because of the external significance attributed to a sentinel expression
by a person, persons will normally work with familiar sentinels, which means
they need to be sufficiently small as to make it possible for a person to become
familiar with those they understand, and not to mistake one for another. By
allowing liberal use of packaging complex material into objects then referred
to by object ids, and by allowing liberal use of Native Language macros,
a suitable degree of abbreviation should be easily achieved.

4.6 The Initial Closed Map

The current closed map (section 4.5.2) is supposed always to be derivable
from a simple generic closed map, the “initial closed map.” The natural
choice would be the empty map, but it may be convenient to build in certain
objects distinguished by the FDL process for its operation. For example,
the “certificate identifiers” introduced in Certificate Structure (section 4.5.6)
serve to distinguish certificates from ordinary objects and to distinguish ways
of executing Native Language programs, should there be more than one.
And if such Native Language programs are expressed using particular op-
erators identified by abstract identifiers, then those identifiers will also be
included in the initial closed map.

Another obvious opportunity for deploying abstract identifiers is in the
Pro-textual Constituents (section 4.4.5), which constitute the non-term con-
stituents of texts — the <kind> part of the pairs <value>:<kind> that me-
diate the injection of these values into the Text syntax would be naturally
filled by an abstract identifier since its role is simply to stipulate the kind
of value that fills the <value> place and has no structure. The argument
for using an abstract identifier for the <kind> is in the domain of multiple
FDL implementors rather than multiple clients. From time to time one may
expect extensions to be made to the kinds of pro-textual values incorporated
into texts, and different FDL implementors might independently extend their
systems either incompatibly, leading to the usual expensive name collision
that clients might not care to pay for when porting from one FDL to the

126 CHAPTER 4. WORKING NOTES ON FDL DESIGN

other, or it might lead to a merely tedious divergence of kind names that
would be more happily identified.

Plainly the use of abstract identifiers for pro-textual value kinds would
easily avoid these problems. But this means that these kind name identifiers
must be in the current map in order to form texts that use them, and so
must be in the initial closed map since they cannot be created as part of the
ordinary FDL operations on closed maps.

The initial closed map, modulo identifier renaming, is part of what must
be explained to an FDL Client. Or more precisely some initial closed map
adequate for that client must be explained, since it is conceivable that a
given client might be adequately served by a proper submap of the initial
closed map. That this is possible is implicit in the possibility of extending
an FDL implementation to include some new distinguished objects, such as
new kinds of pro-textual values as described above; assuming the client was
doing just fine before the new elements were implemented they would have
done just as well had these elements already been implemented and simply
not been exposed to the client.

4.7 Processes as Owners, Process Certificates,
and Engine Stables

We use the term “process” here informally. Individual processes are identified
by various criteria, and proceed through states, with some sort of integrity
attributed to the series of states constituting the process. We shall take
processes as the entities that one might trust or distrust. At one extreme
we may regard persons as processes. More pertinently we may regard as a
process the activities involving persons, equipment and institutions directed
at maintaining an FDL. Other processes, well-defined and of shorter duration,
are those implemented as computer processes in the usual sense. In all these
cases, one process may create and track the identities of other processes, and
may intermittently communicate with such processes.

Process Certificates and Process Identity Certificates Certificates
(section 4.5.1) generally are owned by an FDL, i.e., by the process main-
taining the FDL repository. This means that the creation and alteration of
certificates is done exclusively by that process. The FDL (process) promises
to create and alter certificates according to specific procedures associated

4.7. PROCESSES 127

with certificate kinds. One policy that could be adopted by an FDL for some
kinds of certificates is to assign exclusive modification rights to a subprocess
in perpetuity. Let us call such certificates “process certificates.” Once a pro-
cess terminates, the contents of process certificates assigned to it are frozen,
and they become faithful records of past subprocesses.

To track and remember process identity, when the FDL builds a subpro-
cess it could create a “process identity” certificate containing information
about its construction, and assign it as a process certificate to the subpro-
cess; the subprocess might further create its own process certificates. In any
records that one cared to develop referring to the subprocess, this reference
could be effected by object reference to its process identity certificate.

A major kind of subprocess of an FDL is the establishment of a “Session”
for developing a current closed map (section 4.5.2). Another major kind of
subprocess involved in the development of a logical library (section 4.3.1)
is an “inference engine” for certifying inferences according to some specific
criterion. Managing this process becomes interesting in light of the practical
fact that establishing a process capable of performing such inferences can be
expensive and we shall typically want to establish an inference engine then
use it repeatedly for many inferences. If one were simply to build in a single
inference engine into the FDL as a permanent vehicle, then there would be
no particular complexity in using it and accounting for its use - certifying
an inference would simply be calling the built-in inference procedure (which
is not to say that accounting for its correctness is simple). But that simple
scenario has little relation to the intended deployment of the FDL. In fact,
we expect to manage multiple inference engines, each with complex state, as
a matter of course, and indeed we expect this to involve building external
processes as needed, and communicating with them repeatedly while they
endure.

Stables of Engines We imagine the FDL process maintaining a “stable”
of these workhorses. Let us suppose that the FDL creates a process identity
certificate for each of these engines indicating how it was established (the
external significance (section 4.5.4) typically being that an engine built in
a certain way recognizes an understood class of inferences). Then when
a request for verification of an inference arises, the desired sort of engine is
determined and either an appropriate member of the stable is put to work, or
the stable is further developed by building a new engine of the required sort.
It should be expected that an engine would normally be built by constructing

128 CHAPTER 4. WORKING NOTES ON FDL DESIGN

an external process, and then communicated with by appropriate protocols;
the internal FDL subprocess would remember how the external process was
established and how to communicate with it in order to effect inferences
which the internal subprocess, as a subprocess of the FDL, then certifies.

4.8 Sharing Formal Mathematics

Here we discuss how two systems implementing formal logics might share
theorems, proofs, or definitions. These are general methodological rather
than technical considerations.

The Form of the Problem The form of the problem we consider is how to
produce a candidate for a proof in a “recipient” system that borrows results
from a “donor” system, and how one would argue for the result’s correctness
in the recipient’s logic. We use “logic” in a sense that two systems can share
a common logic but with some different primitives, including axioms. A logic
in this sense characterizes not a specific class of theorems or inferences but
rather proof structure. When multiple systems serve as mutual donors we
would have a hybrid system proper.

We approach the problem from two directions: the Forms of Sharing
Math and What Math can be Shared (section 4.8.2).

4.8.1 Basic Forms of Borrowing Formal Mathematics

The forms we propose as basic are the following:

1. Direct incorporation of results when the donor logic is also the recipient
logic (modulo name collision and accounting for base differences such
as axioms)

2. Informal inference from one system to another — Here one selects en-
tities of one system, or translations of them, and takes them as new
primitives in the recipient system, their occurrences in the old system
standing as mere informal justification of their plausible adoption. This
uses the same mechanism as simply stipulating new primitives, indicat-
ing informal reasons as part of the stipulation. This is the special case
of making some informal appeal to another independent formal devel-
opment (it could prevent cycles of such informal justification, though).

4.8. SHARING FORMAL MATHEMATICS 129

3. Direct or translated formal inference across systems (perhaps some of-
ferings are rejected by the recipient)

4. Formal appropriation — Rather than selecting entities to be accepted
informally, one directly justifies them or their translations, using the
donor’s proof not as evidence but as advice on how to establish the
results by the recipient’s own methods.

Discussion of Basic Forms of Borrowing We presuppose adequate ac-
counting methods for possible differences in logical bases such as axioms and
logics. Forms (1) and (2) are both simpler conceptions than the others, and
we take them as more basic.

Forms (1), (2) and (4) are logically light-weight methods, whereas (3) can
require substantial semantic or proof theoretic work.

Forms (1), (3) and (4) are all directed at extending the formal methods
formally, systematically preserving validity of results in the recipient logic.
One argues generally that the result is correct based upon the correctness
of the recipient logic and the method for borrowing (which in (3) requires
argument for correctness of the donor logic).

Form (2) on the other hand, is an ad hoc extension which essentially
amounts to adopting new primitives. The cross system dependency is purely
informal, but explicit. The argument for validity depends upon informal
argument for the acceptance of new primitives, the references to the donor
sources serving merely as elements of informal arguments for plausibility.

Form (1) is the most obvious method, amounting to accounting for dif-
ferent primitives that the donor and recipient might use, but otherwise in-
troducing no significant commitment to theory or computation beyond the
logic. Note that there is no automatic guarantee that combining primitives
is consistent, hence the need for accounting.

Forms (3) and (4) can both be seen as methods for rehabilitating method
(2) to eliminate the ad hoc arguments for plausibility of the borrowed entities.
Form (3) is likely to be theoretically heavy but computationally light; (4) is
likely to be computationally heavy but theoretically light.

While (3) produces proofs in the recipient system whose justification is
based upon the logic (semantics or proof theory) of the donor system, (2)
and (4) are not deductively based upon the donor logic at all, but simply
treat the occurrences in the donor logic as plausible suggestions, which in

130 CHAPTER 4. WORKING NOTES ON FDL DESIGN

the method of (4) are filtered automatically down to valid borrowings, and
in (2) are filtered provisionally admitting possibly invalid borrowings.
Forms (3) and (4) may give rise to what might be considered hybrid
“proof systems,” the former comprising a hybrid “logic” and the latter a
hybrid “system” for combining proofs without any inter-logic negotiations.
These considerations lead us to consider What Math can be Shared.

4.8.2 What Formal Mathematics can be Borrowed

Another dimension of borrowing besides the Forms of Sharing Math is what
kind of data gets borrowed.

Propositions (Inference-free) This is the least intimate form of borrow-
ing. Essentially what one borrows is whole statements of theorems. The
“inference-free” qualifier is meant to distinguish those forms of Proposi-
tion (assertoric content) that “precede” formal inference system design, as
opposed to those forms, such as sequents, designed as aspects of formal sys-
tems. (Presumably these latter forms supplement or elaborate those an-
tecedent forms in order to facilitate argument pertinent to them.)

The most natural sort of propositional borrowing would be simply to take
proved propositions (or their translations) from the donor system as true in
the recipient system. This is pretty straightforward when the donor and
recipient have the same logic or are logics of different kinds but justified by
commensurable semantics of propositions.

Inferences and inference-system-specific propositional forms It may
be possible to borrow the more logic-specific inference-laden forms of propo-
sition, such as sequents. Of course, it is also possible that two logics attach
distinct semantics to these kinds of propositions, and they might require
translation or even be incommensurable.

If one can borrow the inference-system-specific forms of Proposition,
one may also be able to borrow Inference Steps, consisting of conclu-
sion/premise complexes of these propositions. Or one may not, since there
may be some insurmountable distinction about the semantics of these infer-
ences with premises, since the meaning of an inference with premises may
require a special relation between the conclusion and premises beyond the
mere fact of logical consequence. (For example, the inference may involve
“metavariables” whose semantics involves instantiation across premises and
conclusions.)

4.9. SCENARIOS OF FDL USE 131

If one can borrow inferences then one can borrow whole Proofs or deriva-
tions as inference trees (or dags).

Justifications of inferences Even if two systems may accept each others
inferences, they might be unable to make sense of the “justificatory” data
supplementing inferences which help make them them recognizable as in-
stances of a kind. Significant sharing of Tactic code, for example, can be
expected to be quite rare among systems not arising from the same origin. A
more likely sharable form of justification would be instances of low-level in-
ference rules that can be independently interpreted by other systems. Thus
a donor tactic system ought to be able to provide the “primitive proofs”
instead of its tactic code on demand for justifications.

Of course, even if the justificatory data are not literally meaningful to
the recipient system, they may yet serve as heuristic data for the method
of formal appropriation described in Forms of Sharing Math (section 4.8.1)
labeled (4).

Can definitions be borrowed? Certainly among systems with the same
conception of Definition, sharing might be tractable, but it might be less
likely than one supposes. The characteristic features of a(n eliminable) sym-
bolic definition are that (1) it stipulates how some syntactic element can be
eliminated from expressions (within the definition’s “scope”) without change
of “denotation” of those expressions, and (2) the definition does not count
as an extension of the epistemic basis for claims whose meanings depend on
that definition. To use such a definition requires only that one understands
it as such, and does not require persuading oneself of the meaningfulness or
truth of a new primitive; it has more the derived character of a theorem than
the primitive character of an axiom.

It is possible that two logics’ notion of definition disagree enough on some
aspects that some problematic definitions, rather than being translated into
definitions in the recipient logic, would have to be employed as part of a
translation from the donor to eliminate the defined syntactic elements from
propositions.

4.9 Scenarios of FDL Use.

These scenarios are intended to prime the pump of imagination about what
we think can be achieved (for a start), as well as to suggest the FDL design

132 CHAPTER 4. WORKING NOTES ON FDL DESIGN

that supports them.

These scenarios were generated by a combination of recalling some that
have been discussed among our group before, as well as reading through
these notes and producing scenarios they rather directly suggest; they seem
obvious to us because of prior discussions, a certain familiarity with the
use of the FDL concepts, and our experiences in the actual production and
manipulation of formal and informal content.

1 A reader wants to find what material there is in a library concerning
a subject or a particular idea. They start by looking for keywords,
which builds a collection of informal documents that mention the
keys, and a collection of concise titles and paraphrases of formal
objects that mention the keys. The reader then conducts further
searches which can be based upon the formal structure of objects
now discovered to be relevant.

2 A student wants to read supplemental material because the course
text is unclear or obviously wrong on some point.

3 A teacher wants to ascertain the suitability of some material in the
FDL as class material.

4 A teacher wants to reorganize some material for accessibility by a
class, leaving the formal material alone. This person is contributing
a “reading,” and it can be made easily available to others.

5 A teacher wants to modify or add some formal material to an extant
body, either to fill in pedagogical lacunae or to give variants of formal
objects more appropriate for the students; the new formal material
is as trustworthy as the old assuming it uses the same logical basis.

6a A programmer wants a precise explanation of a standard (perhaps
common, perhaps obscure) algorithm to know why it works in order
to implement a variant of it. To her delight, she finds several ref-
erence algorithms using different representations of the data. There
is one part of one of the more familiar algorithms that has always
seemed unnecessarily complex; by digging into the formal proof of
its correctness she finally sees what she was missing.

4.9. SCENARIOS OF FDL USE

6b A user (or manager or programmer) learns that there are documents

6¢

in the FDL about the MediaNet distributed computing system for
video. Examination reveals pertinent formal definitions and proofs
about the schedule checker for quality of service, constituting conclu-
sive documentation grounded in the formal material. A particularly
helpful experience involves understanding a “stream transformer.”
Because the transformer function was defined constructively it can
be run on examples by an interpreter invoked by the FDL, ie, there
is a “dynamic model” of the stream transformer available from the
FDL based on the constructive content.

A programmer must modify a protocol in the event processing proto-
col stack of a system, due to changes in the upstream processes. The
formal documentation of this protocol in the FDL system/theory
entry for the stack states assumptions about the input stream and
invariants of the protocol. It is not clear to the programmer that
the new message stream will satisfy the input assumptions. Further
investigation of the upstream process, also in the FDL, reveals that
the assumption is violated in a way that can be described by simple
additional clause such as “or condition P holds.” The programmer
asks to reexecute the proof that the invariant holds under the new
assumption. The tactic is in the FDL and it is executed, revealing
the need for an additional fact about streams of messages of a cer-
tain type T'. This appears to be a general fact of mathematics. The
programmer searches the FDL for facts about streams and finds the
very fact needed to justify the proposed code modification, but the
proof uses a different logic than the one the tactic is written for. The
programmer asks for the fact to be translated into the tactic’s logic
and then runs the prover on this fact which is established automati-
cally. The programmer is able to make a simple modification that is
provably correct even though he or she does not understand formal
logic.

133

134 CHAPTER 4. WORKING NOTES ON FDL DESIGN

7 A mathematician wants to publish the definitive verified version of
some tricky or tedious proof, making every detail available to the
reader on demand. This mathematician finds that there are already
proofs in the right style with the right mathematical basis, and finds
not only the originator of the theorem, but also a reference to the
“technical” creator. The mathematician is not proficient in the
actual production of formally verifiable proofs, or at least not with
the system he wants used, and so contracts the discovered “formal
technician” to formalize his proof and have it posted to the FDL.

8 A person embarking on a formalization wants some ideas about how
to start. They search for all theorems pertaining to a similar topic,
and collect them for comparison. At best, someone has already
made an adequate formulation, as demonstrated by the the elegance
of the proofs that use those formulations. At second best, there are
examples that are unsatisfactory, and so need not be re-attempted.

9 A formal proof technician wants to experiment with an unfamiliar
logic used by another group, but does not want to have to learn
the interface they use. Fortunately, the preparation system she
normally uses has been interfaced to the FDL, and so has that of
the other group. This means that the content and inference engines
of the other group are accessible from her usual interface.

10a A crank finds that he can never get his proofs to check with any
of the logics everyone else seems to be using. People ignore his
proofs because he introduced proof methods they have not become
interested in.

10b An amateur (or crank) manages to write a couple of proofs that
do adhere to standards of proof widely used in the FDL, and one
day while doing a formal search for lemmas useful in a new proof
a mathematician comes across them and finds they are useful. It’s
okay that the person who wrote the proofs is an amateur (or crank).

4.9. SCENARIOS OF FDL USE 135

11 A person who has developed or read a fair amount of material finds
that a handful of authors are heavily represented among the FDL
documents she uses, the lemmas cited, and programs incorporated.
She then decides to survey all the material posted by any of the
handful and has a process regularly advise her when new material
is posted by those authors.

12a Many utilities are developed over time by various parties, for search-
ing the FDL or allowing a user to modify and develop his content.
These utilities are themselves contributions to the FDL, and can be
employed and discussed.

12b Data mining for patterns of inference: an interested party applies a
procedure to an extant body of formal proofs in the FDL that at-
tempts to identify repeatedly used patterns of inference that should
be repackaged as lemmas, derived rules or tactics.

13a A person wants to experiment with some variation on extant ma-
terial, such as changing a definition or deleting a rule of inference.
They find it easy to discover what changes as a result of dependen-
cies on those definitions or rules. They post the variant to the FDL,
where it can coexist with the original.

13b Transplanting. A person wants to try some proofs in a context
other than the one they were developed in; perhaps they want to
“transplant” some results from constructive type theory to a subset
of higher-order logic. Variants are built by replacing several expres-
sions and lemma citations specific to the old context by purported
analogs from the new context, and the proofs are rerun (we think
of this as transplanting the roots and seeing what thrives). Un-
surprisingly, many of the proof variants check in the new context,
since they used some rather high-level forms of reasoning. Surpris-
ingly and informatively, a few proofs depended on some unexpected
detail, and are studied.

136 CHAPTER 4. WORKING NOTES ON FDL DESIGN

14a A programmer wants evidence that a program they intend to down-
load works, and can be applied to the data they intend. This might
be direct evidence such as a proof, or it might be indirect, namely,
a certification of the existence of a proprietary proof of a program
whose source is unavailable (only the i/o specifications and com-
piled code are available; the source and proof, though in the FDL,
are unavailable to this programmer). In this case the person must
understand which logic the proof employs, and be persuaded of the
trustworthiness of the FDL in regard to those proof methods having
been adhered to.

14b A commercial concern has developed a package of programs whose
sources it wants to keep secret. How can it assure customers of
facts about the programs? There must be a trusted impartial third
party to certify the claims. This party would be an FDL process
trusted to implement its published policies for certifying proofs.
The commercial concern would maintain its own private FDL of
source and object code and proofs of correctness. The impartial
FDL process would certify it by employing a public logic, uploading
the source code and object code and proofs, then itself checking the
inferences by the public inference engine. If it succeeds then it
deletes the source code and proof, and creates a certificate that
refers to the object code, to the statement of correctness, and to
the public inference engine, and claims that there once was a proof
of the statement about the object code which the impartial FDL
checked (then deleted).

15 It is discovered that an inference engine supplied by a group is
defective. All certifications of proofs that were developed with that
engine can be located and discounted. If the engine is repaired the
inferences that depended on the old one can be retried with the new
version.

16 A person has doubts about whether a particular inference method
is correct, then happily discovers that someone else had the same
doubts and has rechecked all the inferences made by the suspect
method with an independent inference verifier. This is possible be-
cause a single inference can have attached to it multiple certificates
of verification.

4.9.

17a

17b

18

19

20

21

SCENARIOS OF FDL USE

Two (or more) large FDLs are maintained by parties that learn they
can trust each other’s FDL maintenance, and decide to accept each
other’s certificates without always reverifying them locally. This is
not a deadly embrace because that a certificate is borrowed from
another FDL is part of the certificate.

It is discovered that one institution maintaining an FDL has not
been following the protocols that all of a group FDL maintainers
agreed to in order to promote federation. Because certifications
passed from one FDL to another are recorded as such, they can be
located, and all things that depended on them can be identified and
scrutinized (and hopefully recertified).

A whole FDL’s content is replicated into a new FDL because of
inadequacies in accessing the original or some threat to its existence.

A person decides to introduce a concept, by definition say, but it
turns out that someone else has already used the nomenclature they
wanted to use. Because such nomenclature is extrensic to the formal
material, and the attachment of nomenclature is performed as part
of the connection of the user to the FDL, the user simply changes
the old name to something she prefers, and adopts it for her newly
defined concept. All the formal material using the old name survives
the renaming because it was independent of the nomenclature.

A person finds a few formal objects of particular interest for a par-
ticular purpose, such as an algorithm and a specification and proof
of correctness. They decide to collect into a single compact subli-
brary just what is necessary to support those few formal objects.
This is a basic FDL operation.

A person wants to develop some material “offline” at an indepen-
dent site for a while. The procedure is to build a new temporary
FDL (on their laptop, say) extracting the material of interest from
a larger FDL. Later, after developing the material locally, that ma-
terial can be posted back to the large FDL from which it came (or
another one). This is possible because name collision is systemati-
cally avoided in FDLs by an abstract use of identifiers.

138

22

CHAPTER 4. WORKING NOTES ON FDL DESIGN

(a more speculative scenario, but with some basis in experience)
A person wants to formalize a standard text or a chapter thereof
not only to get the general benefits of formalization, but because as
the original author proceeded, the proofs get progressively sketchier
owing to copious allusions to the structure of earlier proofs, and the
person wants to work those sketches out and save them. They are
relieved to find that much of the basic generic math the text depends
on is already in the FDL and can be immediately incorporated, and
that using potent tools for manipulating proofs as data makes it
easier than expected to realize those “proofs by allusion.”

Chapter 5

Selections from the FDL
Manual

Preface

This manual describes the first prototype of a new kind of system which we
call a Formal Digital Library (FDL). We designed the system and assembled
the prototype as part of a MURI research project funded by the Office of the
Secretary of Defense and managed by the Office of Naval Research entitled

Building Interactive Digital Libraries of Formal Algorithmic Knowledge.

A key purpose of the prototype library is to experiment with the type of
system with the properties called for in the project proposal and to illustrate
important scenarios for its use. Experience with the prototype library will
influence the design and construction of an improved system. We have been
adding services to the FDL and experimenting with them during the period
from May 2002 until now.

The experimental FDL is one part of the overall project. There are other
theoretical and experimental efforts that are described in other publications.

The library described here contains definitions, theorems, theories, proof
methods, and articles about topics in computational mathematics and “books”
assembled from them. Currently it supports these objects created with the
theorem proving systems MetaPRL, Nuprl and PVS. We intend to include
material from other implemented logics such as Coq, HOL, Isabelle, Minlog,
and Larch in due course.

139

140 CHAPTER 5. SELECTIONS FROM THE FDL MANUAL

In addition to the purely formal material, the Library supports mathe-
matically literate hypertext articles that cite and use the formal concepts.
These include explanations of reference algorithms and explanations of for-
mal mathematical models used in applications.

Many operations on the Library are automated and extensible. The ba-
sic operations are to find and read material, organize it, and submit new
material. New operations can be defined algorithmically.

This manual is intended to help users understand the operation of the
Library and to demonstrate to those interested in the project what else we
intended to build and how it will be used. The FDL is accessible from our
project Web site at www.nuprl.org/html/Digital Libraries.html

5.1 Introduction

Achievements of mathematicians, logicians and computer scientists over the
past fifty years have created the practical means to formalize vast amounts
of mathematical knowledge. Moreover, the value of algorithmic mathematics
and the need to validate computer software and hardware provided financial
support to actually carry out this formalization on a large scale worldwide.
The result is a large collection of formal material that arises from appli-
cations; included therein is a large number of general mathematical results
needed to support those applications. The volume of material increases daily.

This formal material presents extraordinary opportunities and challenges.
The opportunity is to organize the material so that it is more widely usable
and shared. It is valuable in creating more reliable hardware and software
and thus valuable to all the activities that depend on reliable computing. It
is valuable in expanding the capacity of many formal tools needed to protect
the software infrastructure of the nation and of the global communication
system.

As an artifact in itself, the collection of formal material has exceptional
properties. It is digital. 1t is logically organized and highly structured. It
codes vast amounts of mathematical knowledge, especially algorithmic knowl-
edge. It represents the highest standards of correctness and accuracy that we
know how to achieve as a technical society. It captures the precise thinking
of a large number of excellent scientists who have spent hundreds of person
years in creating this as yet unorganized collection with limited accessibility.

One long term goal of our project is to organize this formal knowledge

5.1. INTRODUCTION 141

and provide software tools for using it in a variety of ways. The first tools we
produce will be simple, allowing people to read, organize, search, annotate
and incorporate the material in other digital documents. More advanced
tools will be provided on this basis.

It is clear that there will be large organized collections of mathematical
and scientific knowledge in digital form that will be intelligently accessed
with computer assistance. The FDL will contain such material and it will be
integrated with the formal content.

Another long term goal is to enable a worldwide user community to con-
tribute new formal material and to contribute original articles that incorpo-
rate this material in aid of ordinary scientific and educational discourse.

5.1.1 Goals

In order to create the massive amount of content needed in a general global
resource and to transfer the methods to other disciplines, it must be possible
for a significant number of people worldwide to contribute. Likewise to prove
formal properties of a large software system, it must be possible for many
people to contribute. Thus it must be possible to share results among formal
theories developed with different theorem provers; and it must be possible
to account for logical correctness in an environment that tolerates many
different theories, some incompatible with others. In this context it is critical
to know what depends on what.

As we have thought about how our Library might become a distributed
open global interactive information resource, we have identified key techni-
cal challenges and specific intermediate objectives. Specifically we propose
approaches to the problem of accounting for correctness and truth in a li-
brary that allows multiple logics and multiple theorem provers, for knowing
exactly what a result depends on, for combining sublibraries and for per-
forming a variety of routine operations on libraries such as searching and
browsing. We also hope to provide very advanced operations on theories
such as soundly translating among them, generalizing, specializing and re-
flecting them. These will be operations on theories as objects stored in the
Library and operations on code in these theories. We plan to use the compu-
tational contents of proofs as components of programs in other programming
languages in a consistent way and to provide interaction with the Library
using the Web. These goals generate many interesting technical problems,
several of which we discuss below.

142 CHAPTER 5. SELECTIONS FROM THE FDL MANUAL

5.1.2 Use Scenarios

From a user’s perspective, a digital library serves three different purposes

e As a library it provides a repository for information that is neutral
about its content and mainly supports the efficient publication and
retrieval of information.

e As an archive it provides records of facts and accounts for the integrity
of these records. Furthermore it ensures the longevity of these records,
which makes it possible to trace the justifications for facts back to their
very origins.

e As a workspace it enables clients to make use of the stored informa-
tion and facts and to reorganize them in new ways. It also supports
the creation of new contributions for archiving, which includes the cre-
ation of justifications that the archive may check before accepting the
contribution.

The library that we are developing is formal in the sense that significant
parts of the stored data have a precise meaning, which may be checked by a
computer. We often speak of a logical library, to indicate that we use formal
logics (as opposed to rigorous mathematical approaches in natural language)
to check the validity of arguments and justifications.

In the following we describe a few typical scenarios for using a digital li-
brary of formal algorithmic knowledge. Additional scenarios can be found in
the FDL design documents at
http://www.cs.cornell.edu/Info/People/sfa/XDL_scenariosl.html

1. A programmer wants a precise explanation of a standard algorithm to
know why it works in order to implement a variant of it. He or she
finds several reference algorithms using different representations of the
data. There is one part of one of the more familiar algorithms that has
always seemed unnecessarily complex; by digging into the formal proof
of its correctness the programmer finally sees what he was missing.

2. Two large libraries are maintained by parties that learn they can trust
each other’s library maintenance, and decide to accept each other’s
certificates without always reverifying them locally. This is not a deadly

http://www.cs.cornell.edu/Info/People/sfa/XDL_scenarios1.html�

5.1.

INTRODUCTION 143

embrace because that a certificate is borrowed from another library is
part of the certificate.

It is discovered that one institution maintaining a library has not been
following the protocols that all the library maintainers agreed to. Be-
cause certifications passed from one library to another are recorded as
such, they can be located, and all things that depended on them can
be identified and scrutinized (and hopefully re-certified).

. A software company has developed a package of programs whose sources

it wants to keep secret. How can it assure customers of facts about the
programs? There must be a trusted impartial third party to certify the
claims. This party would be a library process trusted to implement its
published policies for certifying proofs. The company would maintain
its own private library of source and object code and proofs of cor-
rectness. The impartial library process would certify it by employing
a public logic, uploading the source code and object code and proofs,
then itself checking the inferences by the public inference engine. If it
succeeds then it deletes the source code and proof, and creates a certifi-
cate that refers to the object code, to the statement of correctness, and
to the public inference engine, and claims that there once was a proof
of the statement about the object code which the impartial library
checked (then deleted)

. Researchers working on mobile code security determine that properties

of assembly level code must be verified. As a first step they want
a prototype highly-automated procedure similar to an extended type
checker for specific properties, delivered in a six month time frame.

The Library contains a formal model of the virtual machine (VM) with
properties established in PVS. Complete reference material is available
in the library along with rewrite rules and formal theorems from a

public PVS section of the FDL.

The CIP/SW researcher codes an extended type-checking algorithm by
modifying a documented type checker in the Library. A small inference
engine is created as a tactic in MetaPRL which is extremely fast. It is
made available in the library as XCheck.

A related project is proving properties of a type checker using reflec-
tion. Components of XCheck have been verified, and the group quickly

144 CHAPTER 5. SELECTIONS FROM THE FDL MANUAL

establishes an unexpected feature of XCheck, that it fails to guarantee
memory safety under certain conditions. The designer modifies XCheck
to produce version 2, leaving a trace of the development.

Tactic optimization procedures can be applied to XCheck under certain
standard conditions. An optimized XCheck is proved equivalent to the
original. All this is done in four months, with documentation in a series
of articles archived in the library. These articles allow the CIP/SW
mobile code security team to use the new XCheck code.

5.1.3 Relationship to National Needs

It has been well established that the United States needs better program-
ming technology to assure the safety and reliability of the nation’s software
infrastructure. The National Research Council study on information system
trustworthiness concluded that the current science and technology base is
not adequate for building systems to control critical software infrastructure
[165]. The President’s commission on critical infrastructure protection and
the PITAC report reached the same conclusions [155]. These reports placed
special emphasis on finding new ways to build more reliable and secure soft-
ware and stressed the need to conduct fundamental research on the problem
with a long range view.

But it has become clear that the processes of developing, testing,
and maintaining software must change. We need scientifically
sound approaches to software development that will enable mean-
ingful and practical testing for consistency of specifications and
implementations. This requires long-term research in languages,
theories, simulation, analysis, and testing that could lead to stan-
dardized multilevel mechanisms similar to those which have cre-
ated the success in computer-aided design for digital hardware.

The PITAC report [155] finds that the nation faces these key problems in
software.

e demand for software exceeds our ability to produce it

e the nation depends on fragile software

e technologies to build reliable software are inadequate

The interactive logical library that we are developing contributes to mech-
anisms for guaranteeing the reliability of large software systems. It can be

5.1. INTRODUCTION 145

used to develop software systems that are correct-by-construction and docu-
mented by the context and makes it possible to connect textual documenta-
tion to formal documentation.

