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Abstract
The traditional axiomatic approach to voting is motivated
by the problem of reconciling differences in subjective
preferences. In contrast, a dominant line of work in the
theory of voting over the past 15 years has considered
a different kind of scenario, also fundamental to voting,
in which there is a genuinely “best” outcome that voters
would agree on if they only had enough information. This
type of scenario has its roots in the classical Condorcet
Jury Theorem; it includes cases such as jurors in a crimi-
nal trial who all want to reach the correct verdict but dis-
agree in their inferences from the available evidence, or a
corporate board of directors who all want to improve the
company’s revenue, but who have different information
that favors different options.

This style of voting leads to a natural set of questions:
each voter has a private signal that provides probabilistic
information about which option is best, and a central
question is whether a simple plurality voting system,
which tabulates votes for different options, can cause
the group decision to arrive at the correct option. We
show that plurality voting is powerful enough to achieve
this: there is a way for voters to map their signals into
votes for options in such a way that — with sufficiently
many voters — the correct option receives the greatest
number of votes with high probability. We show further,
however, that any process for achieving this is inherently
expensive in the number of voters it requires: succeeding
in identifying the correct option with probability at least
1 − η requires Ω(n3ε−2 log η−1) voters, where n is the
number of options and ε is a distributional measure of the
minimum difference between the options.

1 Introduction
Information-Based Voting. A dominant recent

theme in the study of voting has been to trace differences
in voters’ preferences back to differences in the informa-
tion they have about the world. This information-based
approach has its roots in one of the earliest results in vot-
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ing theory — the Condorcet Jury Theorem, which used
the then-young theory of probability to model a situation
in which a panel of jurors each wants to vote for the cor-
rect decision in a trial, but each juror may be wrong about
what the correct decision is independently and with prob-
ability p < 1

2 [17]. It is only very recently, however,
that this approach has received deeper theoretical atten-
tion [2, 4, 6, 7, 16], leading to what is now a large and
growing body of research.

The basic premise of the information-based approach
to voting is that all voters want the best option for the
group as a whole, but they disagree on what this best op-
tion is, based on the information they have. This models
a wide range of situations where the differences among
voters are not purely subjective, but instead based on un-
certainty. For example, in most criminal trials the key
question is genuinely whether the defendant committed
the crime or not; all jurors want to reach the correct deci-
sion, but they disagree on which of the pieces of informa-
tion presented at the trial are most salient. Similarly, all
the members of a corporate board of directors may gen-
uinely agree that the goal is to reach a decision that will
most improve the company’s future revenue, but they dis-
agree on which course of action is most likely to achieve
this. Even at the level of large populations, there can be
cases where each voter wants a candidate whose election
— for example — will lead to the strongest improvement
in the economy, but there is disagreement among the vot-
ers about which candidate is most likely to achieve this.

This view of voters as information-processing agents
trying to reach a correct decision has made it possible to
develop models for a range of important phenomena in
voting; these include the fact that voters realize they might
be wrong, and the corollary that they can sometimes be
convinced by evidence [2, 7], the corresponding role of
deliberation in committee voting [10], and the fact that
many voters may choose to abstain or not participate when
they believe that others have more accurate information
than they do [3, 8].

A Basic Model of Information-Based Voting. In
this paper, we consider the following basic theoretical
model that has received wide study [2, 7]. There is a
decision to be made, involving selecting from among
several possible optionsA1, . . . , An. One of these options
is correct, and all voters want to select it. However,



which option is correct is determined by a process that
cannot be directly observed, and the voters have to use
indirect signals to infer the correct option. Before casting
a vote, each voter t receives a private signal equal to
some value sj , providing evidence for the identity of the
correct option. (The full set of possible signals will be
labeled {s1, s2, . . . , sC}.) We assume that certain kinds
of signals are more plentiful when certain options are
correct, and that voters know conditional probabilities
of the form Pr [sj is received | Ai is correct] = ρij . We
further assume that no two options induce exactly the
same set of conditional probabilities over signals. Based
on the signal she receives, each voter casts a vote for one
option, potentially using a randomized rule to map the
signal to a vote. A voting system — a rule for mapping
a collection of votes to a group decision — is then applied
to these votes. We are interested in the probability that the
group decision will be equal to the correct option Ai.

Much of the power of this model in economics and
political science comes from the way in which it separates
the signals received by the voters from the options they
are voting on. This captures a basic property of voting in
many real-life situation, including the ones described at
the outset: the signals represent information and decision-
making heuristics that the individual voters possess in
their minds, while the options correspond to candidates
or alternatives presented on a ballot. For many reasons,
the institution of voting therefore does not (and generally
cannot) consist of a simple sharing of everyone’s signals.
Instead, voters are only able to convey the information
they possess in a more indirect fashion, by voting for one
of the given options. The crucial question is whether there
is a (possibly randomized) algorithm each voter can apply
to his or her signal to produce a vote, in such a way that
the correct option is chosen.

For simplicity in the following discussion, we con-
sider an equivalent formulation of this model (in the
spirit of [1]), via an experiment involving urns and mar-
bles. Suppose an experimenter has a collection of urns
A1, . . . , An, and each urn contains marbles of colors
s1, . . . , sC . The fraction of marbles of color sj in urn Ai
is equal to ρij ; no two urns have exactly the same mixture
of colors. Now, the experimenter announces to a set of
test subjects that he is placing one of the urns A1, . . . , An
on a table. Each test subject draws and replaces a single
marble from the urn on the table, without showing it to
the other subjects, and then writes down a vote (on a se-
cret ballot) for which urn she believes is on the table. The
experimenter then applies a voting rule to these votes, pro-
ducing a group decision, and awards the group a prize if
this group decision is equal to the true urn that was on the
table. It should be clear that this formulation is simply a
rephrasing of the original model, with the urns represent-
ing the options and the marbles representing the signals.

Can Plurality Voting Produce the Correct An-
swer?. Much of the initial theoretical work on these is-
sues focused on the case of n = 2 options — that is, vot-
ing when there are two alternatives, such as in a jury trial
or a yes/no vote on a proposed rule [2,4,6,7,16]. But many
settings involve more than two options, and in this case
the following basic question has remained open. Suppose
the votes will be aggregated simply using plurality vot-
ing, with the urn receiving the most votes chosen as the
group decision. Is there a rule the voters can use for map-
ping signals (colors) to votes, such that for any instance
of the problem with urns A1, . . . , An, a set of m voters
will identify the correct urn with probability converging
to 1 as m grows? And if so, how large a set of voters is
needed to guarantee a success probability of 1 − η, for a
given η > 0?

Recent work has highlighted the challenge and gen-
eral lack of understanding of this question with more than
two options, raising it as an open problem and provid-
ing interesting results in highly structured special cases
where the signal space is rich enough that each option has
a disjoint set of one or more signals that uniquely favor
it [12, 13]. For general sets of signals, the question has
been open: if the signals are expressively weak compared
to the full set of options, is there necessarily any strategy
for mapping signals to votes that would lead to the correct
outcome under a simple system like plurality voting?

Optimal Information-Based Voting: Main Re-
sults. Our first main result is that for any finite set of
signals, and any finite set of options that induce distinct
distributions over these signals, there is a strategy such
that a sufficiently large set of voters can arrive at the cor-
rect option with high probability using plurality voting.
In other words, each voter translates her signal into a vote
in such a way that the option receiving the most votes is,
with high probability, the correct one.

Second, we show that achieving this goal using plu-
rality voting is very expensive: it requires a large number
of voters. We give lower and upper bounds on the number
of voters needed to achieve a high probability of correct-
ness, parametrized by three quantities: the number of op-
tions, the number of signals, and a quantity measuring the
minimum separation between the distributions over sig-
nals induced by any two options. The lower bound is the
technically most involved of our results, and for two sig-
nals it is asymptotically tight in both the number of op-
tions and the separation parameter.

The technical core of our results is the case in which
there are n options and 2 signals. Let ε be the mini-
mum positive difference between the probability assigned
to a fixed signal sk by two different options i and j.
With two signals, we show there is a strategy by which
O(n3ε−2 log η−1) voters can arrive at the correct option
using plurality voting with probability at least 1− η. The



strategy is symmetric, in that all voters map signals to
votes according to the same probabilistic rule. While the
algorithm involves a carefully designed rule, it is based on
a principle that is intuitively natural: the voters “hedge”
against the possibility that their information points in the
wrong direction, by sometimes choosing to vote for an
option other than the one supported by their signal. The
bound achieved by our algorithm is tight: there are in-
stances in which Ω(n3ε−2 log η−1) voters are necessary
to achieve such a guarantee; this lower bound applies even
to asymmetric strategies in which different voters can use
different rules.

Note that by the pigeonhole principle, the minimum
difference ε is at most 1/(n − 1), and hence ε−1 is a
parameter that is at least as large as n − 1. For example,
the special case with urns A0, A1, . . . , An, in which Ai
contains i blue marbles and n − i red marbles, has ε =
1/n, and so for this problem the tight bound on the
minimum number of voters needed is Θ(n5 log η−1).

A recurring theme in our results is this fifth-power
dependence of the number of voters on n, in the case when
ε−1 is close to n. As such, it is useful to provide some
intuition at the outset for how this fifth-power dependence
arises. Thus, the following description is deliberately
informal, but gives a sense for where this functional form
comes from. Let there be m voters, and for simplicity let
us consider the special case from the previous paragraph,
with urns A0, A1, . . . , An, in which Ai contains i blue
marbles and n− i red marbles. Under the asymptotically
optimal (randomized) algorithms we consider, the correct
urn will receive a greater number of votes in expectation
than any other urn; this is why, with enough voters, we
will eventually be able to distinguish the correct urn using
plurality voting. Now, we will find that the optimal
algorithm has the following two properties. First, it
spreads out the votes relatively uniformly across a set of
Θ(n) urns, and so if there are m voters, each of the urns
in this set receives Θ(m/n) votes in expectation. The
second, subtler property is the crucial one: the optimal
algorithm ensures that the correct urn receives the most
votes in expectation using a delicate optimization under
which the the expected number of votes received by the
correct urn will exceed the expected number of votes
received by the adjacent urns by a factor of only 1 + δ,
where δ = Θ(n−2). As a result, to distinguish the correct
urn with high probability, we need a number of samples
that is sufficient to yield at least Θ(δ−2) = Θ(n4) votes
for the correct urn. But since the correct urn receives only
Θ(m/n) votes in expectation, this means that we need m
to be Θ(n5).

We observe that in our more general bound
O(n3ε−2 log η−1), the form of the dependence on ε−1 is
in fact necessary even if the voters could share their sig-
nals (rather than casting individual votes). Indeed, with

n = 2 options that assign probabilities to signals differ-
ing by only ε, even a single observer would need to see
Θ(ε−2 log η−1) signals in order to identify the correct op-
tion with probability at least 1 − η. Thus, with a con-
stant number of options, plurality voting is allowing vot-
ers to aggregate their information with an efficiency that
is within a constant factor of the efficiency achievable by
a single person who could observe all signals directly.

For the case of C > 2 possible signals or colors,
let ε denote the minimum `1 distance1 of two distinct
urns’ probability distributions. We have an upper bound
of O

(
(C logC)2n3ε−2 log n

η

)
on the number of voters

needed. Since the lower bound for the two-signal case
applies with C > 2, it is tight in ε, and we lose only
an exponentially small factor in n. Finding the correct
dependence of the required number of voters on n and C
is an interesting open question.

Under plurality voting, voters can only communicate
the name of a single option in response to a signal. We
also consider voting systems that allow voters to be much
more expressive: cumulative voting, in which each vote
consists of assigning a non-negative weight to each option
(such that the weights sum to 1); and Condorcet voting, in
which each vote consists of a ranking of all the options.
For bichromatic urns, we show that cumulative voting
requires only O(ε−2 log η−1) voters in order to succeed
with high probability; this is tight even compared to the
baseline discussed above, when a single observer has
access to all the signals. We show that a similar bound
would hold for Condorcet voting, modulo an intriguing
conjecture about distributions over permutations.