Scientific and social benefits

Providing a logical library will result in many significant benefits to scientific
practice as well as to the social impact of science. First, we will be able to in-
crease the reliability of reference material at a low marginal cost and provide
a starting point for the evolution of these mechanism to dramatically lower
cost. We can know that collections of definitions and theorems are correct
according to specific designated criteria and are consistent. The correctness
can be established at the highest levels of assurance known, namely proofs
checked by both humans and machines. The process of progressively provid-
ing computer certifications for more and more claims asserted in a collection
is a process that we call hardening the collection, and it applies to the soft-
ware systems stored in the library as well. The library provides an arena for
gradual formalization.

We contribute to formal mechanisms for guaranteeing the reliability of
large software systems. An interactive logical library can be used to de-
velop algorithms and even systems that are correct-by-construction and doc-
umented by the context. Moreover the logical library provides mechanisms
for integrating textual and formal documentation.

A logical library will complement the mechanisms of electronic publishing
and open the way to verify journals that specialize in formalized mathe-
matics [129, 160]. In such journals every result will be checked by certified
theorem provers, including those for which there is a small proof checker
that can be publically scrutinized (this is a system that obeys the so-called
deBruijn principle).

There is significant educational value in formal reference material. We
have used such material in teaching and have studied its impact [44]. In par-
ticular one can learn about a particular system in a context where the design,
the specifications, the algorithms and the proofs are all linked to the rele-
vant literature. Significant benefits accrue from having static formal material
as is now posted on the Nuprl web site [143], but even greater advantages
come from allowing users to interact with proofs and algorithms. Readers
can explore the consequences of deleting an assumption or strengthening a
conclusion. They can watch an algorithm execute on concrete data and sym-

146 CHAPTER 5. SELECTIONS FROM THE FDL MANUAL

bolically. They can ask whether one result depends on another; they can
see exactly how or whether a proof breaks by changing definitions, lemmas,
inference steps and justifications. They can also decompose a high level in-
ference step, say built from tactics or derived rules, into its constituent parts,
layer by layer as subjective understanding dictates.

The growing database of formal computational mathematics is a new
resource for studies in artificial intelligence. As one example, members of
the Al group at Cornell are generating natural language proofs from parts of
the Nuprl corpus [87]. Interesting ideas have been proposed for automating
more of the process of formalizing articles and textbooks.

Public access to this global interactive digital library of algorithmic math-
ematics will benefit the non-experts who must use technical results, and it
will empower students and lay persons to explore mathematics interactively
and to contribute to these libraries. It will create what we call a formal fo-
rum connecting those interested in formal methods. A much wider group of
people will be able to participate in adding to scientific knowledge, and we
might create communities of volunteer contributors in the same way (but on
a smaller scale) that advances in databases have allowed 20 million natural-
ists and bird lovers to contribute to the study of nature through interactions
with Cornell’s laboratory of ornithology.

The use scenarios for the formal digital library suggest that its design be
open in several dimensions. The library will connect to multiple clients with
different needs and correctness criteria wrt. the facts they deal with. The
information that a client needs may be distributed over multiple libraries.
Finally, the design must allow for multiple implementations of the formal
digital library, which may provide different additional features and may em-
ploy different implementation techniques.

Our research on the development of FDL serves two major purposes. First,
we develop a general model that describes the core functionalities and fea-
tures of digital libraries of formal algorithmic knowledge as well as a suitable
architecture for building formal digital libraries. Secondly, we provide a spe-
cific implementation of a formal digital library and explain the design deci-
sions and extra features incorporated in the FDL prototype. In the following
we will use examples from the latter to illustrate some of the principles of
the general model.

5.1. INTRODUCTION 147

5.1.4 Design Objectives

The design of a formal digital library is based on the following objectives

Connectivity: The FDL must be able to connect to multiple clients (proof
tools, users, etc.) independently, asynchronously, and in parallel.

Usability: Clients of the FDL must be able to browse library contents,
search for information by a variety of search criteria, and contribute
new knowledge to the library.

Interoperability: The FDL shall support the cooperation of proof systems
in the development of formal algorithmic knowledge. Different proof
systems will be based on different formal theories and on different inter-
nal representations of knowledge. The representation of knowledge in
the FDL has to be generic, so that it can be translated into a large vari-
ety of formats when providing knowledge to clients or receiving formal
knowledge from them.

Accountability: The FDL needs to be able to account for the integrity of
the formalized knowledge it contains. As it supports interoperability
between very different proof tools, there cannot be an “absolute” no-
tion of correctness. Instead, the FDL has to provide justifications for
the validity of proofs, which will depend upon what rules and axioms
are admitted and on the reliability of the inference engines employed.
Furthermore, these justifications must be exposed to determine the ex-
tent to which one may rely upon the provided knowledge. We call these
justifications certificates.

Information Preservation: The FDL has to guarantee that existing knowl-
edge and justifications cannot be destroyed or corrupted by clients or
system crashes.

Archiving: The FDL has to support the management of knowledge on a
large scale such as merging separate developments of large theories and
performing context-specific tasks. This requires the use of abstract
references to knowledge objects, as traditional naming schemes do not
scale.

One of the main objectives of our project is to identify a minimal set of
design policies and necessary components that every implementation of an
FDL must support and to develop a reference implementation of the FDL
that satisfies these requirements.

148 CHAPTER 5. SELECTIONS FROM THE FDL MANUAL

[eu J[cu || oeu |

Structure
Editor

Inference ,
NUP” Refiner
Infere.nce JProver
Engine

Inference PVS
Engine

Infere.nce MetaPRL
Engine

Inference

. HOL

Engine

Evaluator

Maude

Evaluator

MetaPRL

Evaluator

SoS (Lisp)

Evaluator

‘ Translator ‘ ‘ Translator ‘
Java $ OCamI$

Figure 5.1: Interaction between the FDL and its clients

5.1.5 Reference FDL Structure

The FDL data base, also called a library table, is an association list of ob-
jects together with object identifiers. Objects are abstract terms that can
accommodate almost any kind of formal content (see Section 5.2.1). Object
identifiers are also abstract and cannot be accessed without going through
the library.

The library provides a small set of primitive library operations, such as
binding an object identifier to an object (i.e. adding an object), unbinding an
object identifier (deleting the object), creating new identifiers, and looking
up objects. There are several primitives for modifying the content of an
object. However, these functions do not overwrite an object content but
create new content, which then is bound to the corresponding identifier. From
the primitive operations we define many library operations (see Section 5.2.2)
in a similar way complex proof techniques are built from from basic inference
rules and tacticals.

We build closed maps (Section [5.3)) representing the work space for client
sessions on top of the basic operations and logical accounting and security
Section 5.4) on top of that.

5.1. INTRODUCTION 149

5.1.6 FDL Prototype Circa 2003

Figure 5.1 illustrates the architecture for an interaction between the FDL and
its clients. All clients are independent processes that communicate with the
library as central repository. The library contains all the definitions, algo-
rithms, theorems, axioms, inference rules, theories, objects relating theories
based on different formalisms, meta-level code for proof tactics and decision
procedures, and other forms of justification, to which a client may refer when
processing formal algorithmic knowledge or developing new contributions for
the library. Even descriptions of how to present formal knowledge in various
formats used by different interfaces will be stored as structure objects within
the FDL.

The library can communicate simultaneously with arbitrarily many clients,
such as various user interfaces for browsing and editing formal knowledge,
inference engines for proving facts, rewrite engines and evaluators for trans-
forming and evaluating algorithmic knowledge, translators for generating
code in a specific programming language, etc.

This makes it possible to build formal knowledge using a variety of proof
systems such as Nuprl [48, 5], MetaPRL [127], PVS [148], SPECWARE [169],
HOL [69], Coq [58], Isabelle [I50], or Qmega [25], first-order provers like
JProver [164], Otter [180], EQP [122], or Setheo [108], proof-based program
generators like MinLog [23], rewrite engines like Maude [42], computer alge-
bra systems [179, [117], decision procedures [140, 167, 171], and model check-
ers [125) 50, 88]. These systems may even cooperate through the library,
which enhances their reasoning capabilities in the production of formal algo-
rithmic knowledge.

Supporting a variety of interfaces commonly used in proof systems, such
as structure editors, emacs modes, web browsers, enables several users to
work in parallel on the same formal theory while using their favorite interface.

5.1.7 Programming Practice

Our conceptual path to the library design follows the need to maintain a
flexible development method, permitting divergent partially independent de-
velopments, and yet to be able to justify claims of validity, exposing the
assumptions of such justifications.

We chose an incremental approach to the development of our FDL proto-
type. We begin with a simple implementation that provides the basic func-

150 CHAPTER 5. SELECTIONS FROM THE FDL MANUAL

tionality and a few algorithmic theories as standard library content. This
allows deploying it to “daring” users who are interested in experimenting
with the FDL, browsing its content, developing new formal content, and
connecting their own clients to the FDL. New functionality will be added
incrementally, which makes sure that there is always a working prototype
that can be tested and evaluated. New library contents will be added incre-
mentally as well, either by explicit interaction with the FDL or by migrating
the contents of existing formal digital libraries into the format of the FDL.

5.2 Library Data and Operations

5.2.1 Basic Data

Theorems, definitions, algorithms, tactics, comments, articles, and other li-
brary contents are represented by a common basic data structure called ob-
jects. Objects are abstract terms that are associated with a kind, a variety
of properties, and possibly with eztra data.

Abstract terms provide a uniform data structure for representing almost any
kind of formal content. Abstract terms consist of an operator identifier,
a list of parameters, and a list of subterms.

The abstract term syntax makes sure that no predefined structure is
imposed on the contents of the library and makes parsing unnecessary.
All visible structure and notation is generated within the work space
by consulting display forms (i.e. library objects with kind DISP) that
describe how to “read” an abstract term. Display forms are processed
by the API’s for user interfaces and other clients when displaying or
modifying an object.

This separation between internal representation and external presenta-
tion makes it possible to present library contents in the native language
of almost any proof tool without having to convert between different
data structures. Furthermore it makes formal notation extremely flexi-
ble and expressive, as it supports an almost arbitrary syntax and allows
information to be presented differently depending on context and the
preferences of the clients or users of the FDL.

The kind of an object is a description of the intended role of the abstract
term. It allows making a distinction between theorems, definitions,

5.2. LIBRARY DATA AND OPERATIONS 151

tactics, comments, etc., and identifying structure information when
assembling theories in a client’s work space. Currently the following
kinds are defined in the FDL.

e ABS for abstractions,

e DISP for display forms,

e STM for statement objects,

e INF for inference objects,

e PRF for proof objects,

e RULE for inference rules,

e COM for comments,

e CODE for tactic and other code,

e PRC for precedence objects,

e DIR for directories,

e TERM for objects of unspecified kind.

The properties contain status information that is helpful for maintaining the
object, tracking dependencies, building justifications etc. The most
common properties are

o A liveness bit, indicating whether the object may be referenced to
by others

A sticky bit, indicating whether the object may be removed from
the library table during garbage collection

A description of clients to which the object shall be made visible

e A memnonic name which is commonly used for presenting the
object identifier.

The language in which a code object is programmed.
e A reference environment describing the context of the object.

FExtra data are used to collect information that accounts for the validity of
an object’s content. Statements include a list of (links to) proof objects
as extra data, proofs include a tree of inferences, and inferences include
primitive inference steps.

In the library table, objects are also associated with abstract identifiers
that are bound to the contents of the object. All references to objects have

152 CHAPTER 5. SELECTIONS FROM THE FDL MANUAL

to use these abstract identifiers, which in turn are linked to names for objects
in a client’s closed map.

Object contents are viewed as non-destructive. To change the content of
an object, one has to create a new object content and rebind the abstract
identifier of the object to the new content. To remove the object from the
library, one simply removes the binding between the abstract identifier and
the content. Object contents are usually not removed from the library table
except by garbage collection.

All library operations are built from a small collection of primitive oper-
ations on object contents and library tables. These operations are

e Binding an object identifier to an object and unbinding an object iden-
tifier.

Looking up object contents bound to an abstract identifier.

Generating new object identifiers.

(De)activating an object (changing the liveness bit).

(Dis)allowing garbage collection for the object (changing the sticky
bit).

There are also several primitives for creating new object contents from
existing object contents and new data. The most basic primitive creates
a new abstract term for the object. Other primitives modify extra data
related to building proof structures by changing the list of proofs linked to a
statement, modifying the inference tree of a proof, or changing the inference
step of an inference object.

5.2.2 Basic Library Operations

Basic library operations are services such as inserting, removing, and looking
up and searching for data as well as supporting the development and modifi-
cation of definitions, theorems, proofs, algorithms, and informal descriptions.
These services are fundamental for most client applications and should be
supported by all implementations of formal digital libraries.

In contrast to the primitive library operations described in Section 5.1.5,
basic services describe the interaction with the client through the client’s
current closed map, although some of the also affect the contents of the
library itself.

5.2. LIBRARY DATA AND OPERATIONS 153

Below is a list of operations that we have implemented in our FDL pro-
totype.

e Basic operations on library objects
— Name and create objects of various kinds, such as rules, definitions
(abstractions and display forms), theorems, comments, etc.
— Arrange objects in folders and theories
— Move and rename object
— Create links to objects
— Deactivate and re-activate objects
— Remove objects and links
— Browse the library and its theories
— Search for objects by name
— Link formal objects to text

— Present and print objects in various formats (TeX, HTML)

e Support for Content Development and Modification

— Prove a theorem, using multiple proof tools
— Logically account for inference steps in a proof
— Explicitly store justifications of inference steps

— Edit objects (proofs, definitions, code objects,)

Create new proof tactics and decision procedures

e Theory Operations

— Export and import a theory

— Check a theory

— Restrict a theory to objects relevant to a specified list of objects
in it

— Search for lemmata containing a specified list of object names

Search for objects modified within a given time specification

— Migrating an externally developed theory into the FDL (currently
only for Nuprl 4 format)

— Milling: a framework for developing tools for importing and mi-
grating data.

154 CHAPTER 5. SELECTIONS FROM THE FDL MANUAL

Let us illustrate how some of these operations work in the current FDL
prototype.

e To browse the library, the FDL prototype provides a visual interface
that arranges objects and theories in folders (also called directories) of
the user’s work space.

MkTHY® OpenThy* CloseThy* ExportTHY* showRefErws* FixRefEruss ChkThy* ChkOpenThys
PrintObj* MkThyDocObj* MkRefErw#* ProofHelp=

ShowRefervs* SetReferwUsed* GSetReferw= ProvebithRE= ProveblithMinRE= SetIn(BJ=
MkTHM= MkML= AddDef* AddRecDef= AddRecMod* AddDefDisp* AbReduces

Act* Defct* MkThyDire BmThyObj* MeThylbj= HavAtAp* AddDefAddition=

Activate® deActivate* HameSearch* FPathStack* Clone* RaiselToplLoops=®

Mill* SsveDbj* commentObj* CountClosure* ObidCollectors+

MikLink= PMkObjx MkDire MkTHM= CpObj* reNamelbj* EditPropertys

RmLink® RmDbj* RmDir® RmGroups

TH8F o7 ¢ t + O
R 4 =+ 3¢

Havigator: [rum_thy_l: standard: theoriesl
Scroll position : §17
List Seroll : Total 158. Point 117, Visible : 10

STHM TTF atomic_char

DISF TTF prime_df

ABS TTF prime

STHM TTF prime_wf

STHM TTF self_divisor_mul

STH TTF prime_imp_atomic
=» STHM TTF prime_elim

STHM TTF coprime_intro

STH TTF coprime_elim

STH TTF coprime_elim_a

The interface window shows information on a segment of the library at
the bottom and above that a few statistics and a zone with buttons for
issuing basic library commands. A user may move a navigation pointer
through the current folder by using arrow keys, the mouse, or clicking
on one of the arrow buttons 7117, [ll], ..., T, |. To move into a
subfolder or to open an object for editing, one uses the right arrow key
(or middle-clicks on it with the mouse), to move out of a directory, one
moves the navigation pointer to the left.

e Naming and creating objects is a combination of two, more fundamental
operations. In the first step, a function mk_obj creates a default object
of a given kind and adds it to the library table. The object will be
bound to a new object identifier, which will be returned as the result
of the function.

In the second step, the object identifier will be linked to a name in the
user’s work space and assigned a position in one of the user’s folders,
usually immediately after an already existing object. To identify this
object, a user has to rely on library mechanisms that detect the cor-
responding abstract object identifier from information provided by the

5.2. LIBRARY DATA AND OPERATIONS 155

user. In the current prototype this mechanism is provided by the visual
interface: the object referred to is the one pointed at by the navigation
pointer.

Both steps are combined into a single user command, which requires
the user to provide the name and the kind of the object to be cre-
ated. Executing the function “dyn mkobj kind name” will create a
new object with the given kind and name. Executing

4 ¢

“dyn_mkobj ‘abs‘ ‘co_prime‘”,

for instance, will create an abstraction object named co_prime and
position it immediately after the current object, as indicated below.

MkTHY* OpenThy* CloseThy* ExportTHY* showRefErws* FixRefErvs* ChkThy* ChikOpenThys=
PrintObj* MkThuDocObj* MkReFErus ProofHelps

ShowReferw* SetReferwUsed# SetReferw* ProvelithRE* ProvellithMinRE* SetInOBJ=
MkTHM* MkML= AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduces

Act* Defct#* MkThyDir# REmThyObj* MvThyDbj* HavAtAp* AddDefAddition=

Activate* defctivate* HNameSearch* PathStack* Clorne* RaiseToploops+
Mill® Savelbj* commentObj* CountClosures ObidCollector=

MkLirk# MkObj* MkDir* MkTHM* CpObj* reMamelbj* EditProperty=
RmLink= RmObj* RmDir* REmGroup=

T ot 1t T &« O
L e N L b o+ 3%

Havigator: [mum_thy_1; standard: theoriesl
Scroll position : |18
List Scroll : Total 159, Point 118, Visible : 10

DISP TTF prime_df
ABS TTF prime
STM TTF prime_wf
STH TTF sgelf_divisor_mul
STM TTF prime_imp_atomic
STHM TTF prime_slim

=> ABS FFF co_prime
STM TTF coprime_intro
STH TTF coprime_elim
STHM TTF coprime_slim_a

Usually, this command is issued interactively by clicking the Mk0Obj*
command button, which will open two templates into which the user
may type in the name and kind of the new object.

e Renaming an object means linking the object to a new name in the
user’s work space and changing the object’s name property. To do
so, one has to determine the object’s abstract identifier and assign a
new name to it. As the former is identified by the navigation pointer, a
user only has to execute the function “rename obj new-name” or issue
the same command interactively by clicking the RenameObj* command
button.

e FExporting and importing theories is important for moving theories be-
tween libraries in a controlled fashion. Theories are usually associated

156 CHAPTER 5. SELECTIONS FROM THE FDL MANUAL

with specific folders in the user’s work space. To export a theory, a
user moves the navigation pointer out of the current folder, such that
it identifies the folder’s object identifier and then issues the command
dump_thy (or clicks the ExportTHY* command button). This will col-
lect all the objects in the marked folder and dump them to a file in a
default location.

To import a dumped theory from a file, one has to provide the path
name of the file by issuing the command

“replace_objects path-name”.

This will create a folder containing all the objects of the dumped theory
and place it at the same location in the user’s work space. If the folder
already existed, objects of the dumped theory will be added to the
folder. In case of name clashes, the name of the old object will be
modified if its content is different. If the contents are identical, the
new object will be ignored.

5.2.3 Native Library Language

Clients of the library must be able to stipulate programs executed by the
library process. Request for execution of such programs and returning their
results is a basic interaction between clients and the library. Most work
of certifying inference steps is expected to be done outside the library by
inference engines (see Section5.4.1). The library simply invokes those engines
and records the results.

A native language should provide generic computational methods as well
as some basic library-specific operations for manipulating ones current closed
map (Section 5.3), managing a small external name space, control of access
to objects by other clients, and for communicating with external processes.

The execution of native language programs is implemented as part the
library and forms the basis of certification (Section 5.4.2)). The facts to which
a certificate attests are simply that certain native language programs were
executed to certain effect.

There may be multiple native languages, suitable for different styles of
programming by customers. For example, a higher-order functional style (as
used in our current prototype implementation of the FDL) and a conventional
imperative style language would be basic candidates, and perhaps a virtual

5.2. LIBRARY DATA AND OPERATIONS 157

machine for use by those clients who prefer to develop their own languages
for execution by the library.

5.2.4 Library State

The library state contains a description of current library policies, ongoing
interactions with clients, (temporarily) unfinished work, and other informa-
tion that is necessary to guarantee the consistency of the library. Specifically,
the following will be included in the state.

Certificate policies, i.e. the criteria for a library object being a certifi-
cate.

The collection of all closed maps (see Section [5.3.1).

The current set of alterable submaps, i.e submaps of the repository that
a constitute the current closed maps of the various sessions. Informa-
tion includes the “owner” of the map and limitations for sharing the
map with other clients.

The current set of client sessions, which for each client includes the
identity of the client and the method for communicating terms with it.

A collection of session journals that are used for determining the cur-
rent working environment of a client (i.e. its current closed map) when
it connects to the library. The standard policy would be to select the
most recent stable working environment, but clients may also chose to
resume earlier sessions.

The current set of external library sessions, which includes information
about how libraries communicate among each other.

In addition to the above parts of the state the library state is also expected
to include temporary information that is needed for achieving a consistent
state of the library after modifications to library objects. This temporary
part of state is expected to include

The set of stale certificates (Section 5.3.3)

The changed objects referred to by each stale certificate and their prior
content.

The objects referred to by each stale certificate that were distinct and
are now to be identified together.

158 CHAPTER 5. SELECTIONS FROM THE FDL MANUAL

e Objects marked for deletion upon successful reconsideration of all stale
certificates.

5.3 Sessions and Current Closed Maps

The usual method of interaction with the FDL is to build and develop a client
work space, i.e. a collection of named object contents that provide a specific
view of the data and can be tailored to the specific needs and permissions of
a client.

In a work space, abstract object identifiers are linked to concrete names
chosen by a user. This allows the user to organize objects in folders, to use
the same name in different folders, and to establish “private” links between
objects. The work space may also restrict a client’s access to certain library
objects. Most importantly, however, it protects internal identifiers and object
contents from being modified without going through the FDL, helps prevent-
ing name collisions, and makes proof mechanisms independent of particular
naming schemes.

The library manager provides clients with utilities for building, storing,
and sharing collections of session objects. It maintains the work spaces and
thus enforces a discipline for building named collections, thus preserving the
coherency of the collections.

5.3.1 Closed Maps

Work spaces are represented by maps from a finite set of names to library
objects. These maps have to be closed in the sense that the objects they refer
to do not contain any references to objects that have no name in the map.
Thus the basic model of interacting with the library is to maintain a current
closed map as a part of state that is updated repeatedly as one works.

In general, a closed map is a function of type D—Term(D), where D
is a finite discrete type of indices and Term(D) is the type of terms whose
subterms only contain abstract identifiers in D. Usually we identify objects
in a closed map with their index (or name).

In practice the class D will be varied continually. For example, extending
a closed map requires selecting a larger index class. Deleting members of a
closed map requires a smaller index class. In both cases, we have to make
sure that the resulting map remains closed.

5.3. SESSIONS AND CURRENT CLOSED MAPS 159

If the restriction of a closed map m e D—Term(D) to a subclass XCD is
itself a closed map (i.e. is in X —Term(X)), then we call it a submap of m.
Similarly a supermap of m is a closed extension of m to a class Y2D. Two
closed maps me D—Term(D) and m' € D'—Term(D’) are equivalent, if they
are simply renamings of each other.

Closed maps are essential for defining the notion of dependency. Objects
depend on others if they directly or indirectly refer to them. An expression
teTerm(D) refers directly to an object (index) xeD if z occurs within a
subterm of .

The notion of dependency is the key to defining correctness. While it
is possible to define useful notions of correctness with respect to state, the
enduring ones can only be formulated in terms of closed maps: the correctness
of an object should only depend on the correctness of the object it refers to
but not on library objects that are not within the current closed map.

5.3.2 Operations on Closed Maps

The library is a repository not of closed maps per se, but is rather a repository
of data and instructions for building closed maps modulo choice of abstract
identifiers. In a session the current closed map is initialized from the library,
transformed through a sequence of operations, and then stored back into
the library for later retrieval. Some basic operations that can be defined on
closed maps are

e Uniform renaming of abstract identifiers.

e (Contracting around a set S of objects, i.e. restricting the closed map
to objects in S together with objects referred to by the objects in S.

e Focusing on S, i.e. restricting the closed map to objects relevant to S
(elements of S and object referred to by objects in S or referring to
them).

e Deleting S along with all objects that refer to elements of S.
e Merging two closed maps in a way that objects can be identified.

e Cloning S, i.e. replicating the objects in S and replacing references
to elements of S within the clones by references to the corresponding
clones.

e Splitting wrt. S, i.e. cloning S together with all objects that refer to
objects in S.

160 CHAPTER 5. SELECTIONS FROM THE FDL MANUAL

e Reassigning the indices of a closed map to new contents.

e [olding a closed map by identifying certain objects within it with each
other.

All but the last two operations are conservative in the sense that they
do not invalidate certificates (see Section 5.4.2). Reassigning and folding,
however, does affect certificates as well and therefore has to be coupled with
operations that modify and rehabilitate these stale certificates rather than
simply deleting them.

5.3.3 Stale Certificates

The presence of stale certificates in a closed map corresponds to an inconsis-
tent state in a database, and part of completing a closed map operation is
to eliminate staleness. As different kinds of certificates can be implemented,
closed maps rely on procedures for creating new certification objects of that
kind, and procedures for reconsidering a certificate, i.e. modifying its con-
tents. These certification procedures may also create, alter, or delete other
objects.

However, some basic operations may have cascading consequences on the
library that are beyond the control of any specific certification procedure,
as the content non-certificates can be changed almost arbitrarily. When any
object’s content is altered other than by conservative operations each cer-
tificate object referring to it will be reconsidered according to the procedure
specified for its kind. If reconsidering a certificate alters its content, then
certificates referring to it must themselves be marked for reconsideration,
etc. Similarly, when multiple objects are identified with each other, any cer-
tificate that contains references to more than one of them gets marked for
reconsideration.

5.4 Accounting mechanisms

One of the central aspects of a formal digital library is to account for the
integrity of its contents and to support arguments for claims of the following
form:

Because the library contains a proof of theorem T' that refers to

a given collection of proof rules and proof engines, theorem 7' is

true if those rules are valid and those engines run correctly.

5.4. ACCOUNTING MECHANISMS 161

Accounting mechanisms determine how to execute inferences as specified by
a proof tactic depending on the actual contents of the library and produce
certificates, which attest that certain actions were taken at a certain time to
account for the validity of an object.

Accounting mechanisms are also needed to determine whether a proof
built from a collection of certified inferences is acceptable for a given purpose.
This would be trivial if the FDL would be restricted to a single uniform logic
and to a a single inference engine. But inferences that may employ a variety
of logics and inference engines cannot be simply combined. Instead, certain
stipulations limiting proofs to a given set of rules, axioms, and perhaps other
objects on which these may depend must be expressed and checked.

We use what we call proof sentinels to express these stipulations and to
indicate a reduction of validity to those things whose criteria of correctness
lie outside the formal system. This assures the proof to be correct as long as
the rules in the sentinel are and makes it possible to distinguish claims that
are accounted for from those that are not.

5.4.1 Inferences

One of the most fundamental mechanisms to account for the validity of li-
brary contents such as theorems and proofs is the application of logical in-
ferences from a finite number of premises to a conclusion. Inferences are rep-
resented by trees of inference steps, which in turn are represented as library
objects. A library process checks or generates an inference step by applying
inference engines, which create proofs in some formal calculus according to
user specified methods.

The fact that an inference step has been verified by a given inference
engine is represented by an external certificate that refers to the inference
step. There may be multiple certificates for the same inference, certifying
that the inference has been checked by different inference engines. Depending
on the contents of the available certificates, the inference may be considered
valid or not in a specific context.

Inference engines support the development of new formal knowledge by
providing mechanisms for interactive, tactical, and fully automated reasoning
in a specific formal language. As the formal digital library supports almost
any formal language, it can be connected to a variety of inference engines
that will provide justifications for its formal content.

162 CHAPTER 5. SELECTIONS FROM THE FDL MANUAL

5.4.2 Certificates

Certificates are the basis for logical accounting. They attest that certain
library actions were taken at a certain time to validate the contents of, or
identity between, objects. A certificate will be realized as an object, which
can then be referenced and accessed like other objects save for certain con-
straints. A certificate cannot be created or modified except by the library
process following a procedure specific to the kind of certificate in question.

Although certificate contents are expected to often be rather compact,
largely consisting of Object references, they will often also be rather expen-
sive to establish. By realizing certificates as objects the library can build
certificates that depend on others whose correctness is independently es-
tablished. Thus one process of certification can contribute to many other
certifications without having to be redone.

The paradigmatic certificates are those created to validate proofs. An
inference step certificate attests to the fact that a specified inference engine
accepted that a certain inference. It is built by applying the engine to the
inference, and includes references to the inference step as well as to the
instructions for building or deploying the inference engine.

A proof is a rooted dag of inference steps. A proof certificate is created
only when there is an inference certificate for the root inference, and there
are already proof certificates for all the proofs of the premises of the root
inference.

A certificate may fall into doubt when any object it refers to is modified
and needs to be reconsidered and modified in this case (see Section 5.3).
Certificates may also be reconsidered by explicit demand.

As certificates only attest to the fact that the objects they refers to satisfy
certain policies for creating these certificates, they provide justifications for
object contents that are more general than formal proofs in a specific target
logic. Nevertheless, they are equally rigorous in the sense that they providing
the exact reasons that were used for declaring an object valid.

This aspect is particularly interesting when one considers the possibility
that certain inference engines may not be generally accepted. People who
do trust a certain inference engine will accept the certificates produced by
it while others will insist that the same inferences have to be checked by
inference engines they trust. The connection between the FDL and JProver
(Section 5.6.1) accounts for these two levels of trust: one may either trust
that matrix proofs produced by JProver are valid, or one may require that

5.4. ACCOUNTING MECHANISMS 163

the algorithm for translating matrix proofs into sequent proofs be executed
and that the results will be checked with a proof checker for the intuitionistic
sequent calculus.

5.4.3 Proof Sentinels

Proof sentinels are used to direct certification of inferences, assembly of proofs
from inference steps, and in records identifying inferences and proofs as hav-
ing been certified accordingly. A sentinel is a term, intended to represent a
class of basic logical resources and methods.

For example, one might build an inference engine that takes a primitive
rule set as a parameter. A sentinel expression appropriate to inference cer-
tificates invoking this engine would then indicate the kind of inference engine
invoked and the primitive rule set it used.

Another part of the sentinel expression is an indication of when an in-
ference engine itself is acceptable. Therefore, it has to include a method for
finding or building individual inference engines of the appropriate kind, as
the reason that this inference engine process was trusted in the first place is
really that it was identified according to certain proof methods.

To provide for possible extensions of a logic, sentinel expressions should
also determines which other sentinel expressions shall be accepted in assem-
bling certain proofs, i.e. they inherit all the inferences passed by those other
sentinels. A search for certificates according to a sentinel should normally
also find those certificates whose sentinels are inherited by it.

When an inference step is certified, the sentinel expression according to
which it was certified is stored as a distinguished component of the infer-
ence certificate. When a proof is certified the sentinel expression determines
whether the certificate for the step may be incorporated into the certificate
for the whole proof.

Because of the external significance attributed to a sentinel expression
by a person, persons will normally work with familiar sentinels, which means
they need to be sufficiently small as to make it possible for a person to become
familiar with those they understand, and not to mistake one for another.
A suitable degree of abbreviation can be achieved by allowing liberal use of
packaging complex material into objects then referred to by object identifiers,
and by allowing liberal use of native language macros.

164 CHAPTER 5. SELECTIONS FROM THE FDL MANUAL

5.5 Features of the FDL prototype

A key purpose of building an FDL prototype is to demonstrate that it is
possible to build a system with many of the properties called for. Experience
with the prototype library will influence the design and construction of an
improved system.

Our prototype implementation of the FDL is organized as a persistent
object store that adheres to the standards of today’s data base technology
[55], i.e. to the principles of atomicity, consistency, isolation, and durability
(ACID).

The FDL prototype is centered around the library table (Section [5.2.1).
The library table serves as repository for all library content and is responsible
for managing access to objects and their abstract identifiers. Its abstract
organization prevents clients from accessing and modifying objects without
invoking a library process that accounts for their validity.

A transaction manager (Section 5.5.2)) supports delete and undo oper-
ations in client work spaces and makes it possible to recover from failures.
An object request broker handles request for accessing the library table. The
application server (Section 5.5.3) provides the infrastructure for communi-
cating with external clients and is used to build application specific interfaces
for them.

In addition to the basic FDL implementation our prototype also includes
a few standard utilities (Section 5.5.4) that enable users to interact with the
library and to develop new formal content for it.

5.5.1 Library Tables and the File System

After creation, all library contents are stored immediately on the file sys-
tem. Objects, their properties, and the library table are stored in individual
files, whose abstract name corresponds to the internal name of the objects.
As object contents cannot be changed, a library file will never be deleted
or modified. Instead, modifying an object’s contents will cause a new and
updated copy to be created and the object’s abstract identifier in the library
table will point to the new object file.

Thus all previous versions of objects will be preserved unless they are
removed by an explicitly enforced garbage collection process. This approach
ensures durability of information and replayability of proofs that were ac-
cepted by the library. A version control mechanism makes it possible to

5.5. FEATURES OF THE FDL PROTOTYPE 165

API API

Application server

Object Request Broker

Transaction manager

Library Table

non-destructive bind/unbind

Figure 5.2: Architecture of the FDL prototype

recover previous versions of an object. This protects user data from being
corrupted or destroyed erroneously and enables a user to keep several ver-
sions of the same object, while developing the contents of a formal algorithmic
theory.

5.5.2 Transactions

Transactions are a well-established technique to ensure the ACID property of
data bases [55]. They provide a model for controlling the outside access to the
actual library contents, make sure that the library is always in a consistent
state, and provide mechanisms that make it possible to recover from failures
and system crashes.

To accommodate the special needs of a formal digital library we have
refined the transaction model, so that it can enforce stronger consistency
conditions and deal with larger atomic units such as the creation of certifi-
cates together with every modification of an object.

All operations that commit changes to the library are based on a small
set of directives and primitives for creating new object contents. Directives
determine whether an object is bound in the library table (bind / unbind),

166 CHAPTER 5. SELECTIONS FROM THE FDL MANUAL

considered alive (activate / deactivate), or permanent, i.e. to be excluded
from garbage collection (allow / disallow). Primitives for creating new object
contents either create new objects from scratch or modify the contents of
existing object and store the result in a new object. There is a variety of
these primitives for each kind of object, particularly for statements, inference
steps, and proofs.

Updating an object in the library table thus involves five basic steps,
which have to be finished before the transaction is considered complete: de-
activating the object, unbinding its abstract identifier, creating an updated
copy, binding the abstract identifier to the new version, and activating it.
As each directive has an inverse to undo its effects, an update can simply be
undone by reversing the sequence of directives involved, i.e. by rebinding the
abstract identifier to the old object, which is much simpler than undoing the
actual update operation. Since the updated object content is retained in the
library store, redoing a transaction is equally simple.

During a transaction all directives are journaled together with a list of yet
uncompleted directives as they are evaluated. Object contents are written to
disk at bind time. This makes it possible to recover from crashes by replaying
the committed directories in the journal.

5.5.3 The Application Server

One of the central features that a practically useful FDL prototype has to
provide is the ability to connect to clients in an efficient way. In addition
to handling requests and answers, this means supplying methods that allow
clients to access necessary data efficiently and simply. To accomplish sim-
plicity, the library needs to hide the workings of the transaction system while
still presenting a consistent view to the client and allowing a series of request
to occur within a single transaction. For efficiency, the client need only see
the data which is meaningful to it (e.g. a proof engine may only have to see
lemmas that are relevant to proving a theorem) and the client needs to be
able cache the data.

In a distributed library the data may be cached by application server
supporting the client or by the application itself. If the client caches the
data then the library needs to push all modifications made to the data so
that the cache is accurate, which results in a large amount of communication.
Therefore, our application server contains a distributed cache, which for each
client maintains a copy of object data that are broadcast by the library

5.5. FEATURES OF THE FDL PROTOTYPE 167

and filtered by an application-specific interface. Inactive objects will not be
broadcast and are thus invisible to the client.

Usually, the application server presents a serialized interface to a client.
The client and server interact via a single thread of requests, notices, and
responses. Clients subscribe to certain kinds of information and receive no-
tifications about changes so that they may pull new information from the
library if needed. The advantage of this approach is that it supports connec-
tions with low bandwidth.

A tighter form of interaction, where a client calls the application server
each time new object data are needed, requires high bandwidth connections
and an application server written in the client’s native language. In this case
the application server may be compiled into the client, which enables the
client to pre-calculate dependencies and to make very specific requests.

Requests to the library are handled by the object request broker, which
separates actual transactions from the interaction with applications. Re-
quests are usually stored in the ORB’s queue and processed in FIFO order.
This separation allows two modes of operation. In a synchronous mode, a
client submits its requests and waits for results before proceeding. For in-
stance, a proof engine may need the contents of a specific lemma before it can
continue with its proof. In asynchronous mode the application only waits
for an acknowledgement that its request has been received and periodically
checks for notifications. For instance, a user may request a certain proof tac-
tic to be applied to all theorems within a specific theory while continuing to
work on other parts of the library, or may want to run several proof engines
on the same proof problem in parallel. The difference between these two
modes can be expressed by slightly different requests. For synchronous mode
the client submits a request to execute a certain process. For asynchronous
mode, it submits a request to schedule this process and to send notification
upon completion.

To interact with the application server of the FDL, clients have to fol-
low a certain communication protocol that describes allowed sequences of
communication as a simple context-free language over “send” and “receive”
expressions. All requests, responses, and notices have to be expressed as
library terms (see Section [5.2.1)), which have to obey the grammar described
in Table 5.1. Requests to the library, such as looking up the content of a
specific object have to be formulated as expressions that can be evaluated
and interpreted by the object request broker. Requests to clients, such as

CHAPTER 5. SELECTIONS FROM THE FDL MANUAL

<comm-seqg>

(<P1> | <P2>)*

<P1> = SEND<request> <P2> RECV<response>
SEND<notice>

<p2> = RECV<request> <P1> SEND<response>
RECV<notice>

<interrupt> = linterupt{<sequence>:n}

<request> = lreq{<sequence>:n, <type>:t}(<expression>)

<response> = Irsp{sequence>:n}(<result>)

<notice> = Imsg{<sequence>:n}(<message-term>)

<object-update>

ladd{kind}(<object-update> list)
ldelete{kind}(<object-id> list)

lupdate{<object-id>:<o>}(<term>)

<expression> = lexpression{}(<ap>)
<configure>
<result> := lvalue(<term> <message-terms>) {

expression }

| !'print(<term> <message-terms>) {
expression }

| 'fail(<term> <message-terms>) {
expression }

| tack()
<ap> := lap<ap-bits>(<term{func}>; <term{arg}>*;)
| lunit_ap<ap-bits>(<term{func})
<ap-bits> := {<result-p>:b}
{3
<configure> := lconfigure(!inform(<rspinfo>))
| lconfigure(!request(<reqinfo>))
| 'configure(!'revoke(<info>))
<reqinfo> := <address{environment}> { symbolic address
| <start{broadcasts}> { subscribe }
<revinfo> := <address{environment}> { symbolic address
| <start{broadcasts}> { unsubscribe }
<info> := <disconnect>
| <start{broadcasts}> { initial state
dump }
<address> := lenvironment address{<tok>:t list}
<disconnect> = Idisconnect{}

Tahle 5 1+ (rammar for realiecete reenonceee and noticeg

5.5. FEATURES OF THE FDL PROTOTYPE 169

performing the inference step described by a tactic, will be formulated in
the same format. Responses may be values resulting from evaluating a re-
quest, print commands, failure messages, or acknowledgements. The latter
acknowledges the receipt of a request that does not expect an immediate
answer or is evaluated only for its side effects.

The FDL application server supports several data formats. In compressed
ASCII format, terms are converted into their ASCII representation and then
compressed to reduce the overhead of communication. Clients that com-
municate with the FDL in this ASCII format must provide conversion and
compression functions that match the algorithms of the FDL. A more effi-
cient format for communicating mathematical data is the MathBus standard*
[121], which currently is used in many connections between the FDL and
proof engines (see Section 5.6.1). The FDL also supports a representation of
terms in XML, which is more convenient for building web interfaces and is
used by approaches like MathWeb [64] and HELM [76] that aim at building
standardized interfaces for communicating theorem provers.

The communication between clients and the FDL requires establishing
a connection through standard TCP/INET sockets, which is supported by
most programming languages. Clients that do not already include a commu-
nication module only have to be extended by a small module that can open
and close sockets, read from sockets and write to them (see [168, [170] for an
introduction into writing such modules).

5.5.4 Utilities

Our FDL prototype comes with a small collection of utilities that are not
considered essential but help demonstrating its practical usefulness. These
utilities are implemented separately as standard clients of the FDL and may
be connected to it on demand.

There are two major interfaces. The FDL editor enables a user to inspect
and modify formal content at any level of detail. It includes a structure ed-
itor for entering and modifying library terms, a proof editor for interactive
and tactic-based development of verified knowledge, a visual navigator for
browsing, searching, and modifying the library interactively (see our exam-
ples in Section [5.2.2)). The editor can interpret library contents and can be
customized by adding display forms to the library.

!The development of the MathBus format has been supported by previous ONR grants

170 CHAPTER 5. SELECTIONS FROM THE FDL MANUAL

A web interface processes library information for publication on the web
(Section [5.7). It analyzes links between formal objects like definitions and
theorems to informal text objects and creates articles that present the mate-
rial on several levels of detail. On the top level, a user will look at a formatted
technical report. Clicking on the formal (top-level) text in this document re-
veals the further details at all levels of precision — from the rough sketch of
a theory or proof down to the level of the underlying logic.

Several proof engines are connected to the FDL: a sequent style refiner
that creates inference steps by interpreting tactics and rule objects, a com-
plete theorem prover for intuitionistic and classical first-order logic, and the
proof engine of PVS. The connections to these proof engines are described in
detail in Section 5.6.1.

We also developed a package for connecting the libraries of Nuprl 4, PVS,
and MetaPRL to the FDL and for migrating their formal contents into certified
FDL theories. The links to these external libraries and the techniques for
migrating their contents are described in Section 5.6.2.

5.5.5 Computational Content

One of the main purposes of the FDL is to provide formal content that can be
applied in software design and construction. Formalizing a standard body of
computational mathematics is a task that has been approached by a many
research groups. As the FDL supports the native formal language of almost
any proof system it is possible to accumulate the formalized content of a
variety of proof environments in a single repository. With the advanced
theory mechanisms that will be developed in the future one will then be able
to develop new algorithmic content that can use the entire repository in its
justifications.

Importing existing formal content into the FDL requires migrating the
formalizations of definitions and theorems as well as the formal proofs into
the more general FDL format and developing display forms that make the
FDL representations look like expressions of the original formal language.

Our FDL prototype initially included only the complete type theory of
the Nuprl 5 system [5], 142} 120] together with its standard theories. In the
past year we have migrated all user theories developed with its predecessor
Nuprl 4 into the more general FDL format. These include elementary number
theory, discrete mathematics, general algebra, finite and general automata,
basics of Turing machines, and the formal development of hybrid communi-

5.6. CONNECTING THEOREM PROVERS AND LOGICAL FRAMEWORKS171

cation protocols. A complete documentation of these theories can be found at
http://www.cs.cornell.edu/Info/Projects/NuPrl/Nuprl4.2/Libraries/Welcome.
html

More recently we have developed mechanisms for importing the theories
of the PVS system [148, [158] into the FDL. We have used these methods for
migrating all 79 theories of the PVS prelude and the complete graphs library.
Further theories will be imported in the near future. Having PVS content
available in the FDL makes the FDL accessible to the large community of
PVS users.

We have also built a formal representation of constructive ZF set theory
(CZF) and linked it to Nuprl’s type theory. This makes it possible to represent
many mathematical theories in a formalism that mathematicians are familiar
with while making them available in formal proofs that involve computational
type theory.

In MetaPRL [127] we have developed a framework for establishing se-
mantical links between different formal theories. This makes it possible to
proof theorems by referring to “acceptable” formal knowledge developed in
a different theory or proof system without having to re-prove that theorem.
Using the mechanisms for migrating formal content (Section 5.6.2) we will
integrate this framework into the FDL library.

5.6 Connecting Theorem Provers and Logical
Frameworks

One of the central goals of implementing a digital library of formal algorith-
mic knowledge is to provide an infrastructure for interoperability between
different proof systems that will enable people who work with similar, but
different formalisms to cooperate in the development of new certified knowl-
edge.

To integrate different proof systems and the formal theories that have
been developed with them, we have to connect them to the FDL by providing
the appropriate API modules, and to develop mechanisms for automatically
migrating formal content into the FDL library.

http://www.cs.cornell.edu/Info/Projects/NuPrl/Nuprl4.2/Libraries/Welcome.html�
http://www.cs.cornell.edu/Info/Projects/NuPrl/Nuprl4.2/Libraries/Welcome.html�

172 CHAPTER 5. SELECTIONS FROM THE FDL MANUAL

5.6.1 Proof Engines

Proof engines provide mechanisms for interactive, tactical, and fully auto-
mated reasoning in a specific formal language and generate justifications for
the formal content stored in the FDL. Currently we have connected the
following inference engines to our FDL prototype.

e The Nuprl refiner [5, [142] supports interactive and tactic-based reason-
ing in computational type theory within a sequent calculus framework.
To connect it to the FDL we have developed an API module that com-
municates proof goals, tactic names and their parameters to the Nuprl
refiner and modifies the current proof object according to the results
it receives from the refiner. Mathematical data are communicated in
MathBus format, which makes it possible to reconstruct terms from the
data received without having to parse them.

We also have imported all the basic rules, tactics and theories on which
they depend into the FDL, which makes it possible to control the re-
finer’s behavior through code objects in the library.

e JProver [102, 164] is a complete theorem prover for intuitionistic and
classical first-order logic. Its proof search procedure [146] 147, [101]
is an extension of matriz methods developed by Andrews and Bibel
[11, 27]. When JProver successfully proves a formula F, it produces a
reduction ordering for F' that consists of the formula tree together with
ordering constraints induced by substitutions. JProver also includes an
algorithm for converting this reduction ordering into a sequent style
proof [163, 103], in which each individual proof step is justified by a
basic inference rule.

To connect JProver to the FDL, we have developed an API module that
converts FDL contents into the language of JProver and vice versa. The
module also translates FDL language features (like type information)
that are outside the range of first-order logic into abstract predicates
that can be handled by JProver and reconstructs these features when
rebuilding the sequent proof it receives from JProver. On the side of
JProver, this module is complemented by a small code module that
establishes a communication with the FDL over the net in MathBus
format.

5.6. CONNECTING THEOREM PROVERS AND LOGICAL FRAMEWORKS173

e The PVS system [148] [158] provides mechanized support for formal
specification and verification based on a classical, typed higher-order
logic. It supports interactive reasoning and proof scripts that build se-
quent style inferences from primitive inference rules, induction, rewrit-
ing, and decision procedures.

To connect PVS to the FDL we have implemented an API module that
uses display forms to present FDL terms in PVS notation, sends se-
quents and PVS commands to the PVS proof engine, and builds FDL
terms from the results. Mathematical data are communicated in text
format, which makes it possible to use PVS without any modifications.

In the future we will connect further proof engines such as the HOL proof
system [69], the proof-based MinLog [23] program generator, Isabelle [150],
and even Larch [106] and Automath [34].

5.6.2 Linking and Migrating Libraries

Over the past decade a substantial body of formalized mathematical and
algorithmic knowledge has been developed with proof systems like PVS [148],
Nuprl [5], MetaPRL [127], MinLog [23], HOL [69], Coq [58], and Isabelle [150].
Each of these systems uses a different formalism and none of them contains
all the currently available formal knowledge.

In order to use the FDL as a common repository, we have to link these
proof systems to the FDL and to migrate the content of their libraries into
the FDL library, i.e. converting formal expressions into the FDL format and
constructing inference trees, proofs, and certificates from the proofs build
with the respective systems. Currently we have developed migration packages
for the following systems.

e Since our FDL prototype evolved out of the library of the Nuprl 5 sys-
tem [5) [142], the structure of Nuprl 5 terms is similar to the one of basic
FDL data (Section [5.2.1). Migrating Nuprl 5 theories into the FDL can
therefore be based on the mechanisms for exporting and importing the-
ories described in Section [5.2.2) which only have to rebuild certificates.

e MetaPRL [77,127] is a logical framework that supports interactive and
automated reasoning. MetaPRL supports multiple logics (i.e. CZF,
ITT), and each logic is organized into theories, or modules, and each
theory contains theorems, rules, and display objects.

174 CHAPTER 5. SELECTIONS FROM THE FDL MANUAL

To migrate content from MetaPRL into the FDL, we convert each sys-
tem’s data to a common MathBus interchange format, and send the
MathBus terms over TCP sockets. The MetaPRL logics that a user is
interested are specified during the build of MetaPRL. After the FDL
is connected to MetaPRL, one can retrieve the modules of those log-
ics, and their contents. Commands and their arguments are sent to
MetaPRL from the FDL, which specify what to import, how, and ad-
ditional evaluation requests. Example commands include listing all
modules, retrieving a particular proof in a module, calling the proof
engine on a particular proof step, or migrating an entire module, or
logic.

For the purpose of the FDL, we typically desire to migrate all data.
Then, we check the proofs by calling the MetaPRL proof engine and
build the appropriate certificates.

e Users of the predecessors of the current Nuprl system have developed a
substantial amount of formalized knowledge. To integrate this knowl-
edge into the FDL we have developed a migration package that converts
Nuprl 4 data into the more general FDL format, checks formal proofs
with the Nuprl refiner, and builds the appropriate certificates.

e The PVS system [148] [158] supports formal reasoning in a classical,
typed higher-order logic. Users of PVS have developed large repositories
of formal knowledge about the formal specification and verification of
software. To migrate PVS theories into the FDL library, we connected
the PVS proof engine to the FDL as described above and connected it
to a “PVS parser”, that builds FDL terms from ASCII representations
of PVS expressions. PVS theory files are converted into FDL theories
by converting definitions and statements with the PVS parser and re-
executing proofs with the connected PVS proof engine in order to build
the necessary certificates.

In the future we plan to migrate formal content developed with other
proof systems such as HOL, Coq, MinLog, Isabelle, and Larch.

5.7. PUBLISHING AND READING 175

5.7 Publishing and Reading

One of the key services that a library must provide is an interface that makes
formal algorithmic knowledge accessible to users. As we envision a variety
of users who would benefit from being able to inspect the contents of a
digital library of formalized mathematicl and algorithmic knowledge, we have
developed a publication mechanism that enables external users to access the
logical library and to browse its contents without having to run a local copy
of it.

In [136] we have made a first step towards publishing our formal mathe-
matics on the web. But our interface goes beyond being a simple web browser,
which allows users only to browse through some pre-formatted text version
of the formalized knowledge. It also supports viewing formal contents at all
levels of precision — from the rough sketch of a theory or proof down to the
level of the underlying logic. We expect that the ability to unveil formal
details on demand will have a significant educational value for teaching and
understanding mathematical and algorithmic concepts.

We have built a large utility for converting related collections of objects
to HTML, along with automatically generated structure-revealing documents
and auxiliary annotations. The structure of the web material is thoroughly
explained on the several documentation pages to which one may link via the
rightmost Doc link on every page so created. This link is http://www.cs.
cornell.edu/Info/People/sfa/Nuprl/Shared/doc.html

This preparation of the HTML documents consists largely of taking scripts
for posting library sections and adapting them to the a new section in ques-
tion. The basic parameters stipulated are:

e What is the section called?

e Where are the pages to be put?

e What sections logically precede this one?

e What is the principle context above the section?

e What are the section’s objects, i.e. what objects are to be included
among the web pages as originating in this section? (There are a num-
ber of filtering utilities that help weeding out “unimportant” objects)

e Do any objects need to be modified specifically for presentation and
how?

http://www.cs.cornell.edu/Info/People/sfa/Nuprl/Shared/doc.html�
http://www.cs.cornell.edu/Info/People/sfa/Nuprl/Shared/doc.html�

176 CHAPTER 5. SELECTIONS FROM THE FDL MANUAL

e Are there any remarks to be made for the reader as to how the section
originated?

e Are there special links you want added to every page?

e Are there certain objects whose (postscript) print form should be left
ungenerated?

e Should the listing of the section be used as the front page or has a more
readable page been provided as an introduction to the section?

When the utility is run, the various browsable pages and some print
forms are generated, missing links are reported diagnostically, and a decision
is rendered about whether the result is suitable for posting. As most of the
above stipulations can be specified as display forms and command objects of
the library, the process of generating HTML documents has been automated
to a large extent.

Currently, the publication mechanisms are capable of handling formal
content created by Nuprl. Showing new kinds of content, such as PVS li-
braries, requires appropriate modification and specialization. Not only might
the presentation of each object content need adjustment, but the relations
to be revealed between documents must be determined and accommodated.

Chapter 6

Logical frameworks and the
FDL

6.1 Introduction

A logical framework is a system that allows the definition and use of mul-
tiple logics, supporting derivation in any of the logics that are defined. We
take the term logic in its general meaning. A logic may characterize a very
large domain, like arithmetic, or it may characterize a smaller domain, like
compilation, abstract algebra, graph theory, or any other computational, al-
gorithmic domain. The MetaPRL logical programming environment is an
augmented logical framework supporting reductions and relations between
logics, as well as the embedding of one domain within another. MetaPRL is
a modular system, organizing and collecting knowledge in a hierarchy that
corresponds closely to standard practice in software engineering.

The FDL is a companion in this enterprise, because it captures, stores,
and indexes the knowledge from these domains regardless of the proof sys-
tem which produced it. This allows a programmer to search for knowledge
and algorithms from any of the contributions to the library. The FDL and
MetaPRL provide an instance of systems that cooperate to provide the pro-
grammer with a rich source of algorithmic knowledge, as well as a state-
of-the-art means to organize and incorporate that knowledge into software
systems.

We have experience using MetaPRL to host and support a compiler. Ele-
ments of the compiler are proved correct in the CTT logic of MetaPRL, and

177

178 CHAPTER 6. LOGICAL FRAMEWORKS AND THE FDL

we will discuss this process here. This compiler support is one concrete ex-
ample of how the FDL and a proof system provide a context for using FDL
knowledge to support a specific system. The compiler work is relatively new,
but published. We have not yet used FDL knowledge outside of that pro-
duced by MetaPRL itself. However, we have used the FDL and MetaPRL in
a cooperative effort to verify a protocol. The protocol work is not yet ready
for publication, so we have chosen to illustrate the points with the compiler
effort.

In this chapter, we describe the development of a new class of algorithms
using the MetaPRL/FDL system. Our goal has two parts: 1) to contribute
new algorithmic content to the FDL, and 2) demonstrate how the logical
framework is used to organize and develop the knowledge during the software
development process. We organize this as a case study for the development
of several important, fundamental algorithms that are widely used in the
programming language and compiler community. We develop this case study
as far as an implementation of a complete compiler that uses our algorithms

The text for this chapter is generated from source code of this project.
That is, this document is part of the formal content that is stored and gener-
ated as part of the FDL. By doing so, we connect the documentation directly
to the source that provides the algorithmic knowledge in the FDL.

6.1.1 Compilers and programming languages

One of the standing challenges to the programming language community is
the problem of compiler validation. The task of designing and implementing
a compiler can be difficult even for a small language. There are many phases
in the translation from source to machine code, and an error in any one of
these phases can alter the semantics of the generated program.

There are two main reasons to validate the compiler. First, if there is an
error in the compiler, then there is no assurance that the properties specified
by the programmer are valid at runtime. Second, if the compiler is validated,
it becomes possible to certify mobile code. That is, source-level proofs pro-
vided by the programmer can be translated automatically to runtime proofs
that accompany the code and can be validated by the recipient.

In initial work (with a Caltech undergraduate) [16], we explored the fea-
sibility of using a formal system to reason about the internal compiler rep-
resentations for a program. More recently [79], we developed an alternative
approach, based on the use of higher-order abstract syntax [141, 153] and

6.1. INTRODUCTION 179

term rewriting to construct an entire compiler in MetaPRL. All program
transformations, from parsing to code generation, are cleanly isolated and
specified as term rewrites.

There are many advantages to using a formal system. The most important
is that the correctness of the compiler is dependent only on the rewriting rules
that provide the formal part of the translation. The vast majority of compiler
code does not have to be trusted. In our current work, the correctness of
the compiler depends on less than 1% of its code. In addition, we find that
in many cases it is easter to implement the compiler because the logical
framework provides a great deal of automation.

Compilers make use of many fundamental algorithms used to transform
and analyze programs. For example, CPS (continuation-passing style) trans-
formation is a widely-used algorithm that transforms the control flow of a
program. As Sabry and Wadler show [162], Plotkin’s CPS translation [157],
Moggi’s monadic translation [130], and Girard’s translation to linear logic
[67] are all related; insight into any one of these translations provides insight
into all three. While CPS transformation may be fundamental, it is an ex-
ample of an algorithm that is difficult for humans to understand, and it is
quite difficult to perform by hand. The payoff for a general formalization as
part of the FDL is thus quite high.

Other widely-used algorithms include closure conversion (where functions
in a program are lifted to top-level), code generation, register allocation,
including spill selection. Instances of these algorithms are used widely is
many areas of computer science, especialy for compilers for languages ranging
from Lisp and ML, to Java, C, C#, etc. By defining them as part of the
FDL, we provide a freely-available formal implementation that serves as a
common reference for the many applications that use these algorithms.

Our approach is based on the use of higher-order abstract syntax [141]
153] and term rewriting in a general-purpose logical framework that uses
the FDL. All program transformations, from parsing to code generation,
are cleanly isolated and specified as term rewrites. In our system, term
rewrites specify an equivalence between two code fragments that is valid in
any context. Rewrites are bidirectional and neither imply nor presuppose any
particular order of application. Rewrite application is guided by programs
in the meta-language of the logical framework.

The correctness of the compiler is dependent only on the rewriting rules.
Programs that guide the application of rewrites do not have to be trusted
because they are required to use rewrites for all program transformations. If

180 CHAPTER 6. LOGICAL FRAMEWORKS AND THE FDL

the rules can be validated against a program semantics, and if the compiler
produces a program, that program will be correct relative to those semantics.
The role of the guidance programs is to ensure that rewrites are applied in the
appropriate order so that the output of the compiler contains only assembly.

The collection of rewrites needed to implement a compiler is small (hun-
dreds of lines of formal mathematics) compared to the entire code base of
a typical compiler (often more than tens of thousands of lines of code in
a general-purpose programming language). Validation of the former set is
clearly easier. Even if the rewrite rules are not validated, it becomes easier
to assign accountability to individual rules.

The use of a MetaPRL and the FDL has another major advantage that
we explore in this chapter: in many cases it is easiter to implement the
compiler, for several reasons. The terminology of rewrites corresponds closely
to mathematical descriptions frequently used in the literature, decreasing
time from concept to implementation.

In this chapter, we explore these problems and show that formal compiler
development is feasible, perhaps easy using the MetaPRL/FDL system. This
chapter is organized around a case study, where we develop a compiler that
generates Intel x86 machine code for an ML-like language using the MetaPRL
logical framework [78] 81} [85]. The compiler is fully implemented and online
as part of the Mojave research project [83].

6.1.2 Organization

The translation from source code to assembly is usually done in three major
stages. The parsing phase translates a source file (a sequence of characters)
into an abstract syntax tree; the abstract syntax is translated to an inter-
mediate representation; and the intermediate representation is translated to
machine code. The reason for the intermediate representation is that many
of the transformations in the compiler can be stated abstractly, independent
of the source and machine representations.

The language that we are using as an example (see Section 6.2) is a small
language similar to ML [173]. To keep the presentation simple, the language
is untyped. However, it includes higher-order and nested functions, and one
necessary step in the compilation process is closure conversion, in which the
program is modified so that all functions are closed.

The high-level outline of the chapter includes the following sections: Sec-
tion 6.2/ Parsing, Section 6.3 Intermediate representation (IR), Section 6.4

6.1. INTRODUCTION 181

Summary and future work, Section 6.5 Related work. Before describing each
of these stages, we first introduce the terminology and syntax of the formal
system in which we define the program rewrites.

6.1.3 Terminology

All logical syntax is expressed in the language of terms. The general syntax
of all terms has three parts. Each term has 1) an operator-name (like “sum”),
which is a unique name identifying the kind of term; 2) a list of parameters
representing constant values; and 3) a set of subterms with possible variable
bindings. We use the following syntax to describe terms:

opname \[pl; v s Dn] {V1 11 V, Um.tm}:
operator mame parameters subterms
Displayed form | Term
1 number [1]{}
Az.b lambda[]{ x. b }
f(a) applyl[] { £; a }
T4y sum[1{ x; y }

A few examples are shown in the table. Numbers have an integer pa-
rameter. The lambda term contains a binding occurrence: the variable x is
bound in the subterm b.

Term rewrites are specified in MetaPRL using second-order variables,
which explicitly define scoping and substitution [141]. A second-order vari-
able pattern has the form v[vy;---;v,], which represents an arbitrary term
that may have free variables vy, ..., v,. The corresponding substitution has
the form v[ty; - - - ; ¢,,], which specifies the simultaneous, capture-avoiding sub-
stitution of terms ty,...,t, for vy,...,v, in the term matched by v. For
example, the rule for S-reduction is specified with the following rewrite.

[beta] (Azx.v1[z]) vy «—— v1[vo]

The left-hand-side of the rewrite is a pattern called the redex. The v;|x]
stands for an arbitrary term with free variable z, and vy is another arbi-
trary term. The right-hand-side of the rewrite is called the contractum. The
second-order variable vy [vg] substitutes the term matched by vy for z in v1. A
term rewrite specifies that any term that matches the redex can be replaced
with the contractum, and vice-versa.

182 CHAPTER 6. LOGICAL FRAMEWORKS AND THE FDL

Rewrites that are expressed with second-order notation are strictly more
expressive than those that use the traditional substitution notation. The
following rewrite is valid in second-order notation.

[const] (Az.v[]) 1 +— (Az.v]]) 2

In the context Az, the second-order variable v[] matches only those terms
that do not have = as a free variable. No substitution is performed; the
f-reduction of both sides of the rewrite yields v[] «— wv[|, which is valid
reflexively. Normally, when a second-order variable v[| has an empty free-
variable set [], we omit the brackets and use the simpler notation v.

MetaPRL is a tactic-based prover that uses OCaml [177] as its meta-
language. When a rewrite is defined in MetaPRL, the framework creates an
OCaml expression that can be used to apply the rewrite. Code to guide
the application of rewrites is written in OCaml, using a rich set of primitives
provided by MetaPRL. MetaPRL automates the construction of most guidance
code; we describe rewrite strategies only when necessary. For clarity, we will
describe syntax and rewrites using the displayed forms of terms.

The compilation process is expressed in MetaPRL as a judgment of the
form I' - compilable(e), which states the the program e is compilable in any
logical context I'. The meaning of the compilable(e) judgment is defined
by the target architecture. A program ¢’ is compilable if it is a sequence of
valid assembly instructions. The compilation task is a process of rewriting
the source program e to an equivalent assembly program e’.

6.2 Parsing

In order to use the formal system for program transformation, source-level
programs expressed as sequences of characters must first be translated into
a term representation for use in the MetaPRL framework. We assume that
the source language can be specified using a context-free grammar, and tra-
ditional lexing and parsing methods can be used to perform the translation.