Optimal Information-Based Voting: Main Tech-
niques. The possibility result for identifying the correct
option is based on a technique that implicitly draws a con-
nection to the framework of proper scoring rules from
statistics [11]. Proper scoring rules can be thought of as
incentive systems for eliciting accurate probabilistic fore-
casts from expert predictors; the contexts in which they
have been used in earlier work are quite different from
ours, and to our knowledge there have not been previous
linkages between proper scoring rules and information-
based voting.

A construction based on proper scoring rules pro-
vides the first method for obtaining the correct option us-
ing plurality voting. However, we need to go beyond this
construction in order to obtain a tight bound on the num-
ber of voters needed: in a sense to be made precise below,

1We observe that, in the multicolor case, choosing the right param-
eter to define a notion of “distance” between urns is not as straightfor-
ward as in the bichromatic case. We chose `1 because it is the parameter
that has been used in the literature to determine the minimum number
of samples that allows an algorithm to distinguish between probability
distributions.
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we can prove that any direct use of proper scoring rules
in our setting requires at least Ω(nε−4) voters to achieve
a high probability of success. This is at least Ω(n3ε−2)
since ε ≤ (n − 1)−1, and more significantly, it has an
asymptotically sub-optimal dependence on ε of Ω(ε−4)
when n is a constant, whereas our stronger approach
achieves the optimal dependence of Θ(ε−2 log η−1) for
constant n.

For the lower bound, we need to show that with
O(n3ε−2 log η−1) voters, there is a probability η that plu-
rality voting will choose the wrong option. For this, we
identify a natural “close competitor” j of the correct op-
tion i, with a very similar signal distribution, and we con-
sider a random variable that measures the extent to which
the number of votes for the correct option i exceed the
number for this competitor j. The (possibly asymmet-
ric) strategies of the voters determine the variance of this
random variable, and roughly speaking we follow a two-
pronged argument in terms of this variance. If this vari-
ance is too low, then there is a high chance that voters
would behave the same regardless of whether the option
generating the signals was i or j, and hence that if they are
correct about iwith high probability, then they would have
to be wrong with constant probability when j is the cor-
rect option. If the variance is above a certain low thresh-
old, on the other hand, then we apply a carefully tuned
“anti-concentration” inequality from [9, 14] showing that
there is a constant probability that the number of votes for
i will drop below the number for its competitor j.

Further Related Work. Finally, we mention two
other recent lines of work that have also considered the
problem faced by a set of agents trying to agree on a
joint decision from a set of alternatives. Mossel, Sly, and
Tamuz study a version of the problem in which there are
two options, and each agent is given a probabilistic signal
providing information about which option is correct [15];
in contrast to our approach and to the work on voting
discussed above, they consider a model in which agents
may communicate iteratively over multiple rounds. Cara-
giannis and Procaccia consider a setting based on agents
that possess utilities over options; within this framework,
they show that simple voting rules can approximately op-
timize the sum of agents’ utilities for the option that is
selected [5].

2 An Upper Bound with Two Signals
We begin by considering the case of two signals. Suppose
we have a collection of n urns, labeled p1, . . . , pn, the i-
th of which having a pi fraction of blue balls and a 1− pi
fraction of red balls, with p1 ≤ p2 ≤ · · · ≤ pn. We let
ε denote the smallest difference between two consecutive
pi’s: ε = min0≤i≤n−1 (pi+1 − pi) .

We assume that one urn is adversarially chosen as the

correct one (we will also refer to this as the unknown urn).
Then each player draws a ball from the urn and votes for
the name of an urn based on the color they observe.

We describe the strategy that the players will use to
randomly choose which vote to cast:

1. Let bk =

k−1∑
`=1

2− (p`+1 + p`)

p`+1 − p`
and

rk =

n−1∑
`=k

p`+1 + p`
p`+1 − p`

. Then define R =
∑n
k=1 rk

and B =
∑n
k=1 bk, and set M = max(R,B).

2. The probability that a voter will vote for pj if a red
ball is drawn is Rj = M−1 ·

(
rj + M−R

n

)
.

3. The probability that a voter will vote for pj if a blue
ball is drawn is Bj = M−1 ·

(
bj + M−B

n

)
.

It is easy to check that the two given distribution
are indeed probability distributions (their values are non-
negative and they both sum up to one). Now, the proba-
bility that a player will vote for pj given that the correct,
adversarially chosen, distribution is pi, is

Pr
X∼(pi,1−pi)

P∼f(X)

[P = pj ] = pi Pr
P∼f(blue)

[P = pj ] +

(1− pi) Pr
P∼f(red)

[P = pj ] = piBj + (1− pi)Rj = Ei(j).

Now consider two urns, pi and pj . We compute the
difference between the probabilities that a vote for urn pi
and a vote for urn pj are cast, given that the correct urn is
pi:

∆i(j) = Ei(i)−Ei(j) = pi (Bi −Bj)+(1−pi) (Ri −Rj) .

We will lower-bound ∆i(j) to bound the number of voters
needed to let the voting scheme be successful with high
probability. Suppose first that j < i; then

M ·∆i(j) = pi ·
i−1∑
`=j

2− (p`+1 + p`)

p`+1 − p`
− (1− pi) ·

i−1∑
`=j

p`+1 + p`
p`+1 − p`

=

i−1∑
`=j

2 · pi − (p`+1 + p`)

p`+1 − p`
,

observing that in each term of the sum we have pi ≥ p`+1,
since ` ≤ i− 1. Therefore,

M ·∆i(j) ≥
i−1∑
`=j

2p`+1 − (p`+1 + p`)

p`+1 − p`
=

i−1∑
`=j

p`+1 − p`
p`+1 − p`

= i−j.



If, instead, i < j, then M ·∆i(j) is equal to

= −pi ·
j−1∑
`=i

2− (p`+1 + p`)

p`+1 − p`
+ (1− pi) ·

j−1∑
`=i

p`+1 + p`
p`+1 − p`

=

j−1∑
`=i

(p`+1 + p`)− 2pi
p`+1 − p`

≥
j−1∑
`=i

(p`+1 + p`)− 2p`
p`+1 − p`

=

j−1∑
`=i

p`+1 − p`
p`+1 − p`

= j − i,

where the inequality follows from pi ≤ p`. Therefore for
j 6= i, we have

(2.1) ∆i(j) ≥
|i− j|
M

.

We now give an upper bound on the probability that
the correct urn will be chosen by a voter. Note, somewhat
counter-intuitively, that the probability of a correct vote is
higher when this upper bound is smaller — this is because
the ∆i(j) are additive gaps, not multiplicative ones, and
so by making the upper bound on the expected number of
votes for the correct urn smaller, the gap ∆i(j) becomes
larger relative to the mean.

Recall that the correct urn is pi. We upper-bound the
probability that a vote will go to pi:

Ei(i) = pi ·M−1 ·
(
bi +

M −B
n

)
+ (1− pi) ·M−1 ·

(
ri +

M −R
n

)
≤ pi ·

(
M−1 · bi +

1

n

)
+ (1− pi) ·

(
M−1 · ri +

1

n

)
.

Observe that, by the definition of ε, we have that

bi =

i−1∑
`=1

2− (p`+1 + p`)

p`+1 − p`
satisfies bi ≤ 2i

ε , and further-

more that ri =

n−1∑
`=i

p`+1 + p`
p`+1 − p`

≤ 2(n− i)
ε

. Thus,

Ei(i) ≤ pi ·
(

2i

εM
+

1

n

)
+ (1− pi) ·

(
2(n− i)
εM

+
1

n

)
≤ 2n

εM
+

1

n
.

We now give an upper bound on M . This will allow
us to apply a Chernoff bound and finish the proof.

Recall that M = max(R,B); we will upper bound
R+B to get an upper bound on M :

R+B =

n∑
k=1

(rk + bk) ≤
n∑
k=1

(r1 + bn) = n · (r1 + bn)

= n ·
n−1∑
`=1

2

p`+1 − p`
≤ 2 · n(n− 1)

ε
.

It follows that

(2.2) M ≤ 2n(n− 1)

ε
.

Therefore, going back to the probability that an urn
identical to the correct urn is voted for, we have

Ei(i) ≤
2n

εM
+

1

n
≤ 2n

εM
+

1

n
· 2n(n− 1)

Mε
≤ 4n

εM
.

Furthermore, since ∆i(j) > 0 for each j 6= i, we have
that the urn pi is the most likely urn to be voted for, and
therefore Ei(i) ≥ 1

n .
We can now state the main theorem of the section.

Its proof uses a careful application of the Chernoff bound,
and the inequalities we derived in this section.

THEOREM 2.1. Let urns p1, p2, . . . , pn be given, with
urn pi having a pi fraction of blue balls, and a 1 − pi
fraction of red balls. Let 0 ≤ p1 < p2 < · · · < pn ≤ 1.
Also, let ε be ε = min1≤i≤n−1(pi+1 − pi). Then, for
Plurality Voting, O

(
n3ε−2 ln η−1

)
voters are sufficient to

guarantee a probability of at least 1 − η that the correct
urn receives the most votes.

Proof. Observe that ε ≤ 1
n−1 . Choose some η ∈

(0, 1), and suppose the number of players is m =⌈
108 · M(n−1)

ε · ln 4
η

⌉
— we will show that m players

will be enough to choose the correct option with probabil-
ity is at least 1 − η. Observe that, given our upper bound

M ≤ 2n(n−1)
ε , we have m ≤

⌈
216 · (n− 1)2n

ε2

⌉
.

Recall that we say that the players lose if an urn with
a different distribution from the unknown urn wins the
election. We will upper-bound the probability that the
players lose, using the following form of the Chernoff
bound:

THEOREM 2.2. (CHERNOFF BOUND) Let X1, . . . , Xm

be independent 0/1 random variables with expectation
E[Xi] = pi, for i = 1, . . . , n. Let µ =

∑
i pi. Then,

for each δ ≥ 0, it holds that

Pr

[∑
i

Xi > (1 + δ) · µ

]
≤ exp

(
−

min
(
δ, δ2

)
3

· µ

)
,

and Pr

[∑
i

Xi < (1− δ) · µ

]
≤ exp

(
−δ

2

3
· µ
)
.
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We now show how to use Theorem 2.2, together with
the bounds derived in Section 5.1, to prove Theorem 2.1.
Let Vj be the number of votes to pj in the random election,
with unknown urn i. Then, E[Vj ] = Ei(j) ·m. We have
that the probability that the players lose is

Pr[pi did not collect more votes than any other urn]

≤ Pr
[
Vi < E[Vi]−

m

3M

]
+

n∑
j=0
j 6=i

Pr

[
Vj > E[Vi]−

2m

3M

]

Since ∆i(j) ≥ |i−j|M we have E[Vi] ≥ E[Vj ] + |i−j|
M ·m,

and the probability that the players lose is at most

Pr

[
Vi < E[Vi]

(
1− m

3ME[Vi]

)]
+

n∑
j=0
j 6=i

Pr

[
Vj > E[Vj ]

(
1 +

|i− j|
ME[Vj ]

·m− 2m

3ME[Vj ]

)]

≤ Pr

[
Vi < E[Vi]

(
1− m

3ME[Vi]

)]
+

n∑
j=0
j 6=i

Pr

[
Vj > E[Vj ]

(
1 +
|i− j|m
3ME[Vj ]

)]

≤ exp

(
− m2

27M2E[Vi]

)
+

2

n∑
k=1

exp

(
−min

{
km

9M
,

k2m2

27M2E[Vj ]

})
,

by E[Vj ] ≤ E[Vi] ≤ m · 4(n−1)εM , the probability that the
players lose is at most:

≤ exp

(
− m2 εM

108M2m (n− 1)

)
+

2

n∑
k=1

exp

(
−min

{
km

9M
,

k2m2εM

108M2m (n− 1)

})
≤ exp

(
− mε

108M (n− 1)

)
+

2

n∑
k=1

exp

(
−min

{
km

9M
,

k2mε

108M (n− 1)

})
≤ exp

(
− mε

108M (n− 1)

)
+

2

n∑
k=1

exp

(
− k2mε

108M (n− 1)
·min

{
12 (n− 1)

kε
, 1

})

≤ exp

(
− mε

108M (n− 1)

)
+ 2

n∑
k=1

exp

(
−k2 ln

4

η

)

≤ η

4
+ 2

n∑
k=1

(η
4

)k
≤ η

4
+ 2 · η

4− η
≤ η

4
+ 2 · η

3
< η.