MetaPRL provides these capabilities using the Phobos [70] lexer and
parser. A Phobos language specification resembles a typical parser defini-
tion in YACC [93], except that semantic actions for productions use term
rewriting. Phobos uses informal rewriting, which means that it can create
new variable bindings and perform capturing substitution.

6.3. INTERMEDIATE REPRESENTATION 183

op = +|—|x|/|=|<>|<|<|>]> Binary operators
e == TI|L Booleans | ele] —e Assignment
| Integers | ifethenecelsee Conditionals
| v Variables | e(e1,...,en) Application
| eope Binary expressions | letv=ceine Let definitions
| wve Anonymous functions | letrecfi(vi,...,vn) =€
| ee Sequencing : Recursive functions
| e.le] Subscripting and fo(v1,...,00) =€

Figure 6.1: Program syntax

The lexer for a language is specified as a set of lexical rewrite rules of
the form regex «—— term, where regex is a special term that is created for
each token with the the matched input as a string parameter. The following
example demonstrates a single lexer clause, that translates a nonnegative
decimal number to a term with operator name number and a single integer
parameter.

NUM = 7[0—9] + 7 {token][i][{pos} «—— number][i]}

The parser is defined as a set of grammar productions. For each grammar
production in the program syntax shown in Figure 6.1, we define a production
in the form S ::= 57 ... S, «— term where the symbols S; may be annotated
with a term pattern. For instance, the production for the let-expression is
defined with the following production and semantic action.

exp ::= LET ID (v) EQ exp (e) IN exp (rest) «— letv = e in rest

Phobos constructs an LALR(1) parser from the grammar specification, ap-
plying the appropriate rewrite rule when a production is reduced.

6.3 Intermediate representation

The intermediate representation of the program must serve two conflicting
purposes. It should be a fairly low-level language so that translation to
machine code is as straightforward as possible. However, it should be abstract
enough that program transformations and optimizations need not be overly
concerned with implementation detail. The intermediate representation we
use is similar to the functional intermediate representations used by several

184 CHAPTER 6. LOGICAL FRAMEWORKS AND THE FDL
bop = 4| —|x|/ e == letv=aine Variable definition
rop = <|<|> | ifathen e; else ey Conditional

| >]=|<> | letv= (ai,...,an)ine Tuple allocation
Il == string | letv= aj.fas]ine Subscripting
| a1.]as] — as;e Assignment
a == T|L | letv=a(a,...,a,)ine Function application
| 4 | letcv=ai(az)ine Closure creation
| v | returna Return a value
| a1 bop as | alay,...,an) Tail-call
| a1 rop a9 | let recR=dine Recursive functions
| RI
ex = Av.ey|lv.e Functions
d == funl=-¢e)andd Function definitions

| €

Figure 6.2: Intermediate Representation

groups [12, 80, 172], in which the language retains a similarity to an ML-like
language where all intermediate values apart from arithmetic expressions are
explicitly named.

In this form, the IR is partitioned into two main parts: “atoms” define
values like numbers, arithmetic, and variables; and “expressions” define all
other computation. The language includes arithmetic, conditionals, tuples,
functions, and function definitions, as shown in Figure 6.2.

Function definitions deserve special mention. Functions are defined using
the let rec R = d in e term, where d is a list of mutually recursive func-
tions, and variable R represents a recursively defined record containing these
functions. Each of the functions is labeled, and the term R.l represents the
function with label [in record R.

While this representation has an easy formal interpretation as a fixpoint
of the single variable R, it is awkward to use, principally because it violates
the rule of higher-order abstract syntax: namely, that (function) variables
be represented as variables in the meta-language. In some sense, this rep-
resentation is an artifact of the MetaPRL term language: it is not possible,
given the term language described in Section 6.1.3 to define more than one
recursive variable at a time. We are currently investigating extending the
meta-language to address this problem.

6.3. INTERMEDIATE REPRESENTATION 185

6.3.1 AST to IR conversion

The main difference between the abstract syntax representation and the IR
is that intermediate expressions in the AST do not have to be named. In
addition, the conditional in the AST can be used anywhere an expression can
be used (for instance, as the argument to a function), while in the IR, the
branches of the conditional must be terminated by a return a expression or
tail-call.

The translation from AST to IR is straightforward, but we use it to
illustrate a style of translation we use frequently. The term IR{e;;v.es[v]}
(displayed as [e1];zv.€2[v]) is the translation of an expression e; to an IR
atom, which is substituted for v in expression es[v]. The translation problem
is expressed through the following rule, which states that a program e is
compilable if the program can be translated to an atom, returning the value
as the result of the program.

I' - compilable([e] ;,v.return v)
I' F compilable(e)

For many AST expressions, the translation to IR is straightforward. The
following rules give a few representative examples. Note that the add and
set rules perform substitution, which is specified implicitly using higher-
order abstract syntax.

int] [i] pv-elo] — el
[var] [v1] 15 v2-€[ve] «— efvi]

[add] [er + 2] pv.e[v] «— [e1]pv1-[e2] ;pv2-€[v1 + v2]
[set] [e1.[ea] < es] ;pv-ealv]

— [er] gvr-Tealipva-[es] 1qvs-vn.[va] < vs; ea[L]

For conditionals, code duplication is avoided by wrapping the code after
the conditional in a function, and calling the function at the tail of each
branch of the conditional.

[if] [if e; then e, else e3],zv.€4[v]
— let rec R = fun g = \v.ey[v] and € in
le1] jpv1. if v1 then [es]zv0.(R.g(v2)) else [es] pvs.(R.g(vs))

For functions, the post-processing phase converts recursive function defi-
nitions to the record form, and we have the following translation, using the

186 CHAPTER 6. LOGICAL FRAMEWORKS AND THE FDL

term [d] ;5 to translate function definitions. In general, anonymous functions
must be named ezcept when they are outermost in a function definition. The
post-processing phase produces two kinds of A-abstractions, the A,v.e[v] is
used to label function parameters in recursive definitions, and the Av.e[v]
term is used for anonymous functions.

letrec] [let rec R =din ei]zv.e5[v] «— let rec R = [d],, in [e1],zv.€2[v]

[

[fun] [fun | = e and d];, «— fun | = [e] ,pv.return v and [d] ,
[param| [Apv1.e1[v1]];p02.€2[v2] «— Avi.([e1[v1]] zv2-€2[v2])

[abs] [Avi.e1[v1]] ;pv2-€2]02]

— let rec R = fun g = Avy.[e;[v1]],zvs.return v3 and € in es[R.g]

6.3.2 CPS conversion

CPS conversion is an optional phase of the compiler that converts the pro-
gram to continuation-passing style. That is, instead of returning a value,
functions pass their results to a continuation function that is passed as an
argument. In this phase, all functions become tail-calls, and all occurrences
of let v = ay(ag) in e and return a are eliminated. The main objective in
CPS conversion is to pass the result of the computation to a continuation
function. We state this formally as the following inference rule, which states
that a program e is compilable if for all functions ¢, the program [e], is
compilable.

', c: exp - compilable([e])
[' F compilable(e)

The term [e], represents the application of the ¢ function to the program
e, and we can use it to transform the program e by migrating the call to
the continuation downward in the expression tree. Abstractly, the process
proceeds as follows.

e First, replace each function definition f = Az.e[x] with a continuation
form f = Ac.A\z.[e[z]], and simultaneously replace all occurrences of f
with the partial application f[id], where id is the identity function.

e Next, replace tail-calls [f[id](a1, ..., a,)], with f(c, a4, ..., ay), and re-
turn statements [return a|, with c(a).

6.3. INTERMEDIATE REPRESENTATION 187

e Finally, replace inline-calls [letv = flid](ay,...,a,) in €], with the
continuation-passing version let rec R = fun g = Av.[e], and € in
flg,a1,. .. an).

For many expressions, CPS conversion is a straightforward mapping of
the CPS translation, as shown by the following five rules.

[letv = ain efv]], «— letv = a in [e[v]],

tuple] [letv= (ai,...,a,)ine[]], «—— letv= (a1,...,a,) in [e[v]],
[letv = ay.[as] in e[v]], «— letv = ay.[as] in [e[v]].

[01.[as] — as; e[v]], — ar.[as] — as; [e[v]].

if] [if a then e; else e;], «— if a then [e;], else [es],

The modification of functions is the key part of the conversion. When
a let rec R = d[R] in e[R] term is converted, the goal is to add an extra
continuation parameter to each of the functions in the recursive definition.
Conversion of the function definition is shown in the fundef rule, where the
function gets an extra continuation argument that is then applied to the
function body.

In order to preserve the program semantics, we must then replace all
occurrences of the function with the term f[id], which represents the partial
application of the function to the identity. This step is performed in two
parts: first the letrec rule replaces all occurrences of the record variable R
with the term R[id], and then the letfun rule replaces each function variable
f with the term f[id].

letrec] [let rec R = d[R]in e[R]], «— let rec R = [d[R][id]]], in [e[R[id]]]
[fundef] [fun [= \v.e[v] and d], < fun | = Ac.\v.[e[v]], and [d]
[e
[

C

C Cc

enddef] [e], «—
letfun] [letv = R[ld].l in e[v]], «— letv = R.l in [e[v[id]]],

Non-tail-call function applications must also be converted to continuation
passing form, as shown in the apply rule, where the expression after the func-
tion call is wrapped in a continuation function and passed as a continuation
argument.

lapply] [let v, = vi[id](a) in e[v,]],
— let rec R =fun g = Mv.[e[v]], and einlet g = R.g in f(g;a)

188 CHAPTER 6. LOGICAL FRAMEWORKS AND THE FDL

In the final phase of CPS conversion, we can replace return statements
with a call to the continuation. For tail-calls, we replace the partial applica-
tion of the function f[id] with an application to the continuation.

[return| [return a], «— c(a)

tailcall] [flid](a1,...,a,)], «— f(c,a1,...,an)

6.3.3 Closure conversion

The program intermediate representation includes higher-order and nested
functions. The function nesting must be eliminated before code generation,
and the lexical scoping of function definitions must be preserved when func-
tions are passed as values. This phase of program translation is normally
accomplished through closure conversion, where the free variables for nested
functions are captured in an environment as passed to the function as an ex-
tra argument. The function body is modified so that references to variables
that were defined outside the function are now references to the environment
parameter. In addition, when a function is passed as a value, the function is
paired with the environment as a closure.

The difficult part of closure conversion is the construction of the envi-
ronment, and the modification of variables in the function bodies. We can
formalize closure conversion as a sequence of steps, each of which preserves
the program’s semantics. In the first step, we must modify each function
definition by adding a new environment parameter. To represent this, we
replace each let rec R = d in e term in the program with a new term
letrec R with [Fr = ()] = d in e, where Fr is an additional parameter,
initialized to the empty tuple (), to be added to each function definition.
Simultaneously, we replace every occurrence of the record variable R with
R(Fr), which represents the partial application of the record R to the tuple
Fr.

[frame] let rec R = d[R] in ¢[R]
— let rec R with [Fr = ()] = d[R(Fr)] in e[R(Fr)]

The second part of closure conversion does the closure operation using
two operations. For the first part, suppose we have some expression e with a
free variable v. We can abstract this variable using a call-by-name function
application as the expression letv = v in e, which reduces to e by simple
[G-reduction.

6.3. INTERMEDIATE REPRESENTATION 189

[abs] elv] «— letv = v in e[v]

By selectively applying this rule, we can quantify variables that occur free
in the function definitions d in a term let rec R with [Fr = tuple] = d in e.
The main closure operation is the addition of the abstracted variable to the
frame, using the following rewrite.

[close] letv =ain
letrec R with [Fr = (a4,...,a,)] = d[R;v; Fr]in e[R;v; Fr|
— let rec R with [Fr = (ay,...,a,,a)] =

letv= Fr.n+ 1] in d[R;v; Fr]
in letv = a in ¢[R;v; Fr]

Once all free variables have been added to the frame, the let rec R with
[Fr = tuple] = d in e is rewritten to use explicit tuple allocation.

lalloc] letrec R with [Fr = tuple] = d[R; Fr] in e[R; Fr]
— let rec R = frame(Fr,d[R; Fr]) in let Fr = (tuple) in e[R; Fr]

The final step of closure conversion is to propagate the subscript opera-
tions into the function bodies.

[arg] frame(Fr, fun | = \v.e[Fr;v] and d[Fr))

— fun | = AFr.\v.e[Fr;v]| and frame(Fr, d[Fr])

[sub] let vy = ay.][as] in fun [= A\vy.efvy; v9] and dv]

— fun [= \vy.let vy = ay.[as] in ef[v; o] and let vy = ay.[as] in d[v;]

6.3.4 IR optimizations

Many optimizations on the intermediate representation are quite easy to
express. For illustration, we include two very simple optimizations: dead-
code elimination and constant folding.

Dead code elimination Formally, an expression e in a program p is dead
if the removal of expression e does not change the behavior of the program

190 CHAPTER 6. LOGICAL FRAMEWORKS AND THE FDL

p. We approximate this with the following rewrite rules.

datom] letv=aine«—e

[

[dtuple] letv = (ai,...,a,)ine«—e
[dsub] letv = aj.[as]ine«—— ¢

[dcl] letcv = ay(az) ine «——e

The syntax of these rewrites depends on the second-order specification of
substitution. Note that the pattern e is not expressed as the second-order
pattern e[v]. That is, v is not allowed to occur free in e.

Constant folding Another simple class of optimizations is constant fold-
ing. If we have an expression that includes only constant values, the expres-
sion may be computed at compile time. In the following rewrites the notation
[op] is the interpretation of the arithmetic operator in the meta-language.

[binop] i binop j «— [op](i,)
relop] 1 relop j — [op] (i,)
[ift] if T then e; else ey +—— ¢;
[iff] if 1 then ¢, else ey +—— ¢,

6.4 Summary and Future Work

One of the points we have stressed in this presentation is that the formalized
versions of these algorithms is easy, in fact easier than the definition using
traditional general-purpose languages. By adding these algorithms to the
FDL, the formal description is freely-available for use in a wide variety of
applications. This will increase the reliability of these algorithms, because
the algorithm description is wverifiable, and it will make development easier,
by providing a common implementation.

The formal development of these algoriths was eased for several reasons.
MetaPRL provided a great deal of automation for frequently occurring tasks.
In most cases, the implementation of a new compiler phase meant only the
development of new rewrite rules. There is very little of the “grunge” code
that plagues traditional implementations, such as the maintenance of tables
that keep track of the variables in scope, code-walking procedures to apply a
transformation to the program’s subterms, and other kinds of housekeeping
code.

As a basis of comparison, we can compare the formal compiler in this
chapterto a similar native-code compiler for a fragment of the Java language

6.4. SUMMARY AND FUTURE WORK 191

Description Formal compiler Java
Rewrites Total

CPS conversion 44 347 338

Closure conversion 54 410 1076

Code generation 214 648 1012

Total code base 484 10000 12000

Figure 6.3: Code comparison

we developed as part of the Mojave project [83]. The Java compiler is writ-
ten in OCaml, and uses an intermediate representation similar to the one
presented in this paper, with two main differences: the Java intermediate
representation is typed, and the x86 assembly language is not scoped.

Figure 6.3 gives a comparison of some of the key parts of both compilers
in terms of lines of code, where we omit code that implements the Java
type system and class constructs. The formal compiler columns list the
total lines of code for the term rewrites, as well as the total code including
rewrite strategies. The size of the total code base in the formal compiler is
still quite large due to the extensive code needed to implemented the graph
coloring algorithm for the register allocator. Preliminary tests suggest that
performance of programs generated from the formal compiler is comparable,
sometimes better than, the Java compiler due to a better spilling strategy:.

The work presented in this paper took roughly one person-week of effort
from concept to implementation, while the Java implementation took roughly
three times as long. It should be noted that, while the Java compiler has
been stable for about a year, it still undergoes periodic debugging. Register
allocation is especially problematic to debug in the Java compiler, since errors
are not caught at compile time, but typically cause memory faults in the
generated program.

This work is far from complete. The current example serves as a proof of
concept, but it remains to be seen what issues will arise when the formal com-
pilation methodology is applied to more complex programming languages.
For future work, we intend to approach the problem of developing and val-
idating formal compilers in three steps. The first step is the development
of typed intermediate languages. These languages admit a broader class of
rewrite transformations that are conditioned on well-typed programs, and
the typed language serves as a launching point for compiler validation. The

192 CHAPTER 6. LOGICAL FRAMEWORKS AND THE FDL

second step is to develop a semantics of the intermediate language and vali-
date the rewrite rules for a small source language similar to the one presented
here. It is not clear whether the same properties should be applied to the
assembly language—whether the assembly language should be typed, and
whether it is feasible to develop a simple formal model of the target architec-
ture that will allow the code generation and register allocations phases to be
verified. The final step is to extend the source language to one resembling a
modern general-purpose language.

6.5 Related work

Term rewriting has been successfully used to describe programming lan-
guage syntax and semantics, and there are systems that provide efficient
term representations of programs as well as rewrite rules for expressing pro-
gram transformations. For instance, the ASF+SDF environment [174] allows
the programmer to construct the term representation of a wide variety of pro-
gramming syntax and to specify equations as rewrite rules. These rewrites
may be conditional or unconditional, and are applied until a normal form is
reached. Using equations, programmers can specify optimizations, program
transformations, and evaluation. The ASF+SDF system targets the generation
of informal rewriting code that can be used in a compiler implementation.
Liang [109] implemented a compiler for a simple imperative language
using a higher-order abstract syntax implementation in AProlog. Liang’s ap-
proach includes several of the phases we describe here, including parsing, CPS
conversion, and code generation using a instruction set defined using higher-
abstract syntax (although in Liang’s case, registers are referred to indirectly
through a meta-level store, and we represent registers directly as variables).
Liang does not address the issue of validation in this work, and the primary
role of AProlog is to simplify the compiler implementation. In contrast to our
approach, in Liang’s work the entire compiler was implemented in AProlog,
even the parts of the compiler where implementation in a more traditional
language might have been more convenient (such as register allocation code).
FreshML [156] adds to the ML language support for straightforward en-
coding of variable bindings and alpha-equivalence classes. Our approach
differs in several important ways. Substitution and testing for free occur-
rences of variables are explicit operations in FreshML, while MetaPRL pro-
vides a convenient implicit syntax for these operations. Binding names in

6.5. RELATED WORK 193

FreshML are inaccessible, while only the formal parts of MetaPRL are pro-
hibited from accessing the names. Informal portions—such as code to print
debugging messages to the compiler writer, or warning and error messages
to the compiler user—can access the binding names, which aids development
and debugging. FreshML is primarily an effort to add automation; it does
not address the issue of validation directly.

Previous work has also focused on augmenting compilers with formal
tools. Instead of trying to split the compiler into a formal part and a heuristic
part, one can attempt to treat the whole compiler as a heuristic adding some
external code that would watch over what the compiler is doing and try to
establish the equivalence of the intermediate and final results. For example,
the work of Necula and Lee [138, 139] has led to effective mechanisms for
certifying the output of compilers (e.g., with respect to type and memory-
access safety), and for verifying that intermediate transformations on the
code preserve its semantics.

There have been efforts to present more functional accounts of assembly
as well. Morrisett et. al. [134] developed a typed assembly language capable
of supporting many high-level programming constructs and proof carrying
code. In this scheme, well-typed assembly programs cannot “go wrong.”

194 CHAPTER 6. LOGICAL FRAMEWORKS AND THE FDL

Chapter 7

Samples of Content

Here we show examples of expository hybrid texts referencing formal content.
Here they have been rendered through Latex as hardcopy, and the Latex code
for formal text such as formulas was generated automatically rather than by
hand (though in a few cases some adjustment for improved formatting in this
book was made after the original latex-code generation). When rendered as
on-line texts, references can be followed to the definitions and proofs.

7.1 Excerpt From Event Systems Article

The following is an excerpt from a paper about the logic of events. All the
formulas and terms in this paper were generated automatically by inserting
references to objects in the FDL into the Latex source document. In the
source document we do not even use the Latex math mode — all the math is
generated from the FDL.

7.1.1 Event Systems

We want an abstract model that can capture the observable features of a
distributed system. The fundamental types are locations and events which
we can think of as space and time coordinates. Information is stored at a
location as the value of a state variable or an observable and information is
passed from one location to another along links in the form of messages.
Locations, observables (state variables), local action kinds, and message
tags are all represented as members of the type Id, and links have type

195

196 CHAPTER 7. SAMPLE HYBRID TEXTS

IdLnk. The types Id, and IdLnk are discrete types — equality on each type
is decidable. The operations source(1l) and destination(l) assign source
and destination locations to the links, forming a graph structure on the
locations and links.

A message will consist of a link, a tag, and a value whose type may depend
on the link and the tag.

Msg(M) = 1:Idlnk X t:Id X (M 1 t)
msg(l;t;v) = <1, t, v>

mlnk(m) = m.1

mtag(m) = m.2.1

mval(m) = m.2.2
haslink(l; m) = mlnk(m) =1
Msg_sub(l; M) = {m:Msg(M)| haslink(l; m)}
onlnk(l;mss) = filter(Ams.mlnk(ms) = 1;mss)

Every event will have a kind, a value, and a location. So an event is a
point in spacetime. There are two kinds of events, local events have a kind
that is an Id and the receipt of a message on a given link with a given tag is
the other kind of event.

Knd = IdLnk X Id + Id
isrcv(k) = isl(k)
islocal(k) = —pisl(k)
rcv(l; tg) = inl <1, tg>
locl(a) = inr a
lnk(k) = outl(k).1
tag(k) = outl(k).2
act(k) = outr(k)
kindcase(k;a.flal;1,t.g[l; t]) = if islocal(k)

then f[act (k)]
else gllnk(k); tag(k)]
fi

An event system is a structure consisting of a discrete type E of events and
a set of operations and axioms. Operations loc(e), kind(e), and val(e)

7.1. EXCERPT FROM EVENT SYSTEMS ARTICLE 197

extract the location, kind, and value from an event. Operations (x when e)
and (x after e) observe the values of the observables at the points in space-
time. Operation first(e) is a boolean that is true of only the first event
at each location. Messages must originate at some point in spacetime, and
the operations sends(1;e), sender(e), and index(e) define this structure.
The sends(1;e) of an event e on link 1 will be a list of messages on that
link that originate at e. We build the semantics of message delivery into
our model in a way that makes every link into a reliable fifo channel. Thus
every message is eventually received, and for a receive event e the operations
sender (e) and index(e) will provide the originator of the message received
and the index of that message in the list that originated there. The tempo-
ral order structure on our spacetime is provided by two orderings on events
(e <loc e’) and (e < e’). The local ordering (e <loc e’) is a total, dis-
crete, well-founded, linear ordering on events with the same location. So, at
each location, if there are any events, there must be a <loc-minimal event
satisfying the predicate first(e), and every non-minimal event e must have
an immediate local predecessor pred(e).

The causal ordering (e < e’) is also well-founded and is the transitive
closure of (e <loc e’) and the relation that a receive event e is preceded
by sender (e).

Formally, an event systems is a member of the following dependent prod-
uct type. This type is typical of the way structures are represented in type

198 CHAPTER 7. SAMPLE HYBRID TEXTS

theory.

ES E:U

eq:EqDecider(E)

T:Id - Id - U

V:ild - Id —» U

M:Idlnk — Id — U

unused:Top

loc:E — Id

kind:E — Knd

val:e:E — eventtype(kind;loc;V;M;e)

when:x:Id — e:E — (T (loc e) x)

after:x:I1d — e:E — (T (loc e) x)

sends:1:IdLnk — E — (Msg_sub(1l; M) List)

sender:{e:E| Tisrcv(kind e)} — E

index:e:{e:E| Tisrcv(kind e)} — N||sends
1nk(kind e)
(sender e) ||

XX XXX XXX XXXXX

X first:E — B
X pred:e’:{e’:E| —](first e’)} — E
X causl:E — E — P
X p:ESAxioms(E;T;M;
loc;kind;val;
when;after;
sends;sender;index;
first;pred;
causl)
X Top

The type Top at the end allows us to define subtypes of ES that have addi-
tional operators and axioms.
The axioms of the event system structure are the following

Trans(E;e,e’. (e <loc e’)) (7.1)
SWellFounded((e <loc e’)) .
Ve,e’:E. (7.3)

(loc(e) = loc(e?)
<—> (e <loc e’) V (e =¢e’) V (e’ <loc e))

. EXCERPT FROM EVENT SYSTEMS ARTICLE 199

Ve:E. (Tfirst(e) <= Ve’:E. (—(e’ <loc e))) (7.4)
Ve:E (7.5)

((=Tfirst(e))

= ((pred(e) <loc e)

N (Ve’:E
(—((pred(e) <loc e’) A (e’ <loc e))))))

Ve:E (7.6)

((=Tfirst(e))

= (Vx:Id. ((x when e) = (x after pred(e)))))
Trans(E;e,e’.(e < e’))
SWellFounded((e < e’))
Ve:E

((Tisrcv(e))

= (sends(lnk(e);sender(e)) [index(e)]
= msg(lnk(e);tag(e);val(e))))

Ve,e’:E. ((e <loc e’) = (e < e’)) (7.10)

Ve:E. ((Tisrcv(e)) = (sender(e) < e)) (7.11)

Ve,e’:E. (7.12)
((e <€)

= (((=Tfirst(e’))
cA ((e < pred(e’)) V (e = pred(e’))))
V ((Tisrcv(e?))
c/A\ ((e < sender(e’)) V (e = sender(e’))))))

Ve:E (7.13)
((Tisrcv(e)) = (loc(e) = destination(lnk(e))))

Ve:E. V1:IdLnk. (7.14)
((=(1loc(e) = source(l))) = (sends(l;e) = []))

Ve,e’ :E. (7.15)
((Tisrcv(e))

= (Tisrcv(e’))
= (Ink(e) = 1nk(e’))
= ((e <loc e’)
<—> (sender(e) <loc sender(e’))
V ((sender(e) = sender(e’))
A (index(e) < index(e’)))))

200 CHAPTER 7. SAMPLE HYBRID TEXTS

Ve:E. V1:IdLnk. Vn:N||sends(1l;e)|]. (7.16)
de’:E
((Tisrcv(e’))
cA ((1nk(e’) = 1)
A (sender(e’) = e)
A (index(e’) = n)))

Consequences of the axioms

We state as lemmas some properties that follow from the axioms.

Ve:E. (—(e <loc e)) (7.17)
Ve:E. (—(e < e)) (7.18)
Ve,e’ :E. (7.19)

((e <loc e’)

<= (~Tfirst(e’)) A ((e = pred(e’)) V (e <loc pred(e’))))
Ve,e’ :E. (7.20)

(((e <loc e’) A (Vel:E. (—((e <loc el) A (el <loc e’)))))

= (e = pred(e’)))

Ve’,e:E. Dec((e <loc e’)) (7.21)
Ve’,e:E. Dec((e < e’)) (7.22)
Ve:E. V1:IdLnk. Vm:Msg. (7.23)

((m € sends(1;e))
= de’:rvc(l,mtag(m),v).(e < e’)
A ((msgtype(m) = valtype(e’)) cA (v = mval(m))))

proofs: Lemmas 7.17 and [7.18 follow from the general fact that
WellFounded(Rel) = AntiReflexive(Rel)

Suppose (e <loc e’). From axiom (7.4) we conclude = Tfirst(e’), and
from axiom (7.5) we conclude

(pred(e’) <loc e’)
A (Ve’’:E
(= ((pred(e’) <loc e’’) A (e’’ <loc e’))))

So —(pred(e’) <loc e) and hence, from axiom (7.3), e < pred(e’) ,
which proves lemma [7.19. If we also have

Vel:E. (= ((e <loc el) A (el <loc e’)))

7.1. EXCERPT FROM EVENT SYSTEMS ARTICLE 201

then
—(e <loc pred(e’))

so e = pred(e’), which proves lemma [7.20.

We may now prove lemma [7.21 by induction, using axiom (7.2). By
lemma 7.19/it’s enough to decide (—Tfirst(e’)) A e < pred(e’) , but
this is decidable by the induction hypothesis, and the decidability of equality
in E. The proof of lemma 7.22/ is similar. Using the other axioms we can
show that axiom (7.12) can be proved as an if and only if statement, and
hence it is enough to show that its righthand side is decidable. This follows
from the induction hypothesis and the decidability of equality in E.

If (msg(1;tg;v) € sends(l;e)) then for somen < ||sends(l;e)ll,

msg(l;tg;v) = sends(1l;e) [n]
By axiom (7.16)) there is an €’ such that
((Tisrcv(e’)) A (1nk(e’) = 1)) A (sender(e’) = e) A (index(e’)
So, by axiom (7.9),

(val(e’) = mval(msg(l;tg;v)))
A (tg = mtag(msg(l;tg;v)))

That implies that kind(e’) = rcv(l; tg) and since e = sender(e’) we
have (e < e?’) by axiom (7.11). This proves lemma [7.23.

Local histories

An event system is a rich enough structure that we can define various “his-
tory” operators that list or count previous events having certain properties.
Because we can define operators like these we do not need to add “history
variables” to the states in order to write specifications and and prove them.

The basic history operator lists all the prior events at a location.
Definition

before(e) = if first(e)
then []
else before(pred(e)) @ [pred(e)]
fi
[e, e’] = filter(Aev.es-ble{i:1}(es;e;ev);before(e’) @ [e’])

n)

202 CHAPTER 7. SAMPLE HYBRID TEXTS

rcvs(l;before(e’)) = filter(Ae.haslnk(l;e) ;before(e’))
snds(l;before(e)) = concat(map(Ae.sends(l;e);before(e)))
snds(1l, before(e,n)) = snds(l;before(e)) @ firstn(n;sends(l;e))

Using these operators we can state (and prove) the following important
lemma.
Lemma Fifo

Ve:E
((Tisrcv(e))

= (snds(1lnk(e), before(sender(e),index(e)))
= msgs(1lnk(e) ;before(e))))

proof: The proof is by induction on <j,.. The full proof is in then FDL.

O
Event system shorthands
We make some shorthand notations:
Ve@i.Ple] = Ve:E. ((loc(e) =1i) = Ple])
Je@i.P[e] = He:E. ((loc(e) = i) A Plel)

Q@i always.P[x] Ve@i.P[(x when e)]
@i always.P[x1l; x2] = Ve@i.P[(x1 when e); (x2 when e)]
Je=k(v) .P[e; V] Je:E. ((kind(e) = k) A Ple; val(e)])

de:rvc(l,tg,v).Ple; vl = de:E
((Tisrcv(e))
A (Ink(e) = 1)
A (tag(e) = tg)

A Ple; val(e)])

7.1.2 Worlds
Definition of World

A world is a generalized trace of the execution of a distributed system. Time
is modeled as the natural numbers N. By observing the system at every

7.1. EXCERPT FROM EVENT SYSTEMS ARTICLE 203

location i and every time t, we have a state s(i;t), an action a(i;t), and
a list of messages m(i;t). The state s(i;t) is the state of the part of the
system at location i at time t. We assume that the type of the state at
location i does not change with time, and we use a general model of state
as a record. A record is a dependent function. A world contains a type X
of state variable names and and a type assignment 7' : Loc — X — U. The
state at location ¢ of the world will have type Record(X,T()).

The action a(i;t) is the action that was chosen by the system to be
executed next at location i and time t. It will always be possible that no
action was taken at i,t so we must have a null action. Other action will be
local actions with names taken from a type of action names A, and also the
action of receiving a message. Every action will have a kind of one of these
three forms (null, local, or receive), and also a value whose type depends on
the kind and location of the action.

action(dec) = Unit + (k:Knd X (dec k))
isnull(a) = isl(a)
kind(a) = outr(a).1
val(a) = outr(a).2
isrcv(l;a) = (—pisnull(a))

Ap isrcv(kind(a))
Ap lnk(kind(a)) =1

The messages m(i;t) are the list of messages sent from location i at time
t. For messages, we use the message type Msg(M) defined earlier.

World = T:Id — Id — U

X TA:Id — Id — U

X M:IdLnk — Id — U

X 8:1:1d - N — x:Id — (T i x)

X a:i:Id — N — action(w-action-dec(TA;M;i))

X m:i:Id
— N
— ({m:Msg(M) | source(mlnk(m)) = i} List)

X Top

If w: World is a world, then we write Wrye, Wrnk, - .., Ws, We, and w,, for

the components of w.

204 CHAPTER 7. SAMPLE HYBRID TEXTS

Fair-Fifo Worlds

We next define a fair-fifo world. We first note that, given world w, we can
find all the messages sent on link [and all and receive actions that have
occurred on link [before time t:

m(i;t) = w.2.2.2.2.2.1) i t
m(l;t) = onlnk(1l;m(source(l);t))
snds(l;t) = concat(map(Atl.m(1;t1);upto(t)))
rcvs(l;t) = filter(Aa.isrcv(l;a);map(Atl.a(destination(l);t1);
upto(t)))

The send and receive messages before time ¢ define an implicit queue, and
we can test whether the queue for link [is empty and for whether message
ms is at the head of the queue for its link:

queue(1l;t) = nth tl1(llrcvs(l;t)|l;snds(1;t))

The predicate FairFifo is the conjuntion of the following four clauses

Vi:Id. Vt:N. V1:IdLnk. (7.24)
((—(source(1l) = 1)) = (onlnk(1;m(i;t)) = [1))
Vi:Id. Vt:N. (7.25)

((Tisnull(a(i;t)))
= ((Vx:Id. (s(i;t + 1).x = s(i;t).x)) A m(i;t) = [1)))

Vi:Id. Vt:N. V1:IdLnk. (7.26)
((Tisrcv(lj;a(i;t)))
= ((destination(l) = i)
A ((llqueue(1;t) Il > 1)
cA (hd(queue(l;t)) = msg(a(i;t))))))

V1:IdLnk. Vt:N. (7.27)
Jdt’:N
(t <)

A ((Tisrcv(l;a(destination(1l);t’)))
V (queue(l;t’) = [1)))

The first clause says that location ¢ can only send message on links whose
source is 7. The second clause says that a null action leaves the state un-
changed and sends no messages. The third clause says that a receive action

7.1. EXCERPT FROM EVENT SYSTEMS ARTICLE 205

at location ¢« must be on a link whose destination is ¢« and whose message is
at the head of the queue. The fouth clause is the fairness clause. It says that
for every queue, infinitely often either the queue is empty or a receive event
occurs at its destination.

Event System of a World

If w is a fair-fifo world, then we can construct an event system from w. We
have to define the type of events and define all the operations on events and
show that the axioms are satisfied. Our events will be the points (i,¢) in
spacetime at which an action occured in w.

E = {p:Id X N| —Tisnull(a(p.1;p.2))}
loc(e) = e.l
time(e) = e.2
Action(i) = action(w-action-dec(w.TA;w.M;i))
Wstate((1, 1)) = ws(i, 1)
Wstate ((3, 1)) = wg(i,t + 1)
Winit (1) = w4(7,0)
Winsgs ((,1)) = wm(i,1)

For and event e € wg we have —isnull(Waeion(€)) so we may define

kind(a) = outr(a).1
val(a) = outr(a).2

The type of the value of an event can be determined from its location and
kind using the type assignments w4 and wy, as follows:

V(i;k) = kindcase(k;a.(w.2.1) i a;1l,tg.(w.2.2.1) 1 tg)
The observation operators are defined in the obvious way:

(x when e) = s(e.1;e.2).x
(x after e) = s(e.1;(e.2) + 1).x
sends(l;e) = onlnk(l;m(loc(e);time(e)))

206 CHAPTER 7. SAMPLE HYBRID TEXTS

The local ordering operations are also straightforward.

first(e) = if (time(e) =, 0) then tt
if isnull(a(loc(e);time(e) - 1))
then first(<loc(e), time(e) - 1>)
else ff
fi

pred(e) = 1if isnull(a(loc(e);time(e) - 1))
then pred(<loc(e), time(e) - 1>)
else <loc(e), time(e) - 1>
fi
e <loc e = (loc(e) = loc(e’)) A (time(e) < time(e’))
To define the sender and index operations that match a receive event to its

origin, we first define a match with the same snds and rcvs functions used
in defining FairFifo.

match(l;t;t’) = |lsnds(1;0)Il <z |lrcvs(1l;t’)||
Ny Ilrcvs(1;t°) || <z |lsnds(1l;t) ||
+ | |lonlnk(1l;m(source(1l);t)) ||

Then, we define sender and index as follows

sender(e) = <source(lnk(kind(e)))
, mu(At.match(lnk(kind(e));t;time(e)))
>

index(e) = |lrcvs(lnk(kind(e));time(e)) ||

- | Isnds(Ink(kind(e)) ;time(sender(e))) | |
Finally, the causal ordering < is defined as a transitive closure

e <ce’ = e
Ae,e’.
(e <loc e’
V ((Tisrcv(kind(e’))) cA (e = sender(e’)))) "+ e’

Putting all of these defined operations together, we have the event structure
defined by the world and we can prove that the constructed event system
satisfies all the event system axioms.

7.1. EXCERPT FROM EVENT SYSTEMS ARTICLE 207

Theorem (World-Event-System)

Vthe,, :World

(FairFifo

= ESAxioms(E;Ai,x.vartype(i;x);the,.M;
Ae.loc(e) ;Ae.kind(e) ;Ae.val(e);

Ax,e.(x when e);\x,e.(x after e);
Al,e.sends(1l;e);Ae.sender(e);Ae.index(e);
Ae.first(e);Ae.pred(e);

Ae,e’.e <c e’))

proof: The full proof is in then FDL.

g

7.1.3 Message-Automata

Event systems and worlds are infinite objects, but they arise from the be-
haviors of distributed systems where, at each location, only a finite program
constrains the behavior. We call our representations of these finite programs
message-automata. To make our representations finite we need to replace
infinite things like total type assignments with finite approximations, so we
need some notation for finite partial functions.

Finite partial functions

The type a:A fp-> B[a] is the type of finite partial functions f from A to
B[a] . Its domain is dom(f), and we define

f(x)?7z = if x € dom(f) then f(x) else z fi
z '= f(x) ==> Pla; z] = (Tx € dom(f)) = Plx; f(x)]

For finite partial functions £ and g we define:

fCg = Vx:A

((Tx € dom(f))

= ((Tx € dom(g)) cA (f(x) = gx))))
Vx:A

(((Tx € dom(f)) A (Tx € dom(g)))

= (&) = gx)))

fllg

208 CHAPTER 7. SAMPLE HYBRID TEXTS

f®g = <(£.1) @ filter(Aa.(—pa € dom(£));g.1)
, Aa.f(a)7g(a)
>

Note that there is an empty partial function (with an empty domain) that
is compatible with every finite partial function and is an identity operator
with respect to £ @ g.
lemma

Vf,g:a:A fp->Bla]. (f ||l g={f CfPgAANgCfDgh
lemma

Vf,g:a:A fp—> Blal. Vx:A. VP:a:A — Bla] — P.

(g € f = z !=f(x) ==> P[x;z] = z != g(x) ==> P[x;z])

Definition of Message-Automata

The message-automata share with the worlds and the event systems the same
spaces of names for state variables, local action kinds, and message tags.
But, where a world has, at each location i, type assignments 7'(i) : — XU,
TA(i) : -AU, and M : Lnk — Tag — U, a message-automaton will have
finite type assignments (declarations)

ds:x:1d fp—> U
da :a:Knd fp-> U

The domain of ds is the set of declared state variables, the domain of da is
the set of declared action kinds, both local actions and send/receive actions.

The state of a message-automaton will be the record defined by its dec-
larations ds. We can define this as follows:

State(ds) = x:Id — ds(x)?Top

Here we extend the finite partial function ds to a total function by assigning
the type Top to any undeclared state variable.

Every action has a value whose type depends only on the action kind.
The type of the value associated with an action of kind & is defined by

Valtype(da;k) = da(k)?Top

In addition, to its declarations, the message-automaton does the following
things

7.1. EXCERPT FROM EVENT SYSTEMS ARTICLE 209

et

pre

send

It constrains the initial values of the declared state variables. So, it has
a finite partial function init of type x:Id fp-> ds(x)?Void. Thus, if
x is in the domain of init then x is a declared state variable and init(x)
is a value of the declared type ds(z) of state variable x.

It declares preconditions on its local actions. So, it has a finite partial
function pre of type

a:Id fp-> State(ds) — Valtype(da;locl(a)) — P

Thus, if a is in the domain of pre then a is a declared local action and
pre(a) is a predicate on the state and the declared type da(a) of the
action.

It declares the effects of actions (local and input) on state variables.
So, it has a finite partial function ef of type

kx:Knd X Id fp-> State(ds)
— Valtype(da;kx.1)
— ds(kx.2)?Void

Thus, if (k, z) is in the domain of ef then £ is an action kind and z is a
declared state variable, and ef((k,x)) is a function from the state and
the action value to the type ds(z) of x. This function defines how the
new value of x will be computed from the current state and the value
of the action.

It declares the messages sent by actions. So, it has a finite partial
function send of type

k1:Knd X IdLnk fp-> (tg:Id
X (State(ds)
— Valtype(da;kl.1)
— (da(rcv(kl.2; tg))7?Void List))) List

Thus, if (k,[) is in the domain of send then k is an action kind and !
is link. snd({k,1)) is a list of pairs of type

tg:Id X (State(ds)
— Valtype(da;k1l.1)
— (da(rcv(kl.2; tg))?Void List))

210

frame

sframe

CHAPTER 7. SAMPLE HYBRID TEXTS

For each pair (tg, f) in this list, the function f when applied to the
current state and the value of the action gives a list of values of the
type declared for link [and tag tg. The concatenation of all of these
lists is the list of messages the action will send. This form for the send
clause allows us to have conditional sends since the list returned by f
may be empty. Also, a single action may send multiple messages on a
link (and it may send on multiple links if there are other send clauses).

It declares implicit effects. By convention, the effects that are explic-
itly given are the only actions that affect the given state variables. So
the implicit effect of any other action is to leave the state of variable
unchanged. Since we want each clause of a message-automaton to be
meaningful on its own, we can’t depend on such contextual conven-
tions, so we have to make the implicit effects explicit in so-called frame
clauses. The message-automaton has a finite partial function frame of
type x:Id fp-> Knd List. So if x is in the domain of frame then z
is a declared state variable and frame(z) is a list of actions kinds that
contains all the kinds that affect x.

It declares implicit sends. By convention, the sends that are explicitly
given are the only actions that send messages on the given link with
the given tag. So the implicit sends of any other action is to send no
messages of the given link and tag. We make the implicit sends explicit
in sframe clauses. The message-automaton has a finite partial function
sframe of type 1tg:IdLnk X Id fp-> Knd List. So if {/,tg) is in
the domain of sframe then [is an output link and sframe({l,tg)) is
a list of actions kinds that contains all the kinds that send messages
with tag tg on link [.

Putting all of these pieces into a structure we define the type of message-

7.1. EXCERPT FROM EVENT SYSTEMS ARTICLE 211

automata:

Msgh = ds:x:Id fp—> U
X da:a:Knd fp-> U
X init:x:Id fp-> ds(x)?Void
X pre:a:Id fp—> State(ds)
— Valtype(da;locl(a))
— P
X ef:kx:Knd X Id fp-> State(ds)
— Valtype(da;kx.1)
— ds(kx.2)?Void
X send:kl:Knd X IdLnk fp-> (tg:Id
X (State(ds)
— Valtype(da;kl1.1)
— (da(rcv(kl.2; tg))?Void List))) List
X frame:x:Id fp—> Knd List
X sframe:1tg:IdLnk X Id fp-> Knd List
X Top

Message-Automata M1 and M2 are compatible M1 || M2 or satisfy the
relation M1 C M2 the eight finite partial functions, ds, da, init, pre, ef, snd,
frame, and sframe of M1 and M2 are compatible or are related by C. And
we define M1 @ M2 by applying the & operation to each of the components.

lemma

VM1,M2:MsgA. M1 C M1 @ M2
VM1,M2:MsgA. (M1 || M2 = M2 C M1 @ M2)
Note that there is an empty Message-Automaton in which every component

is the empty partial function. The empty automaton is compatible with
every automaton and is the identity wrt the join operation.

Distributed Systems

A distributed system is an assignment of a message automaton to every
location. The message automaton at a location may be the empty automaton
and the distributed system has finite support if the automaton at all but a
finite number of locations is the empty automaton.

Dsys = 1i:Id — MsgA

212 CHAPTER 7. SAMPLE HYBRID TEXTS

We say that D2 extends D1 if

D1 C€C D2 = Vi:Id. M(@i) C M(@i)

Semantics of Distributed Systems and Message-Automata

The semantics of a distributed system D is the set of possible worlds w that
are consistent with it. To be consistent, w must have the same signature as
D, be a fair-fifo world, and respect the meanings of the six components init,
pre, ef, send, frame, and sframe of the message-automata at each location.
The predicate PossibleWorld(D;w) is defined to be the conjunction of the

following clauses

FairFifo
Vi,x:Id. (vartype(i;x) Cr M(i).ds(x))
Vi:Id. Va:Action(i).

((—=Tisnull(a))

= (valtype(i;a) Cr M(i).da(kind(a))))
V1:IdLnk. Vtg:Id.

((w.M 1 tg) Cr M(source(l)).da(rcv(l; tg)))

Vi,x:Id. M(4i).init(x,s(i;0).x)

(7.28)
(7.29)
(7.30)

(7.31)

(7.32)

7.1. EXCERPT FROM EVENT SYSTEMS ARTICLE 213

Vi:Id. Vt:N. (7.33)
((—=Tisnull(a(i;t)))
= (((Tislocal(kind(a(i;t))))
= M(i).pre(act(kind(a(i;t))),Ax.s(i;t).x,
val(a(i;t))))
A (Vx:1Id
M(i) .ef(kind(a(i;t)),x,Ax.s(i;t) .x,
val(a(i;t)),s(i;t + 1).x))
A (V1:IdLnk
M(i) .send(kind(a(i;t));1;Ax.s(i;t).x;
val(a(i;t));withlnk(1;m(i;t));i))
A (Vx:1Id
((—=M(1) .frame(kind(a(i;t)) affects x))
= (s(i;t).x = s(i;t + 1).x)))
A (V1:IdLnk. Vtg:Id.
((—M(i) .sframe(kind(a(i;t)) sends
<1,tg>))
= (w-tagged(tg; onlnk(1l;m(i;t)))
= [1)))))

Vi,a:Id. Vt:N. (7.34)
3t’:N
((t < t7)
A (((—=Tisnull(a(i;t?)))
cA (kind(a(i;t’)) = locl(a)))
V (—a declared in M(i))
V unsolvable M(i).pre(a,Ax.s(i;t’).x)))

The following result is crucial to our theory:
Theorem

VA,B:Dsys.
(A CB
= (Vw:World
(PossibleWorld (B;w)
= PossibleWorld(A;w))))

proof: For every i € Loc, My = D1(i) € My = Dy(i). The definition
of PossibleWorld uses the automata M € {M;, My} only in the context of

214 CHAPTER 7. SAMPLE HYBRID TEXTS

conditional application of the finite partial functions, M.init, M.pre, M.ef,
M.send, M.frame, and M.sframe, and also in some equality propositions
over types State(X, M.ds), M.ds(x), and List(Message(Lnk, Tag, M.dout)).
The conditional applications all occur positively, and so the statement for My
implies the statement for M7, by the definition of M; C Mj and the lemma
on conditional application of finite partial functions. The equalities also oc-
cur positively, and, so the equality for M, implies the equality for M; because
State(X, Ms.ds) is a subtype of State(X, Mj.ds), and similarly, Ms.ds(z) is
a subtype of M;j.ds(z) and List(Message(Lnk,Tag, My.dout)) is a subtype
of

List(Message(Lnk,Tag, My.dout)).

7.2 Some Lessons about Counting

These are explanations of elementary facts about counting developed for
another project. They were selected for presentation here because the ele-
mentary content is presumably already well understood, allowing the reader
to focus on the connection exhibited between formal and intuitive mathemat-
ical texts. Still, elementary theorems of the kind represented here, such as
the pigeonhole principle and facts about injections and bijections, are used
in more advanced developments as well.

7.2.1 Introduction to Counting

Counting is finding a function of a certain kind. When we count a class of
objects, we generate an enumeration of them, which we may represent by a
One-to-One Correspondence (section 7.2.2)) from a standard class having that
many objects to the class being counted. Our standard class of n objects, for
n € N, will be N,,, which is the class {k:Z | 0 < k < n } of natural numbers
less than n. A more familiar choice of standard finite classes might have been
{k:Z | 1 < k < n }, but there is also another tradition in math for using
{BZ|0<k<n}.

So, a class A has n members just when
3f:(Np—A). Bij(Ny; A; f)
which may also be expressed as

(Nn ~ A)

7.2. LESSONS ON COUNTING 215

since (3f:(A—B). Bij(4; B; f)) & (A ~ B), or as
(A~ N,)since (A~ B) = (B~ A).

Now, since counting means coming up with an enumeration, we may ask
whether counting in different ways, i.e., coming up with different orders, will
always result in the same number, as we assume. Of course, we know this is
so, but there are different degrees of knowing. It is not necessary to simply
accept this as an axiom; there is enough structure to the problem to make a
non-trivial proof.

(A~N,) = A~Ny)=m=kFk

Gloss (section [7.2.1.2)
This theorem is closely related to what is sometimes called the “pigeon hole
principle,” which states the mathematical content of the fact that if you put
some number objects into fewer pigeon holes, then there must be at least
two objects going into the same pigeon hole. Number the pigeon holes with
the members of Ni, and the objects with the members of N,,,; then a way of
putting the objects into the holes is a function in N,,,— Ny:

Vm,k:N, f:(N,,— Ng). k<m = (Fz,yN,,. x # y & f(z) = f(y))

Gloss (section [7.2.1.3)
If you examine the proofs of these theorems, you will notice that they both
cite the key lemma

(3f:(N,,— Ng). Inj(N,,,; Ng;) = m<k.

Gloss (section [7.2.1.1)

Counting Indirectly (section [7.2.3) is a strategy more common than explicitly
describing the a counting function for a problem.

7.2.1.1 Proof of a Fundamental theorem for Finite In-
jections
Show (3f:(N,,— Ng). Inj(N,,; Ng; f)) = m<k.

This will be proved using induction on m, varying k. The base case, 0<k,

is trivial, so we move on to the induction step, assuming 0<m, and assuming
the induction hypothesis:

216 CHAPTER 7. SAMPLE HYBRID TEXTS

VE'N. (3f":(Np—1— Np). Inj(Ny,—1; Nps f)) = m—1<k'.
The problem is then to show that m<k, given some f € N,,— Nj such that
Inj(Ny; Ny f).

Obviously, m<k will follow from m—1<k—1, so by applying the induction

hyp to k—1, our problem reduces to finding an f’ € N,,_1— N;_; such that
Inj(N,,—1; Ng—1; f'). Such a construction is

Replace k by f(m) in f =4 Replace z s.t. x=2k by f(m) in f

(Replace x s.t. P(x) by yin f)(i) =gt if P(f(i))— y else f(i) fi

Inj(Npt1: Nip1; f) = Inj(Np; Ny; Replace &k by f(m) in f)
This last theorem is sufficient for concluding our argument.
QED

Note: Considering f € Ni1;— Nj;; as a sequence of k+1 values selected
from the first j+1 natural numbers, (Replace j by f(k) in f) € Ny— N;
removes the entry for the largest value, namely j, and replaces it with the
last value of the sequence, namely f(k), if necessary.

This is the key lemma to the proofs of the uniqueness of counting, and
the pigeon hole principle, i.e.,

(A~N,) = (A~Ny)=m=k

Gloss (section [7.2.1.2)

Vm kN, fi(Npo Ny). k<m = (GegNp. @ £y & [(2) = f(1))

Gloss (section [7.2.1.3)

7.2.1.2 Proof that Counting is Unique

Show (A ~N,,) = (A~ Ny) =m =k

See Introduction to Counting (section [7.2.1)).

We shall build this argument from a lemma about injections on standard
finite types,

(3f:(Nip— Ng). Inj(Nip; Ni; f)) = m<k,

and exploiting the connection between X ~ Y and injections, and the con-
nection between z<y and equality.

Assume a class has size m, but also has size k; show m must actually be
k. Each direction of the equality, namely,

7.2. LESSONS ON COUNTING 217

m<k and k<m,
may be proved in the same way, so we generalize the goal slightly to
Vo,y:N. (N, ~ N,) = z<y.

Once this is proved, m<k and k<m follow easily from it since N,,, ~ N and
N; ~ N,, follow easily from our assumptions and the fact that X ~ Y is an
equivalence relation, i.e.,

EquivRel X,Y:Type. X ~ Y.

So, it is enough to show that <y, assuming that N, ~ N,. The connection
between X ~ Y and bijection is established by

(3f:(A—DB). Bij(4; B; f)) & (A~ D).

And since being an injection is part of being a bijection, i.e.,
Bij(4; B; f) =aet Inj(4; B; f) & Surj(4; B; f),

x<y follows from the lemma
(3F:(Npy— Ny). Inj(Npws Ny) = m<k.

QED

A corrolary is Va,b:N. (N, ~ Ny) < a = b.

7.2.1.3 Proof of the Pigeonhole principle

Show Vm,k:N, f:(N,,— Ny). k<m = 3Bz,y:N,,. v #y & f(z) = f(y)).

That is, putting a finite collection of m objects into fewer pigeonholes
(k<m) means there are two distinct objects put into the same hole. Without
loss of generality it is enough that

5N, y:Ng. f(2) = f(y)
i.e. that the second object y precedes the first object x. By a lemma

vmN, f:(Ny,— Z). =Inj(N,; Z; f) = 3N, y:N,. f(z) = f(y))
Gloss (section [7.2.1.4)

218 CHAPTER 7. SAMPLE HYBRID TEXTS

it is enough to show that
—Inj(Ny; Z; f)

(since f € N,,— Nj automatically puts f € N,,,— Z as well).
But according to our core lemma

(3f:(Nm— Ni). Inj(Np; N f)) = m<k
Gloss (section [7.2.1.1)

Inj(N,,; Z; f) would contradict our assumption that k<m, hence
—Inj(Ny; Z; f).
QED

7.2.1.4 Proof of a lemma for the Pigeonhole principle

Show Vmu:N, f:(N,,— Z). =Inj(N,,,; Z; f) = (3N, y:N,. f(z) = f(y)).

That is, given a non-injective assigment of integers to a finite collection
we can find two objects (with the second objects y preceding the first value x)
that are assigned the same value. This reduces to showing the contrapositive,
namely

~(32: N, y:Ne. f(z) = f(y)) = Ij(Nim; Z; [)

(computationally, since there are only finitely many choices for = and y in the
specified domain, one could just exhaustively try them all and see if there is
a pair whose assignments by f agree). So assuming that

(1) =(32:Npm, y:N. f(z) = f(y))

and employing the definition

Inj(A; B; f) =qer Vai,az:A. f(ay) = f(az) € B = a1 = ay
our proof reduces to showing that if
(2) flar) = flaz)

then a; = a,. This further reduces to showing that

7.2. LESSONS ON COUNTING 219

aa<ag & —as<ag

which each follow from assumptions (1) and (2).
QED
This is a lemma for a proof of the pigeonhole principle

Vi kN, Fi(Npm No). k<m = (GogiNo. 7 £ y & £(2) = £(1))
Gloss (section [7.2.1.3)

7.2.2 Omne-to-One Correspondence

A one-to-one correspondence between two classes is a way of matching them
member-for-member. Examples:

e At an event with assigned seating one would expect a one-to-one cor-
respondence between the seats and the tickets, the correspondence
being between each seat and the ticket printed with its location code.

e Planning for a formal dinner entails choosing a one-to-one correspon-
dence between the guests and their places at the table.

e Counting a finite class of objects typically consists of finding a one-to-
one correspondence between the items of the class and the numbers
from 1 to however many there are.

e A major use for finding one-to-one correspondences is to establish,
without actually counting, that some class has the same size as another
class of known size.

e In programming, one often introduces, what are called variously,
pointers, indices, or handles to be used in place of data objects they
point to. The relation between these pointers and their objects is
often expected to be a one-to-one correspondence.

Notice that a one-to-one correspondence between two classes will not be
the only one if the classes have more than one member each.

As usual, this concept of a method for matching is not built-in to our
growing library of mathematics, and may be introduced by definition in a
variety of ways.

We shall use functions for these methods of matching: a function will be
used to match each input with its output. For example, the function f €

220 CHAPTER 7. SAMPLE HYBRID TEXTS

N — N such that f(n) = 2-n, matches each natural number with its double,
and is a one-to-one correspondence between the natural numbers N, and the
even natural numbers, {i:N | is_even(i) }.

But not every function expresses a one-to-one correspondence. For ex-
ample, f € N — N, such that f(i) = i for even ¢, and f(i) = 2-¢ for odd
1. Notice that, again, every natural number gets mapped to an even num-
ber, and every even number is mapped to itself, but it is not a one-to-one
correspondence because both 1 and 2 get “matched” against 2.

So, both of these functions are in N —{i:N | is_even(i) }, but we need
something more to narrow such functions to those that are one-to-one cor-
respondences. This can be done is various ways. See One-to-One Corre-
spondence via Inverses (section [7.2.2.1) for the our first approach via inverse
functions.

To see a discussion of the concept of Counting and its relation to One-to-
One Correspondence, see Introduction to Counting (section [7.2.1)).

7.2.2.1 One-to-One Correspondence via Inverse Func-
tions

As was discussed in One-to-One Correspondence, we are trying to character-
ize the functions that determine one-to-one correspondences. We shall give
two such “definitions.”

One observation is that when a function f € A—B matches A and B
member-for-member, then one can reverse this function to get some g €
B— A which matches these classes in the opposite direction. When functions
f and ¢ have this inverse relation between them, we say they are “inverses”
and write InvFuns(A;B;f;g). We define this relation between functions as

InvFuns(A;B; f39) Zaet (Va:A. g(f(2)) = z) & (Yy:B. f(9(y)) = y)
Notice that this inverse relation between functions is symmetric, i.e.,
InvFuns(A;B; f;9) = InvFuns(B;A;g;f)

(just swap the conjuncts in the def)

Cancellation When in the course of reasoning one uses the fact that (g(f(x))
= x) to rewrite g(f(x)) to x, this is sometimes called “cancellation” of f by
g. Inverse functions cancel each other. For example, subtracting an integer

7.2. LESSONS ON COUNTING 221

(from something) and adding that same integer are inverse functions, so you
may use one to cancel the other, by rewriting z—a+a or x+a—a to x.

Uniqueness As you can imagine, if a function has an inverse, that inverse
is unique. Here is a theorem to that effect:

InvFuns(A;B; f;9) = InvFuns(A;B;f;h) = g=h

As usual, some persons who have doubts about our choice of definition for
InvFuns(A;B; f;¢) might use this fact as further justification of the definition;
whereas those who already find the definition adequate might use the proof
either to complement the imagination, or resolve doubts about uniqueness.

We adopt the following definition of one-to-one correspondence:

fis 1-1 corr =g¢r Jg:(B—A). InvFuns(A;B;f;g)

There is another characterization of one-to-one correspondence, involving
“bijection,” which may well seem more obviously right. To follow this devel-
opment, see One-to-One Correspondence via Bijection.

7.2.2.2 One-to-One Correspondence via Bijection

Our discussion of one-to-one correspondence started with One-to-One Corre-
spondence (section [7.2.2), and continued in One-to-One Correspondence via
Inverses, where the explanation culminated in the definition

fis 1-1 corr =g Jg:(B—A). InvFuns(A4;B;f;9)

Here we shall give a different, and to some readers more natural, “definition”
of the expression (f is 1-1 corr).

We shall still use a function to express a correspondence, so we must still
find a way to characterize which functions from A—B are one-to-one, but
we shall do so in a more descriptive way than to stipulate that there is an
inverse function.

Consider a function f € A—B that is supposed to match A and B
member-for-member. Every member of A gets paired with some member
of B, but there are a couple of things that might go wrong. First, we might
miss some member of B; so a one-to-one correspondence must be what we
shall call a “surjection”:

Surj(A; B; f) =aer V0:B. Ja:A. f(a) =b

222 CHAPTER 7. SAMPLE HYBRID TEXTS

L.e., every member of B is reachable through f from some member of A.

The other way that a function could fail to match two classes one-to-one
is if it paired two different members of one class against just one member of
the other. Of course, a function can only pair one value with each argument,
but in general could have the same value for different arguments, so this is
what must be excluded. We call a function having a unique argument for
each value an injection, and define it thus:

Inj(A4; B; f) =aet Var,a2:A. f(ar) = f(az) € B = a1 = ay

L.e., if the outputs are equal, then the inputs are equal.
A function having both of these properties, and so one that is a one-to-one
correspondence, is called a bijection:

Bij(A; B; f) =aet Inj(A; B; f) & Surj(4; B; f)

So, if we had not already defined (f is 1-1 corr) we could define it as being
a bijection, i.e., Bij(A; B; f)

This situation is typical of making definitions. Still, we can approximate
making a second definition simply by showing that

Bij(A; B; f) < f is 1-1 corr

Let us consider Bijection vs Inverses.

7.2.2.3 One-to-One Correspondence: bijections vs in-
verses

This discussion continues from the introduction of an alternative definition
of one-to-one correspondence in One-to-One Correspondence via Bijection.

We have given three “definitions,” of sorts, to the concept of one-to-one
correspondence between two classes, denoted by (f is 1-1 corr).

We gave a suggestive description of the concept informally, then gave
a different, purportedly equivalent, description in terms of the existence of
inverse functions, then a third explanation was bijection. In order make
formal reasoning about (f is 1-1 corr) possible we must somehow add new
“axioms” about this predicate. We could add some new primitive axioms
that declare the existence of this new predicate and some basic facts about
it. But as usual, we have elected to find a combination of concepts that

7.2. LESSONS ON COUNTING 223

we can informally understand to be equivalent to one-to-one correspondence,
and that we can already formally reason about.

When there are several candidates for defining a new symbol, it is typical
to pick one as the principal definition, and demonstrate the equivalence of
the others. In our case, we chose to use

fis 1-1 corr =g Jg:(B—A). InvFuns(A;B;f;9)
as the principal definition, and prove
Bij(A; B; f) < f is 1-1 corr

as a theorem, although we could just as easily have chosen the reverse. The
use of this theorem will be pretty much as if it were a definition of (f is 1-1
corr), but the “content” of the proof is essentially that being a bijection is
equivalent to having an inverse.

Examination of the proof will reveal that it reduces to two lemmas ex-
pressing the opposite directions of the equivalence, namely,

Bij(A; B; f) = (3g:(B—A). InvFuns(A;B;f;9))
InvFuns(A;B; f;9) = Bij(4; B; f)

The proof of the first theorem shows how to construct an inverse of a function
given that it’s a bijection. The second uses the inverse of a function to show
that it is a bijection.

7.2.3 Counting Indirectly - integer ranges.

Counting the number of members of a class A is often accomplished indirectly
by finding another class B that we already know how to count, and showing
that A ~ B. This is an alternative to explicitly describing a function that
counts a class directly according to Introduction to Counting (section [7.2.1)).
Then counting B, establishing for some k£ € N that B ~ Ny, justifies the
inference that A ~ Ny, since (A~ B) = (B~ C) = (A~ C).

Thus developing the skill of counting abstractly specified classes depends
partly on developing a few basic forms that one knows how to count, and
partly on developing the skill of “translating” new descriptions of classes into
these forms one already knows how to count.

If you take a finite range of consecutive integers and add the same number
to them all then you get a new collection with the same size as the old one.We
will normally indicate such consecutive integer collections either with

224 CHAPTER 7. SAMPLE HYBRID TEXTS

{i.. 5} Zqut (K7 | i<k & k<j }
or

{i.§7} Za {WZ]i<k<j}

The notation {i..;7~ }, which mentions the least member and the number after
the largest member, turns out often to be more convenient to use than the
more natural notation {7...j} which mentions both ends.