It follows that if m = Θ(n3ε−2 log η−1), and voters
apply the aforementioned voting scheme, the probability
of winning is at least 1− η.

3 A Connection to Proper Scoring Rules
In this section we discuss the connection between our
upper bound and the notion of a proper scoring rule
[11]. We first show how to obtain a strategy for a set
of voters in the two-signal case using proper scoring
rules.2 We then show that basing a strategy on proper
scoring rules cannot lead to an asymptotically tight result:
any voting strategy based on the functions arising from
the framework of proper scoring rules requires at least
Ω
(
nε−4

)
voters. This is weaker than the upper bound

of O(n3ε−2 log η−1) that we obtained in Section 2 in two
important respects. First, by the pigeon-hole principle,
ε ≤ 1

n−1 , and therefore approach from the previous
section is always at least as good as the approach based
on proper scoring rules, and often much better. More
significantly, when n is a constant, the approach via
scoring rules gives a dependence on ε of O(ε−4), whereas
our approach from Section 2 gives O(ε−2), which is
optimal even if the group of voters could directly share
all their signals. (In other words, even if there were just a
single voter who received all the signals.)

For our purposes in this discussion, it is not neces-
sary to introduce the full theory of proper scoring rules,
but just to provide a self-contained consequence of that
theory. The consequence is the following: it is possible
to construct pairs of non-negative functions (f0, f1), each
defined over the interval [0, 1], with the property that for
all z ∈ [0, 1], the function

(3.3) gz(x) = zf0(x) + (1− z)f1(x)

is uniquely maximized at x = z. We will further assume
that f0 and f1 each have continuous second derivatives,
which is true of the standard functions that arise from this
theory. This defining property of f0 and f1 is all we will
need.

From a pair of such functions, here is how we can
define a strategy for each voter in the two-signal case. We
have a set of n + 1 urns, where urn i has a probability pi
of producing a blue ball. We define q0 =

∑
i f0(pi) and

q1 =
∑
i f1(pi), and let q∗ = max(q1, q0). Now, when a

voter draws a blue ball, they vote for urn iwith probability

proportional to
f0(pi)

q∗
+

q∗ − q0
q∗(n+ 1)

; if they draw a red

ball, they vote for urn i with probability proportional to
f1(pi)

q∗
+

q∗ − q1
q∗(n+ 1)

. We call this the strategy induced by

f0 and f1.

2We are grateful to Bobby Kleinberg for identifying this connection
between voting strategies and proper scoring rules.



Suppose the true urn is t; then the number of votes
for an urn j is a random variable Xj =

∑
vXjv, where

Xjv is the indicator variable that voter v votes for j. With
k voters, we have

E [Xj ] =
k

q∗
(ptf0(pj) + (1− pt)f1(pj)) +

|q1 − q0| k
q∗(n+ 1)

=
k

q∗
gpt(pj) +

|q1 − q0| k
q∗(n+ 1)

.(3.4)

By the defining property of f0 and f1, we see that E [Xj ]
is uniquely maximized at j = t. Hence for a sufficiently
large set of voters, the number of votes received by urn
t will exceed the number received by all other urns with
high probability.

Thus, the strategy induced by any proper scoring rule
will produce the true urn with high probability when there
are enough voters. It can be viewed, in a sense, as a
much simpler version of the construction in Section 2,
and we now show that this simpler approach results in
asymptotically larger number of voters.

THEOREM 3.1. Let f0 and f1 be any functions with
continuous second derivatives that satisfy the defining
property of proper scoring rules from Equation (3.3).
Then in order for the strategy induced by f0 and f1 to
identify the true urn with high probability, there must be
Ω(nε−4) voters.

Proof. We start with a basic claim about sums of
Bernoulli trials. Let X =

∑k
i1 Xi be a sum of indepen-

dent 0-1 random variables, where E [Xi] = pi ≤ 1
2 . The

mean of X is µ =
∑k
i=1 pi. Then with constant prob-

ability, X will deviate by at least a constant multiple of√
VarX from µ. More concretely, there are absolute con-

stants α > 0 and β > 0 so that with probability at least α,
we have X < µ− β

√
VarX . Now, since

VarXi = pi(1− pi) ≥ pi/2,

we have

VarX =

k∑
i=1

VarXi ≥
k∑
i=1

pi/2 ≥ µ/2.

Now, for a given δ > 0, suppose we have µ < β2/(2δ2).
Then equivalently, δ < β/

√
2µ, so

δµ < β
√
µ/2 ≤ β

√
VarX.

Hence with probability at least α > 0, we have X <
(1− δ)µ. It follows that in order to ensure X ≥ (1− δ)µ
with probability going to 1, we must have µ ≥ Ω(1/δ2).

Now, recall that there are k voters, and consider the
voting strategy induced by the functions f0 and f1. Since

the first derivatives f ′0 and f ′1 are continuous functions
defined over the compact set [0, 1], there is a constant
c1 such that |f ′0(x)|, |f ′1(x)| ≤ c1 for all x ∈ [0, 1].
For the same reason, there is a constant c2 such that
|f ′′0 (x)|, |f ′′1 (x)| ≤ c2 for all x ∈ [0, 1]. Using the bound
on the first derivative, for any γ > 0 we can find an
interval [u, v] ⊆ [0, 1] such that the following hold: (i)
d = inf

x∈[u,v]
min(f0(x), f1(x)) > 0, (ii) v/u < 1 + γ, (iii)

(1− u)/(1− v) < 1 + γ,

(iv) sup
x,y∈[u,v]

f0(y)

f0(x)
< 1+γ, and (v) sup

x,y∈[u,v]

f1(y)

f1(x)
< 1+γ.

It follows that if our probabilities p0, p1, . . . , pn all lie in
this interval [u, v], then

E [Xj ] ∈
[

(1− γ1)k

n
,

(1 + γ1)k

n

]
for a constant γ1 that goes to 0 with γ. Also, we have
q∗ ≥ dn.

Now, for any ε > 0, we choose p0 ≤ p1 ≤ · · · ≤
pn ∈ [u, v] such that pj+1 − pj = ε for each j. Let t be
the true urn, and let

h(x) =
k

q∗
(ptf0(x) + (1− pt)f1(x)) +

|q1 − q0| k
q∗(n+ 1)

.

Notice that E [Xj ] = h(pj). Now, Taylor’s Theorem
implies that for some w ∈ [pt, pt+1], we have

h(pt+1) = h(pt)+(pt+1−pt)h′(pt)+
1

2
(pt+1−pt)2h′′(w).

Since h(x) has its global maximum at x = pt, we have
h′(pt) = 0. Moreover, since |f ′′0 (x)|, |f ′′1 (x)| ≤ c2 for all
x ∈ [0, 1], we have

h′′(w) =
k

q∗
(ptf

′′
0 (x) + (1− pt)f ′′1 (x)) ≤ kc2

dn
.

Writing pt+1 − pt = ε, we have

h(pt+1) ≥ h(pt)−
kc2
2dn

ε2

Since E [Xj ] = h(pj), for all j, this implies

E [Xt+1] ≥ E [Xt]−
kc2
2dn

ε2.

Since E [Xt] ≥
(1− γ1)k

n
, this implies that E [Xt+1] ≥

(1− δ)E [Xt], where δ = c3ε
2 and c3 =

c2
2(1− γ1)d

.

Now, using our initial fact about sums of Bernoulli
trials, we must have E [Xt] ≥ Ω(1/δ2) in order for Xt to
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have a high probability of exceeding (1− δ)E [Xt]. Since

E [Xt] ≤
(1 + γ1)k

n
, this requires

(1 + γ1)k

n
≥ d2
c23ε

4

for a constant d2 > 0, and hence

k ≥ d2n

(1 + γ1)c23ε
4
.

4 A Tight Lower Bound for Two Signals
In this section we give a tight lower bound that confirms
the optimality of the voting scheme for two signals pre-
sented in Section 2. We will start by introducing a class of
instances. We will then prove a combinatorial lemma on
how certain parameters of any (asymmetric) voting sys-
tem for these instances have to behave, and we use the
lemma to prove the lower bound.

We start by defining the lower bound class of in-
stances I(n, ε), for any n ≥ 2 and ε ≤ 1

n−1 . The n urns

in I(n, ε) are such that pi =
1− ε(n− 1)

2
+ (i− 1)ε, for

i = 1, . . . , n. Then 0 ≤ p1 ≤ p2 ≤ · · · ≤ pn ≤ 1.
Each voter t is defined by two probability distribu-

tions (R1,t, R2,t, . . . , Rn,t), (B1,t, B2,t, . . . , Bn,t): if she
draws a red (resp., blue) ball she will vote for urn i with
probability Ri,t (resp., Bi,t).

Given a voting scheme for m voters (that is, 2m
probability vectors (Ri,t), (Bi,t)), we define Bi = m−1 ·∑m
t=1Bi,t and Ri = m−1 ·

∑m
t=1Ri,t, for i = 1, . . . ,m.

Thus the expected number of votes Ei(j) to urn j, if
i is the correct urn, will be equal to m · Ei(j) =
m · (pi ·Bj + (1− pi) ·Rj) . We also define ∆i(j) =
Ei(i) − Ei(j) to be the expected difference between the
number of votes to i and j, if i is the correct urn, averaged
over the m voters.

We say that a voting scheme is proper if ∆i(j) ≥ 0,
for each i, j. The challenge in proving the lower bound
lies in the fact that proper voting schemes can succeed in
identifying the correct urn for what seem to be a variety
of different reasons, and so we need to find a common
property they have which implies that the correct urn only
“narrowly” wins the election over other urns with very
similar distributions. This is the content of the following
lemma.

LEMMA 4.1. Let n and ε be n ≥ 10 and ε ≤ 1
n−1 . Then

all proper voting schemes for I(n, ε) satisfy:

(a) B1 ≤ B2 ≤ · · · ≤ Bn ≤ 9
n and 9

n ≥ R1 ≥ R2 ≥
· · · ≥ Rn;

(b) Ei(i) ≤ 9
n , for i = 1, . . . , n.

(c) There exists a set S ⊆ [n] and ι ∈ {−1,+1}, with
|S| ≥ n

4 − 3 lnn− 14, such that for each i ∈ S, we
have

max (|Ri −Ri+ι| , |Bi −Bi+ι|) < e
7
2 ·
√
|Ri −Bi|
n

3
2

,

and

∆i(i+ ι),∆i+ι(i) ≤ 2e
7
2 · ε ·

√
|Ri −Bi|
n

3
2

.

The crux of the lemma is to show that for many pairs of
urns i, i + ι, the election will be very “close”: if i is the
correct urn, it does not win the election by a large margin
over i + ι in expectation (and vice versa). The lemma
shows further that, averaged over the voters, the difference
between the probability of voting for i given a red (resp.,
blue) ball and the probability of voting for i+ ι given the
same color is small.