We shall also adopt {0..k~} as our “standard” finite class having k mem-
bers, rather than the more every-day counting set {1...k}. We tend to
use this standard when precisely expressing facts about class size. We shall
abbreviate {0..k~} as N, connoting “the first £ members of N.”

Va,b:N. (N, ~Np) < a=5b
(corrolary of (A ~ N,,) = (A ~Ny) = m =k)
Here are some theorems about the sizes of these finite integer ranges.
Va,b:Z. {a..b”} ~ Ny,
Va,b:Z. {a...b} ~ Nyyp 4
Underlying these theorems is a lemma
Va,b,a' V:Z. b—a =V —d = ({a.b"} ~ {d'..0'"})

which is proved by explicitly giving the functions that map back and forth
between {a..b~} and {a’..b'”}. Recall that

InvFuns(A;B; f;9) =aet (Vz:A. g(f(2)) = z) & (Yy:B. f(g(y)) =)

and that one way to give a one-one correspondence is to provide such a pair
of inverse functions. The proof of {a..b~} ~ {a’..b/"} specifies

(A\r.x+d' —a) € {a.b"}—{d .07}
and

(Az.x+a—d) € {d.b"}—{a..b7}

then shows these functions to be inverses by simply computing

1 'With both notations there are infinitely many ways of specifying the empty class, by
picking ends in the “wrong” order, e.g., {4...3}, {1...-2}, {0..07}, or {0..(-3)" }.

7.2. LESSONS ON COUNTING 225

(Ar.z4a—a')((Az.x+d'—a)(z)) down to z+a’'—a+a—a’, which is ob-
viously equal to x, and

(Ar.z+ad' —a)((Az.x+a—a")(y)) down to y+a—a'+a’—a, which is obvi-
ously equal to .

Another fundamental method is to reduce a counting problem to Counting
Ordered Pairs.

7.2.4 Counting Indirectly - ordered pairs

Often the objects of a class have some structure that we can exploit in our
attempt to ascertain how many there are. One simple structuring method is
the formation of “ordered pairs” (z,y).

For example, one can determine how many squares are on a chessboard
by knowing that each square can be uniquely identified by a rank and a file,
and that every rank of every file has a square. The modern convention for
naming squares is to give a pair consisting of a letter from “a” to “h” and a
number from 1 to 8. So, there is a one-one correspondence between squares
and pairs (z,y) € AHx{1...8}, if AH is the class of letters from“a” to “h.”
There are, of course, 64 squares, but let’s proceed to probe the math.

Generally the “Cartesian product” Ax B is the class of pairs (x,y) such
that x € A and y € B, and for finite A and B, the size of Ax B is the product
of the sizes of A and B, or to be precise,

Va,bN. (A~ N,) = (B ~Ny) = ((AxB) ~ Nys)

It is no accident that the conventional notation “AxB” for the Cartesion
product of two classes resembles a standard notation for multiplication of
numbers. This will happen with some other notations as well.

We can convey this relation between Cartesian product and numeric prod-
uct more succinctly by resorting to our standard finite classes:

Va,b:N. (NQXNb) ~ Na-b

This is typical of how we shall express our core counting principles, and it is
possible in this case because of the fact that

(A~ A) = (B~ B') = ((AxB) ~ (AxB"))

226 CHAPTER 7. SAMPLE HYBRID TEXTS

i.e., the product classes are in one-one correspondence if the respective com-
ponent classes are, which means we can perform rewriting of class expressions
preserving size.

To resume our chessboard problem, just as we shall not try to formally
make the connection between chessboard structure, and the rank file pairs,
leaving this claim only informally assumed, so we shall not here formalize the

(1))

class of letters “a” to “h,” and we shall assume that AH has 8 members, i.e.,
AH ~ Ng.

So, we have informally “reduced” the problem of how many squares a
chessboard has to how many members AH x{1...8} has for arbitrary AH ~
Ns.

The priniciples used in the proof that follows are these:

Va,b:Z. {a...b} ~ Nyyp g

Va,b:N. (NaXNb) ~ Na-b

(A~ A= (B~ B)= ((AxB) ~ (AxB")

(A~AY=(B~B)=((A~B)<s (A ~DB))

A~ A

These equivalences have been applied and assembled into a proof of

Please read it along with the Remark (section [7.2.4.2) for this proof.

Here we have considered how to count pairs selected independently from
two classes. This leads us to consider Counting Tuples (section [7.2.5) and
Counting Dependent Pairs (section 7.2.6), where the second element is drawn
from a class selected by the choice of the first element.

7.2.4.1 The Chessboard Proof

This is the formal proof mentioned in Counting Ordered Pairs.
FVAH:Type. (AH ~ Ng) = ((AHx{1...8}) ~ Ng4) by Auto

1. AH : Type
2. AH ~ Ng
F (AHx{1...8}) ~ Ngs by Rewrite by AH ~ Ny

7.2. LESSONS ON COUNTING 227

F (Ngx{1...8}) ~ Ng4 by Rewrite by Thmx Va,b:Z. {a...b} ~ Ny,
F (NgxNjyg 1) ~ Ng4 by Reduce Concl

F (NgxNg) ~ Ngg by Rewrite by Thm* Va,b:N. (N, xNp) ~ N4,

F Ng.g ~ Ng4 by Reduce Concl

H N64 ~ N64 by Auto

7.2.4.2 Remarks on the Chessboard Proof
We discuss The Chessboard Proof.

(AH ~ Ng) = ((AHx{1...8}) ~ NgJ)

By a series of rewrites and arithmetic simplifications (the Reduce tactic), the
goal is successively reduced down to Ngg ~ Ng4, which is implicitly justified
by Auto using A ~ A,

The theorems

Va,b:Z. {a...b} ~ Ny, and

Va,b:N. (NQXN(,) ~ Na-b

are invoked explicitly for rewriting, as is the assumption AH ~ Ng. For
example, the last rewrite reduces the goal

(NgxNg) ~ Ngy to
Ns.s ~ Ny
rewriting one part by matching against
Va,b:N. (N, xNp) ~ Ny
to get the instance
(NgxNg) ~ Ngsg.

The principle (A ~ A') = (B~ B') = (A~ B) & (A ~ B')) is also
implicitly used to justify performing this rewrite inside the “? ~ ?” operator,

228 CHAPTER 7. SAMPLE HYBRID TEXTS

as is the principle (A ~ A') = (B ~ B') = ((A ~ B) & (A’ ~ B)) for
rewriting inside the “7x?” operator.

A person assembling a proof without this strict top-down method, might
establish the following sequence of facts:

AH ~ Ng [by hypothesis]
{1...8} ~ Ng Va,b:Z. {a...b} ~ Nj4p_, and arithmetic]

(AHx{1...8}) ~ (NgxNg) [(A ~ A) = (B ~ B') = ((AxB) ~
(A’xB’)) and above]

(NgXNg) ~ Ng.g [VCL,bIN. (NCLXNb) ~ Na.b]
Ng.g ~ N64 [arithmetic]
(AH x{1...8}) ~ Ng4 [chaining through the last 3 facts using

(A~B)=(B~C)= (A~ C)

7.2.5 Counting Indirectly - tuples

A distinguishing feature of ordered pairs of objects discussed in Counting
Ordered Pairs (section [7.2.4), as opposed to unordered pairs, which we have
not discussed, is that two ordered pairs can have the same components, but
in reverse order. Also, an ordered pair might have the same object occupying
both its places.

This can only happen if the classes from which the first and second com-
ponents are drawn overlap. That couldn’t happen for the modern chessboard
notation of Counting Ordered Pairs (section[7.2.4) because letters fill the first
place and numbers fill the second. But of course that was not necessary —
the designers of the chess notation could have decided to use numbers from
{1...8} instead of letters, and simply required that the first number indi-
cates the file and the second the rank; that would be harder to read though,
and people might have trouble remembering the order of rank and file. So
=((1,2) = (2,1)), and (2,2) € N x N,

We won’t go into it here, but to emphasize the distinction, and to portend
subtle issues of how to distinguish objects to be counted, consider a buffet
that, for a fixed price, allows you to have two servings of a topping on rice,
your choice. While you might order chicken before you order tofu, or tofu
before chicken, these would normally be understood as two ways to order

7.2. LESSONS ON COUNTING 229

the same meal. The order you place might be considered an ordered pair of
toppings, but the meal you choose would not. So our methods so far tell us
how many ways we may place an order, but not how many meals we have to
choose from. (My experience in these businesses is that you are permitted
to have two of the same topping, so you cannot just say there are two ways
of specifying each meal.)

Back to ordered pairs. Suppose we want to consider ordered triples. Do
we need to redevelop the machinery for counting pairs from the start, and
then again for 4-tuples, etc? Well, we certainly could add triples to our precise
mathematical language. If we were to add triples we would soon start trying
to adapt our facts about pairs by recognizing that you can “think” of a triple
(x,y,2) as a pair (x, (y, z)), whose first component is the first of the triple,
but whose second component is itself a pair (y, z), built of the second and
third components of the triple. Not only can you “think” of triples that way,
but you could define a bijection between Ax(Bx(C') and the corresponding
“triple-product.” Naturally, once you do this you're ready to iterate the
method to 4-tuples and so forth.

In fact, using the iterated pairs to simulate tuples has proven to be so
convenient and simple that it is normal for mathematical systems to stop
at the pairs and binary products and consider the higher tuples as informal
concepts, or perhaps as themselves being “defined” as iterated pairs. We will
do this, too.

(x,y, z) is just a suggestive notational abbreviation for (x, (y, z))
(u,z,y,z) is just a suggestive mnotational abbreviation for

(u, {x, {y, 2)))

etc.

AxBxC'is just a suggestive notational abbreviation for Ax(BxC)

AxBxCxD is just a suggestive notational abbreviation for
AX(Bx(CxD))

etc.

We could have done something similar instead, such as grouping the tuple
components through the other position, i.e., letting ({x, y), z) be our encoding
of the triple (z,y,2), but these pairs are different objects and so we ought to
stick to a convention.

Indeed, the obvious conversion between left-nested and right-nested triples
is exploited to prove this theorem: (AxBxC) ~ ((AxB)xC) Remark

230 CHAPTER 7. SAMPLE HYBRID TEXTS

Amusingly, by combining this purely structural fact with

Va,b:N. (N, xN,) ~ N,
and
Va,b:N. (N, ~Ny) < a=5b

one can show Va,b,c:N. a-b-c = (a-b)-c .

7.2.6 Counting indirectly - dependent ordered pairs

Now we advance from Counting Ordered Pairs (section 7.2.4) and Counting
Tuples to a more complex structural possibility. What if we want to count a
collection of pairs, but the collection is not simply the Cartesian product of
two (or more) other collections? What if the choices permitted for the second
component depend on the choice already made for the first component?

Suppose you want to determine the number of pairs of persons (from a
given group) where the second person must be younger than the first? Or
suppose you want to count the number of ordered pairs from this group where
the person in the second position must simply be someone other than the
one in the first.?

This way of limiting a class of pair constructions is denoted “x:Ax B(x)”.

(a,b) € z:AxB(x) just when a € A and b € B(a).

The “z” of “x:AxB(x)” is a binding variable that binds in “B(x)”, just like
the quantifier notations “Vax:A. B(z)” and “Jz:A. B(z)”. The position of
the B(z) in x:Ax B(z) should be occupied by an expression that stands for a
class, no matter what expression of type A is put for . The collection from
which the second component b is chosen may DEPEND on the VALUE of
the first component a. Examples:

o (:Gx{y:G| age(y)<age(x) }) is the collection of age-restricted pairs
of persons described above where G is the collection of relevant per-
sons.

2 There’s nothing physical intended about these “positions.” Maybe there’s only one
cupcake and one cookie left, and you want to count the number of ways to dole them out.
Then we may stipulate that the first “position” is getting the cookie, and the second is
getting the cake.

7.3. FORMAL IMPLEMENTATION OF THE RED-BLACK TREES 231

o (v:Gx{y:G| —~x =y }) is the collection of no-duplicate pairs of persons
described above.

o (r:Gxy:Gx{z:G| ~x =y & —y=2& -z =x})is the collection of
no-duplicate triples, construing triples as nested pairs. (ala Counting
Tuples (section [7.2.5)))

e (i:NxN;) is the collection of pairs of natural numbers where the second
is less than the first. There is no (0, k) € :N x N; since Ny is empty.

The standard notation for this operation on classes is “Xa:A. B(z)”. The
similarity to the standard notation for summing a numeric function over a
range of values, such as “3 i:{k..m~}. f(i)” , is again no accident. Here the
two concepts are related:

Va:N, b:(N,— N). (i:NgxNpy;)) ~ Ny iiva. b(5)

2

The numeric sum notation “¥ :Nk. f(7)” is just an abbreviation for “X
i:{0..k~}. f(i)”. The notational similarity could be either confusing or help-
ful. The two notations could not logically be used in the same contexts since
they take different kind of arguments and have different kinds of values:

The value of a numeric summation expression “¥ i:{a..b~}. f(i)” is
numeric, and the functional argument f(7) is numeric.

The value of a dependent-pair type expression “z:AxB(x)” is a class
whose members are pairs, and the functional argument B(z) stands
for a family of classes, one for each member of class A.

The priniciple above very nearly tells us that if we assign to each member
of a finite class, another finite class, then we can count the pairs of the
dependent-pair-type by simply adding up the sizes of all the classes in the
family of classes.

7.3 Formal Implementation of the Red—Black
Trees

In this section we will show an example how one can formally define an ab-
stract data structure in the formal constructive type theory (implemented in
MetaPRL, [78]), then give an efficient implementation of this data structure

232 CHAPTER 7. SAMPLE HYBRID TEXTS

(or possibly different implementations of the same abstract data structure),
and formally prove that the implementation satisfies the intended specifica-
tion of the data structure.

We will consider an example of the popular data structure Set, which
represent collections of elements of a certain type. There are different im-
plementations of this data structure. For example, one can implement sets
using some sort of balanced binary search trees. The most popular balanced
binary search trees are red-black trees [73]. We will show how the imple-
mentation of red—black trees could be written as a term in type theory, and
provide the type for this term.

7.3.1 Dependent Record Type

To represent data structures we need dependent records. In general, records
are tuples of labeled fields, where each field may have its own type. In
dependent records (or more formally dependently typed records) the types
of components may depend on values of the other components. Since we have
the universe type (a type of types) U, values of record components may be
types. This makes the notion of dependent records very powerful. Dependent
records may be used to represent algebraic structures (such as groups) and
programming data structures.

For example one can define the signature for ordered set as a dependent
record type:

OrderSig = {car : U;less : car — car — B}

(where B is the boolean type). This definition can be understood as an alge-
braic structure as well as an interface of a module in a programing language.

We can also define ordered sets as structures with the above signature
satisfying the axioms of ordered sets:

Order = {car : U;less : car — car — B; OrdRelation(car, less)}

where OrdRelation(T, <) is a predicate stating that < is a linear order rela-
tion on 7.

Dependent record types could be defined in type theory [100]. They allow
us to represent signatures and data structures as ordinary types in the type
theory.

7.3. FORMAL IMPLEMENTATION OF THE RED-BLACK TREES 233

7.3.2 Abstract Data Structures

Basically a data structure is some type with basic operations on elements
of this type that satisfy some axioms. Let us consider for example the data
structure Set(T") for collection of elements of type 7. To define the data
structure for sets we need to provide the type carrier (car) for elements that
will represent sets and some basic operations such as insert, delete and
member. These operations have the certain type. For example member tests
whether an element is a member of a set. That is, it is a function of the type
car —» 1T — B.

Thus we can give the signature for the data structure Set(T). We say
that the signature is the following record type:

Set_sig{T} =
{car: U;
empty : car,
member : car — 1T — B;
insert : car — T — car;
delete : car — T — car}

This signature is just an particular type in the type theory. Implemen-
tations of the data structure are elements of this type. This is similar to
signatures in ML-like functional programming languages.

But not all structures of this signature adequately represent actual set
structure. The set data structure should satisfy some axioms (specifications).
For example, for any set S and for any elements b, the set insert S b should
contain all elements of S and b and nothing more. Usual typed program-
ming languages could not express those axioms. Our type theory is powerful
enough to define the type of set data structures satisfying these axioms. We
will glue in those specification in the definition of the data structure Set.
That is, we define Set(T) to be a set of structures of signature Set_sig(7T)
satisfying certain specifications. Thus, Set(T') is a subtype of Set_sig(T).
The formal definition is the following:

Set{T} =
{car: U;
empty : car,
member : car — 1" — B;

234 CHAPTER 7. SAMPLE HYBRID TEXTS

insert : car — T — car;
delete: car — T — car |
(Va : T. =(] (member empty a))) |

(VS : car
Va: T
vo: T
(member (insert S b) a) < (member S a)
Vie=0beT))|
(VS : car
Va: T
Vo : T

(member (delete S b) a) < (member S a)
A (ole = b e 1))}

More discussion could be found in [99, 82].

7.3.3 Implementations of Data Structures

We can implement the set data structure in several ways. The simplest
but inefficient implementation of sets uses lists. Each set is represented by
an unordered list. Formally we take car to be T' List, empty to be nil
and define operations insert, delete and member correspondingly. In this
implementation functions insert, delete and member take O(n) time, where
n is a number of elements of the set.

A more efficient implementation of sets is binary search trees. Each set
is represented by a binary tree, where elements stored at the nodes, such
that the element at any given node is greater than each element in its left
subtree and less than each element in its right subtree. In this implementation
functions insert, delete and member take O(h) time, where h is a height
of the tree. On random data the heights of the tree is log(n). But in worst
case the tree will be very imbalanced, and an individual operation will take
up to O(n) time.

The solution to this problem is to implement balanced binary trees. In
the next section we will consider one of the most popular balanced binary
trees, red-black trees [73].

7.3. FORMAL IMPLEMENTATION OF THE RED-BLACK TREES 235

7.3.4 Red—Black Trees

In a red—black tree each node is colored either red or black. A red-black tree
should satisfy the following invariants:

e Any child of a red color is black

e All paths from the root to any leaf have the same number of black
nodes.

It follows from these invariants that the height of any red-black tree h is
less or equal than 2log(n), where n is a number of nodes. Therefore searching
in this tree takes O(logn) time. It is also alway possible to insert and delete
elements from the tree, and then rebalance it to keep the invariants. It also
takes O(h) = O(logn) time. So any single operation in this implementation
takes O(logn) time.

The red-black tree could be defined on a ordered type T'. We should write
a functor from structure ord of the type Order to a structure rbtree_str of
the type Set(ord.car). In our setting functors are just functions. That is, to
provide the implementation of red—black trees we must to provide a function
rbtree_str(ord) of the type

ord : Order — Set(ord.car)
The proof of the statement
rbtree_str € ord : Order — Set(ord. car)

is a proof of the correctness of the implementation.

We use implementation of red-black trees in a functional programming
setting similar to [145]. We will not show here the whole implementation.
Interested readers can find it in [99, 82] To give the flavor of this implemen-
tation we just show the insert function that maintains the red—black tree
invariants.

ins{a; t; ord} «——
match t with
NIL — > tree({a;
left — NIL:
right = NIL;

236 CHAPTER 7. SAMPLE HYBRID TEXTS

color = red})
| L.R.tree(self) —> Compare in ord :
a.data < self.data — > lbalance
{{self; left = L}}
a.data = self.data — > tree({a;
left = self.left;
right = self.right;
color = self.color})
a.data > self.data — > rbalance

{{self; right = R}}

When we insert a new node we color it red. This may break the invariant
stating that any child of red node should be black. To repair such possible
violation we run a balance function. The 1balance and rbalance functions
check all possible cases of violation of the invariant and rebalance the tree to
satisfy the invariant. One can find these functions in [99, 82].

Chapter 8

Future Plans

In this chapter, we consider our plans for the next three years. These plans
are informed by some of the discoveries we made over the past 27 months
and the new capabilities we have created and explored tentatively.

Vision The goal that inspires us for the long term is nearly a decade away
(seven years with strong funding for the area, perhaps less with exceptional
funding). There will eventually be a federated digital library of formal and
informal algorithmic knowledge from the US, EC, and Japan, call it the
FDL for now. To it, a dozen or more interactive theorem provers will be con-
nected, and several of those will include powerful decision procedures and
fully automated provers such as JProver, Otter, and EQP. These provers will
have contributed over 100,000 formally proved theorems that support many
detailed models of hardware, virtual machines like the JVM, and semantic
accounts of programming languages like Java and ML that have relatively
clean semantics. The provers will draw computing power from the grid and
knowledge from the FDL and thus extraordinary proving power will be avail-
able as needed to protect our software infrastructure.

CIP applications The FDL and the grid will be used to support several
critical infrastructure software systems — these will be large (a million lines
and up) and distributed. Their core functionality will be hardened by formal
verification and checking, and documentation will be an interactive FDL-
supported mixture of formal and intuitive knowledge (hyfi documents). The
system and it documentation will be part of a logical version control system
(LVC) of which the FDL will be an integral part. The LVC will guarantee

237

238 CHAPTER 8. FUTURE PLANS

that all changes to the critical parts of the systems remain secure and that
the documentation is completely current and formally correct.

When extension are made or when new vulnerabilities in the unhard-
ened parts are detected, we will be able to coordinate via the FDL a dozen
provers and support groups to quickly harden a section in a few months — this
would translate into several years measured in terms of 2004 computing and
information capabilities. Information-intensive and computation-intensive
verification technology will provide an advanced response capability that is
not practical now. It is unlikely that the federal government could create
a central facility in less than a dozen years that could do the same job. It
could not be created without the research efforts in which we are engaged.

The resulting technology will be very advanced, and this will be a further
deterrent to terrorist attack on our infrastructure of the kind we sketched in
Chapter 1.

DoD systems Military systems will be among those protected by the new
verification technology, e.g. JBI and UAV. As with network centric warfare,
we will be years, perhaps decades, ahead of our enemies. We must be preemi-
nent and unsurpassed in this technology because we are the most vulnerable.
We must explore and prepare all the promising technologies for high reliabil-
ity and security in software systems. In this case, our research group is a key
part of one of the few scientific approaches to CIP/SW. We would ask the
question, Is there a better scientific vision for a more secure future? We are
asking for an additional $1.8M to continue this promising approach — this is
about 15 minutes of effort per year at the rate of the cost of the errors in
day-to-day business. It is only a few seconds at the cost of a major disaster
or the kind we imagined in Chapter 1 — a cost that could exceed $60 billion
per month.

Benefits to science An FDL will benefit science generally because a great
deal of the collected formalized mathematics will be general purpose. The
European Community efforts will contribute deep theorems such as the Fun-
damental Theorem of Algebra, the Prime Number Theorem, the Graph Mi-
nor theorem, and so forth. The Semantic MathML language that we will
help improve will allow physicists, chemists, biologists, and engineers to use
elements of mathematics in their models, markup languages, problem solving
environments, and libraries. For example, the Chemical Markup Language,

8.1. NEW CAPABILITIES 239

CML, needs mathematical elements. The Library of Living Systems of the
NSDL will reference mathematical results. Scientists will be able to search
for needed mathematical theories and even modify existing models to suit
their needs.

Benefits to computer science Physical scientists observe natural phe-
nomena and ask 'why?”. Computer scientists imagine what computers might
do for people and ask "why not?”. The FDL will allow more informed and
systematic exploration of systems of the future. It will be a space in which
precise high-level descriptions of systems will be kept. In addition, like the
Library of Living Systems, by 2020 we will be able to produce a Library of
Artificial Systems, including intelligent systems. From these scientists will
be to imagine more boldly and reach further. There will be a credible effort
to preserve the best of our experimental systems in an executable state; even
reference algorithms and systems will execute fast enough in thirty years to
give the experience of actual performance.

Research component We are exploring now those capabilities needed to
make the FDL of 2010, not merely the FDL of 2004. We have discovered
capabilities and services that are highly plausible to implement in the next
few years and which will show the way toward and nucleate the systems and
communities that must be formed.

8.1 New capabilities

The new capabilities we want to explore arise from the existence of formal
mathematical content from multiple systems stored in a uniform abstract
syntax and easily accessible to a variety of basic library services implemented
in the FDL.

We have also laid the groundwork for building an experimental reference
distributed system and an experimental formal compiler on which we can
bring together results from HOL, PVS, Isabelle, and Nuprl. We will be
adding considerable content in this category based on our verification work.

We have explored the value of a new kind of object for the FDL, the hybrid
formal /intuitive document, hyfi document. It is based on the observation
that it is easier to share definitions, theorems, and reference algorithms than
it is to share proofs. So, we created the kind of document that will allow

240 CHAPTER 8. FUTURE PLANS

people to more easily include formal definitions, theorems, and algorithms in
their articles. We intend to build substantially more library services for hyfi
documents.

We have produced experimental translations services that we intend to
exploit and make part of an advanced service suite.

We have explored a technique for theory modification that works in mul-
tiple passes. We will see whether this can be made a service as well.

We have begun a more systematic study of clustering methods based on
the hyperlink reference structure and on citations. [96]

8.2 Future plans

We are ahead of the research schedule agreed upon in our proposal, so our
plans now are a bit more ambitious. Moreover, our work has benefited from
corresponding work in the EC and from newly funded NSF work. So there
are more opportunities to examine as we plan for the final two years.

Goals: We want to attract more content providers so that by the end
of the five year effort, several groups are submitting content including PVS
users in distributed protocol verification, HOL users in program extraction,
and so forth. This will be a challenge since there are political and insti-
tutional barriers to be overcome. We will need to create the position of a
collector as we proposed. We will need to work with groups such NRL and
NASA and other universities to facilitate collection of relevant content from
various provers. Our ties to the NATO science community in the European
Community will be of significant help, especially our strong ties to Munich
and Potsdam.

We will continue to use the FDL directly in a CIP activity, and we hope
that at least one other MURI will as well. This is extremely likely given the
current state of activity. For these efforts and the related content collection,
we must remain active players in the TPHOLs community while keeping our
connections with IJCAR.

We want to be a major player in the European Community effort in this
area, which will surely include OMDoc and Helm. Our goal is to have at
the end of five years a federated mathematics library of which our FDL is a
part. To achieve this we must remain active members of the Mathematical
Knowledge Management (MKM) community and its North American branch
as well. We have offered to host a meeting in Ithaca, and we will request

8.2. FUTURE PLANS 241

funds for this purpose.

We want to attract authors of mathematics and computer science articles.
We will attempt to use the FDL in the context of the FDL to do this. For
this activity, it will be important to become active in the National Science
Digital Library community, and we have begun attending meetings. We also
have funding from NSF for this activity.

We want to attract dataminers and machine learning experts to search
the FDL for interesting patterns.

Here is a breakdown of our plans for the future, according to the four
categories of our work. It is clear that progressively more of our effort will go
into experiments with the FDL and the services that we can provide across
the collections. Some of these services are already remarkable as we will
demonstrate at the review.

Content foundations In this category, we will attempt to extend Moran’s
isomorphism to bring new proof methods from set theory into type theory,
thus further combining the proof theoretic power of set theory with the ex-
pressiveness of type theory especially for structuring and combining systems.

We will continue our work with event systems and protocol verification,
including our work with other CIP/SW MURI’s. In this topic area we will
be aided by a sabbatical visitor, Uri Abraham who has written a book on
distributed system verification [2]. He also happens to be an eminent set
theorist, so he might help with the first topic.

We will continue our theoretical work on and writings on reflection, look-
ing to eventually provide it as an operator on FDL formulas. This will be an
exceedingly useful service to all systems that are hosted in the FDL.

Content experiments The corporation ATC-NY has offered to pay us to
include a large amount of formal mathematics that they produced using the
Larch prover. It includes general mathematics and hardware models. We
have worked out a detailed plan for collecting this material in the FDL. It
will add nearly a thousand definitions and proofs to the FDL in standard
multi-sorted first-order logic. Such material can interoperate with the other
collections, and it includes many data structures such as sets, bags, lists, etc.
and advanced results in set theory (with classes), and numerous specifications
of computing tasks. It also includes a formal version of VHDL.

We intend to add more content directly with HOL, and we are hoping

242 CHAPTER 8. FUTURE PLANS

that the OMDoc collaboration will provide us with Coq libraries and Mizar.
We need to see how this plays out before we know for sure how Coq will be
supported, since we are prepared to import it directly if necessary. We will
also continue adding Nuprl and MetaPRL content that is related to software
support. Some of our content will be like red/black trees and leader election,
namely reference algorithms and protocols. We expect to continue the graph
theory and use it in the distributed systems theory.

We intend to collect further results from ACL2. HOL, Isabelle, and PVS
on protocol verification and security [21) 15, [14] 13, 57, 62, 84, 105, 112} 4,
175, 1104, 159] We will consider various ways in which we can share formal
specifications and computing models, such as IOA and Message Automata.

We will bring more of the FDL’s capabilities to bear on the support of
experimental systems such as a formal compiler and a reference distributed
system.

We intend to experiment with knowledge based security protocols as part
of our work with Joe Halpern and Sabina Petride.

The ATC-NY corporation will fund the restoration of many Larch li-
braries. These include many theories about data structures, set theory, and
properties of VHDL. This activity illustrates another value of the FDL — it
can restored the fruits of a very large human effort and make them available
indefinitely.

We intend to make the editing of hybrid documents, those with formal
and intuitive content, extremely attractive in the FDL so that anyone writing
a paper in the fields of computing and mathematics we cover will want to
draw material from the FDL. We think that our basic services will attract
others to help us enhance these services because they will extremely useful
to authors of technical material, much in the way that Google is used now
to find references and insert them into text.

Infrastructure foundations We will continue to explore the reflection
capability as a basic service on FDL formulas. We will explore the addition
of editing services that take advantage of more than one binding structure for
terms. We will take up the implications of reflection services for the existing
accounting mechanisms.

We will explore the MetaPRL notion of theory implementations to formu-
late translation results such as those of Howe and Moran cited above. This
is one of the most plausible ways to record these metamathematical results

8.2. FUTURE PLANS 243

without a full-scale reflection of a logic.

We may have time to examine a possible embedding of ACL2 [94] into
CTT or into a MetaPRL theory, exploiting the constructive character of
ACL2.

Infrastructure experiments Our approach to experimenting at this stage
is to proceed breadth first and look several aspects of the FDL before going
deeply into one. We have experimented with trying to load PVS using the
binding structure of the FDL terms and by not supporting binding structure
at the lowest level. We found that later approach more flexible and effective.
We have built API’s and know better what is required to make them more
useful. We have harvested metadata on logical dependencies and know what
help we want from contributors. We have experimented with clustering al-
gorithms and annotation schemes to aid search, and we have used pattern
based search. We know that we want to explore clustering greater depth.

We have stored reference algorithms from three systems, and provided
good formal documentation. We have written articles that are semantically
anchored in the FDL and connect intuitive and formal knowledge. We are
assembling the elements of a distributed system in the FDL and exploring
the support of both design and verification.

We have used two systems to develop protocols and we have tried to
bring PVS theorems to bear on this problem. These efforts taught us about
technical problems and the political problems of acquiring material. Fven
sharing tasks between different implementations of the same logic has shown
the need for certificates in cases that seemed simple without them. We have
explore a translation service and see its value and limitations. We have
maintained a real software system inside the MetaPRL library and know
that formal documentation is useful.

We will continue to incorporate Allen’s ideas for abstract object identi-
fiers, closed maps, operations on these maps, and certificates more deeply
into the FDL mechanisms.

We will further automate FDL submission services and expand the API’s
accordingly.

We will provide more dynamic pure structure editing on the Web using
the DPS editor that we are now using internally.

We will consider a separate database implementation of the core FDL
services.

244 CHAPTER 8. FUTURE PLANS

We will provide additional clustering and search methods.

Chapter 9

Conclusion

Here we summarize the reasons we think that DoD, ONR, and science will
benefit from funding the two-year option to our project.

9.1 Summary of our case

Here are seven strong reasons why we should be given the optional two years
of funding:

1. Our proposal and results squarely meet the BAA requirements.

In Chapter 2, we presented the case that we have made significant
progress on all ten of the research concentration areas of the BAA.

2. Our work contributes a missing piece of verification technology impor-

tant to CIP/SW and to Navy missions (e.g. NRL work).
In Chapter 3, we made an extensive case for the value of the FDL in
protecting the nation’s and the Navy’s software. The FDL is the basis
of an information network which will complement the computing grid.
There is basically no such work in the US except ours, yet it is at-
tending to a serious deficiency in our nation’s ability to protect its
infrastructure.

3. Our work is already being used to help in DoD missions, including
Navy and Air Force missions, for example: AFOSR work in IAI, and
support for NRL work on IO automata in PVS.

Not only are we helping DoD missions, we are working with two other
MURI projects. This indicates the fundamental nature of our work.
In Chapter 7 we demonstrate work on protocol verification using state

245

246 CHAPTER 9. CONCLUSION

machines similar to IO Automata that is closely related to efforts at
the Naval Research Laboratory. Our work is valuable to the Navy for
the very same reasons that the NRL work is, we help create reliable
and adaptable software.

4. We are demonstrably very productive in all categories mentioned in the
BAA.

We have produced a good level of ordinary scientific research, and in
addition we have built a substantial new system and experimented with
it in scientifically sound ways.

5. We have been effective in opening a new fundable research area that
no other agency is funding at present.

We were the first US project in this area, now the NSF is funding three
others that support it. We have been invited to speak about our work
at leading centers of computer science research.

6. Our continued involvement will speed progress toward the DoD goals
articulated in the BAA.

We are leaders in this new area and have invested a large amount of
our discretionary resources into this project. At Cornell it is our top
priority project.

7. We are highly qualified for this work, and our progress and results are
excellent, as will become clearer as time goes on; for now we can point
to good conferences, invited lectures, and followers.

Our qualifications are evident from the fact that our proposal was the
only one funded in its category.

9.2 Discussion

The Cornell/Caltech/Wyoming ONR MURI project was top rated and the
only one funded in its category; in May 2002 it passed well a full day techni-
cal review by a ten person external panel that was encouraging of our effort.
Since then we have added extensive new services to the software system we
built, called a Formal Digital Library (FDL). The FDL is a unique resource
— based on extensive design discussions recorded in notes presented in Chap-
ter 4. Recently we have also made a significant scientific breakthrough in
discovering unexpected compatibilities and relationships between the logical
theories we expect in the FDL [133, 45].

Essentially we are ahead of schedule with results found nowhere else in the

9.2. DISCUSSION 247

world. We have been asked to speak about our work at Berkeley, Stanford,
Edinburgh and at five conferences, four in Europe where there is related
activity; one was a meeting of the Association for Symbolic Logic. There is
basically no such work in the US except ours, yet it is attending to a serious
deficiency in our nation’s ability to protect its infrastructure.

The ATC-NY corporation has agreed to fund the inclusion of extensive
formal mathematical files it owns into the FDL for use in the public domain.
This shows industrial use of our product by the end of the second year. The
NSF is funding work connecting our FDL to the National Science Digital
Library, showing the increasing impact of our work and a recent peer evalu-
ation of its quality. The European Community effort to create a Web based
digital library of mathematics wants to cooperate with us and use the FDL.

It is increasingly clear that ONR'’s initiative in this area will be recognized
for its pace setting investment in innovative technologies — two years ahead
of the NSF and the EC.

Based on the current state of this project and on our May 2002 full day
review and on subsequent endorsements from the scientific community since
then, there is solid justification for continuing this project for the full five
year proposed term.

We think that ONR has a major opportunity to advance basic science
in service of the Navy, DoD, and national security. Cornell, Cal Tech, and
the University of Wyoming have a major opportunity to work with a level of
funding that is uncommon for DoD supported basic science. The subject of
the project is our highest priority and one for which we are especially well
qualified.

248 CHAPTER 9. CONCLUSION

Chapter 10

Glossary of FDL Terminology

Short Glosses

Abstract Identifiers

Certificate

Client

Closed Map

Current Closed Map

Definition

identifiers treated abstractly and as

atomic, serving as Object names in a
Closed Map

an Object attesting to some fact estab-
lished by the FDL process

an entity, such as a person, supposed nor-
mally to exist and perhaps persist outside
the FDL process, with which the FDL
interacts Sessions and for which it main-
tains certain privileges

a finite collection of named Objects; the
names are Abstract Identifiers, the con-
tents are Texts; objects can refer to ob-
jects

the main part of the state in a Session
with a Client of the FDL, being a distin-
guished, variable Closed Map

an explicit eliminable definition of a math-
ematical operator or concept

249

250 CHAPTER 10. GLOSSARY OF FDL TERMINOLOGY

External Name a concrete name whose association to Ab-
stract Identifiers is maintained by the
FDL; “external” emphasizes the contrast
with abstract identifiers which are “inter-
nal” to an FDL

FDL Formal Digital Library; a repository of a
certain kind with a process for using it

Formal having precise meaning or objective crite-
ria of correctness, ideally computer verifi-
able, based simply upon “syntactic” form

Inference Engine a process that can verify (or generate) an
Inference Step

Inference Step expression of an inference from zero or
more premises

Justification data provided to an Inference Engine
in an Inference Step in addition to its
Propositions

Name Server an association of “names” with Closed

Maps or Objects

Native Language a programming notation executable by the
FDL process

Object the unit of FDL content; abstractly
named Texts

Pro-textual Constituents the constituents of Texts that are not
themselves texts

Proof a complex of appropriately related Infer-
ence Steps

Proposition an expression used as a conclusion or
premise of an Inference Step

Refiner an Inference Engine that computes
premises from a conclusion and Justifi-
cation

Sentinel

Session
Tactic

Term

Text

Text Server

Long Glosses

Abstract Identifiers

an expression occurring in a Certificate
validating an Inference Step identify-
ing which primitive logical resources are
permitted in justifying it; the unit of co-
herency in Proofs

a subprocess of the FDL, with associated
state, for communication with a Client

a program describing an inference by com-
posing primitive inferences

synonym for Text; the main form used
in the FDL for structured data such as
expressions

the main form used in the FDL for struc-
tured data such as expressions

the aspect of an FDL as a process ex-
changing Texts with Clients

251

[identifiers treated abstractly and as atomic, serving as Object names in a

Closed Map]

The only basic operations on abstract identifiers are testing equality between
them, incorporating them into Texts where they serve as Object references,
and operations on them in their capacities as object references such as object
content lookup. An abstract identifier cannot be constructed from any other
values or be distinguished except by atomic comparison to other abstract
identifiers (or possibly by comparing their referents). See Abstract Ids &
Closed Maps (section 4.4.1) and see Text Server.

Certificate

[an Object attesting to some fact established by the FDL process]

252 CHAPTER 10. GLOSSARY OF FDL TERMINOLOGY

As the name suggests, a certificate attests that certain FDL actions were
taken at a certain time; they are the basis for logical accounting. A certificate
will be realized as an Object which can then be referenced and accessed like
other objects save for certain constraints. A certificate cannot be created or
modified except by the FDL process following a procedure specific to the
“kind” of certificate in question. See Certificates (section [4.5.1).

Although certificate contents are expected to often be rather compact,
largely consisting of Object references, they will often also be rather ex-
pensive to establish. By realizing certificates as objects the FDL can build
certificates that depend on others whose correctness is independently es-
tablished. Thus one process of certification can contribute to many other
certifications without having to be redone.

The paradigmatic certificates are those created to validate proofs. An
Inference Step certificate is built by applying a specified Inference En-
gine to an inference, and including in the certificate the references to the
inference step as well as to the instructions for building or deploying the in-
ference engine; the certificate attests to the fact that such an engine accepted
that inference. A Proof is a rooted dag of inference steps. A proof certificate
is created only when there is an inference certificate for the root inference
and there are already proof certificates for all the proofs of the premises of
the root inference. See Proof Organization (section 4.5.11.1).

A certificate will be reconsidered either by explicit demand or automat-
ically when any Object it refers to is modified. See Altering Certificates
(section 4.5.9.1).

Client

[an entity, such as a person, supposed normally to exist and perhaps persist
outside the FDL process, with which the FDL interacts Sessions and for
which it maintains certain privileges]

A client accesses and modifies the FDL via a Session. A client is repre-
sented in the FDL as a persistent FDL object, specifically, as a Certificate
associated with a Native Language procedure for defining a criterion for
inserting the client identifier into the “client-slot” of a Session. That is the
basic computational significance of client identity, and further significance of
client identity is attributed by persons through their understanding of this
client identification procedure.

253

The privileges assigned to a client include access to certain FDL objects
maintained for the client, and the maintenance of Name Server objects al-
lowing the client to specify an association of External Names with Closed
Maps or Objects.

Closed Map

[a finite collection of named Objects; the names are Abstract Identifiers,
the contents are Texts; objects can refer to objects]

A closed map is a map of type D—Text(D) from some finite index set D to
Object contents. Reference between objects consists of the occurrence of
the referent’s index in the referring object’s content Text. Object indices
are treated as Abstract Identifiers. The FDL is used as a repository for
closed maps, and the usual method of interaction is to build and develop a
Current Closed Map, which may be thought of as a closed map variable
serving as the focus of a Session with the FDL. See Abstract Ids & Closed
Maps (section [4.4.1) and Closed Map Operations (section [4.4.2).

Current Closed Map

[the main part of the state in a Session with a Client of the FDL, being a
distinguished, variable Closed Map]

See Current Closed Maps (section [4.5.2) for explanations of the operations
that can be performed to update the current closed map. A Client can
preserve the current closed map for later access, modulo uniform change of
object identifiers (see Abstract Ids & Closed Maps (section 4.4.1))).

Definition
[an explicit eliminable definition of a mathematical operator or concept]

In the sense of a definition of a mathematical operator or concept, we mean an
eliminable definition that does not have any further epistemic content. The
“meaning” of an expression should remain unchanged when an a definiendum
is replaced by it definiens. In a program source this is meant to be like a
macro; in a mathematical discourse, the intention is that the truth value or
provability of any assertion is preserved by definition elimination or intro-

254 CHAPTER 10. GLOSSARY OF FDL TERMINOLOGY

duction, although the proof itself may require modification with regard, for
example, to whether the definiendum is mentioned in inference specifications.

While the creation of a definition provides a new, though semantically
shallow, resource for possible use in expression or argument, no substantial
epistemic content is implied by the definition; this is in contrast to the ad-
dition of axioms or primitive rules of inference. The same goes for theorems
and derived rules of inference.

External Name

[a concrete name whose association to Abstract Identifiers is maintained
by the FDL; “external” emphasizes the contrast with abstract identifiers
which are “internal” to an FDL]|

While the principle name space used by the FDL consists of Abstract Iden-
tifiers, a relatively small number of identifiers must be maintained that make
sense outside the FDL process in order to identify FDL entities outside the
FDL process. When connected to the FDL, Clients can refer to abstract
ids and communicate them via the FDL to other connected clients. But in
order for clients to communicate identifiers outside the FDL, one must have
a concrete substitute that can be later resolved when connected to the FDL.
For example, one person may wish to tell another person via e-mail how to
find an object in the FDL (from which many other objects can be found); to
do so the first person simply needs to have the FDL attach a concrete name
to the object, and communicate it to the second person, who then requests
the object associated (perhaps temporarily) with the received concrete name.
External names are bound to Objects or Closed Maps via Name Server
objects.

FDL

[Formal Digital Library; a repository of a certain kind with a process for
using it

We imagine a Formal Digital Library as a repository for formally verified
material along with other complementary material, much of which is essen-
tial for practical use of the formal. The complementary material is either
unverified, only partially verified, or perhaps not subject to verification by
machines. Further, we conceive of the FDL as a process (section 4.7) for

255

maintaining, accessing, and modifying the repository.

Actually we usually mean here an architecture suitable as a basis for
building such libraries, and use the term (the “L” part anyway) with some
reservations, but it continually indicates one of our main intentions.

One should expect that multiple independent FDLs (section 4.3.2)) of this
sort will be created, some maintained long term, others quite temporarily,
and that they should be able to communicate their content usefully.

Among the content of an FDL are specifications for how to verify formal
content. It is not part of the FDL design to govern what counts as legitimate
validation, and indeed FDLs are intended to be radically open. This requires
accounting for what has been verified and by what means.

Different implementations of FDLs are possible and expected, and they
may provide different services beyond the minimal, as well as have their own
policies for access and contribution.

See Impartiality (section 4.1), Formal vs Informal (section [4.2)), Logical
Libraries (section 4.3.1)

Formal
[having precise meaning or objective criteria of correctness, ideally computer
verifiable, based simply upon “syntactic” form)|

This is the sense of the word most relevant to our endeavor, and is perhaps
the most common sense of “formal” used in the literature of logic and analytic
philosophy.

This usage stands in contrast with other common meanings as being rigid,
ceremonious, solemn, customary or not casual. It is closer to meaning exact,
methodical or orderly, but for the purposes of supporting precise understand-
ing or procedures that can be performed by machines.

By “informal” we simply mean not formal, in this sense.

As is explained in Formal vs Informal (section 4.2)), our special interest
regarding FDL design is “formally grounded” content, i.e. both formal ma-
terial such as proofs and programs as well as informal material that relates
formal material to wider informal practice and understanding.

Inference Engine
[a process that can verify (or generate) an Inference Step]

256 CHAPTER 10. GLOSSARY OF FDL TERMINOLOGY

The FDL process builds and applies inference engines according to instruc-
tions stored in the FDL and specific to the kind of engine. One extreme
would be creating a process “from scratch” on a local machine according to
instructions; another extreme would be to simply communicate with an al-
ready existing process over the internet. Naturally, different inference engines
can be trusted to different degrees not only because of the varying inferences
they are intended to check and who programmed them, but also because of
the varying reliability of the mechanisms used to run and communicate with
them.

Often one tends to think of formal inference steps as “small” and
schematic, but inference engines, such as Tactic based engines, can be built
that verify arbitrarily complex and non-schematic inferences. A Refiner is
an inference engine that generates premises from a conclusion Proposition
and a Justification.

Inference Step
[expression of an inference from zero or more premises]

By this we mean the kind of data typically intended to express a logical
inference from zero or more premises to a conclusion. An Inference Engine
is the device that is employed by the FDL process to generate or check an
inference step.

An inference step is represented as an individual Object (rather than
being simply a subexpression of a Proof) because the cost of individual
inference steps can be expected to dominate the cost of checking a proof.
The organization of inference steps into proofs is rather cheap, and there
is benefit to making inferences checkable independently of the proofs they
occur in.

An FDL process checks or generates an inference step by applying an
Inference Engine, which is usually a process whose creation is according
to user specified methods. The inference step comprises expressions for each
Proposition of the conclusion or premises, as well as a Justification which
may be used by inference engines to restrict what counts as an inference of
that type. The same inference can be verified by any number of different
inference engines since the fact that a given inference has been verified by a
given engine is expressed as the content of a Certificate which is external
to the inference and refers to it.

257

Justification
[data provided to an Inference Engine in an Inference Step in addition
to its Propositions]

It would be a somewhat simple or else exceedingly slow Inference Engine
that simply used the conclusion and premises of a prospective Inference
Step to ascertain whether it was acceptable. Realistically, there is some
further specification that narrows the class of inferences that must be con-
sidered.

For example, if there is some pattern matching involved, especially second-
order pattern matching, one might achieve significant savings by specifying
the substitution explicitly or at least providing some hints. A more interest-
ing case would be the use of a Refiner which actually generates the premises
from the conclusion and the justification.

The FDL design does not say what the content of the justification part of
an inference step must be; that is a matter specific to the introduction of an
Inference Engine. The difference in what would constitute a natural form
of justification is one major indicator of difference in the natures between
inference engines. Closely related engines may share the same forms of jus-
tification.

Name Server
[an association of “names” with Closed Maps or Objects]

A means for referring to Closed Maps and Objects stored in the FDL
which one does not already have in hand is essential.

This mechanism can also be used to provide a basic access control; if one
Client is the owner of the name server, then that client specifies a partial
function that takes a client/name pair as argument, and if it returns a value
at all it returns a Closed Map, an Object or another name server as result
(enabling a name server chain). The name server is applied by the FDL in
service to a client which is provided as the client argument mentioned above.

The “name” supplied to the name server can be any Text, including an
External Name such as a string. This is how references to FDL contents
may be communicated outside the FDL.

The partial function associated with a name server by the FDL can be
changed by the owner of the name server object, and so names via name

258 CHAPTER 10. GLOSSARY OF FDL TERMINOLOGY

servers do not provide the same referential fixity as object references them-
selves.

Native Language
[a programming notation executable by the FDL process|

Clients of the FDL must be able to stipulate programs executed by the
FDL process. Request for execution of such programs and returning their
results is a basic interaction between clients and the FDL. Most work of
certifying inference steps is expected to be done outside the FDL by inference
engines, the FDL process simply invoking those engines and recording the
results. A native language should provide generic computational methods
(the glue) as well as some basic FDL-specific operations for manipulating
ones Current Closed Map, for managing a small External Name space,
for control of access to ones own objects by other clients, and for establishing
and communicating with external processes (such as inference engines).

The execution of native language programs, which are Texts, is imple-
mented as part the FDL, and forms the basis of Certification; the facts to
which a certificate attests are simply that certain native language programs
were executed to certain effect.

There may be multiple native languages, suitable for different styles of
programming by customers. For example, a higher-order functional style
and a conventional imperative style language would be basic candidates, and
perhaps a virtual machine for use by those clients who prefer to develop their
own languages for execution by the FDL.

A generic native language macro facility is provided as well. These macros
are expanded by simple match against a left-hand-side Text whose imme-
diate subtexts, and perhaps some constituent Pro-textual Constituents,
are then substituted into a right-hand-side.

Object
[the unit of FDL content; abstractly named Texts]

The notion is technically dependent on that of Closed Map, which is a map
from some finite index set to object contents. With respect to a closed map,
an object is identified with an index value. The principal division of objects
is into Certificate objects and all others. The “content” of an object is a

259

Text and the object is identified by an index in the closed map.

Pro-textual Constituent Values
[the constituents of Texts that are not themselves texts]

Examples would be integers, strings and Abstract Identifiers. See Pro-
textual Constituents (section 4.4.5) for more explanation.

Proof

[a complex of appropriately related Inference Steps]

We assume the basic form of proof is a dag (directed acyclic graph) of In-
ference Steps where the conclusion of a child inference is a premise of its
parent inference. An essential part of what makes a proof convincing is that
all the individual inferences are verified by a convincing Inference Engine
or a compatible collection of inference engines. The notion of Proposition
is that it is the unit of matching adjacent inferences in a proof.

If the proof is a rooted dag then we may construe the proof as deriving
the root conclusion from the leaf premises.

That some dag of inferences is a proof constrained to certain methods
is a matter of Certification. It is intended that multiple, diverse, even
incompatible criteria for acceptable inference be permitted to coexist in the
FDL, and so one must be careful when certifying a proof that one limits ones
inferences by stipulation to acceptable and compatible methods, for example
by employing Sentinel expressions.

One can devise secondary forms of proof with more structure from which
a basic proof (dag) can determined. Such a proof can be considered as a
presentation of a basic proof. For example, one might want to use a block
style natural deduction organization of inferences, where the propositions
at each inference are derived partly from the whole block-form proof as a
context.

See Proof Organization (section 4.5.11.1).

Proposition
[an expression used as a conclusion or premise of an Inference Step|

260 CHAPTER 10. GLOSSARY OF FDL TERMINOLOGY

We employ the term “proposition” because it has fewer misleading conno-
tations in this domain than “sentence,” “assertion,” “statement” or “proof
goal.”

PR A4

It is not part of the FDL design what the structure of an proposition
must be, except that it must be an expression of the general form used in the
FDL, ie, a Text.

A proposition might paradigmatically be thought of as a statement with
a truth condition that is understandable independently of inferences in which
it occurs, but it is also possible that the significance of a proposition might
depend on an inference in which it occurs. For example, there may be some
sort of schematic variables that are shared by the premises and conclusion of
an inference step indicating a generality such as that any way of uniformly
instantiating the schematic variables throughout the inference is also a le-
gitimate inference. A “proposition” with such schematic variables might not
then really mean anything independently.

In a simple Hilbert-style system the propositions might be the kinds of for-
mulas that could be further combined by standard sentential operators such
as disjunction. In a block structured natural deduction system a proposition
might be the sort of formula just mentioned combined with a context for as-
sumptions. In a sequent calculus the propositions would be whole sequents.
The FDL conception of propositional form, however, is purely programmatic,
and consists simply of its role in inferences; the aforementioned notions of
proposition would be instances.

When a new kind of Inference Engine is introduced into the FDL one
must design the form of propositions to be used in inferences by that engine.
If one were concerned solely with the individual inference then one would
have an awful lot of freedom in deciding what should go into the proposition
and what should go into the Justification. The basic constraint on this de-
sign is imposed by the rather natural fact that inference steps are assembled
into a Proof based upon the match between propositions used as premises
and conclusions, and if the same inference engine is used on a collection of
inferences that can be formed into a rooted dag based on conclusion/premise
matching, then the root conclusion is deemed to be a consequence of all the
leaf premises.

Refiner

261

[an Inference Engine that computes premises from a conclusion and Jus-
tification]

Refiners are used to develop Proofs top-down, but of course they can be
used after-the-fact to validate a whole Inference Step by computing what
the premises should be according to refinement, then comparing the actual
premises to the expected ones.

Many refiners are Tactic based provers.

Sentinel

[an expression occurring in a Certificate validating an Inference Step
identifying which primitive logical resources are permitted in justifying it;
the unit of coherency in Proofs|

The connotation of “sentinel” is that it guards against the intrusion of un-
trusted entities into an inference, which is essential in a collection that com-
prises multiple incompatible logics. As explained in Proof Sentinels (section
4.5.11.3), the sentinel expression constitutes the criterion of coherency among
inferences organized into a Proof.

Session

[a subprocess of the FDL, with associated state, for communication with a
Client)]

The main parts of a session are the “client-slot,” the Current Closed Map
of the session, the method of communication with the Client via the session,
and the parts of state supporting that communication.

The “client-slot” indicates which Client is the owner of the session, which
will be supplied as an implicit parameter in the execution of Native Lan-
guage programs by the FDL on behalf of the Client; various privileges of
access and control are indexed by Client identity.

Tactic
[a program describing an inference by composing primitive inferences]

Some Inference Engines are tactic based provers. They are significant
as examples of systems that can accept wide variety of complex Inference

262 CHAPTER 10. GLOSSARY OF FDL TERMINOLOGY

Steps, and that can be rather expensive to run due to the fact that tactics
may be programs built in a full general purpose programming language.

When such an inference engine is built, one typically builds a state with
a lot of procedures and data built in.

In the following explanation of what tactics are, the notion of proof is
internal to the tactic prover, and is not presumed to be that of Proof as
used in the FDL. The principal use of the tactic prover by the FDL process
is simply as a source of individual inferences.

Given a collection of prespecified “primitive” inference forms, a tactic
is a program for reducing a desired proof goal to premises by composing
primitive inferences. A tactic is essentially a program for constructing such
an inference tree, and one chooses which tactics to apply according to how
you want to generate subgoals from the goal. The execution of the tactic gives
rise to an inference step, the premises being all the unproved leaf premises of
the primitive proof tree. Further, to count as a tactic, although its execution
might not terminate or might raise an exception, if it does terminate without
exception, then it must be guaranteed to generate subgoals justifiable by
primitive inferences.

Returning to the concept of FDL Proof, an alternative use of a tactic
prover by the FDL would be to call the tactic prover’s bluff and demand
that the tactic prover produce for the FDL the smaller inferences that it
claims existed. A tactic prover providing this alternative access by the FDL
process could then be double checked in order to provide an independent
verification of the original complex inference.

The appropriate form of Justification used in an Inference Step to be
submitted to a tactic prover is the tactic code for it to execute. An inference
engine that generates its premises from conclusion and justification, as in the
process described above, is called a Refiner.

Term

[synonym for Text; the main form used in the FDL for structured data such
as expressions|

The nomenclature “Term” has some currency among those concerned with
logical syntax for expressions.

263

Text

[the main form used in the FDL for structured data such as expressions|

Texts used as FDL content are simple recursive structures, ie, they are ab-
stract structures rather than character strings. We take issues of parsing
strings into structures and displaying structures to users to be matters or-
dinarily extraneous to criteria pertaining to formal properties of expressions
such as criteria for correctness. See Formal vs Informal (section [4.2) and
Words vs Formality (section 4.2.1)).

For purposes of accounting the nature of texts is important only insofar
as there is a determinate notion of occurrences within texts of Abstract
Identifiers. For purposes of typical syntactic analysis used in formal lan-
guages, however, the subexpression is dominant and so we have adopted a
syntactic form for texts in which that relation is dominant and explicit.

The text structure is iterated operators on subtexts. In addition to its
subtexts, a text contains a sequence of labelled values presupposed by the
construction of texts, which we call Pro-textual Constituents; character
strings and Abstract Identifiers are among these pro-textual values. An
individual text consists of a sequence of zero or more pro-textual constituents
together with a sequence of zero or more immediate subtexts; further, any
such pair of sequences constitutes a text. The sequence of pro-textual con-
stituents may be construed as identifying the “operator” of which the text is
an instance, or sometimes this sequence together with the number of subtexts
is construed as the operator.

Binding structure, however, ie, which expressions are variables and which
become bound in which texts, is not considered part of the text structure
as far as the FDL is concerned. Binding structure is attributed to texts by
the Clients. The reason for this is that there are significantly divergent
approaches to binding structure, and to build one in would be an unaccept-
able bias. We believe that issues of binding structure remain open among
different groups or prospective FDL clients, that they will be the subject of
further innovations, and that disputes should be waged among clients and
not between FDL designers and clients.

Text Server
[the aspect of an FDL as a process exchanging Texts with Clients|

264 CHAPTER 10. GLOSSARY OF FDL TERMINOLOGY

An API to an FDL used by Clients to access or contribute Texts must
provide a means of realizing Abstract Identifiers as concrete values for
the duration of a Session. The fact that across different sessions, the repre-
sentation of identifiers internal to the FDL is likely to change may be seen
as the enforcement of abstractness.

Of course, the method for representing the structure of Texts for com-
munication with the FDL is another aspect of such an API. An XML pre-
sentation of Texts would be a reasonable candidate.

Acknowledgements

We want to thank Juanita Heyerman for helping produce this manuscript
during her visit to Ithaca and under a tight time pressure. Her knowledge of
the tools we use and the people on the project are invaluable.

We also want to thank Alexei Kopylov for contributing a section; Lori
Lorigo for providing feedback; and Aleksey Nogin for insightful comments on
the manuscript and contributions to a section as well.

Cornell University has been very supportive of this project, providing
additional funding to help create this document. The Cornell University
Library has also shown strong support by offering to indefinitely host our
collection.

265

266 CHAPTER 10. GLOSSARY OF FDL TERMINOLOGY

Bibliography

1]

Martin Abadi and Luca Cardelli. A theory of objects. Springer Verlag,
1996.

Uri Abraham. Models for Concurrency, volume 11 of Algebra, Logic
and Applications Series. Gordon and Breach, 1999.

ACL2 home page. http://www.cs.utexas.edu/users/moore/acl?2.

D. A. Agarwal, O. Chevassut, M. R. Thompson, and G. Tsudik. An
integrated solution for secure group communication in wide-area net-
works. In Proceedings of the 6th IEEE Symposium on Computers and
Communications, Hammamet, Tunisia, July 3-5, pages 22-28, 2001.

Stuart Allen, Robert Constable, Richard Eaton, Christoph Kreitz, and
Lori Lorigo. The Nuprl open logical environment. In D. McAllester,
editor, 17" Conference on Automated Deduction, volume 1831 of Lec-
ture Notes in Artificial Intelligence, pages 170-176. Springer Verlag,
2000.

Stuart Allen and Robert L. Constable. Enabling large scale coherency
among mathematical texts in the NSDL. Technical report, Cornell
University, Computer Science Department, 2003.

Stuart F. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic
Language. PhD thesis, Cornell University, 1987.

Stuart F. Allen. Abstract identifiers and textual reference. Technical
Report TR2002-1885, Cornell University, [thaca, New York, 2002.

R. Alur and D. L. Dill. Automata-theoretic verification of real-time
systems. In C. Heitmeyer and D. Mandrioli, editors, Formal Methods
for RealTime Computing, pages 55-82. Wiley, 1996.

267

http://www.cs.utexas.edu/users/moore/acl2�

268

[10]

[11]

[12]

[13]

[14]

[15]

BIBLIOGRAPHY

R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: a de-
terminizable class of timed automata. In Proc. 6th Int. Conf. Com-
puter Aided Verification (CAV’94), volume 818 of LNCS, pages 11-13.
Springer-Verlag, 1994.

P. Andrews. Theorem-proving via general matings. Journal of the
Association for Computing Machinery, 28(2):193-214, 1981.

Andrew W. Appel. Compiling with Continuations. Cambridge Univer-
sity Press, 1992.

Myla Archer and Constance Heitmeyer. Mechanical verification of
timed automata: A case study. Technical report, Naval Research Lab-
oratory, Washington, DC 20375, May 19, 1997. A shorter version of
this report was presented at RTAS 96, Boston, MA, June 10-13, 1996.

Myla Archer, Constance Heitmeyer, and Elvinia Riccobene. Proving
invariants of I/O automata with TAME. Automated Software Engineer-
ing, 9(3):201-232, 2002.

Myla Archer, Constance Heitmeyer, and Steve Sims. TAME: A PVS
interface to simplify proofs for automata. In User Interfaces for
Theorem Provers, Eindhoven, The Netherlands, July 1998. Infor-
mal proceedings available at http://www.win.tue.nl/cs/ipa/uitp/
proceedings.html.

Brian Aydemir, Adam Granicz, and Jason Hickey. Formal design en-
vironments. In Carreno et al. [40], pages 12-22.

Eli Barzilay and Stuart Allen. Reflecting higher-order abstract syntax
in Nuprl. In Carreno et al. [40], pages 23-32.

Eli Barzilay, Stuart Allen, and Robert Constable. Practical reflection
in Nuprl. In Phokion Kolaitis, editor, 18th Annual IEEE Symposium
on Logic in Computer Science, June 22-25, Ottawa, Canada, 2003.

David A. Basin and Robert L. Constable. Metalogical frameworks.
In G. Huet and G. Plotkin, editors, Logical Environments, chapter 1,
pages 1-29. Cambridge University Press, Great Britain, 1993.

http://www.win.tue.nl/cs/ipa/uitp/proceedings.html�
http://www.win.tue.nl/cs/ipa/uitp/proceedings.html�

BIBLIOGRAPHY 269

[20]

[21]

[22]

23]

J. L. Bates and Robert L. Constable. Proofs as programs. ACM Trans-
actions on Programming Languages and Systems, 7(1):53-71, 1985.

Giampaolo Bella, Cristiano Longo, and L. C. Paulson. Verifying
second-level security protocols. In J. Harrison and M. Aagaard, editors,
Theorem Proving in Higher Order Logics: 13" International Confer-
ence, TPHOLs 2000, volume 1869 of Lecture Notes in Computer Sci-
ence, pages 352-366. Springer-Verlag, 2000.

T. Bemers-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific
American, 279(5):34-43, May 2001.

Holger Benl, Ulrich Berger, Helmut Schwichtenberg, Monika Seisen-
berger, and Wolfgang Zuber. Proof theory at work: Program devel-
opment in the minlog system. In W. Bibel and P. Schmitt, editors,
Automated Deduction — A Basis for Applications, volume II, chapter
I1.1.2, pages 41-71. Kluwer, 1998.

Ralph Benzinger. Automated complexity analysis of Nuprl extracted
programs. Journal of Functional Programming, 11(1):3-31, 2001.

C. Benzmiiller, M. Bishop, and V. Sorge. Integrating TPS and (2mega.
Journal of Universal Computer Science, 5, 1999.

Gustavo Betarte and Alvaro Tasistro. Extension of Martin Lof’s type
theory with record types and subtyping. In Giovanni Sambin and Jan
Smith, editors, Twenty-Five Years of Constructive Type Theory, chap-
ter 2, pages 21-39. Oxford Science Publications, 1998.