This upper bound is crucial for the proof of the lower-
bound theorem, stated next: we will show that — even if
we only cared about urns i, i+ι— the variance of a voter’s
choice can be lower-bounded by Ω(|Ri,t −Bi,t|). This,
assuming that the total variance is at least some constant,
will allow us to apply an anti-concentration inequality to
show that the expected margin ∆i(i+ ι) of urn i over urn
i+ ι will be surpassed by Θ

(
ln η−1

)
standard deviations

of the number of votes to urn i and i + ι. It will follow
that with probability Ω(η) the election will be won by
the wrong urn. Again, this argument requires that the
variance be at least some sufficiently large constant; if
the variance is actually smaller than this constant, we will
use a different argument showing that the voting system
is sufficiently “inflexible” that if urn i wins when it is
correct, the same pattern of votes is likely to also arise
— favoring i — when i+ ι is actually correct.

Proof. We will first show that in a proper voting scheme,
for each i < j it holds that Bi ≤ Bj and Ri ≥ Rj . This
implies B0 ≤ B1 ≤ · · · ≤ Bn−1 and R0 ≥ R1 ≥ · · · ≥
Rn−1. By contradiction,

• if Bi < Bj and Ri < Rj , then Ek(j) > Ek(i)
for each k: in particular for k = i, which would
give ∆i(j) < 0, contradicting the properness of the
voting scheme;

• the same argument gives a contradiction if Bi > Bj
and Ri > Rj (choosing k = j);

• finally, assume Bi > Bj , Ri < Rj , and that Ei(i) >
Ei(j), Ej(i) < Ej(j); then,

Ei(i)− Ej(i) > Ei(j)− Ej(j)
(pi − pj)Bi + (pj − pi)Ri > (pi − pj)Bj + (pj − pi)Rj

(pi − pj)(Bi −Bj) > (pj − pi)(Rj −Ri),



then, by pi < pj , we have

(Rj −Ri) + (Bi −Bj) < 0,

which is impossible since the left-hand side is posi-
tive by Bi > Bj and Rj > Ri.

It follows that Bi ≤ Bj and Ri ≥ Rj . We now
show that Bn ≤ 9

n (resp., R1 ≤ 9
n ). Since {Bi}ni=1

and {Ri}ni=1 are probability distributions, one has that∣∣{i | Bi +Ri ≤ 4
n

}∣∣ ≥ n
2 , for otherwise

2 =

n∑
i=1

Bi +

n∑
i=1

Ri ≥
n∑
i=1

Bi+Ri>
4
n

Ei(i) >
n

2
· 4

n
≥ 2.

Since pbn+1
2 c
≥ 1−ε

2 (resp., pdn+1
2 e
≤ 1+ε

2 ), it follows
that there exists some i such that Bi + Ri ≤ 4

n and
pi ≥ 1−ε

2 (resp., pi ≤ 1+ε
2 ). Observe that Ei(i) ≤ 4

n .
Now, by contradiction, let Bn > 9

n (R1 >
9
n ); by n ≥ 10

we have ε ≤ 1
n−1 ≤

1
9 ; therefore pi ≥ 4

9 (pi ≤ 5
9 ) one has

Ei(n) ≥ pi · Bn > 4
n (Ei(1) ≥ pi · R1 >

4
n ). It follows

that ∆i(n) (∆i(1)) is negative, contradicting properness.

We define δi = |Ri −Bi|. Then δn ≤ Bn ≤ 9
n

and δ1 ≤ R1 ≤ 9
n . Let kr be the largest integer such

that Rkr+1 ≥ Bkr+1, and kb be the largest integer such
that Bn−kb ≥ Rn−kb . Observe that (a) if i ≤ kr then
δi ≥ δi+1, (b) if i ≥ n − kb + 1 then δi ≥ δi−1, and (c)
kr + kb ≥ n − 2. By (c) at least one of kr and kb has to
be at least n2 − 1. We let SR and SB be

SR = {i | Ri+1 ≥ Bi+1 and

max (Ri −Ri+1, Bi+1 −Bi) < e
7/2 ·
√
Ri −Bi
n3/2

}
,

SB = {i | Bi−1 ≥ Ri−1 and

max (Ri−1 −Ri, Bi −Bi−1) < e
7/2 ·
√
Bi −Ri
n3/2

}
.

Then SR ⊆ {1, 2, . . . , kr} and SB ⊆ {n − kb + 1, n −
kb + 2, . . . , n− 1, n}. We consider two cases:

• suppose kr ≥ n
2 − 1. We relabel the element in

SR = [kr]− SR, using r =
∣∣SR∣∣:

SR = {i1, i2, . . . , ir},

with i1 < i2 < · · · < ir. We have δ1 ≥ δ2 ≥ · · · ≥
δkr ≥ δkr+1. Then, for 1 ≤ t ≤ r − 1,

δit+1
≤ δit+1 ≤ δit − e

7/2 ·
√
Rit −Bit
n3/2

(4.5)

= δit − e
7/2 ·

√
δit

n3/2
= δit ·

(
1−

√
e7

n3 · δit

)
,

and δi1 ≤ 9
n ≤

e3

n ; we define αk = e3−k so that
δi1 ≤ α0 · n−1. Let `0 = 1 and `k =

⌈
n · e−(k+3)/2

⌉
,

for k ≥ 1. We also let L(k) =
∑k
j=0 `j . We will

show by induction on k that δiL(k)
≤ αk · n−1 =

e3−k ·n−1. The case k = 0 has already been verified.
We assume k ≥ 1. Then,

δiL(k)
≤ δiL(k)−1

·

(
1−

√
e7

n3 · δiL(k)−1

)

≤ δiL(k−1)
·

(
1−

√
e7

n3 · δiL(k−1)

)`k

≤ δiL(k)−1
·

(
1−

√
ek+3

n2

)`k
= δiL(k−1)

·

(
1− e

k+3
2

n

)`k

= δiL(k−1)
·

(
1− e

k+3
2

n

)⌈ n

e
(k+3)/2

⌉

≤ δiL(k−1)
· e−1 ≤ e3−k · n−1.

Now, if k ≥ 11 + 3 lnn, we have δiL(k)
≤ n3 · e−8;

by (4.5), we would then get δiL(k)+1
≤ δiL(k)

·
(1− e) < 0 — since δir ≥ 0, by ir ≤ kr, this
implies that r =

∣∣SR∣∣ < L (d11 + 3 lnne). We
now upper bound L(k) to get an upper bound on
r =

∣∣SR∣∣:
L(k) =

k∑
j=0

`j = 1 +

k∑
j=1

⌈
n · e−

k+3
2

⌉

= k + 1 + n ·
k∑
j=1

e−
k+3
2 ≤ k + 1 + n · e−5/2 ·

∞∑
j=0

e−
k/2

= k + 1 + n · e−5/2 · 1

1− e−1/2

= k + 1 +
n

e5/2 − e2
≤ n

4
+ k + 1.

It follows that r =
∣∣SR∣∣ < L (d11 + 3 lnne) ≤

n
4 +d11 + 3 lnne+1 ≤ n

4 +3 lnn+13, and therefore

|SR| ≥ kr −
n

4
− 3 lnn− 13 ≥ n

4
− 3 lnn− 14.

• Otherwise, kr < n
2 − 1 and therefore kb > n

2 − 1. A
proof similar to the previous case gives

|SB | ≥ kb −
n

4
− 3 lnn− 13 ≥ n

4
− 3 lnn− 14.

Therefore, at least one of SR and SR has cardinality
at least n

4 − 3 lnn − 14. If SR is the largest one we
pick ι = 1 and S = SR. Otherwise, we pick ι = −1
and S = SB . Observe that the choice satisfies the first
requirement of point (c) in the statement.
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We now prove the second requirement of point (c).
Let i be an element of S, β = Bi − Bi+ι, and ρ =
Ri −Ri+ι. Then, |β| = −ιβ and |ρ| = ιρ. Also,

|β| , |ρ| ≤ e 7
2 ·
√
|Ri −Bi|
n

3
2

.

Recall that ∆i(i+ι) = Ei(i)−Ei(i+ι) = βpi+ρ(1−pi)
and ∆i+ι(i) = Ei+ι(i+ ι)−Ei+1(i) = −βpi+ι− ρ(1−
pi+ι). Suppose that at least one of ∆i(i+ ι) and ∆i+ι(i)

is larger than 2e
7
2 ε

√
|Ri−Bi|

n
3
2

. By the properness of the
voting system, we would have:

∆i(i+ ι) + ∆i+ι(i) > 2e
7
2 · ε ·

√
|Ri −Bi|
n

3
2

β(pi − pi+ι) + ρ(pi+ι − pi) > 2e
7
2 · ε ·

√
|Ri −Bi|
n

3
2

,

by the definition of the instance, we have that pi+ι− pi =
ι · ε, therefore we would have

|β|+ |ρ| > 2e
7
2 ·
√
|Ri −Bi|
n

3
2

which would imply that at least one of |β| and |ρ| is larger

than e
7
2 ·
√
|Ri−Bi|

n
3
2

, a contradiction. It follows that both

∆i(i+ ι) and ∆i+ι(i) are less than or equal

∆i(i+ ι),∆i+ι(i) ≤ 2e
7
2 · ε ·

√
|Ri −Bi|
n

3
2

.

THEOREM 4.1. There exists a positive constant H such
that for any η < H , one has that any voting scheme
for I(n, ε), with n ≥ 120 and ε ≤ 1

11(n−1) using at

mostO
(
n3

ε2 log 1
η

)
voters will fail to win the election with

probability Ω(η).

Proof. Take any asymmetric voting scheme for I(n, ε)
with m voters — that is, a sequence of m vectors
(R1,t, . . . , Rn,t) and (B1,t, . . . , Bn,t), for 1 ≤ t ≤ m,
such that the probability that the tth voter votes for the ith
urn if she draws a blue (resp., red) ball isBi,t (resp.,Ri,t).
Let Bi = m−1 ·

∑m
t=1Bi,t and Ri = m−1 ·

∑m
t=1Ri,t.

If the voting scheme is improper, then by definition
there exists i, j such that ∆i(j) < 0. Otherwise, by
n ≥ 120, one has n4 −3 lnn−14 ≥ 1, and by Lemma 4.1,
there will exist two urns i and j ∈ {i− 1, i+ 1} such that

∆i(j) ≤ 2e
7
2 ε

√
|Ri−Bi|

n
3
2

.

Given i, j, we define the head-to-head (i, j)-voting
process as follows; for each voter t, assuming that the
unknown urn is i, the random variable Xt = Xt(i, j) will
be defined as

Xt =

 1 if voter t votes for urn j,
1/2 if voter t does not vote for urns i or j,
0 if voter t votes for the unknown urn i.

Observe that X =
∑m
t=1Xt ≥ m

2 iff the number of votes
to urn j is not smaller than the number of votes to the
right urn i. In this case, the voters will lose the election.
Furthermore,

E[X] =
m

2
− m

2
·∆i(j).

Since X is the sum of independent random vari-
ables, we have that Var[X] =

∑m
t=1 Var[Xt]; by ε ≤

1
11 (n− 1), we have that 5

11 ≤ p1 ≤ p2 ≤ · · · ≤ pn ≤
6
11 .

We will use that pi, 1− pi ≥ 1
4 for each i, to lower-bound

the variance of Xt:

Var[Xt] = (pi ·Bi,t + (1− pi) ·Ri,t) · (0− E[Xt])
2

+ (pi ·Bj,t + (1− pi) ·Rj,t) · (1− E[Xt])
2

+ (pi · (1−Bi,t −Bj,t) + (1− pi) · (1−Ri,t −Rj,t))

·
(

1

2
− E[Xt]

)2

.

We consider two cases:

• if E[Xt] ≥ 1
4 , then

Var[Xt] ≥ (piBi,t + (1− pi)Ri,t) · (0− E[Xt])
2

≥ Ri,t +Bi,t
4

· 1

16
≥ |Ri,t −Bi,t|

64
.

• if E[Xt] <
1
4 , we have

Var[Xt] ≥ (piBj,t + (1− pi)Rj,t) (1− E[Xt])
2

+ (pi(1−Bi,t −Bj,t)

+ (1− pi)(1−Ri,t −Rj,t))
(

1

2
− E[Xt]

)2

≥ piBj,t + (1− pi)Rj,t
16

+
pi(1−Bi,t −Bj,t) + (1− pi)(1−Ri,t −Rj,t)

16

=
pi(1−Bi,t) + (1− pi)(1−Ri,t)

16
.

The latter is equal to both 1
16pi(Ri,t − Bi,t) + (1 −

Ri,t) and 1
16 (1 − pi)(Bi,t − Ri,t) + (1 − Bi,t); we

can therefore get a lower bound of

Var[Xt] ≥
1

16
·min(pi, 1−pi)·|Ri,t −Bi,t| ≥

|Ri,t −Bi,t|
64

It follows that Var[X] =
∑m
t=1 Var[Xt] ≥ 1

64 ·∑m
t=1 |Ri,t −Bi,t|.

Recall that m · Ri =
∑m
t=1Ri,t and m · Bi =∑m

t=1Bi,t. Suppose Ri ≥ Bi; then

m · |Ri −Bi| = m · (Ri −Bi) = m ·
m∑
t=1

(Ri,t −Bi,t)

≤ m ·
m∑
t=1

|Ri,t −Bi,t| ≤ 64 ·Var[X].



If, on the other hand, Bi > Ri, we have

m · |Ri −Bi| = m · (Bi −Ri) = m ·
m∑
t=1

(Bi,t −Ri,t)

≤ m ·
m∑
t=1

|Bi,t −Ri,t| ≤ 64 ·Var[X].

Therefore, in any case, we have Var[X] ≥ m|Ri−Bi|
64 .

We now give a different lower bound on Var[X],
that we will use to deal with the case of very small
variance Var[X]. Let p1,t, p1/2,t, p0,t be, respectively, the
probabilities that Xt = 1, Xt = 1

2 and Xt = 0. Then,
E[Xt] = p1,t + 1

2 · p1/2,t, and

Var[Xt] = p1,t · (E[Xt]− 1)
2

+ p1/2,t ·
(
E[Xt]−

1

2

)2

+ p0,t · (E[Xt])
2

We consider three cases:

• if p1,t = max
(
p1,t, p1/2,t, p0,t

)
≥ 1

3 then ifE[Xt] ≤
3
4 we have

Var[Xt] ≥ p1,t · (E[Xt]− 1)
2 ≥ 1

3
· 1

42
≥ 1− p1,t

48
.

If instead E[Xt] >
3
4 , then

Var[Xt] ≥ p1/2,t

(
E[Xt]−

1

2

)2

+ p0,t (E[Xt])
2

>
p1/2,t

42
+
p0,t
42
≥ 1− p1,t

16
.

• If p0,t = max
(
p1,t, p1/2,t, p0,t

)
≥ 1

3 then we employ
a similar approach. If E[Xt] ≥ 1

4 we have

Var[Xt] ≥ p0,t·(E[Xt])
2 ≥ 1

3
· 1

42
=

1

48
≥ 1− p0,t

48
.

If E[Xt] <
1
4 , then

Var[Xt] ≥ p1/2,t

(
E[Xt]−

1

2

)2

+ p1,t (E[Xt]− 1)
2

≥
p1/2,t

42
+
p1,t
42
≥ 1− p0,t

16
.

• If p1/2,t = max
(
p1,t, p1/2,t, p0,t

)
≥ 1

3 , then 1
6 ≤

E[Xt] ≤ 5
6 , and

Var[Xt] ≥ p1,t (E[Xt]− 1)
2

+ p0,t (E[Xt])
2

≥ p1,t
62

+
p0,t
62
≥

1− p1/2,t

36
.

In each of the three cases, we had Var[Xt] ≥
1−max(p1,t,p1/2,t,p0,t)

48 , and therefore

Var[X] =

m∑
t=1

Var[Xt] ≥
1

48
·
m∑
t=1

(
1−max

(
p1,t, p1/2,t, p0,t

))
.

Let us now assume that Var[X] ≤ 1
72 · log5

1
η . We

will deal with the case Var[X] > 1
72 · log5

1
η later. The

previous inequality then implies
m∑
t=1

(
1−max

(
p1,t, p1/2,t, p0,t

))
≤ 2

3
log5

1

η
.

Recall that X = X(i, j) ≥ m
2 iff the unknown

urn i gets at most as many votes as j (and therefore the
election is lost). In the following we will also consider
X ′ = X(j, i); we have that X ′ ≤ m

2 iff urn i gets at least
as many votes as the unknown urn j (this also implies that
the election is lost).

Observe that, since 5
11 ≤ p1 ≤ p2 ≤ · · · ≤ pn ≤ 6

11 ,
no matter what the unknown urn is, the probability that
any specific voter votes for any specific urn changes by
a constant factor (between 5

6 and 6
5 ) if one changes the

unknown urn.
We now show that, given that Var[x] ≤ 1

72 · log5 η
−1,

then with probability at least η/9 each voter will vote
according to its maximum probability choice: that is

Pr[∀t,Xt equals the value xt that maximizes Pr[Xt = xt]] ≥
η

9
.

If these choices let an urn different from iwin the election,
we have proven the theorem. Otherwise, we show that —
if we exchange the unknown urn with any other urn k —
then still with probability at least η/25 each voter t will
vote for the same urn xt; implying either a tie at the top, or
that i (which would then not be the correct urn anymore)
would will the election.

We let st denote the sum of the two minimum
probabilities in {p1,t, p1/2,t, p0,t}; that is st = 1 −
max

(
p1,t, p1/2,t, p0,t

)
. Observe that st ≤ 1 − 1

3 = 2
3

for each t. If we define s =
∑m
t=1 st, we also have

s ≤ 2
3 log5 η

−1.
We have that,

Pr [∀t,Xt equals the value xt that maximizes Pr[Xt = xt]]

=

m∏
t=1

(1− st).

We now lower-bound the product, using the follow-
ing greedy algorithm: take one of the largest st′ < 2

3 , and
one of the smallest st > 0, with st 6= st′ . Then move
x = min

(
2
3 − st′ , st

)
> 0 mass from st to st′ . Ob-

serve that the sum s of the st’s remains constant through-
out the process; furthermore the product

∏t
m=1 st de-

creases: indeed, consider the product of st · st′ before

11



and after the change — we can disregard the rest since
it remains constant. Let st, st′ be the two values before
the change, and st − x, st′ + x be the two values after
the change. That product used to be st · st′ , and becomes
st ·st′−x(st′−st)−x2 — the latter is smaller than st ·st′
since x > 0 and st′ > st. Note also that at each step one
of the st’s stops being considered (either because it be-
comes equal to 2

3 or equal to 0) — therefore the algorithm
terminates. At termination there will exist at most one st
with value different from 2

3 and 0. Furthermore, recalling
that s =

∑m
t=1 st, we conclude that then there will exist

exactly
⌈
s

2/3

⌉
different st’s with value 2/3, one with value

0 ≤ s−
⌈
s

2/3

⌉
· 23 <

2
3 , and all the others having null value.

Given that s ≤ 2
3 log5 η

−1, we can then minimize the
former probability with

m∏
t=1

(1− st) ≥ 3
−
⌈
s

2/3

⌉
−1

≥ 3−dlog5 η
−1e−1

≥ 1

9
· 3− log5 η

−1

≥ 1

9
η

1
log3 5 ≥ η

9
.

If these sequence of votes guarantees that the unknown
urn i loses the election, we are done. Otherwise, we
exchange the roles of urns i and j.

Recall that 5
6 ≤

pi
pj
, 1−pi1−pj ≤

6
5 — and therefore,

for each t, s′t ≤ 6
5st ≤

4
5 . Indeed, let {a, b, c} =

{1, 1/2, 0} be such that pa,t ≤ pb,t ≤ pc,t. If one
lets p′1,t, p

′
1/2,t, p

′
0,t be the probabilities that voter t, with

unknown urn j, will, respectively, vote for i, for an
urn other than i and j, and for urn j, then we have
that p′1,t ≤ 6

5p1,t, p
′
1/2,t ≤

6
5p1/2,t and p′0,t ≤ 6

5p0,t.
Therefore p′a,t + p′b,t ≤ 6

5 (pa,t + pb,t). It follows that
s′t = 1 − p′c,t = p′a,t + p′b,t ≤ 6

5 (pa,t + pb,t) = 6
5st,

which is upper bounded by 6
5 · st ≤

6
5 ·

2
3 = 4

5 .
Observe that the sum s′ of the s′t’s, s′ =

∑m
t=1 s

′
t,

is then at most 6
5 times the sum s of the st’s; that is,

s′ ≤ 6
5s ≤

4
5 log5 η

−1.

Let X ′t be the random variable that, if the unknown
urn is j, has value 1 if the t-th voter votes for urn i, 0 if
she votes for urn j, and 1/2 otherwise; we have:

Pr [∀t,X ′t equals the value xt

that maximizes Pr[Xt = xt]] =

m∏
t=1

(1− s′t).

Using the same greedy algorithm as before, but moving
mass x = min

(
4
5 − s

′
t′ , s
′
t

)
from couples of s′t’s such

that s′t′ <
4
5 and s′t > 0, s′t′ 6= s′t, we get that the

previous product is minimized when exactly
⌈
s′

4/5

⌉
distinct

s′t’s exist having value 4/5, one having value 0 ≤ s′ −⌈
s

4/5

⌉
· 45 <

4
5 , and the rest having null value. Then,

Pr [∀t,X ′t equals the value xt
that maximizes Pr[Xt = xt]]

=

m∏
t=1

(1− s′t)

≥ 5
−
⌈
s′
4/5

⌉
−1

≥ 5
−
⌈

4
5 ·

log5 η
−1

4/5

⌉
−1

≥ 5−dlog5 η
−1e−1 ≥ η

25
.

Now, if urn i won with this sequence of votes, it follows
that j cannot win.

We have shown that if Var[X] ≤ 1
72 log5 η

−1, then
the probability of winning is at most 1 − η

25 . We now
assume Var[X] > 1

72 log5 η
−1. We will use the following

anti-concentration inequality (see Theorem 7.3.1 in [14],
and [9]) to finish the proof:

THEOREM 4.2. ( [9, 14]) Let X =
∑n
i=1Xi, where Xi

are independent random variables, with Xi ∈ [0, 1], for
i = 1, . . . , n. Let σ2 = Var[X] be σ2 ≥ 40000. Then, for

each t ∈
[
0, σ

2

100

]
, it holds that

Pr [X ≥ E[X] + t] ≥ c · exp

(
− t2

3σ2

)
,

for some universal constant c > 0.

We apply Theorem 4.2 on the random variable X =

X(i, j), choosing t =
√

64e7mVar[X]
n3ε−2 , if ∆i(j) ≥ 0, and

t = 0 otherwise. This choice is valid since

0 ≤ t

Var[X]
≤

√
m · 64e7

n3ε−2 Var[X]
<

√
m · 4608e7 ln 5

n3ε−2 ln η−1
≤ 1

100
,

where the latter holds if m ≤ 1
46080000e7 ln 5 ·

n3ε−2 ln η−1.

We also need Var[X] ≥ 40000 to apply Theorem 4.2.
Since Var[X] > 1

72 log5 η
−1, and η ≤ H , we choose H

to be H = 5−2880000, obtaining Var[X] > 40000.

Observe that E[X] = m
2 −

m
2 ·∆i(j). We show that

the event “X ≥ E[X] + t” implies the event “X ≥ m
2 ”

(which directly implies that the unknown urn i will not
win the election).

If ∆i(j) < 0, the claim is trivial, since then E[X] >
m
2 , and t is non-negative. Otherwise, by the bound



Var[X] ≥ m · |Ri−Bi|64 , we get

t ≥ m · e7/2ε ·
√
|Ri −Bi|

n3
≥ m

2
·∆i(j),

which proves that X ≥ E[X] + t =⇒ X ≥ m
2 .

Applying Theorem 4.2, we get

Pr [X ≥ E[X] + t] ≥ c · exp

(
− t2

3 Var[X]

)
= c · exp

(
− 64e7m

3n3ε−2

)
≥ c · exp

(
− 64 · ln η−1

3 · 46080000 · ln 5

)
≥ c · η.

The proof is then complete.

5 An Upper Bound for Many Signals
In this section we consider the voting problem in its full
generality: we have a set of n ≥ 2 urns, with each urn
i = 1, . . . , n inducing a distinct probability distribution
Pi = (pi,1, pi,2, . . . , pi,C) over a set of C signals or
colors. Let ε be the minimum `1 distance between the
distributions Pi:

ε = min
i6=j

`1(Pi, Pj) = min
i 6=j

C∑
c=1

|pi,c − pj,c| .

Observe that when C = 2, this parameter ε is twice the
one that we used in Section 2.

THEOREM 5.1. There exists a voting scheme that, using
m = Θ

(
(C logC)2n3

ε2 ln n
η

)
voters, guarantee that the

unknown urn wins with probability at least 1− η.

The proof of this Theorem spans two subsections (Sec-
tions 5.1 and 5.2). In Section 5.1 we generalize the bichro-
matic voting scheme so (a) to treat urns that are not “well-
separated” as if they were the same – this virtually in-
creases the separation parameter ε – and (b) to guaran-
tee, under some conditions, that the equivalent of the M
parameter of the bichromatic voting scheme of Section 2
is not just upper bounded by O(n2ε−1), but is actually
asymptotic to Θ(n2ε−1).

In Section 5.2, we use both these properties to devise
a new voting scheme that uses the generalized bichromatic
one as a black box. The main idea of the multicolor
voting scheme is to force voters to view the urns as
bichromatic ones: each voter will choose a color c at
random, and consider each urn as a bichromatic urn with
colors c, c̄ — that is, she will imagine that there are only
two colors: “c” and “any color other than c”. Using

this trick directly with the bichromatic voting scheme
of section 2 would decrease to 0 the minimum distance
between urns in the worst case. We do not want the
separation between urns to decrease — since that would
increase the minimum number of voters needed for the
election to be successful — this is where property (a)
of the generalized bichromatic voting scheme becomes
pivotal. Also, we need a way to aggregate the votes
given to each single urn, in each of the (c, c̄) bichromatic
instances; this has to be done in a way that guarantees that
the right urn will win with high probability. We manage
to do this by leveraging on property (b).

5.1 A More Flexible Upper Bound with Two Signals
To build a framework that can be used to handle the case
of C > 2 signals, it is useful to consider a more general
formulation of the bichromatic problem in which certain
options can induce identical distributions over signals
(and hence be indistinguishable from each other). The
proofs of this section are omitted for lack of space.

Thus, suppose we have a collection of n urns, labeled
pi for i = 1, 2, . . . , n. With a slight abuse of notation
we let pi and 1 − pi be, respectively, the fraction of blue
balls, and of red balls, in urn pi. We assume w.l.o.g. that
0 ≤ p1 ≤ p2 ≤ · · · ≤ pn ≤ 1.

We assume that one urn is adversarially chosen as the
correct one (we will also refer to this as the unknown urn).
Then each player draws a ball from the urn and votes for
the name of an urn based on the color they observe. For
this general version with indistinguishable urns, we will
be interested in the probability that the urn receiving the
most votes has the same distribution as the correct one;
this general formulation is for the sake of the multi-color
case later.

We describe the strategy that the players will use to
randomly choose which vote to cast. First of all, for some
n′ ≥ 10, choose 0 ≤ p′1 < p′2 < · · · < p′n′ ≤ 1. Let
ε = min1≤i≤n′−1

(
p′i+1 − p′i

)
. We require that (a) for

1 ≤ k ≤
⌈
n′−1
3

⌉
= K it holds that p′k+1 − p′k ≤ 2ε and

p′n′−k+1 − p′n′−k ≤ 2ε, and (b) p′K+1 ≤ (2K + 1)ε and
p′n′−K ≥ 1− (2K + 1)ε.

The p′i’s are called the landmarks of the voting
scheme.

1. Let bk =

k−1∑
`=1

2− (p′`+1 + p′`)

p′`+1 − p′`
and

rk =

n′−1∑
`=k

p′`+1 + p′`
p′`+1 − p′`

for k = 1, . . . , n′.

2. Let φ : {p1, . . . , pn} → {1, . . . , n′} be a mapping
from urns to landmarks’ indices, defined so that
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φ(pi) = k if k maximizes pibk + (1 − pi)rk (ties
can be broken arbitrarily).

3. Then define R =
∑n′

k=1

((∣∣φ−1(k)
∣∣+ 1

)
· rk
)

and

B =
∑n′

k=1

((∣∣φ−1(k)
∣∣+ 1

)
· bk
)
, and set M =

max(R,B).

4. The probability that a voter will vote for pj if a blue
ball is drawn is

Pr
P∼f(blue)

[P = pj ] = M−1
(
bφ(pj) +

M −B
n

)
= Bj

5. The probability that a voter will vote for pj if a red
ball is drawn is

Pr
P∼f(red)

[P = pj ] = M−1
(
rφ(pj) +

M −R
n

)
= Rj

It is easy to check that the two probability distribu-
tions (B1, B2, . . . , Bn) and (R1, R2, . . . , Rn) are well-
defined (their values are non-negative and they both sum
up to one). Observe that Bi = Bj and Ri = Rj if
φ(pi) = φ(pj).

For a given urn pi, let k+i be the smallest positive
index such that p′

k+i
≥ pi, if such an index exists, and k−i

be the largest index such that p′
k−i
≤ pi, again if the index

exists; observe that at least one of k+i and k−i has to exist
since n′ ≥ 10. We defer the proof of the following lemma
to the full version:

LEMMA 5.1. For each i = 1, . . . , n, φ(pi) is either equal
to k+i or to k−i . If, for some i, we have pi = p′k it follows
that φ(pi) = k+i = k−i = k.

We now turn to computing the probability that a
player will vote for pj given that the correct, adversarially
chosen, distribution is pi:

Ei(j) = Pr
X∼pi

P∼f(X)

[P = pj ] = pi Pr
P∼f(blue)

[P = pj ]

(1− pi) Pr
P∼f(red)

[P = pj ] = piBj + (1− pi)Rj .

We compute the difference between the probabilities
that a vote for urn pi and a vote for urn pj are cast, given
that the correct urn is pi:

∆i(j) = Ei(i)− Ei(j).

We will lower-bound ∆i(j) to bound the number of
voters needed to let the voting scheme be successful with
high probability. The proof of the following lemma is
omitted from this version.

LEMMA 5.2. For each 1 ≤ i, j ≤ n, it holds that

∆i(j) ≥

{ |φ(pi)−φ(pj)|
M if pi = p′

k+i
= p′

k−i
max(|φ(pi)−φ(pj)|−1,0)

M otherwise

We now give an upper bound on the probability that
the correct urn will be chosen by a voter. Note, somewhat
counter-intuitively, that the probability of a correct vote
is higher when this upper bound is smaller — this is
because the ∆i(j) are additive gaps, not multiplicative
ones, and so by making the upper bound on the expected
number of votes for the correct urn smaller, the gap ∆i(j)
becomes larger relative to the mean. Again, the proof of
the following lemma is omitted from this version.

LEMMA 5.3. It holds that

Ei(i) ≤
2(n′ − 1)

εM
+

1

n
.

We now state an upper bound and a lower bound on
M ; the proof of the claim is omitted. The bounds will
allow us to prove the main theorem.

LEMMA 5.4. It holds that

1

81
· (n′ − 1) · (n+ n′)

ε
≤M ≤ 2 · (n′ − 1) · (n+ n′)

ε
.

Therefore, going back to the probability that an urn
identical to the correct urn is voted for, we have

Ei(i) ≤
2(n′ − 1)

εM
+

1

n
≤ 2(n′ − 1)

ε · 1
81 ·

(n′−1)(n+n′)
ε

=
162

n+ n′

5.2 An Upper Bound for Many Signals In this section
we consider the voting problem in its full generality:
we have a set of n ≥ 2 urns, with each urn i =
1, . . . , n inducing a distinct probability distribution Pi =
(pi,1, pi,2, . . . , pi,C) over a set of C colors. Let ε be the
minimum `1 distance between the distributions Pi:

ε = min
i 6=j

`1(Pi, Pj) = min
i 6=j

C∑
c=1

|pi,c − pj,c| .

It turns out that the bichromatic scheme from Sec-
tion 5.1 has already laid much of the groundwork for the
multi-color case. Each voter u will behave as follows:

1. First, u will choose a color c = c(u) uniformly at
random from among all the colors. Voter u will then
imagine the urns as inducing a bichromatic instance
by imagining all colors other than c as a single color
c̄. In this way, urn i becomes a bichromatic urn with
distribution (pi,c, 1− pi,c) over its two colors.



2. Then, voter u will choose an integer t = t(u) ∈
{0, 1, . . . , T} with T = dlog3 Ce+ 1, in such a way
that Pr[t = i] = α−1 ·3−T+i, where α =

∑T
i=0 3−i.

Observe that α <
∑∞
i=0 3−i = 3

2 .

3. Voter u will then apply the bichromatic voting
scheme from Section 5.1 to choose which urn
to vote for. She will set {p1, p2, . . . , pn} =
{p1,c, p2,c, . . . , pn,c}, for i = 1, . . . , n; the sequence
of the p′i’s will be defined as follows:

– first she will pick a subsequence according to
the following marking algorithm: set w1 = 0
and mark all the pj’s such that pj ≤ 3−t · ε; if
some unmarked pj remains, let i = 2, and

– set wi to be the smallest unmarked pj ,

– mark all the pj’s for which |pj − wi| < 3−t · ε;
– if some unmarked pj remains, repeat; other-

wise, if wi 6= 1, set wi+1 = 1; then, stop.

4. let i∗ be the length of the sequence {wi}; if i∗ < 10,
the voter will add 10 − i∗ elements to {wi}: let i
be such that wi+1 − wi is maximized; the voter will
insert the values the values wi+ 1

9 (wi+1−wi), wi+
2
9 (wi+1 − wi), . . . , wi + 8

9 (wi+1 − wi) in the list,
keeping it sorted.

The size of the sequence {wi} will then be at least
10.

The voter will then define the sequences xi,1, xi,2
as xi,1 = 2wi+wi+1

3 , xi,2 = wi+2wi+1

3 , for i =
1, . . . , i∗ − 1;

5. the voter then merges the sequences wi, xi,1, xi,2,
and sorts the resulting sequence increasingly; let
y1 < y2 < · · · < y3i∗−2 be this sequence,
and εc,t be its separation parameter: εc,t =
mini=1,...,3i∗−3 yi+1 − yi.

6. then the voter adds elements to {yi} in such a way
that:

(a) the minimum separation between adjacent ele-
ments remains at least εc,t,

(b) if the list has length n′, then for each i =

1, . . . ,
⌈
n′

3

⌉
, it holds that yi+1 − yi ≤ 2εc,t,

and

(c) if the list has length n′, then for each i =⌊
2n′

3

⌋
, . . . , n′ − 1, it holds that yi+1 − yi ≤

2εc,t.

To do so, she applies the following algorithm:

6.1 if (b) is not satisfied, i.e., if the list {yi} has
currently length n′ and i is a minimal index i
for which there exists elements yi, yi+1 such
that i ≤

⌈
n′

3

⌉
and yi+1−yi > 2εc,t, then insert

a new element between yi and yi+1 of value
yi+εc,t; this will increase the length of the list;
repeat this step as long as (b) is not satisfied;

6.2 if (c) is not satisfied, i.e., if the list {yi} has
currently length n′ and there is a maximal index
i for which there exists elements yi, yi+1 such
that i ≥

⌊
2n′

3

⌋
and yi+1 − yi > 2εc,t, then

insert a new element between yi and yi+1 of
value yi+1 − εc,t; repeat this step as long as (c)
is not satisfied.

It is easy to prove that the above algorithm guar-
antees properties (a), (b) and (c). Let n′c,t be the

length of the final sequence {yi}, Kc,t =
⌈
n′c,t
3

⌉
,

and observe that the algorithm also guarantees that
(d) n′c,t ≥ 10, (e) n′c,t ≤ 3i∗ − 2 + 2(Kc,t + 1) ≤
9i∗ + 2 ≤ 9n+ 2 and (f) yKc,t+1 ≤ (2Kc,t + 1)εc,t
and yn′c,t−Kc,t ≥ 1− (2Kc,t + 1)εc,t.

The just-defined bichromatic instance depends only
on the original multi-colored instance, on c and on t —
we use (c, t)-instance to refer to the bichromatic instance
induced by c and t.

Observe that the separation parameter εc,t of the
(c, t)-instance will be at least εc,t ≥ 3−t−3 · ε, since the
wi’s are at distance of at least 3−t−2 · ε from each other3,
and xi,1, xi,2 split the interval between wi and wi+1 in
three equal parts — the subsequently added yi’s do not
induce gaps smaller that εc,t. Furthermore the number
of landmarks of the (c, t)-instance will be 10 ≤ n′c,t ≤
9n+ 2 ≤ 10n, since n ≥ 2.

We are now ready to prove Theorem 5.1, using the
machinery built in Section 5.1.

Proof. [Proof of Theorem 5.1] First, given two urns
Pi, Pj , we say that a color c is useful for i, j if
|pi,c − pj,c| > ε

3C . Observe that if Ci,j is the set of useful
colors for urns Pi, Pj , we have∑

c∈Ci,j

|pi,c − pj,c| >
2

3
· ε.

Indeed, since there are only C colors, the contribution
to the `1 distance between Pi and Pj of their non-useful
colors is less thanC · ε3C = ε

3 . Given that the total distance

3Before step 4 they were at distance at least 3−tε from each other,
and step 4 could have added new wi’s at distance at least 3−t−2 from
each other.
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is at least ε, it follows that the useful colors contribute by
more than 2ε

3 to the `1 distance of Pi, Pj .

Suppose that i is the unknown urn. Let pi = pi,c and
pj = pj,c in the (c, t)-bichromatic instance, for some c, t.
Let E(c,t)

i (j) be the expected number of votes that a voter
will give to urn j, if i is the unknown urn, in the (c, t)-
bichromatic instance. The analysis of the bichromatic
case, guarantees that

E
(c,t)
i (j) ≤ E(c,t)

i (i) ≤ 162

n+ n′c,t
≤ 162

n
.

and that the difference ∆
(c,t)
i (j) = E

(c,t)
i (i) − E(c,t)

i (j)
is at least

∆
(c,t)
i (j) ≥ max (|φ(pi)− φ(pj)| − 1, 0)

Mc,t
.

Fix a color c ∈ Ci,j and let tc,i,j be the smallest non-
negative integer such that

|pi,c − pj,c| ≥ ε · 3−tc,i,j .

Since c is a useful color we have |pi,c − pj,c| > ε
3C ,

and therefore 0 ≤ tc,i,j ≤ dlog3 Ce + 1 = T . By
εc,t ≥ 3−t−3 · ε, we obtain

εc,tc,i,j >
1

81
|pi,c − pj,c| .

Since |pi − pj | ≥ ε · 3−tc,i,j , the marking algorithm
run by the voters will mark pi and pj at different iterations
— therefore, there are at least three landmarks between pi
and pj . It follows that |φ(pi)− φ(pj)| ≥ 2. Therefore,

∆
(c,tc,i,j)
i (j) ≥ 1

Mc,tc,i,j

≥ 1

2 ·
(n′c,tc,i,j

−1)·(n+n′c,tc,i,j )
εc,tc,i,j

≥
εc,tc,i,j

22n(n′c,tc,i,j − 1)
≥ |pi,c − pj,c|

17820 · n2
.

Then,

∆i(j) =

C∑
c=1

T∑
t=1

(
1

C
· 1

T
·∆(c,t)

i (j)

)
≥ 1

C · T
·
∑
c∈Ci,j

∆
(c,tc,i,j)
i (j)

≥ 1

C · T
·
∑
c∈Ci,j

|pi,c − pj,c|
17820 · n2

≥ ε

26730 · C · T · n2
= x.

and

Ei(j) =

C∑
c=1

T∑
t=1

(
1

C
· 1

T
· E(c,t)

i (j)

)
≤ 162

n

We choose m =
⌈
7 · 1012 · C

2·T 2·n3

ε2 ln n
η

⌉
=

Θ
(

(C logC)2·n3

ε2 ln n
η

)
as the number of voters, and we

apply Chernoff bound (see Theorem 2.2), on Vj : the num-
ber of votes to urn j in the election, if i is the unknown
urn. Observe that E[Vj ] = m · Ei(j), and furthermore:

Pr
[
|Vj − E[Vj ]| >

x

3
·m
]

= Pr

[
|Vj − E[Vj ]| >

x

3Ei(j)
· Ei(j) ·m

]
≤ 2 exp

(
− x2

27E2
i (j)

· Ei(j) ·m
)

≤ 2 exp

(
− x2

27Ei(j)
·m
)

≤ 2 exp

(
− ε2

27 · 267302 · C2 · T 2 · n4 · 162n
·m
)

≤ 2 exp

(
− ε2

27 · 267302 · C2 · T 2 · n4 · 162n
·m
)
≤ η

n
.

Applying the Union Bound over all the urns, we have
that each single urn j will deviate by at most x

3m from
its expected number of votes with probability at least
1 − η, and since the expected difference of the number
of votes of urn i and j if i is the unknown urn is at least
m ·∆i(j) ≥ m ·x, we have that urn i will win the election
with probability at least 1− η.

6 Other Voting Systems
In this section we study other important voting systems,
assuming that there are two types of signals; that is,
assuming bichromatic urns.

6.1 Cumulative Voting We show that cumulative vot-
ing requires a smaller number of voters for the election to
succeed with high probability. In fact, cumulative voting
can be exploited to work with a number of voters as small
as the number of samples used by the optimal centralized
algorithm (that is, the algorithm that, after sampling the
minimum number of balls, produces the right guess with
high probability).

Like plurality voting, in the cumulative voting elec-
tion system, each voter has a single vote to cast; unlike
plurality voting, though, the voter can split her vote arbi-
trarily between the candidates:

DEFINITION 6.1. (CUMULATIVE VOTING) Each voter
assigns a score to each candidate, in such a way that no
score is negative and the sum of the scores assigned by a
voter is 1. The total score of a candidate is the sum of the
scores assigned to that candidate by the voters. If there
exists a candidate i having a total score larger than the
total score of each other candidate j 6= i, then i is the
winner of the election.



Given urns p1, p2, . . . , pn, the voting scheme we
propose for cumulative voting is directly derived from
the plurality voting scheme we proposed earlier; in the
new scheme, there are only two possible votes: if a
voter picks a red (resp., blue) ball then she will vote
(R1, R2, . . . , Rn) (resp., (B1, B2, . . . , Bn)) — that is,
she will assign a weight of Ri (resp., Bi) to candidate
Pi, for i = 1, 2, . . . , n. The Ri’s and the Bi’s are those
that we defined for the plurality voting scheme.

THEOREM 6.1. Let urns p1, p2, . . . , pn be given, with
urn pi having a pi fraction of blue balls, and a 1 − pi
fraction of red balls. Let p1 < p2 < · · · < pn. Also, let
ε be ε = min1≤i≤n−1(pi+1 − pi). Then, for Cumulative

Voting, O
(
ε−2 ln 1

η

)
voters are sufficient to guarantee a

probability of at least 1 − η that the correct urn wins the
election.

Proof. Choose some η ∈ (0, 1), and suppose the number
of players is

m =

⌈
150 · ε−2 · ln 2

η

⌉
.

We start by using the Chernoff bound to show that
the number of voters that pick a ball of some color is
concentrated. If pi ≥ 1

2 , let X be the number of voters
picking a blue ball; otherwise let X be the number of
voters picking a red ball. In both cases, X is the sum
of iid binary random variables Xj , with Xj = 1 with
probability max(pi, 1 − pi) and Xj = 0 with probability
min(pi, 1 − pi). Then, E[X] = m ·max(pi, 1 − pi) and
m
2 ≤ E[X] ≤ m. By Chernoff bound,

Pr
[
|X − E[X]| > ε

5
·m
]

≤ Pr
[
|X − E[X]| > ε

5
· E[X]

]
≤ 2 · exp

(
− ε

2

75
· E[X]

)
≤ 2 · exp

(
− ε

2

75
· m

2

)
≤ 2 · exp

(
ln

2

η

)
= η,

that is, with probability 1 − η the absolute difference
between the number mb of blue (resp., the number mr of
red) balls picked and the expectation pi ·m ((1− pi) ·m)
by at most ε5m.

For any i, j ∈ [n], i 6= j, let Vi(j) be the fractional
number of votes to Pj in the random election, with
unknown urn Pi. Let Di(j) = Vi(i) − Vi(j). Observe
that urn i beats urn j in the election (with unknown urn i)
iffDi(j) > 0. The random variableDi(j) is the sum ofm
iid random variables D′i(j) each taking value Bi − Bj if
the corresponding voter picked a blue ball and Ri −Rj if
she picked a red ball; we now bound the span S of values

ofD′i(j) — that is, we bound S = |(Bi−Bj)−(Ri−Rj)|.
Observe that Bi − Bj =

bi−bj
M and Ri − Rj =

ri−rj
M .

Also,

bi − bj =

i−1∑
`=0

2− (p`+1 + p`)

p`+1 − p`
−
j−1∑
`=0

2− (p`+1 + p`)

p`+1 − p`
,

and

ri − rj =

n−1∑
`=i

p`+1 + p`
p`+1 − p`

−
n−1∑
`=j

p`+1 + p`
p`+1 − p`

.

Therefore i ≥ j iff bi − bj ≥ 0 and ri − rj ≤ 0 — which
implies that |(bi − bj)− (ri − rj)| = |bi − bj |+|ri − rj |
and thus the span S of D′i(j) is equal to S = |Bi −Bj |+
|Ri −Rj |. Furthermore,

|bi − bj | =
max(i,j)−1∑
`=min(i,j)

2− (p`+1 + p`)

p`+1 − p`
≤ 2|i− j|

ε
.

Analogously, |ri − rj | ≤ 2|i−j|
ε . It follows that the span

of D′i(j) can be upper bounded by

S = |Bi −Bj |+ |Ri −Rj | ≤
4|i− j|
εM

.

Observe that Di(j) is a linear function of the number
mb of blue balls picked (and the number mr = m −mb

of red balls picked):

Di(j) = mb · (Bi −Bj) +mr · (Ri −Rj).

Therefore,

E[Di(j)] = m·pi·(Bi−Bj)+m·(1−pi)·(Ri−Rj) = m·∆i(j),

where ∆i(j) is the functional defined in Section 2; recall
that we proved there that ∆i(j) ≥ |i−j|M .

Recall that with probability 1 − η, |mb −m · pi| ≤
ε
5 ·m. If this event happens we have that, for each j 6= i,

Di(j) ≥ E[Di(j)]−
ε

5
·m · S ≥ m ·

(
∆i(j)−

4

5
· |i− j|

M

)
= m · |i− j|

5M
> 0.

Therefore, urn i will beat each urn j 6= i, with probability
1− η. The proof is concluded.

Observe that the previous bound is tight in a strong
sense: no algorithm that picks o

(
ε−2 ln 1

η

)
balls, and

produces a guess arbitrarily after having seen all their
colors, is able to guess the right urn with probability at
least 1− η.
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6.2 Condorcet Voting In this section we present a con-
jecture, and we elaborate on it, with the aim of showing
that Condorcet voting is as good as Cumulative voting —
and is thus optimal. We begin by recalling the definition
of the Condorcet voting system:

DEFINITION 6.2. (CONDORCET VOTING) In a Con-
dorcet election, each voter returns a (total) ordering of
the candidates. Given two candidates i and j, we say that
i beats j in a run-off election if more than half the voters
ranked i higher than j. If there exists a candidate i that
beats each other candidate j 6= i in a run-off election,
then i is the winner of the Condorcet election.

We observe that, in Condorcet voting, voters do not assign
real numbers to candidates as in Cumulative voting —
they rather return a discrete object: a permutation of them.

There exist many variants of the Condorcet election.
The differences between them lie in the way of dealing
with ties (that is, when no candidate i beats each other
candidate j in a run-off election). Our main theorem holds
for any such variant, since our theorem will guarantee that
no ties will exist with high probability.

We start by defining a set of coefficients that will be
useful for introducing a Condorcet voting scheme.

DEFINITION 6.3. For k ≥ 0 and ` ≥ 0, let ck,` be:

ck,` = (−1)k+`
(
k + `

k

)
−

(−1)`
(
k+`
k

)
+ (−1)k+`(`+ 1)

k + `+ 2
.

We define inductively the sequence bk,`, indexed by two
integers; if k < 0 or ` < 0 then bk,` = 0; for notational
simplicity we will use:

xk,` =
∑
i,j≥0
i+j≤k

bi,k−i−j · bj,`
(i+ 1)(i+ j + 2)

,

yk,` =

k∑
i=0

(
(−1)k−i · bi,`

i+ 1

)
.

Then, for k ≥ 0, ` ≥ 0, we define

bk,` = (k + 1) · (xk−1,` + yk−1,` − ck+1,`) .

The induction is well-defined: xk−1,` only depends
on the bi,j’s for which either (a) i + j ≤ k − 1, or (b)
i ≤ k− 1 and j = `; yk−1,` only depends on the bi,j’s for
which i ≤ k − 1 and j = `. Therefore, the bk,`’s can be
computed in the following order via the recurrence: for
n = 0, 1, 2, . . . and for k = 0, . . . , n, compute bk,n−k.
We now make a conjecture on the bk,`’s:

CONJECTURE 6.1. Let

B(x, P ) =

∞∑
k=0

∞∑
`=0

(
bk,` · xk · P `

)
.

Then,
(i) the series B(x, P ) converges for 0 ≤ x < 1

2 ,
x ≤ P ≤ 1

2 ,
(ii) B(x, P ) ≥ 0 for 0 ≤ x < 1

2 , x ≤ P ≤ 1
2 , and

(iii)
∫ P
0
B(x, P ) dx = 1

P+1 −
√

1−2P
1+2P , for 0 ≤ P ≤

1
2 .

Proof. [Comments on Conjecture 6.1] We now make
some comments on the conjecture, indicating some pos-
sible approaches to settle it.

(i) Numerical approximations indicate that B(x, P )
converges for each 0 ≤ x < 1

2 , x ≤ P ≤ 1
2 , but

it diverges for x = P = 1
2 .

(ii) For k ≥ 0, and 0 ≤ ` ≤ k, let

ak,` =
∑̀
i=0

((
k + 2

i

)
· bk,`−i

)
,

also, let

B1(x, P ) =

∞∑
k=0

(∑k
`=0

(
ak,` · P `

)
(P + 1)k+2

· xk
)
.

By looking at the first few terms of B1(x, P )’s Tay-
lor expansion, it appears that B(x, P ) = B1(x, P ).

The B1(x, P ) expression, if B1(x, P ) = B(x, P ),
could be quite useful to prove non-negativity, since
the ak,`’s seem all to be non-negative — if they are
point (ii) of the conjecture directly follows.

Also, if B1(x, P ) = B(x, P ), then one can express
bk,` (for each ` ≥ 0) in terms of bk,0, bk,1, . . . , bk,k:

bk,` =

k∑
i=0

bk,i · min(k,`)∑
j=i

(
(−1)`−j

(`− j)!
·
(
k + 2

j − i

)

·
`−j∑
h=0

([
`− j
h

]
· (k + 2)h

)))
,

where
[
n
k

]
represents the unsigned Stirling number

of the first kind with indices n ≥ k. The last claim
can be proved using the B1(x, P ) expression and the
following expression for (Q+ 1)−t, t > 0:

1

(Q+ 1)t
=

∞∑
i=0

 (−1)i

i!
·

i∑
j=0

([
i

j

]
· tj
)
·Qi

 .

(iii) Since

1

P + 1
−
√

1− 2P

1 + 2P
=

∞∑
n=0

(Cn · Pn) ,



bk,` ` = 0 ` = 1 ` = 2 ` = 3 ` = 4
k = 0 1 −2 3 −4 5
k = 1 2 −2 0 4 −10
k = 2 3 −8 18 −36 65
k = 3 20

3 − 44
3 20 − 44

3 − 40
3

k = 4 25
3 − 64

3 53 − 388
3

880
3

k = 5 98
5 − 844

15
582
5 −188 668

3

Table 1: The first few bk,`’s.

ak,` ` = 0 ` = 1 ` = 2 ` = 3 ` = 4
k = 0 1
k = 1 2 4
k = 2 3 4 4
k = 3 20

3
56
3

40
3

16
3

k = 4 25
3

86
3 50 106

3

k = 5 98
5

1214
15

2012
15

656
5

1016
15

Table 2: The first few ak,`’s.

with

Cn =
1− 3 · (−1)n

2
·
(

2 bn/2c
bn/2c

)
+ (−1)n,

we have that the point (iii) of the conjecture states
that, for n ≥ 0,

n∑
k=0

bk,n−k
k + 1

= Cn+1.

Tables 1 and 2 show how the bk,` and the ak,`
sequences begins.

Assuming Conjecture 6.1 we can prove that there
exists a probability distribution over permutations that
induces a set of “marginals”, that can be used to give a
scheme for Condorcet voting. The proof is omitted in this
version.

LEMMA 6.1. Let 0 ≤ p1 < p2 < · · · < pn ≤ 1.
Then, if Conjecture 6.1 is true, there exists a probability
distribution over the symmetric group Sn, such that, for
each 1 ≤ i < j ≤ n,

Πi,j = Pr
π

[π(i) < π(j)] = min

(
1,

1

pi + pj

)
.

Using the previous distribution over permutations we
can prove the main theorem of the section.

THEOREM 6.2. Let 0 ≤ p1 < p2 < · · · < pn ≤ 1 be
the blue-probabilities of a set of bichromatic urns. Let

ε = min1≤i≤n−1(pi+1 − pi). If Conjecture 6.1 is true,
there exists a symmetric voting scheme for the Condorcet
election that guarantees that the unknown urn wins with
probability 1− η with O

(
ln η−1

ε2

)
voters.

Proof. Lemma 6.1 guarantees the existence of a prob-
ability distribution P over the set of permutations of
{1, 2, . . . , n} such that, for each 1 ≤ i < j ≤ n,
Prπ∼P [π(i) < π(j)] = min

(
1, 1

pi+pj

)
. If π(j) > π(i)

we say that j beats i in π.
We also let qi = 1 − pi; therefore 0 ≤ qn <

qn−1 < · · · < q1 ≤ 1, and min1≤i≤n−1(qi+1 −
qi) = ε. Lemma 6.1 again guarantees the existence of
a probability distribution Q over the set of permutations
of {1, 2, . . . , n} such that for n ≥ i > j ≥ 1, we have
Prπ∼Q[π(i) < π(j)] = min

(
1, 1

qi+qj

)
.

Each voter will apply the following algorithm: if she
draws blue, she sample a permutation according to P ,
otherwise she samples a permutation according to Q.

Now, suppose the i-th urn is the unknown urn. Let
j 6= i be the index of any other urn. If j > i,

Pr[the unknown urn i beats another urn j]
= pi Pr

π∼P
[π(i) > π(j)] + (1− pi) Pr

π∼Q
[π(i) > π(j)]

= pi max

(
0, 1− 1

pi + pj

)
+ qi min

(
1,

1

qi + qj

)
,

if pi + pj ≤ 1 (and therefore qi + qj ≥ 1) the latter
simplifies to qi

qi+qj
; otherwise pi + pj > 1, qi + qj < 1,

and the expression simplifies to pi
(

1− 1
pi+pj

)
+ qi =

pi − pi
pi+pj

+ 1− pi = 1− pi
pi+pj

=
pj

pi+pj
.

Therefore, if j > i, we have

Pr[the unknown urn i beats another urn j] ∈
{

qi
qi + qj

,
pj

pi + pj

}
.

If, instead, j < i, we have

Pr[the unknown urn i beats another urn j]
= pi Pr

π∼P
[π(i) > π(j)] + (1− pi) Pr

π∼Q
[π(i) > π(j)]

= pi min

(
1,

1

pi + pj

)
+ qi max

(
0, 1− 1

qi + qj

)
,

if qi + qj ≤ 1 (and therefore pi + pj ≥ 1) the latter
simplifies to pi

pi+pj
; otherwise qi + qj > 1, pi + pj < 1,

and the expression simplifies to pi + qi

(
1− 1

qi+qj

)
=

1− qi + qi − qi
qi+qj

=
qj

qi+qj
.

Therefore, in any case, for j 6= i,

Pr[the unknown urn i beats urn j] ∈
{

max(qi, qj)

qi + qj
,

max(pi, pj)

pi + pj

}
.
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We lower-bound the latter two fractions:

max(pi, pj)

pi + pj
=

max(pi, pj)

2 max(pi, pj)− |pi − pj |

=
1

2
·
(

1 +
|pi − pj |
pi + pj

)
≥ 1

2
+
|pi − pj |

4
,

and, analogously,

max(qi, qj)

qi + qj
≥ 1

2
+
|qi − qj |

4
.

Since, |qi − qj | = |pi − pj |, we have

Pr[the unknown urn i beats another urn j] ≥ 1

2
+
|pi − pj |

4

≥ 1

2
+
|i− j|

4
· ε.

Now, given two urns i, j, let Xi(j) be the random
variable counting the number of votes in which i > j,
with m voters. Observe that if Xi(j) >

m
2 , then urn i

beats urn j. Also,

m

2
≤ m ·

(
1

2
+
|i− j| · ε

4

)
≤ E[Xi(j)] ≤ m,

and

Pr

[
|Xi(j)− E[Xi(j)]| ≥

|i− j| · ε
5

·m
]

≤ Pr

[
|Xi(j)− E[Xi(j)]| ≥

|i− j| · ε
5

· E[Xi(j)]

]
≤ exp

(
−|i− j|

2 · ε2

75
· E[Xi(j)]

)

≤ exp

(
−|i− j|

2 · ε2

150
·m

)
.

By choosing m =
⌈
150ε−2 ln 3

η

⌉
, we obtain:

Pr

[
|Xi(j)− E[Xi(j)]| ≥

|i− j| · ε
5

·m
]

≤ exp

(
− |i− j|2 ln

3

η

)
=
(η

3

)|i−j|2
≤
(η

3

)|i−j|
.

Observe that if |Xi(j)− E[Xi(j)]| < |i−j|·ε
5 · m,

then — by E[Xi(j)] ≥ m ·
(

1
2 + |i−j|ε

4

)
— we get

Xi(j) ≥ m ·
(

1
2 + |i−j|ε

20

)
> m

2 , which implies that urn i
beats urn j.

Applying the Union Bound over all the urns j 6= i,
we obtain

Pr[urn i does not win the election] ≤ 2 ·
∞∑
k=1

(η
3

)k
≤ η.
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