Wolfgang Bibel. On matrices with connections. Journal of the Associ-
ation for Computing Machinery, 28:633—-645, 1981.

Mark Bickford. Experiments with theory modification in the FDL. In
Progress, 2003.

Mark Bickford and Robert L. Constable. A logic of events. Technical
Report TR2003-1893, Cornell University, 2003.

Mark Bickford and Alexei Kopylov. Verification of protocols by com-
bining provers using the FDL. In Progress, September 2003.

270

[31]

32]

[35]

[38]

[39]

BIBLIOGRAPHY

Nina Bohr and Robert L. Constable. Defining inductive and co-
inductive types using union and intersection types. Draft, August 2003.

Frederick P. Brooks and Ivan E. Sutherland. FEwvolving the High Per-
formance Computing and Communications Initiative to Support the
Nation’s Information Infrastructure. National Academy Press, 1995.
136 pages.

Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Objects
Group, Gary T. Leavens, and Benjamin C. Pierce. On binary methods.
Theory and Practice of Object Systems, 1(3):221-242, 1996.

N. G. De Bruijn. A survey of the project AUTOMATH. In J.P.
Seldin and J.R. Hindley, editors, To H. B. Curry: Essays on Combina-
tory Logic, Lambda Calculus and Formalism, pages 579-606. Academic
Press, New York, 1980.

Ricky Butler, James Caldwell, and Ben Di Vito. Design strategy for a
formally verified reliable computing platform. In Sizth Annual Confer-
ence on Computer Assurance, COMPASSI1, Gaithersburg, MD, June
1991.

James Caldwell. Moving proofs-as-programs into practice. In
12th IEEE International Conference Automated Software Engineering.
IEEE Computer Society, 1997.

James Caldwell. Classical propositional decidability via Nuprl proof
extraction. In Jim Grundy and Malcolm Newey, editors, Proceedings
of the 11th International Conference on Theorem Proving in Higher
Order Logics (TPHOLs’98), volume 1479 of Lecture Notes in Computer
Science, pages 105-122, Canberra, Australia, September-October 1998.
Springer.

James L. Caldwell and John Cowles. Representing Nuprl proof ob-
jects in ACL2: toward a proof checker for Nuprl. In D. Borrione,
M. Kaufmann, and J. Moore, editors, Proceedings of Third Interna-
tional Workshop on the ACL2 Theorem Prover and its Applications.
TIMA Laboratory, 2002.

James L. Caldwell, Ian P. Gent, and Judith Underwood. Search algo-
rithms in type theory. Theoretical Computer Science, 232(1-2), 2000.

BIBLIOGRAPHY 271

[40]

[41]

[42]

[43]

[44]

Victor A. Carreno, Cézar A. Munoz, and Sophiene Tahar, editors. The-
orem Proving in Higher Order Logics; Track B Proceedings of the 15"
International Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2002), Hampton, VA, August 2002. National Aeronautics
and Space Administration, 2002.

Alonzo Church. A formulation of the simple theory of types. The
Journal of Symbolic Logic, 5:55-68, 1940.

Manuel Clavel, Francisco Duran, Steven Eker, P. Lincoln, N. Marti-
Oliet, Jose Meseguer, and J.F.Quesada. The Maude system. In
P.Narendran and M. Rusinowitch, editors, 10th International Confer-
ence on Rewriting Techniques and Applications (RTA’99), number 1631
in Lecture Notes in Computer Science, pages 240-243. Springer Verlag,
1999.

Manuel Clavel, Francisco Duran, Steven Eker, Jose Meseguer, and
Mark-Oliver Stehr. Maude as a formal meta-tool. In J. Wing, J. Wood-
cook, and J. Davies, editors, FM’99, The World Congress On Formal
Methods In The Development Of Computing Systems, number 1709 in
Lecture Notes in Computer Science, pages 1684-1703. Springer Verlag,
1999.

Robert L. Constable. Creating and evaluating interactive formal
courseware for mathematics and computing. In Magdy F. Iskander,
Mario J. Gonzalez, Gerald L. Engel, Craig K. Rushforth, Mark A.
Yoder, Richard W. Grow, and Carl H. Durney, editors, Frontiers in
FEducation, Salt Lake City, Utah, November 1996. IEEE.

Robert L. Constable. Information-intensive proof technology; lecture
notes for the marktoberdorf nato summer school. Cornell University,
Ithaca, NY, 2003. http://www.nuprl.org/documents/Constable/
marktoberdorf03.htmll

Robert L. Constable and Karl Crary. Computational complexity and
induction for partial computable functions in type theory. In W. Sieg,
R. Sommer, and C. Talcott, editors, Reflections on the Foundations of
Mathematics: Essays in Honor of Solomon Feferman, Lecture Notes
in Logic, pages 166-183. Association for Symbolic Logic, 2001.

http://www.nuprl.org/documents/Constable/marktoberdorf03.html�
http://www.nuprl.org/documents/Constable/marktoberdorf03.html�

272

[47]

[48]

[49]

[50]

[51]

[52]

BIBLIOGRAPHY

Robert L. Constable and J. E. Donahue. A hierarchical approach to for-
mal semantics with application to the definition of PL/CS. ACM Trans.
on Programming Languages and Systems, 1(1):98-114, July 1979.

Robert L. Constable et al. Implementing Mathematics with the Nuprl
Proof Development System. Prentice-Hall, NJ, 1986.

Robert L. Constable and Jason Hickey. Nuprl’s Class Theory and its
Applications. In Friedrich L. Bauer and Ralf Steinbrueggen, editors,
Foundations of Secure Computation, NATO ASI Series, Series F: Com-
puter & System Sciences, pages 91-116. IOS Press, 2000.

Robert L. Constable, S. Johnson, and C. Eichenlaub. Introduction
to the PL/CV2 Programming Logic, volume 135 of Lecture Notes in
Computer Science. Springer-Verlag, NY, 1982.

Robert L. Constable and S. D. Johnson. A PL/CV précis. In Principles
of Programming Languages, pages 7-20. ACM, NY, 1979.

Thierry Coquand and G. Huet. The calculus of constructions. Infor-
mation and Computation, 76:95-120, 1988.

Thierry Coquand and Christine Paulin-Mohring. Inductively defined
types, preliminary version. In COLOG ’88, International Conference
on Computer Logic, volume 417 of Lecture Notes in Computer Science,
pages 50—66. Springer, Berlin, 1990.

Karl Crary, Robert Harper, and Sidd Puri. What is a recursive module?
In Conference on Programming Language Design and Implementation,
1999.

C. J. Date. Introduction to Database Systems. Addison Wesley, 2002.

David Dill. The Murphi verification system. In R. Alur and T. Hen-
zinger, editors, Computer Aided Verification (CAV’96), volume 1102
of Lecture Notes in Computer Science, pages 390-393. Springer Verlag,
1996.

Ekaterina Dolginova and Nancy Lynch. Safety verification for auto-
mated platoon maneuvers: A case study. In International Workshop
on Hybrid and Real-Time System, Grenoble, France, June 1997.

BIBLIOGRAPHY 273

[58]

[59]

[60]

[61]

[64]

G. Dowek and et. al. The Coq proof assistant user’s quide. Institut Na-
tional de Recherche en Informatique et en Automatique, 1991. Report
RR 134.

H. Egli and Robert L. Constable. Computability concepts for program-
ming language semantics. Theoretical Computer Science, 2:133-145,
1976.

Ulfar Erlingsson and Fred Schneider. SASI enforcement of security poli-
cies: A retrospective. In WNSP: New Security Paradigms Workshop.
ACM Press, 2000.

Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning About Knowledge. Massachusetts Institute of Technology,
1995.

Alan Fekete, Nancy Lynch, and Alex Shvartsman. Specifying and using
a partitionable group communication service. In Proceedings. PODC,
1997.

Amy Felty and Douglas Howe. Hybrid Interactive Theorem Proving
using Nuprl and HOL. In W. McCune, editor, 14" Conference on
Automated Deduction, number 1249 in Lecture Notes in Artificial In-
telligence, pages 351-365. Springer Verlag, 1997.

A. Franke and M. Kohlhase. MATHWEB, an agent-based communica-
tion layer for distributed automated theorem proving. In H. Ganzinger,
editor, 16" Conference on Automated Deduction, volume 1632 of Lec-
ture Notes in Artificial Intelligence, 1999.

Paul Ginsparg. Creating a global knowledge network. In Second Joint
ICSU Press-UNESCO Ezpert Conference on Electronic Publishing in
Science, 2001.

J-Y. Girard. The system F of variable types: Fifteen years later. The-
oretical Computer Science, 45:159-192, 1986.

J-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102,
1987.

274

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

BIBLIOGRAPHY

K. J. Goldman. Distributed Algorithm Simulation using Input/Output
Automata. PhD thesis, Dept. of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, July 1990.

Michael Gordon and Tom Melham. Introduction to HOL: A Theorem
Proving Environment for Higher-Order Logic. Cambridge University
Press, Cambridge, 1993.

Adam Granicz and Jason Hickey. Phobos: A front-end approach to ex-
tensible compilers. In 36" Hawaii International Conference on System
Sciences. IEEE, 2002.

J. Guard, F. Oglesby, J. Bennett, and L. Settle. Semi-automated math-
ematics. Journal of the ACM, 16:49-62, 19609.

Ramanathan V. Guha and Douglas B. Lenat. Enabling agents to work
together. Communications of the ACM, 37(7):126-142, 1994.

L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced
trees. In Proc. 19th IEEE Symposium on Foundations of Computer
Science, pages 821, 1978.

Joshua D. Guttman and Mitchell Wand, editors. VLisp, A Verified
Implementation of Scheme, volume 8, Nos. 1 & 2. Kluwer Academic
Publishers, Norwell, Massachusetts, March 1995.

Klaus Havelund and N. Shankar. Experiments in theorem proving and
model checking for protocol verification. In Formal Methods Furope
(FME ’96), Ozford, UK, volume 1051 of Lecture Notes in Computer
Science, pages 662-681. Springer-Verlag, 1996.

HELM: An hypertextual electronic library of mathematics. Home page
http://helm.cs.unibo.it.

Jason Hickey and Aleksey Nogin. Fast tactic-based theorem proving.
In J. Harrison and M. Aagaard, editors, Theorem Proving in Higher
Order Logics: 13th International Conference, TPHOLs 2000, volume
1869 of Lecture Notes in Computer Science, pages 252-266. Springer
Verlag, 2000.

http://helm.cs.unibo.it�

BIBLIOGRAPHY 275

(78]

[30]

[83]

[84]

[85]

Jason Hickey, Aleksey Nogin, Robert L. Constable, Brian E. Aydemir,
Eli Barzilay, Yegor Bryukhov, Richard Eaton, Adam Granicz, Alexei
Kopylov, Christoph Kreitz, Vladimir N. Krupski, Lori Lorigo, Stephan
Schmitt, Carl Witty, and Xin Yu. MetaPRL — A modular logical envi-
ronment. In David Basin and Burkhart Wolff, editors, Proceedings of
the 16" International Conference on Theorem Proving in Higher Or-
der Logics (TPHOLs 2003), volume 2758 of Lecture Notes in Computer
Science, pages 287-303. Springer-Verlag, 2003.

Jason Hickey, Aleksey Nogin, Adam Granicz, and Brian Aydemir. For-
mal compiler implementation in a logical framework. In MERAIN,
Second ACM SIGPLAN Workshop on MEchanized Reasoning about
Languages with varlable biNding, 2003.

Jason Hickey, Justin D. Smith, Brian Aydemir, Nathaniel Gray, Adam
Granicz, and Cristian Tapus. Process migration and transactions
using a novel intermediate language. Technical Report caltechC-
STR:2002.007, California Institute of Technology, Computer Science,
August 2002.

Jason J. Hickey. The MetaPRL Logical Programming Environment.
PhD thesis, Cornell University, Ithaca, NY, January 2001.

Jason J. Hickey, Brian Aydemir, Yegor Bryukhov, Alexei Kopylov,
Aleksey Nogin, and Xin Yu. A listing of MetaPRL theories. http:
//metaprl.org/theories.pdf.

Jason J. Hickey et al. Mojave research project home page. http:
//mojave.caltech.edu/.

Jason J. Hickey, Nancy Lynch, and Robbert Van Renesse. Specifica-
tions and proofs for Ensemble layers. In W. Rance Cleaveland, editor,
5th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 1579 of Lecture Notes in
Computer Science, pages 119-133. Springer, 1999.

Jason J. Hickey, Aleksey Nogin, Alexei Kopylov, et al. MetaPRL home
page. http://metaprl.org/.

http://metaprl.org/theories.pdf�
http://metaprl.org/theories.pdf�
http://mojave.caltech.edu/�
http://mojave.caltech.edu/�
http://metaprl.org/�

276

[86]

[87]

BIBLIOGRAPHY

Martin Hofmann and Benjamin Pierce. A unifying type-theoretic
framework for objects. Journal of Functional Programming, 5(4):593—
635, 1995.

Amanda Holland-Minkley, Regina Barzilay, and Robert L. Constable.
Verbalization of high-level formal proofs. In Proceedings of the Sixteenth
National Conference on Artificial Intelligence, pages 277-284. AAAI,
July 1999.

G. J. Holzmann. The model checker SPIN. [EEE Transactions on
Software Engineering, 23(5):279-295, 1997.

Douglas J. Howe. The computational behaviour of Girard’s paradox.
In D. Gries, editor, Proceedings of the 2" IEEE Symposium on Logic
in Computer Science, pages 205—214. IEEE Computer Society Press,
June 1987.

Douglas J. Howe. Importing mathematics from HOL into Nuprl. In
J. von Wright, J. Grundy, and J. Harrison, editors, Theorem Proving
in Higher Order Logics, volume 1125, of Lecture Notes in Computer
Science, pages 267-282. Springer-Verlag, Berlin, 1996.

Douglas J. Howe. Semantic foundations for embedding HOL in Nuprl.
In Martin Wirsing and Maurice Nivat, editors, Algebraic Methodology
and Software Technology, volume 1101 of Lecture Notes in Computer
Science, pages 85-101. Springer-Verlag, Berlin, 1996.

W.A. Hunt, Jr. FMS8501: A Verified Microprocessor. PhD thesis,
University of Texas at Austin, 1985.

Steven C. Johnson. Yacc — yet another compiler compiler. Computer
Science Technical Report 32, AT&T Bell Laboratories, July 1975.

Matt Kaufmann and J. Moore. An industrial strength theorem prover
for a logic based on Common Lisp. IEFE Transactions on Software
Engineering, 23(4):203-213, April 1997.

Matt Kaufmann and J Strother Moore. ACL2 home page. http://
www.cs.utexas.edu/users/moore/acl2/.

http://www.cs.utexas.edu/users/moore/acl2/�
http://www.cs.utexas.edu/users/moore/acl2/�

BIBLIOGRAPHY 277

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

105

J. Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM, 46(5):604-632, 1999.

J. Kleinberg. Navigation in a small world. Nature, 406:845, 2000.

J. Kleinberg. Small-world phenomena and the dynamics of informa-
tion. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors,
Advances in Neural Information Processing Systems 14; Proceedings of
the 2001 Neural Information Processing Systems (NIPS) Conference,
Cambridge, MA, 2002. MIT Press.

Alexei Kopylov. Verified implementation of red-black trees. FDL Al-
gorithms Collection. http://www.nuprl.org/Algorithms.

Alexei Kopylov. Dependent intersection: A new way of defining records
in type theory. In Proceedings of 18" IEEE Symposium on Logic in
Computer Science, pages 86-95, 2003. To appear.

Christoph Kreitz and Jens Otten. Connection-based theorem proving
in classical and non-classical logics. Journal of Universal Computer
Science, 5(3):88-112, 1999.

Christoph Kreitz, Jens Otten, and Stephan Schmitt. Guiding program
development systems by a connection based proof strategy. In M. Proi-
etti, editor, Fifth International Workshop on Logic Program Synthesis
and Transformation, volume 1048 of Lecture Notes in Computer Sci-
ence, pages 137-151. Springer Verlag, 1996.

Christoph Kreitz and Stephan Schmitt. A uniform procedure for con-
verting matrix proofs into sequent-style systems. Journal of Informa-
tion and Computation, 162(1-2):226-254, 2000.

S. S. Kulkarni, J. Rushby, and N. Shankar. A case-study in component-
based mechanical verification of fault-tolerant programs. In A. Arora,
editor, Proceedings of the 19th IEEE International Conference on Dis-
tributed Computing Systems Workshop on Self-Stabilizing Systems,
Austin, TX, pages 33-40. IEEE Computer Society Press, 1999.

Butler W. Lampson, Nancy A. Lynch, and Jgrgen F. Sggaard-
Andersen. Correctness of at-most-once message delivery protocols. In

http://www.nuprl.org/Algorithms�

278

[106]

[107]

[108]

[109]

[110]

111]

[112]

[113]

BIBLIOGRAPHY

Richard L. Tenney, Paul D. Amer, and M. Umit Uvar, editors, For-
mal Description Techniques, VI: Proceedings of the IFIP TC6/WG6.1

6th International Conference on Formal Description Techniques, pages
385400, Boston, MA, October 1993. FORTE’93, North Holland, 1994.

Larch home page. http://www.sds.lcs.mit.edu/spd/larchl

Douglas B. Lenat. CYC: A large-scale investment in knowledge infras-
tructure. Communications of the ACM, 38(11):33-38, 1995.

Reinhold Letz, Johann Schumann, Stephan Bayerl, and Wolfgang
Bibel. SETHEO: A high-performance theorem prover. Journal of Au-
tomated Reasoning, 8:183-212, 1992.

Chuck C. Liang. Compiler construction in higher order logic program-
ming. In Practical Aspects of Declarative Languages, volume 2257 of
Lecture Notes in Computer Science, pages 47-63, 2002.

Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason Hickey,
Mark Hayden, Kenneth Birman, and Robert Constable. Building reli-
able, high-performance communication systems from components. In
17" ACM Symposium on Operating Systems Principles (SOSP’99),
volume 34 of Operating Systems Review, pages 80-92, 1999.

Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason J. Hickey,
Mark Hayden, Kenneth Birman, and Robert Constable. Building reli-
able, high-performance communication systems from components. In
17" ACM Symposium on Operating Systems Principles (SOSP’99),
volume 33(5) of Operating Systems Review, pages 80-92. ACM Press,
December 1999.

Xiaoming Liu, Robbert van Renesse, Mark Bickford, Christoph Kreitz,
and Robert Constable. Protocol switching: Exploiting meta-properties.
In Luis Rodrigues and Michel Raynal, editors, International Workshop
on Applied Reliable Group Communication (WARGC 2001), pages 37—
42. IEEE, 2001.

Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

http://www.sds.lcs.mit.edu/spd/larch�

BIBLIOGRAPHY 279

[114]

[115]
[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

Nancy Lynch and Mark Tuttle. An introduction to Input/Output
automata. Centrum wvoor Wiskunde en Informatica, 2(3):219-246,
September 1989.

Donald MacKenzie. Mechanizing Proof. MIT Press, Cambridge, 2001.

Conal L. Mannion and Stuart F. Allen. A notation for computer aided
mathematics. Department of Computer Science TR94-1465, Cornell
University, [thaca, NY, November 1994.

Maple home page. http://www.maplesoft.com/.

Per Martin-Lof. An intuitionistic theory of types: Predicative part. In
Logic Colloquium 73, pages 73-118. North-Holland, Amsterdam, 1973.

Per Martin-Lof. Constructive mathematics and computer program-
ming. In Proceedings of the Sixth International Congress for Logic,
Methodology, and Philosophy of Science, pages 153-175, Amsterdam,
1982. North Holland.

Per Martin-Lof. Intuitionistic Type Theory, volume 1 of Studies in
Proof Theory Lecture Notes. Bibliopolis, Napoli, 1984.

The MathBus Term Structure. www.nuprl.org/mathbus/
mathbusTOC.htm.

W. McCune. Solution of the Robbins problem. Journal of Automated
Reasoning, 19:263-276, 1997.

William McCune. Solution of the Robbins problem. Journal of Auto-
mated Reasoning, 19(3):263-276, 1997.

William McCune. Well-behaved search and the Robbins problem. In
H. Comon, editor, 8th International Conference on Rewriting Tech-
niques and Applications (RTA), Sitges, Spain, number 1232 in LNCS,
pages 1-7. Springer-Verlag, 1997.

K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publish-
ers, 1993.

Jose Meseguer and Mark-Oliver Stehr. The HOL-Nuprl connection
from the viewpoint of general logics, 1999.

http://www.maplesoft.com/�
www.nuprl.org/mathbus/mathbusTOC.htm�
www.nuprl.org/mathbus/mathbusTOC.htm�

280

[127]
[128]

[129]
130]
[131]
[132]

[133]

[134]

135

[136]

[137]

138

[139]

BIBLIOGRAPHY

Metaprl home page. http://metaprl.org.

Andrew M. Mironov and Virendra C. Bhavsar. A new approach for
specification and verification of distributed agents. Technical Report
TR98-12a, University of New Brunswick, June 2000.

Mizar home page. http://www.mizar.org.

E. Moggi. Computational lambda calculus and monads. Technical
Report ECS-LFCS-88-86, Univ. of Edinburgh, Edinburgh, UK, 1988.

J.S. Moore. A mechanically verified language implementation. J. of
Automated Reasoning, 5(4):461-492, 1989.

J.S. Moore. Piton: A verified assembly-level language. Technical Re-
port CLI-22, Computational Logic, Inc., Austin, TX, June, 1988.

Evan Moran. Adding Intersection and Union Types to Howe’s Model
+ of Type Theory [working title]. PhD thesis, Cornell University, 2003.

J. Gregory Morrisett, David Walker, Karl Crary, and Neal Glew. From
system F to typed assembly language. Principles of Programming Lan-
guages, 1998.

Chetan Murthy. An evaluation semantics for classical proofs. In Pro-
ceedings of Sixth Symposium on Logic in Comp. Sci., pages 96-109.
IEEE, Amsterdam, The Netherlands, 1991.

Pavel Naumov. Publishing formal mathematics on the web. Techni-
cal Report TR98-1689, Cornell University. Department of Computer
Science, 1998.

Pavel Naumov. Importing Isabelle formal mathematics into Nuprl.
Technical Report TR99-1734, Cornell University. Department of Com-
puter Science, 1999.

George C. Necula. Translation validation for an optimizing compiler.
ACM SIGPLAN Notices, 35(5):83-94, 2000.

George C. Necula and Peter Lee. The design and implementation of a
certifying compiler. In Proceedings of the 1998 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI),
pages 333-344, 1998.

http://metaprl.org�
http://www.mizar.org�

BIBLIOGRAPHY 281

[140]

141]

142]

[143]

144]

[145]

[146]

[147]

148

Greg Nelson and Derek. C. Oppen. Simplification by cooperating de-
cision procedures. ACM Transactions on Programming Languages and
Systems, 1(2):245-257, October 1979.

Aleksey Nogin and Jason Hickey. Sequent schema for derived rules.
In Victor A. Carreno, Cézar A. Munoz, and Sophiene Tahar, editors,
Proceedings of the 15" International Conference on Theorem Proving
in Higher Order Logics (TPHOLs 2002), volume 2410 of LNCS, pages
281-297. Springer-Verlag, 2002.

Nuprl home page. http://www.nuprl.org.

Nuprl web libraries. http://www.nuprl.org/Nuprl4.2/Libraries/
Welcome.htmll

Office of Naval Research. Critical Infrastructure Protection and High
Confidence, Adaptable Software (CIP/SW) Research Program of the
University Research Initiative (URI) — Topic #8 Digital Libraries for
Constructive Mathematical Knowledge. As published in the Com-
merce Business Daily; see also http://www.onr.navy.mil/02/baa/
expired/00_015.htm, June 19 2000. Solicitation Number: BAA 00-
015.

Chris Okasaki. Red-black trees un a functional setting. Journal of
Functional Programming, 9(4):471-477, May 1999.

Jens Otten and Christoph Kreitz. A connection based proof method
for intuitionistic logic. In P. Baumgartner, R. Hahnle, and J. Posegga,
editors, 4" Workshop on Theorem Proving with Analytic Tableauz and
Related Methods, volume 918 of Lecture Notes in Artificial Intelligence,
pages 122-137. Springer Verlag, 1995.

Jens Otten and Christoph Kreitz. T-string-unification: Unifying pre-
fixes in non-classical proof methods. In U. Moscato, editor, 5" Work-
shop on Theorem Proving with Analytic Tableaux and Related Methods,
volume 1071 of Lecture Notes in Artificial Intelligence, pages 244-260.
Springer Verlag, May 1996.

S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas. PVS:
Combining specification, proof checking and model checking. In Rajeev

http://www.nuprl.org�
http://www.nuprl.org/Nuprl4.2/Libraries/Welcome.html�
http://www.nuprl.org/Nuprl4.2/Libraries/Welcome.html�
http://www.onr.navy.mil/02/baa/expired/00_015.htm�
http://www.onr.navy.mil/02/baa/expired/00_015.htm�

282

149

[150]

[151]

152]

[153]

[154]

[155]

[156]

[157]

BIBLIOGRAPHY

Alur and Thomas A. Henzinger, editors, Computer-Aided Verification,
volume 1102 of Lecture Notes in Computer Science, pages 411-414.
Springer Verlag, 1996.

L. C. Paulson. Mechanizing a theory of program composition for
UNITY. ACM Transactions on Programming Languages and Systems
(TOPLAS), 25(5):626-656, 2001.

Lawrence C. Paulson. Isabelle: The next 700 theorem provers. In
Piergiorgio Odifreddi, editor, Logic and Computer Science, pages 361—
386. Academic Press, 1990.

Ivars Peterson. Fatal Defect: Chasing Killer Computer Bugs. Vintage
Books, 1996.

Sabina Petride. Knowledge-based specifications in the logic of events.
Draft paper and PRL seminar notes, 2003.

Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In
Proceedings of the ACM SIGPLAN 88 Conference on Programming
Language Design and Implementation (PLDI), volume 23(7) of SIG-
PLAN Notices, pages 199-208, Atlanta, Georgia, June 1988. ACM
Press.

B.C. Pierce and D.N. Turner. Simple type-theoretic foundations for
object-oriented programming. Journal of Functional Programming,
4(2), 1994.

President’s information technology advisory committee report to the
president. Information Technology Research: Investing in Our Future,
February 1999. http://www.ccic.gov/ac/report/.

Andrew M. Pitts and Murdoch Gabbay. A metalanguage for program-
ming with bound names modulo renaming. In R. Backhouse and J. N.
Oliveira, editors, Mathematics of Program Construction, volume 1837
of Lecture Notes in Computer Science, pages 230-255. Springer-Verlag,
Heidelberg, 2000.

Gordon Plotkin. Call-by-name, call-by-value, and the A-calculus. The-
oretical Computer Science, pages 125-59, 1975.

http://www.ccic.gov/ac/report/�

BIBLIOGRAPHY 283

[158]
[159]

[160]

[161]

162]

163

[164]

165
[166]

[167]

168

PVS home page. http://pvs.csl.sri.com.

Shaz Qadeer and Natarajan Shankar. Verifying a self-stabilizing mu-
tual exclusion algorithm. In David Gries and Willem-Paul de Roever,
editors, IFIP International Conference on Programming Concepts and
Methods: PROCOMET" 98, pages 424-443, Shelter Island, NY, June
1998. Chapman & Hall.

The QED project. http://www-unix.mcs.anl.gov/qed.

RTI. The Economic Impacts of Inadequate Infrastructure for Software
Testing. Planning Report 02-3. National Institute of Standards and
Technology, Research Triangle Park, NC, May 2002.

Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM
Transactions on Programming Languages and Systems, 19(5), Septem-

ber 1997.

Stephan Schmitt and Christoph Kreitz. On transforming intuitionis-
tic matrix proofs into standard-sequent proofs. In P. Baumgartner,
R. Hihnle, and J. Posegga, editors, 4" Workshop on Theorem Prov-
ing with Analytic Tableaux and Related Methods, volume 918 of Lecture
Notes in Artificial Intelligence, pages 106-121. Springer Verlag, 1995.

Stephan Schmitt, Lori Lorigo, Christoph Kreitz, and Alexey Nogin.
JProver: Integrating connection-based theorem proving into interac-
tive proof assistants. In R. Gore, A. Leitsch, and T. Nipkow, editors,
International Joint Conference on Automated Reasoning, volume 2083
of Lecture Notes in Artificial Intelligence, pages 421-426. Springer Ver-
lag, 2001.

Fred Schneider. Trust in Cyberspace. National Academy Press, 1999.

Fred B. Schneider. Enforceable security policies. Information and Sys-
tem Security, 3(1):30-50, 2000.

R. E. Shostak. Deciding combinations of theories. Journal of the As-
sociation for Computing Machinery, 31(1):1-12, 1984.

Introduction to socket programming. http://www.linuxgazette.
com/issue47/bueno.html.

http://pvs.csl.sri.com�
http://www-unix.mcs.anl.gov/qed�
http://www.linuxgazette.com/issue47/bueno.html�
http://www.linuxgazette.com/issue47/bueno.html�

284

[169)]

[170]

[171]

[172]

[173]
[174]

[175]

[176]

[177]

178

[179]

BIBLIOGRAPHY

Y. V. Srinivas and Richard Jiillig. SPECWARE: Formal Support for
composing software. In International Conference on the Mathematics
of Program Construction, 1995.

W. Richard Stevens. Advanced Programming in the UNIX Environ-
ment. Addison Wesley, 1992.

The Stanford Validity Checker home page. http://verify.stanford.
edu/SVC/.

David Tarditi. Design and implementation of code optimizations for a
type-directed compiler for Standard ML. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, USA, 1997.

Jeffrey D. Ullman. Elements of ML Programming. Prentice Hall, 1998.

Mark van den Brand, Jan Heering, Paul Klint, and Pieter A. Olivier.
Compiling language definitions: The ASF+SDF compiler. ACM

Transactions on Programming Languages and Systems (TOPLAS),
24(4):334-368, July 2002.

R. Vitenberg, I. Keidar, G. Chockler, and D. Dolev. Group communi-
cation specifications: A comprehensive study. Technical Report CS99-

31, Comp. Sci. Inst., The Hebrew University of Jerusalem, September
1999. Also MIT Technical Report MIT-LCS-TR-790.

Tjark Weber and James Caldwell. Constructively characterizing fold
and unfold. In 15th International Symposium on Logic-based Program
Synthesis and Transformation (LOPSTR 2003), held August 25-27 in
Uppsala, Sweden, 2003.

Pierre Weis and Xavier Leroy. Le langage Caml. Dunod, Paris, 2nd
edition, 1999. In French.

J.L. Welch, L. Lamport, and N. Lynch. A lattice-structured proof
technique applied to a minimum spanning tree algorithm. Laboratory
for Computer Science MIT/LCS/TM-361, Massachusetts Institute of
Technology, Cambridge, MA, June 1988.

S. Wolfram. Mathematica: A System for Doing Mathematics by Com-
puter. Addison Wesley, 1988.

http://verify.stanford.edu/SVC/�
http://verify.stanford.edu/SVC/�

BIBLIOGRAPHY 285

[180]

181]

L. Wos, S. Winker, W. McCune, R. Overbeek, E. Lusk, R. Stevens,
and R. Butler. Automated reasoning contributes to mathematics and
logic. In M. E. Stickel, editor, 10" Conference on Automated Deduc-
tion, volume 449 of Lecture Notes in Computer Science, pages 485-499.
Springer Verlag, 1990.

Xin Yu, Aleksey Nogin, Alexei Kopylov, and Jason Hickey. Formalizing
abstract algebra in type theory with dependent records. Accepted to
TPHOLs 2003 "Track B”, 2003. http://mojave.cs.caltech.edu/
nogin/papers/formalaa.html.

http://mojave.cs.caltech.edu/nogin/papers/formalaa.html�
http://mojave.cs.caltech.edu/nogin/papers/formalaa.html�

