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Abstract. The resilience of networks to various types of failures is an undercurrent in many parts of
graph theory and network algorithms. In this paper we study the resilience of networks in the presence of
cascading failures — failures that spread from one node to another across the network structure. One finds
such cascading processes at work in the kind of contagious failures that spread among financial institutions
during a financial crisis, through nodes of a power grid or communication network during a widespread
outage, or through a human population during the outbreak of an epidemic disease.

A widely studied model of cascades in networks assumes that each node v of the network has a threshold
`(v), and fails if it has at least `(v) failed neighbors. We assume that each node selects a threshold `(v)
independently using a probability distribution µ. Our work centers on a parameter that we call the µ-risk
of a graph: the maximum failure probability of any node in the graph, in this threshold cascade model
parameterized by threshold distribution µ. This defines a very broad class of models; for example, the large
literature on edge percolation, in which propagation happens along edges that are included independently
at random with some probability p, takes place in a small part of the parameter space of threshold cascade
models, and one where the distribution µ is monotonically decreasing with the threshold. In contrast we
want to study the whole space, including threshold distributions with qualitatively different behavior, such
as those that are sharply increasing.

We develop techniques for relating differences in µ-risk to the structures of the underlying graphs. This

is challenging in large part because, despite the simplicity of its formulation, the threshold cascade model has

been very hard to analyze for arbitrary graphs G and arbitrary threshold distributions µ. It turns out that

when selecting among a set of graphs to minimize the µ-risk, the result depends quite intricately on µ. We

develop several techniques for evaluating the µ-risk of d-regular graphs. For d = 2 we are able to solve the

problem completely: the optimal graph is always a clique (i.e. triangle) or tree (i.e. infinite path), although

which graph is better exhibits a surprising non-monotonicity as the threshold parameters vary. When d > 2

we present a technique based on power-series expansions of the failure probability that allows us to compare

graphs in certain parts of the parameter space, deriving conclusions including the fact that as µ varies, at

least three different graphs are optimal among d-regular graphs. In particular, the set of optimal graphs

here includes one which is neither a clique nor a tree.

∗Dept. of Economics, Cornell University, Ithaca NY 14853; IHS, Vienna; and the Santa Fe Institute. Supported
in part by WWTF Grant Die Evolution von Normen and Konventionen in der Wirtschaft.
†Dept. of Economics, Cornell University, Ithaca NY 14853. Supported in part by NSF grant CCF-0910940.
‡Dept. of Computer Science, Cornell University, Ithaca NY 14853. Supported in part by the MacArthur Founda-

tion, a Google Research Grant, a Yahoo Research Alliance Grant, and NSF grants IIS-0910664, CCF-0910940, and
IIS-1016099.
§Dept. of Computer Science, Cornell University, Ithaca NY 14853. Supported in part by NSF awards CCF-

0643934 and CCF-0910940, AFOSR grant FA9550-09-1-0100, a Google Research Grant, an Alfred P. Sloan Foundation
Fellowship, and a Microsoft Research New Faculty Fellowship.
¶Dept. of Computer Science, Cornell University, Ithaca NY 14853. Supported in part by NSF grants CCF-0910940

and CCF-0729006, ONR grant N00014-08-1-0031, a Yahoo! Research Alliance Grant, and a Google Research Grant.

1



1 Introduction

The resilience of networks to various types of failures is an undercurrent in many parts of graph
theory and network algorithms. For example, the definitions of cuts and expansion each capture
types of robustness in the presence of worst-case edge or node deletion, while the study of network
reliability is based on the question of connectivity in the presence of probabilistic edge failures,
among other issues.

In this paper we are interested in the resilience of networks in the presence of cascading failures
— failures that spread from one node to another across the network structure. One finds such
cascading processes at work in the kind of contagious failures that spread among financial institu-
tions during a financial crisis [1], in the breakdowns that spread through nodes of a power grid or
communication network during a widespread outage [3], or in the course of an epidemic disease as
it spreads through a human population [2].

To represent cascading failures we use the following basic threshold cascade model, which has
been studied extensively both in the context of failures and also in other settings involving social or
biological contagion [6, 8, 9, 10, 11, 12, 13, 14].1 We are given a graph G, and each node v chooses
a threshold `(v) independently from a distribution µ on the natural numbers, choosing threshold
`(v) = j with probability µ(j). The quantity `(v) represents the number of failed neighbors that
v can withstand before v fails as well — thus we can think of µ as determining the distribution
of levels of “health” of the nodes in the population, and hence implicitly controlling the way the
failure process spreads on G. To determine the outcome of the failure process, we first declare all
nodes with threshold 0 to have failed. We then repeatedly check whether any node v that has not
yet failed has at least `(v) failed neighbors — if so, we declare v to have failed as well, and we
continue iterating. For example, Figure 1 shows the outcome of this process on two different graphs
G with particular choices of node thresholds.

For a given node r in G, we define its failure probability fµ(G, r) to be the probability it fails
when node thresholds `(v) are drawn independently from µ and then the threshold cascade model
is run with these thresholds. Now we let f∗µ(G) = supr∈V (G) fµ(G, r), namely, the maximum failure
probability in G. We view f∗µ(G) as our measure of the resilience of G against cascading failures
that operate under the threshold distribution µ; accordingly, we refer to f∗µ(G) as the µ-risk of G,
and we seek graphs of low µ-risk.

A Motivating Contrast: Cliques and Trees. How do different network structures compare
in their resilience to a cascading failure? Because the failure probability clearly goes up as we add
edges to a given node set, we take the top-level issue of edge density out of consideration by posing
this question over the set of all (finite or infinite) connected d-regular graphs, for a fixed choice of
d. We use Gd to denote this set of graphs, and for graphs in Gd we ask how they compare according
to their µ-risk.2 When we consider Gd, we will also restrict the threshold distributions to the set of
all distributions supported on {0, 1, 2, . . . , d}, a set which we denote by Γd.

As a first concrete example of the kind of results to come, we consider a comparison between
two basic d-regular graphs; the analysis justifying this comparison will follow from the framework

1The threshold cascade model is also related to the nonlinear voter model [7], though somewhat different in its
specifics.

2Unless explicitly noted otherwise, all quantification over graphs in this paper takes place over the set of connected
graphs only. This does not come at any real loss of generality, since the µ-risk of a disconnected graph is simply the
supremum of the µ-risk in each connected component.
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Figure 1: The spread of failures on two graphs according to the threshold cascade model. On each
graph, the thresholds are drawn inside the nodes, and the nodes with thick borders are those that
fail as a result of the process.

developed in the paper. To begin with, for conjecturing structures that produce low µ-risk, we can
draw on intuitions from the motivating domains discussed above. A standard notion in epidemic
disease is that it is dangerous to belong to a large connected component, and this suggests the
clique Kd+1 as a resilient network. On the other hand, a principle in financial networks is that
it is important to have diversity among one’s neighbors — in the present context, a lack of edges
among one’s neighbors — so that shocks are uncorrelated. This suggests the infinite complete d-ary
tree Td as a resilient network. (By way of illustration, note that if we were to continue the tree in
Figure 1(b) indefinitely downward, we would have the complete 3-ary tree T3.)

An intriguing point, of course, is that these two sources of intuition point in completely opposite
directions. But as one consequence of the framework we develop here (in Section 4) we will see
that both intuitions are essentially correct — each of Kd+1 or Td can be better than the other, for
different choices of the threshold distribution. Specifically, we will show that there exist µ, ν ∈ Γd
such that f∗µ(Kd+1) < f∗µ(Td) and f∗ν (Td) < f∗ν (Kd+1).

In fact, this trade-off between cliques and trees shows up in instructive ways on very simply
parametrized subsets of the space Γd. For example, suppose we choose a very small value ε > 0, and
for a variable x we define (µ(0), µ(1), µ(2)) = (ε, x, 1− ε− x) with µ(j) = 0 for j > 2. Then when
x = 1− ε, so that all thresholds are either 0 or 1, a node’s failure probability is strictly increasing
in the size of the component it belongs to, and so Kd+1 uniquely minimizes the µ-risk. At the other
extreme, when x = 0, a short argument shows that Kd+1 uniquely optimizes the µ-risk here too.
But as we prove in Section 5.1, it is possible to choose a value of x strictly between 0 and 1− ε for
which Td has strictly lower µ-risk than Kd+1. Moreover, the value of x where Td has lower µ-risk
accords with the financial intuition about the value of diversity: it occurs when x is very small,
but significantly larger than ε, so that thresholds of 1 are much more numerous than thresholds of
0. In this case, failures are still rare, but if a node u has connected neighbors v and w, then there
is a non-trivial risk that v will have threshold 0 and w will have threshold 1, at which point v’s
failure will ricochet off w and bring down u as well, even if u has the maximum (and most likely)
threshold of 2. In this region of the space Γd of threshold distributions, it is safer to have no links
among your neighbors, even at the expense of producing very large connected components.

There is also an important qualitative message underlying this contrast: the question of which
graph is more resilient against cascading failures depends sensitively on the way in which failure
moves through the graph (via the mixture of thresholds determined by µ).
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This contrast, and the reasons behind it, suggest that the space Γd has a rich structure when
viewed in terms of the µ-risk it induces on graphs. Indeed, as we’ve just seen, even monotonic
trade-offs between simple parameters of µ ∈ Γd can produce non-monotonic transitions between
graphs — for example, with Kd+1 first being better, then worse, then better again compared to Td
as we vary x above.

Our overall plan in this paper is thus to develop techniques for relating differences in µ-risk
to the structures of the underlying graphs. This is challenging in large part because, despite
the simplicity of its formulation, the threshold cascade model has been very hard to analyze for
arbitrary graphs G and arbitrary threshold distributions µ. Existing results have either made the
strong assumptions that either µ obeys a diminishing property (that threshold probabilities exhibit
some form of monotonic decrease in the threshold size) [10, 12] or that the underlying graph G is a
tree [8, 14], a lattice [7], or a complete graph [9, 13]. In fact, even the existing techniques developed
specifically for cliques and trees do not appear strong enough to identify the contrast discussed
above, which emerges from our framework in Section 5.1. And for comparing graphs outside these
special cases, very few tools are available; one of our motivating goals is to develop tools of this
type.

It is also worth noting that the large literature on edge percolation, in which propagation
happens along edges that are included independently at random with some probability p, deals with
a particular class of models that — when viewed in terms of thresholds — have the diminishing
property discussed above. This includes the large literature on Gn,p, viewed as random edge sets
of the complete graph [5]; the authors’ own recent work on network formation in the presence of
contagion exclusively used a model based on this type of edge percolation [4]. The point is that for
this special case, component size is the dominant effect, and so the graphs of minimum µ-risk are
essentially cliques; working in this part of the space thus does not enable one to look at trade-offs
between “open” and “closed” neighborhoods as in our motivating discussion of Kd+1 vs. Td. (As
we will see, the constructions of µ ∈ Γd that favor Td indeed involve thresholds with a sharply
increasing property over part of the support set; for certain applications, this increasing property is
often viewed as crucial, which accords with the intuition discussed earlier.) Hence we need to look
beyond models with an edge percolation structure to see things that even qualitatively resemble
the phenomena we are trying to study.

Summary of Results. The contrast between Kd+1 and Td establishes that there is no single
graph H such that H achieves the minimum µ-risk for all distributions µ ∈ Γd. It is thus natural
to ask whether Kd+1 and Td are sufficient to jointly “cover” the space Γd, in the sense that at least
one of them is optimal at each µ ∈ Γd. More generally, we say that a (finite or infinite) set of
graphs H = {H1, H2, . . .} ⊆ Gd is a sufficient set for Γd if for each µ ∈ Γd, at least one member of
H achieves the minimum µ-risk over all graphs in Gd. In this terminology, our question becomes:

(∗) Does {Kd+1, Td} form a sufficient set for Γd?

One consequence of the results in the paper is a complete answer to Question (∗). We find, in
fact, that the answer to this question depends on the value of d.

We begin with a fairly complete analysis of µ-risk for the case of degree d = 2, answering
Question (∗) affirmatively in this case. While the set of graphs in G2 is clearly very simple (cycles
of each length ≥ 3, and the infinite path), the behavior of µ-risk on G2 is still rich enough that the
non-monotonic phenomenon discussed above takes place even between K3 and T2. (Observe that
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T2, the infinite 2-ary tree, is better known as the infinite path). We find in fact that at each µ
with 0 < µ(0) < 1, at least one of K3 or T2 achieves strictly lower µ-risk than every other graph in
G2 − {K3, T2}.

When d > 2, the behavior of µ-risk on Gd becomes much more complicated. Here we establish
that for each d > 2, the two graphs {Kd+1, Td} do not form a sufficient set for Γd. We do this
by considering a graph that we call the (d-regular) tree of triangles ∆d, consisting essentially of a
collection of disjoint triangles attached according to the structure of an infinite regular tree. (∆d

is specified precisely in Section 5.2, and depicted schematically for the case d = 3 in Figure 2).
We construct a distribution µ ∈ Γd for which ∆d has strictly lower µ-risk than both Kd+1 and Td.
Intuitively, the tree of triangles “interpolates” between the complete neighborhood diversification
of Td and the complete neighborhood closure of Kd+1, and hence points toward a further structural
dimension to the problem of minimizing µ-risk.

Despite the complex structure of µ-risk when d > 2, we have a set of results making it possible
to compare the µ-risk of certain specific graphs to the µ-risk of arbitrary graphs. In addition to the
comparisons among Kd+1, Td, and ∆d described above, we establish the following further results
for Kd+1 and Td. First, as noted above, it is not hard to show that there are distributions µ ∈ Γd
for which Kd+1 has strictly lower µ-risk than any other G ∈ Gd. A much more intricate argument
establishes a type of optimality property for Td as well: for each graph G ∈ Gd, we construct a
distribution µG ∈ Γd for which Td has strictly lower µG-risk than G. This is a broad generalization
of the Td-vs.-Kd+1 comparison, in that it says that such a comparison is possible for every G ∈ Gd:
in other words, Td is more resilient than every other connected d-regular graph at some point in
Γd.

Our analysis in fact establishes a strengthening of this result for Td — for every finite set H
of connected d-regular graphs, there is a distribution µH ∈ Γd on which Td achieves strictly lower
µH-risk than each member of H. And this in turn yields a negative answer to a more general
version of Question (∗): When d > 2, there is no two-element sufficient set of graphs for Γd.

Our results for d > 2 are based on a unifying technique, motivated by the construction of the
distribution µ = (ε, x, 1 − ε − x) used to compare Kd+1 and Td above. The technique is based on
using power series approximations to study the µ-risk for µ in the vicinity of particular threshold
distributions; roughly speaking, it works as follows. We focus on cases in which the distribution µ
concentrates almost all of its probability on a single threshold `max and the remaining probability is
divided up over values j < `max. The random draw of a threshold from µ in this case can be treated
as a small perturbation of the fixed threshold distribution in which every node gets threshold `max

and no nodes fail. A given node’s failure probability can then be expressed using a power series
in the variables {µ(j) | j < `max} and the power series coefficients for different graphs provide
enough information to compare them according to µ-risk when the probabilities {µ(j) | j < `max}
are sufficiently close to zero. The computation of the power series coefficients then reduces to a
counting problem involving certain partial assignments of thresholds to nodes of G.

In addition to their role in our analyses, we believe that small perturbations of a single fixed
threshold are a very natural special case to consider for the threshold cascade model. Specifically,
let Γhd(x) ⊆ Γd be the set of distributions in Γd such that µ(0) > 0, µ(j) < x for j < h, and µ(j) = 0
for j > h. (In other words, most of the probability mass is concentrated on h, and the rest is on
values below h.) Threshold distributions in Γhd(x) for small x > 0 correspond to scenarios in which
all nodes begin with a fixed level of “health” h, and then a shock to the system causes a small
fraction of nodes to fail, and a small fraction of others to be weakened, with positive thresholds
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below h. The study of µ-risk on Γhd(x) corresponds simply to the question of which networks are
most resilient to the effect of such shocks.

Overall, then, we believe that the techniques developed here suggest avenues for further progress
on a set of basic questions involving the threshold cascade model, including sharper comparisons
of the µ-risk between different graphs, and how these comparisons depend both on µ and on the
underlying graph structure.

2 Definition of the model

In the threshold cascade model, there is a graph G (possibly infinite) in which each node v randomly
samples a label `(v) ∈ N. Given a labeling ` of graph G, we define a subset S ⊆ V (G) to be failure-
stable if every node v 6∈ S has strictly fewer than `(v) neighbors in S. We define the set of failed
nodes Φ (G, `) to be the intersection of all failure-stable node sets.

Given a graph G with root vertex r, and a distribution µ on node labels, we define the root
failure probability to be the probability that r ∈ Φ (G, `) when ` is randomly sampled by assigning
each node an independent label with distribution µ. We denote the root failure probability by
fµ(G, r).

It is not hard to see that this definition of Φ (G, `) is equivalent to the one we used in the
introduction as stated by the following lemma.

Lemma 2.1. The set Φ (G, `) is failure-stable. It is also equal to the union of the infinite sequence
of sets Φ0 (G, `) ⊆ Φ1 (G, `) ⊆ · · · defined inductively by specifying that Φ0 (G, `) = {v | `(v) = 0}
and Φi+1 (G, `) = {v | Φi (G, `) contains at least `(v) neighbors of v}. It is also equal to the set of
all nodes v ∈ V (G) such that v ∈ Φ (G0, `) for some finite subgraph G0 ⊆ G.

Proof. It is easy to see that the intersection of failure-stable sets is failure-stable, hence Φ (G, `) is
failure-stable. The containment

⋃
i Φi (G, `) ⊆ Φ (G, `) is obvious from the definition of Φi (G, `).

To establish the reverse containment, it suffices to show that
⋃
i Φi (G, `) is failure-stable. This

holds because any v having `(v) or more neighbors in
⋃
i Φi (G, `) must also have that same number

of neighbors in Φk (G, `) for some sufficiently large k; it then follows that v ∈ Φk+1 (G, `).
If G0 is any finite subgraph of G and v ∈ Φ (G0, `), then v ∈ Φ (G, `) since Φ (G0, `) ⊆ Φ (G, `).

To prove the converse, we will show that the set of all v such that v ∈ Φ (G0, `) for some finite G0

is a failure-stable set. Indeed, suppose that v has neighbors w1, . . . , w`(v), each belonging to a finite

subgraph G0(wi) such that wi ∈ Φ (G0(wi), `). Then v ∈ Φ
(
∪`(v)
i=1G0(wi), `

)
, as desired.

3 The case d = 2

In this section, we specialize to 2-regular undirected graphs G. For any such graph, one can define
a permutation R of the vertex set such that for every v ∈ V (G), the set of neighbors of v is
{R(v), R−1(v)}. The following algorithm RootFail processes a labeling ` of G and outputs “fail”
if and only if the root vertex r belongs to Φ (G, `). The algorithm works as follows. First it inspects
the label `(r): if this is not equal to 1 or 2, then it halts instantly and outputs “fail” if and only
if `(r) = 0. Otherwise, find the least i such that Ri(r) 6= 1 and the least j such that R−j(r) 6= 1.
Let `+ = `(Ri(r)), `− = `(R−j(r)). If i is undefined, then set i = ∞ and `+ = 2. Similarly, if j
is undefined then set j = ∞ and `− = 2. Now, if `(r) = 1, output “fail” if and only if `+ = 0 or
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`− = 0. If `(r) = 2, output “fail” if and only if `+ = 0 and `− = 0. Define the length of an execution
of this algorithm to be equal to i + j. (Note that if i = ∞ or j = ∞, the algorithm RootFail
will not actually halt. For this reason, an actual implementation of RootFail would have to be
more careful to inspect the vertices in interleaved order — R(r), R−1(r), R2(r), R−2(r), . . . — until
it can prove that the root must fail. Such an implementation is not guaranteed to halt, but when
processing any labeling ` such that r ∈ Φ (G, `) it is guaranteed to halt after a finite number of
steps and output “fail”.)

The key to analyzing the root failure probability in 2-regular graphs is the following observation:
there is a probabilistic coupling of the labelings `P of the infinite path P and the labelings `C of
the n-cycle C = Cn, such that for every sample point at which RootFail(P, `P ) has execution
length less than n, RootFail(C, `C) also has execution length less than n and the two executions
are identical.

We now define some events on the sample space of this coupling. For any k, let Ek denote the
event that RootFail(P, `P ) has execution length at least k. Let FP denote the event that r ∈
Φ (P, `P ) and let FC denote the event that r ∈ Φ (C, `C). Since the executions of RootFail(P, `P )
and RootFail(C, `C) are identical on the complement of En, we find that

Pr(FP )− Pr(FC) = Pr(En) · [Pr(FP | En)− Pr(FC | En)] .

We now proceed to compute each of the conditional probabilities on the right-hand side. Let s, t, u
denote the label probabilities µ(0), µ(1), µ(2), respectively. Let q = s

1−t , which is the conditional
probability that the label of any node is 0, given that its label is not 1. Then we have

Pr(FP | En) =
t

t+ u

(
1− (1− q)2

)
+

u

t+ u
· q2.

The first term on the right accounts for the case that `(r) = 1 and the second term accounts for

the case that `(r) = 2. After some manipulation — pulling out
(

t
t+u

)
q from the first term and(

u
t+u

)
q from the second one — we obtain the formula Pr(FP | En) = q+ t−u

t+u

(
q − q2

)
. To compute

Pr(FC | En), note that when En occurs, the root’s label is either 1 or 2, and at most one of the
remaining labels is not equal to 1. Furthermore, in any such labeling of C, the root fails if and only
if one of the other n− 1 nodes has label 0. Thus,

Pr(En) = (t+ u)[tn−1 + (n− 1)(1− t)tn−2]

Pr(En ∩ FC) = (t+ u)(n− 1)stn−2

Pr(FC | En) =
(n− 1)s

t+ (n− 1)(1− t)
= q

(
1− t

t+ (n− 1)(1− t)

)
Pr(FP | En)− Pr(FC | En) =

t− u
t+ u

(
q − q2

)
+

qt

t+ (n− 1)(1− t)

Pr(FP )− Pr(FC) = Pr(En) ·
[
t− u
t+ u

(
q − q2

)
+

qt

t+ (n− 1)(1− t)

]
.

On the last line, both factors are decreasing functions of n. Consequently, when they are both
positive, their product is a decreasing function of n. In other words, if an n-cycle is better than an
infinite path, then an (n− 1)-cycle is better still.

We have thus proved the following.
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Theorem 3.1. For each µ ∈ Γ2, at least one of the 3-cycle or the infinite path has minimum µ-risk
over all graphs in G2.

4 Computing Failure Probabilities Via Power Series

When d > 2, the method of the preceding section does not appear to be applicable. In effect, since
the breadth-first search of such a graph builds a tree which, at any stage of the search, may have
more than two leaves (in fact, an unbounded number of them) there are many more opportunities
for correlation as different leaves of the tree are discovered to refer to the same node of G. For this
reason, an analysis along the lines of Section 3 seems hopeless. Instead we specialize to cases in
which the distribution µ concentrates almost all of its probability on a single label `max and the
remaining probability is divided up over labels j < `max. We then express the µ-risk as a power
series in the probabilities {µ(j) | j < `max}, which allows us to compare different graphs according
to their low-degree power series coefficients.

4.1 Definitions

We now present the definitions that we need, followed by a description of the power series for the
root failure probability and its convergence properties. Throughout this section, we will illustrate
the definition on a very simple graph: a 3-node path, with the root r placed at the middle node,
and we let v and w be the two other (leaf) nodes of the path.

Throughout this section and the following ones, we will assume that labels take values in the
set {0, . . . , `max} for some fixed positive integer `max. For purposes of our example, we assume that
`max, where most of the probability is concentrated, is equal to 2: µ(0) = s and µ(1) = t are small
positive numbers, and µ(2) = 1− s− t is close to 1.

We will compute failure probabilities by working with partial node labelings λ, in which labels
are assigned to only some of the nodes, i.e., a partial function λ from V (G) to {0, . . . , `max}.
Its domain of definition, Dom(λ), is the set of all v ∈ V (G) such that λ(v) is defined; when
Dom(λ) = V (G) we refer to λ as a full labeling or simply a labeling.

We say that a partial labeling λ is an explanation of root failure (ERF) if the root fails in every
full labeling of G that agrees with λ on Dom(λ). We say that λ is a minimal explanation of root
failure (MERF) if it is an ERF, and every proper sublabeling of λ is not an ERF. Note that Dom(λ)
is a finite set whenever λ is a MERF, by Lemma 2.1.

Thus, on the three-node path with r in the middle, there are four MERFs: (a) assigning 0 to
r; (b) assigning 1 to r and 0 to v; (c) assigning 1 to r and 0 to w; and (d) assigning 0 to v and
w. We can think of partial labelings as events in the full sample space of labelings, and (a)-(d) are
thus four events that cover the event that r fails. Hence the probability r fails is bounded above
by the sum of the probabilities of these four events, which is s+ 2st+ s2.

To get the precise failure probability of r, we need to incorporate inclusion-exclusion terms
arising from overlaps in these four MERFs. In our example, there are two distinct labelings that
correspond to such overlaps:

(i) assigning 0 to all three nodes: this arises when events (a) and (d) both occur, so it contributes
−s3 to the probability.

(ii) assigning 1 to r and 0 to both v and w: this arises when any two out of (b), (c), and (d)
occur, and also when all three occur. By the inclusion-exclusion formula, this contributes
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−3s2t+s2t = −2s2t to the probability, with the first term coming from two-way overlaps and
the second term coming from the three-way overlap.

Putting all this together, we get the root failure probability for the small example: s+ 2st+ s2 −
s3 − 2s2t.

MERFS give rise to such overlaps when they are compatible. We sat that two partial labelings
λ1, λ2 are compatible if λ1(v) = λ2(v) for every v ∈ Dom(λ1) ∩ Dom(λ2). The union of two
compatible partial labelings λ1, λ2 is the unique partial function λ such that

{(v, λ(v)) | v ∈ Dom(λ)} = {(v, λ1(v)) | v ∈ Dom(λ1)} ∪ {(v, λ(v)) | v ∈ Dom(λ2)}.

For notational reasons, it will be convenient to make the union operation into a binary operation
that is defined for any pair of partial labelings, not only for compatible pairs. To do so, we define
the set Λ to be a set consisting of all partial labelings, together with one special element denoted
⊥ that is interpreted to be incompatible with every element of Λ, including itself. We extend the
union operation ∪ to a binary operation on Λ by specifying that λ1 ∪ λ2 =⊥ when λ1 and λ2

are incompatible. For a partial labeling λ, we define E(λ) to be the set of all full labelings that
extend λ; note that E(⊥) = ∅, and that for every two partial labelings λ1, λ2 we have the relation
E(λ1) ∩ E(λ2) = E(λ1 ∪ λ2).

For the inclusion-exclusion formula, we’ll need to think about finite unions of MERFs which
we’ll call UMERFs. For graph G with root vertex r, we will denote the set of all MERFs by
M(G, r) and the set of all UMERFs by U(G, r). We will sometimes abbreviate these to M, U when
the identity of the graph and root vertex are obvious from context.

We can now describe the plan for arbitrary graphs, including infinite ones, when µ(j) = sj are

small numbers for j < `max, and µ(`max) = 1 −
∑`max−1

j=0 sj . We first show that when `max > d/2,
for any vector of natural numbers i = (i0, i1, . . . , i`max−1), there are only finitely many MERFs that
assign ik nodes a label of k, for k = 0, . . . , `max − 1. Moreover, we can write the root’s failure

probability as a multivariate power series of the form
∑

i ais
i0
0 s

i1
1 · · · s

i`max−1

`max−1 , and this power series
has a positive radius of convergence. We use this to compare failure probabilities in different graphs
by enumerating a finite set of terms in the power series until we identify a difference between them.

4.2 A power series for computing the root failure probability

We make the set of all labelings ` into a probability space by declaring the labels {`(v) | v ∈ V (G)}
to be independent random variables with common distribution µ. The measurable sets in this
probability space are the σ-field generated by the sets E(λ), where λ ranges over all partial labelings
of G.

By Lemma 2.1, whenever the root fails there is a MERF that explains the failure, i.e. the event
r ∈ Φ (G, `) is the union of the events E(λ) for λ ∈ M. Since M is a countable set, we can choose
an arbitrary one-to-one correspondence m : N→M. Then

Pr(r ∈ Φ (G, `)) = Pr

( ∞⋃
i=1

E(m(i))

)
= lim

n→∞
Pr

(
n⋃
i=1

E(m(i))

)
. (1)

Each of the probabilities on the right-hand side can be expanded using the inclusion-exclusion
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formula:

Pr

(
n⋃
i=1

E(m(i))

)
=

n∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤n
Pr (E(m(i1)) ∩ · · · ∩ E(m(ik)))

=

n∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤n
Pr (E(m(i1) ∪ · · · ∪m(ik))) . (2)

The right-hand side of (2) is easy to evaluate: using variables si (i = 0, . . . , `max) to denote the
values si = µ(i), the probability of the event E(λ) for any partial labeling is given by

Pr(E(λ)) =
∏

v∈Dom(λ)

sλ(v)
∆
= sλ, (3)

where this is taken as the definition of sλ.
Combining (2) and (3), and regrouping the terms we get the following lemma.

Lemma 4.1.

Pr

(
n⋃
i=1

E(m(i))

)
=
∑
λ∈U

n∑
k=1

(−1)k+1ak,nλ sλ. (4)

Here, ak,nλ for a UMERF λ and integers 1 ≤ k ≤ n, is defined to be the number of distinct k-tuples
(i1, . . . , ik) such that 1 ≤ i1 < · · · < ik ≤ n and λ = m(i1) ∪ · · · ∪m(ik).

4.3 Convergence of the power series

To take the limit as n → ∞ and obtain a well-defined power series, it is necessary to have a
finiteness theorem that justifies that the coefficient of sλ eventually stabilizes as n grows. In fact,
in order for the power series to have positive radius of convergence the coefficients must grow no
faster than exponentially. Proving such bounds requires bounding the number of UMERFs of a
given size. In general this is not possible: for some graphs and some settings of the parameter `max,
the number of UMERFs of a specified size is not even finite. As a simple example, consider an
infinite path and `max = 1; there are infinitely many MERFs λ consisting of a single node labeled
with 0. This example generalizes to any positive even degree d: the graph G is formed from an
infinite sequence of independent sets of size d/2, with every two consecutive such independent sets
being joined by a complete bipartite graph. When `max = d/2, there are infinitely many MERFs
obtained by taking one of the independent sets in the sequence and labeling all of its nodes with
0. Each of these MERFs λ has i(λ) = (d/2, 0, . . . , 0).

The remainder of this section is devoted to specifying some sufficient conditions under which
the right-hand side of Equation (4) can be rewritten as a power series with positive radius of
convergence. For any partial labeling λ, we define its size |λ| = |Dom(λ)| to be the number of
nodes it labels. We begin by identifying some sufficient conditions under which we can assert that
for every partial labeling λ, the number of nodes that are guaranteed to fail in every labeling
extending λ is at most O(|λ|).

Lemma 4.2. Suppose we are given a graph G, a default threshold `max, and a partial labeling λ.
Let λ be the full labeling that extends λ by assigning label `max to each node not labeled by λ, and
let F = Φ

(
G,λ

)
.
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1. If G is d-regular and d < 2`max then |F | ≤ (d+ 1) |λ|.

2. Suppose that for every node v of G, every connected component of G \ {v} contains strictly
fewer than `max neighbors of v. Then |F | < 2 |λ|.

Proof. Arrange the elements of F into a sequence v1, v2, . . . such that each of the sets Φi

(
G,λ

)
is

an initial segment of the sequence. Thus, each v ∈ F has at least λ(v) neighbors that precede it in
the sequence. We can think of the sequence v1, v2, . . . as specifying a possible order in which the
nodes of F failed in an execution of the threshold cascade model. To prove both parts of the lemma
we will define a potential function that maps vertex sets to non-negative integers, then evaluate
the potential function on each initial segment of the sequence, and consider how the value of the
potential function changes every time a new node fails (i.e., is added to the initial segment). We
will use two different potential functions corresponding to the two parts.

For Part 1 define ϕ(S), for any vertex set S, to be the number of edges of G having one endpoint
in S and the other in its complement. Each time a new node vk fails, it increases the value of ϕ
by at most d since it has only d neighbors. Furthermore, if vk 6∈ Dom(λ) then vk has at least `max

neighbors that precede it in the sequence and at most d−`max that succeed it. Thus, the net change
in ϕ is bounded above by (d− `max)− `max, which is at most −1 by our assumption that d < 2`max.
The potential function ϕ thus starts at 0, increases by at most d |λ| over the whole sequence of
failures, and is never negative; hence there can be at most d |λ| steps of the sequence when it strictly
decreases, and therefore at most d |λ| nodes in F \Dom(λ). Consequently |F | ≤ (d+ 1) |λ|.

For Part 2, we instead use the potential function ψ(S) defined as the number of connected
components in the induced subgraph G[S]. Each time a new node vk fails, it increases ψ by at most
1. Now consider how ψ changes when a node w 6∈ Dom(λ) fails. Since λ(w) = `max, we know that
w has at least `max neighbors that precede it in the sequence. By our assumption on the structure
of G, at least two of these neighbors belong to different connected components of G \ {w}. These
components merge together when w fails, causing ψ to decrease by at least 1. Since the initial value
of ψ is 0 and its final value is strictly positive, and it increases by at most 1 in each step, we know
that the number of steps in which ψ increases must be greater than the number of steps in which
it decreases. Hence, |F \Dom(λ)| < |λ|, implying |F | < 2 |λ| as claimed.

The next lemma provides a simple method for bounding the number of UMERFs of size z by
an exponential function of z.

Lemma 4.3. Suppose, for a given graph G and default threshold `max, that there exists a constant
c such that every partial labeling λ satisfies |Φ

(
G,λ

)
| ≤ c |λ|. Then for every z, the number of

UMERFs of size z is at most (d + 1)3cz. In particular, this upper bound is at most (d + 1)3(d+1)z

whenever one of the sufficient conditions in Lemma 4.2 holds.

Proof. Let λ be a partial labeling and let F = Φ
(
G,λ

)
. If λ is a MERF, then F induces a connected

subset of G, since otherwise we could remove the labels provided by λ in any component of G[F ]
not containing the root r and arrive at a proper sublabeling of λ that is also an ERF. This implies
that if λ is a UMERF, the set G[F ] must also be connected, since it is the union of a finite set
of connected graphs all containing a common node r. We can describe any such F uniquely by
specifying the sequence of edge labels (each indexed from 1 to d) that are taken in the ≤ 2|F | steps
of a depth-first search traversal of G[F ] starting from r. Hence there are at most d2|F | ≤ d2c|λ| such
sets. As each UMERF of size |λ| is uniquely associated with such a set F together with a labeling
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of its nodes, we obtain an upper bound of d2cz · (1 + `max)cz on the number of UMERFs of size z.
The lemma follows because 1 + `max ≤ d+ 1.

Assume for the remainder of this section that G and `max satisfy one of the two sufficient
conditions in Lemma 4.2; thus, the hypothesis of Lemma 4.3 holds with c = d+ 1. The conclusion
of Lemma 4.3 is already enough for us to be able to express the series on the right-hand side of
Equation (4) via a more useful indexing. First, for any UMERF λ, let i(λ) denote the vector
of natural numbers i = (i0, i1, . . . , i`max) such that λ assigns exactly ik nodes a label of k. The

corresponding event E(λ) has probability sλ = si00 s
i1
1 · · · s

i`max
`max

, a quantity we will abbreviate as si.

For any vector of natural numbers i = (i0, i1, . . . , i`max), let |i| =
∑`max

k=0 ik; the number of
UMERFs λ with i(λ) = i is bounded by the expression in Lemma 4.3, with z = |i| and c = d+ 1.
Moreover, any MERF λ′ that appears in a union of MERFs forming λ must have a vector i(λ′)
that is coordinate-wise dominated by i(λ), and hence Lemma 4.3 implies that only a finite set of

MERFs can appear in unions that form λ. It follows that the sequence of coefficients ak,nλ eventually
stabilizes as n → ∞ — that is, for every λ, k there is an integer akλ and a threshold n0 such that

ak,nλ = akλ for all n ≥ n0.
Thus we can group together all UMERFs λ with i(λ) = i and write

Pr

( ∞⋃
i=1

E(m(i))

)
=
∑
i

∑
λ∈U
i(λ)=i

∑
k

(−1)k+1akλs
i =

∑
i

ais
i, (5)

where the right-hand side should be taken as the definition of ai, and the grouping by i in the sum
on the right-hand side is justified by the fact that in the preceding triple summation, the sums over
λ and k range over finite sets.

If we can show that ai depends only exponentially on |i|, this will establish that the power series
has a positive radius of convergence. We observe that if the third summation weren’t present in
Equation (5), and instead we only were summing over k = 1 (corresponing to MERFs), then such
an exponential upper bound would follow directly from Lemma 4.3. It follows that to show an
exponential upper bound on |ai|, it is sufficient, for each fixed UMERF λ with i(λ) = i, to show
that |

∑
k(−1)k+1akλ| is bounded above by an exponential function of |i|.

To do this, we consider the (potentially very large) set of all MERFs λ1, . . . , λm that can appear
in a union forming λ. Let Dom(λ) = D, with |D| = n, and Dom(λj) = Dj . For each subset of k
of these MERFs whose union equals D, we get a term (−1)k+1 in the sum we are bounding. We
would like to show that the absolute sum of all these terms is bounded above by an exponential
function of n, but since there could be many more than this many terms in the sum, we need an
argument that actually exploits the cancellation among terms of the form (−1)k+1, rather than
näıvely treating each as potentially having the same sign.

The upper bound we need follows from our next lemma.

Lemma 4.4. Let D be an n-element set, and let D1, . . . , Dm be (not necessarily distinct) subsets
of D. Let C be the collection of all subsets J ⊆ {1, . . . ,m} for which

⋃
j∈J Dj = D. Then∣∣∣∣∣∑

J∈C
(−1)|J |

∣∣∣∣∣ ≤ 2n.

(The crucial point is that the right-hand side is independent of m.)
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Proof. We prove this by induction on n, with the case of n = 1 being easy. For n > 1, choose any
element x ∈ D and let D′ = D − x. We define C0 to be the collection of all J ⊆ {1, . . . ,m} for
which

⋃
j∈J Dj ⊇ D′. and C1 to be the collection of all J ⊆ {1, . . . ,m} for which

⋃
j∈J Dj = D′.

Now, by the induction hypothesis applied to the sets D′ and {Dj − x : j = 1, 2, . . . ,m}, we have∣∣∑
J∈C0(−1)|J |

∣∣ ≤ 2n−1. By the induction hypothesis applied to the sets D′ and {Dj : x 6∈ Dj}, we

have
∣∣∑

J∈C1(−1)|J |
∣∣ ≤ 2n−1. Finally, C1 ⊆ C0 and J ∈ C if and only if J ∈ C0 − C1, so we have∑

J∈C(−1)|J | =
∑

J∈C0(−1)|J | −
∑

J∈C1(−1)|J |, from which it follows that
∣∣∑

J∈C(−1)|J |
∣∣ ≤ 2n.

Putting these bounds together, we see that |ai| is bounded above by an exponential function of
|i|, and hence:

Theorem 4.5. If d < 2`max, the power series in Equation (5) has a positive radius of convergence.
The power series also has a positive radius of convergence if for every node v, every connected
component of G \ {v} contains strictly fewer than `max neighbors of v.

5 Comparing Cliques, Trees, and Trees of Triangles

5.1 Comparing Td to Kd+1

In the introduction, we noted that it is easy to identify two distinct settings of the parameters
for µ for which Kd+1 has uniquely optimal µ-risk among connected d-regular graphs. First, when
`max = 1, the probability the root fails is monotonic in the size of the connected component that
contains it, and Kd+1 uniquely minimizes this for connected d-regular graphs. But Kd+1 is also
uniquely optimal for larger values of `max ≤ d, when µ assigns every label to be either 0 or `max.
Indeed, in this case, the only way the root can fail in Kd+1 is if at least `max of its neighbors fail.
This event also causes the root to fail in any connected d-regular graph G, but when G 6= Kd+1

there are other positive-probability events that also cause the root to fail, so again Kd+1 is uniquely
optimal.

As a first application of our power-series technique, we now show that there are parameter
settings for which Td has lower root failure probability than Kd+1. For this comparison, we consider
µ such that `max = 2, and label 0 has probability s, while label 1 has probability t, where s and t are
small quantities that will be defined precisely later. Observe that when `max = 2, Td satisfies the
hypothesis of Lemma 4.2, Part 2, and hence its power series has a positive radius of convergence.
The power series for Kd+1 is actually a polynomial in s and t, since Kd+1 is a finite graph, so its
radius of convergence is infinite.

Let us work out some of the low-degree terms for Td and for Kd+1. For Td, the coefficient on
the term s is 1, corresponding to the MERF in which the root gets labeled 0. The coefficient on the
term st is d, corresponding to MERFs in which the root gets labeled 1 and any one of the root’s
d neighbors gets labeled 0. There are no inclusion-exclusion corrections contributing to either of
these coefficients.

For Kd+1, the coefficient on the term s is 1, as in Td, corresponding to the root getting labeled
0. However, the coefficient on the term st is d2: there are d MERFs in which the root gets labeled 1
and any one of the root’s d neighbors gets labeled 0; there are also d(d− 1) more MERFs in which
one neighbor of the root gets labeled 0 and another gets labeled 1.

Now, suppose we set s = t3. Then the power series for the root failure probability in Td is
t3 + dt4 +O(t5), whereas the power series for the root failure probability in K4 is t3 + d2t4 +O(t5).
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Figure 2: The tree of triangles ∆d for d = 3.

The O(t5) estimate of the error term is valid inside the power series’ radius of convergence. Hence,
for t sufficiently small and s = t3, we find that f∗µ(Td) < f∗µ(Kd+1).

We have thus shown

Theorem 5.1. For each d ≥ 3, there exists a µ ∈ Γd for which Td has strictly lower µ-risk than
Kd+1.

5.2 Comparing ∆d to Kd+1 and Td

We now show that when d > 2, the graphs {Kd+1, Td} do not form a sufficient set for Γd. We do
this by establishing the following theorem.

Theorem 5.2. For each d ≥ 3, there exists a µ ∈ Γd for which the d-regular tree of triangles ∆d

has strictly lower µ-risk than either Td or Kd+1.

The d-regular tree of triangles ∆d is a graph consisting of a collection of disjoint triangles
connected according to the structure of T3d−6: it is the graph obtained by starting from T3d−6 and
replacing each node u (with neighbors v1, . . . , v3d−6 in T3d−6) by three nodes {u1, u2, u3}. These
three nodes u1, u2, u3 are mutually connected into a triangle, and ui is also connected to one node
in each of the triangles that replaces vj , for j = (i − 1)(d − 2) + 1, . . . , i(d − 2). We draw a small
portion of ∆d’s repeating structure, in the case d = 3, in Figure 2.

We construct the distribution µ in Theorem 5.2 from a small perturbation of the fixed threshold
`max = 3. To analyze the root failure probability in ∆d in this case, we first observe that its
power series has a positive radius of convergence for all d ≥ 3, since ∆d satisfies the hypothesis of
Lemma 4.2, Part 2. (A connected component of ∆d \ {v} can contain at most 2 neighbors of v.)
Thus, we can compare the root failure probabilities in ∆d, Kd+1, and Td by comparing low-degree
terms in their power series, as we did when we compared Kd+1 with Td in Section 5.1. Because the
calculations are somewhat lengthy, we present them in Appendix A rather than in the main text.

6 Comparing Td to an arbitrary d-regular graph

In Section 5.1 we compared f∗µ(Td) with f∗µ(Kd+1), for d ≥ 3, when µ is a small perturbation of
`max = 2 — that is, when (µ(0), µ(1), µ(2)) = (s, t, 1 − s − t). We saw that the tree has strictly
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lower µ-risk than the clique when t is sufficiently small and s is sufficiently small relative to t.
Generalizing this, the same power-series technique can be used to show that for any connected
d-regular graph other than Td, one can find a setting of s, t > 0 such that f∗µ(Td) < f∗µ(G). This
will establish the following theorem, the proof of which is the main focus of the present section.

Theorem 6.1. For each d ≥ 3 and each graph G ∈ Gd, there exists a µG ∈ Γd for which Td has
strictly lower µG-risk than G.

Most of the proof applies to all values of d ≥ 3. At the end of the analysis, we separately
handle the cases of d = 3 and d > 3. Focusing on d = 3 first allows us to use the condition that
d < 2`max = 4 and hence ensure that the root failure probability in the graph G has a power series
expansion with a positive radius of convergence. After analyzing the case of d = 3, we extend the
proof to d > 3; this still depends on evaluating power series coefficients but requires some new
techniques to handle the potential non-convergence of the power series for G. But to begin with,
we allow d ≥ 3 to be arbitrary.

Since G is a connected graph that is not a tree, it has finite girth L. Let r be a node of G
that belongs to an L-cycle, and let r′ be an arbitrary node of T = Td. Applying the results of
Section 4, we will be bounding the probabilities fµ(G, r) and fµ(T, r′) using sums of monomials sλ
indexed by UMERFs λ. Any such monomial sλ = sitj has i ≥ 1: all MERFs have at least one
threshold-zero node, since otherwise the failed set is empty. We will be setting s = tL � 1, so
that all the monomials whose magnitude is greater than t2L−1 are of the form stj (0 ≤ j ≤ L− 2).
Focusing, therefore, on UMERFs λ having i(λ) = (1, j), we will establish the facts summarized in
the following lemma.

Lemma 6.2. Let G be any d-regular graph of girth L.

(1) If λ is any UMERF in G such that i(λ) = (1, j), where 0 ≤ j ≤ L− 2, then λ is a MERF.

(2) When 0 ≤ j < L − 2, there is a one-to-one correspondence between MERFs λ such that
i(λ) = (1, j) in G and in T = Td.

(3) When j = L− 2, G has strictly more MERFs with i(λ) = (1, j) than does T .

Proof. Let λ be a UMERF such that i(λ) = (1, j), 0 ≤ j ≤ L− 2, and let v be the unique node in
Dom(λ) such that `(v) = 0. If we extend λ to a labeling ` by assigning threshold 2 to every node
not in Dom(λ), then the failed set Φ (G, `) is, by Lemma 2.1, the union of an increasing sequence
of sets Φ0 (G, `) ⊆ Φ1 (G, `) ⊆ · · · . Each of these induces a connected subgraph containing v, since
the initial set Φ0 (G, `) is the singleton {v}, and a node belonging to Φi (G, `) must have at least
one neighbor in Φi−1 (G, `). Now consider the smallest i (if any) such that Φi (G, `) contains a node
w 6∈ Dom(λ). As `(w) = 2, the node w must have two neighbors x, y ∈ Φi−1 (G, `). Combining the
edges (w, x), (w, y) with a path from x to y in Φi−1 (G, `) we obtain a cycle in G whose vertex set
belongs to {w} ∪Dom(λ), a set of cardinality j + 2.

When j < L−2, this contradicts our assumption that G has girth L, and thus we may conclude
that Φ (G, `) = Dom(λ). In this case, the induced subgraph on Dom(λ) is a tree containing v
and r, and in fact it must be a path connecting v to r. (Any threshold-1 nodes in Dom(λ) lying
outside this path cannot belong to any MERF, contradicting our assumption that λ is a UMERF.)
It follows that λ is a MERF, and that the number of such MERFs, for a specified value of j, is equal
to the number of j-hop simple paths in G terminating at r. Our assumption that G is d-regular,
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with girth greater than j + 2, implies that every non-backtracking walk of j hops terminating at
r is a simple path, and that the vertex sets of all these simple paths are distinct. Consequently,
in both G and T the number of MERFs λ such that i(λ) = (1, j) is equal to the number of j-hop
non-backtracking walks in a d-regular graph, i.e. d(d− 1)j−1.

When j = L − 2, the set Φ (G,λ) induces either a tree (in which case, by the same reasoning
as before, it must be a j-hop path from v to r) or an L-cycle containing a single node w such
that `(w) = 2, a single node v with `(v) = 0, and all other nodes having label 1. In the latter
case, our assumption that every node in Dom(λ) belongs to a MERF implies either that w = r,
or that v, w, r occur consecutively on the cycle C and that C \ {w} is a j-hop path from v to r.
Finally, it is easy to see that in all of these cases, λ is a MERF. We have thus shown that every
UMERF in G with i(λ) = (1, L− 2) is a MERF, and that the number of these MERFs is at least
d(d − 1)L−3 + L − 1. Here, d(d − 1)L−3 counts the number of (L − 2)-hop paths terminating at
the root — which is also the coefficient of stL−2 in the power series for Td — and L− 1 counts the
number of ways of labeling C \ {r} with a single 0 and L− 2 1’s.

Proof of Theorem 6.1, d = 3 case. As d < 2`max, the power series for fµ(G, r) and fµ(T, r′)
converge for sufficiently small s and t. Thus the difference fµ(G, r) − fµ(T, r′), may be expressed
as
∑

i=(i,j)(a
G
ij − aTij)s

itj where aGij and aTij are the power series coefficients in (5) for G and T ,
respectively. Grouping the terms into those with Li+ j ≤ 2L− 2 and those with Li+ j ≥ 2L− 1,
we find that the first set of terms includes only pairs (i, j) such that i = 1, 0 ≤ j ≤ L− 2, and by
Lemma 6.2, ∑

Li+j≤2L−2

(aGij − aTij)sitj = (aG1,L−2 − aT1,L−2)stL−2 ≥ (L− 1)t2L−2. (6)

Recall, from Lemmas 4.3 and 4.4, that the number of UMERFs λ such that i(λ) = (i, j) is
bounded above by (d + 1)3(d+1)(i+j) and that the coefficient

∑
k(−1)k+1akλ for each of them is

bounded by 2i+j in absolute value. Thus,∣∣∣∣∣∣
∑

Li+j≥2L−1

(aGij − aTij)sitj
∣∣∣∣∣∣ ≤

∞∑
k=2L−1

∑
Li+j=k

2i+j+1(d+ 1)3(d+1)(i+j)tLi+j

<
∞∑

k=2L−1

k2k+1(d+ 1)3(d+1)ktk

<
∞∑

k=2L−1

[4(d+ 1)3(d+1)t]k =

(
4(d+ 1)3(d+1)

)2L−1
t2L−1

1− 4(d+ 1)3(d+1)t
,

where the last line is justified as long as the denominator is strictly positive. By choosing t
sufficiently small, we can ensure not only that the denominator is strictly positive but that the
quantity on the last line is less than t2L−2. Then, the positive (L− 1)t2L−2 contribution from the
low-degree terms in the power series more than offsets the possibly negative contribution from the
high-degree terms, and this proves that fµ(G, r) > fµ(T, r′), as claimed.

Proof of Theorem 6.1, d > 3 case. When comparing the infinite d-regular tree Td against
another connected d-regular graph G when d ≥ 2`max, a tricky issue arises because the power series
for G need not converge. Recall, however, that the power series for Td still converges. Thus, to
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compute the root failure probablity fµ(T, r′) we will continue to use the full power series, and we
will continue to denote it by

∑
i,j a

T
ijs

itj .
To estimate fµ(G, r) we must adopt a different approach. Specifically, we number MERFs

m(1),m(2), . . . in order of increasing Li + j, where (i, j) = i(m). Instead of taking the union of
the entire countable sequence of events E(m(k)) (k = 1, 2, . . .) we truncate this sequence at the
highest value of n such that i(m(n)) = (i, j) with Li+ j ≤ 2L− 2. We bound fµ(G, r) from below
by Pr (

⋃n
i=1 E(m(i))) and evaluate this probability using (4). Denote the resulting polynomial by∑

i,j a
G
ijs

itj . Note that it is a polynomial, not a power series, since we are taking a union of only
finitely many events, each described by a MERF.

With this revised interpretation of the coefficients aGij , the bound in Equation (6) is once again

justified by Lemma 6.2. To bound the remainder term
∣∣∣∑Li+j≥2L−1(aGij − aTij)sitj

∣∣∣ from above, we
use ∣∣∣∣∣∣

∑
Li+j≥2L−1

(aGij − aTij)sitj
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
∑

Li+j≥2L−1

aGijs
itj

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

Li+j≥2L−1

aTijs
itj

∣∣∣∣∣∣ (7)

and deal with each term on the right-hand side separately. The second term, involving power series
coefficients of T , is dealt with exactly as before, yielding an upper bound of order O(t2L−1) for that
term as t → 0. The first term is a polynomial in s and t, not a power series. Upon substituting
s = tL, it becomes a univariate polynomial in t, in which each monomial has an exponent of 2L− 1
or higher. No matter how large the coefficients of this polynomial may be, they are finite, and so
as t→ 0 the absolute value of the polynomial is O(t2L−1).

Thus, the right-hand side of (7) is O(t2L−1) as t → 0, and as before the proof finishes by
observing that for small enough t this error term cannot possibly offset the positive (L − 1)t2L−2

contribution from the low-degree terms. The conclusion is that

Pr
G

(
n⋃
i=1

E(m(i))

)
− fµ(T, r′) ≥ (L− 1)t2L−2 −O(t2L−1)

as t→ 0. Recalling that fµ(G, r) ≥ PrG (
⋃n
i=1 E(m(i))), we conclude that the failure probability of

r in G exceeds the failure probability of r′ in T .

6.1 A Connection to Sufficient Sets

A strengthening of Theorem 6.1 has a consequence for sufficient sets, as we now discuss. (Recall
that a set of graphs H ⊆ Gd is a sufficient set for Γd if for each µ ∈ Γd, at least one member of H
achieves the minimum µ-risk over all graphs in Gd.) We first describe the relevant strengthening
of the theorem. Notice that the proof of Theorem 6.1 in fact shows something stronger than was
claimed. If we have any finite set of graphs H ⊆ Gd, none of which is Td, then we can define L to
be the maximum girth of any graph in H. Using this value of L, we can define a distribution µ just
as before, and the analysis in the proof of Theorem 6.1 then directly establishes the following.

Theorem 6.3. For every finite set H of connected d-regular graphs, there is a distribution µH ∈ Γd
for which Td achieves strictly lower µH-risk than each member of H.

In other words, rather than simply being more resilient than any single other graph G at some
point in Γd, the tree Td is in fact simultaneously more resilient than any finite set of other graphs
at some point in Γd.
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From this stronger form of the result, we obtain the following immediate consequence.

Theorem 6.4. When d ≥ 3, there is no sufficient set of size 2 for Γd.

Proof. If there were such a set H ⊆ Gd of size 2, then it would have to contain Kd+1, since Kd+1

uniquely minimizes the µ-risk for some distributions µ ∈ Γd. The other graph in H can’t be Td,
since by Theorem 5.2 there are µ for which ∆d has strictly lower µ-risk than both Kd+1 and Td.
But if the other graph in H were some G 6= Td, then by Theorem 6.3 we could find a µ for which
Td has lower µ-risk than both Kd+1 and G, and so this is not possible either.
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A Power-Series Computations Comparing ∆d to Kd+1 and Td

In this appendix, we provide the details of the power-series computations that establish a distribu-
tion µ ∈ Γd for which the d-regular tree of triangles ∆d has strictly lower µ-risk than both Kd+1

and Td.
To find a choice of parameters for which ∆d has lower root failure probability than either Td or

Kd+1, we consider distributions µ for which we have (µ(0), µ(1), µ(2), µ(3)) = (s, t, u, 1− s− t− u)
for small s, t, and u, and µ(j) = 0 for j > 3. This is a small perturbation of a default threshold
of `max = 3. Recall that in this case, Theorem 4.5 justifies using a power series for the root failure
probability in both Td and ∆d; the use of a power series for Kd+1 is justified because Kd+1 is a finite
graph, hence its power series is really a polynomial. We can proceed by comparing the monomials
associated with these three graphs. It will turn out to be sufficient to go up to monomials of total
degree at most 3 in order to identify choices for s, t, and u defining our distribution µ.

We work out the coefficients on all monomials of total degree up to 3, as follows. We do this
tersely, listing the MERFs and UMERFs that account for each. We also omit terms without a
factor of s, since every MERF and UMERF must assign at least one label of 0.

For Kd+1:

• 1s: The root gets label 0.

• 0s2: No MERF or UMERF can assign only two labels of 0, since no third node will fail.

• dst: The root gets label 1 and one neighbor gets label 0.

• 0su: No MERF or UMERF can assign just one 0 and one 2, since the node with label 2 will
not fail.

•
(
d
3

)
s3: There is a MERF for each 3-tuple of neighbors who are assigned labels of 0.

•
(
d
2

)
(d−3)s2t: There are

(
d
2

)
(d−2) MERFs contributing to this term: in each, two of the root’s

neighbors are labeled 0, and a third is labeled 1. There are also
(
d
2

)
UMERFs contributing to

this term: in each, two neighbors of the root are labeled 0 and the root is labeled 1. Each of
these UMERFs can be written as the union of two MERFs (the root labeled 1 and a neighbor
labeled 0), so each contributes −1. Thus the total is

(
d
2

)
(d− 3).

•
(
d
2

)
(d − 1)s2u: There are

(
d
2

)
MERFs where the root gets labeled 2 and two neighbors are

labeled 0; there are
(
d
2

)
(d − 2) more MERFs where two neighbors of the root are labeled 0

and a third is labeled 2.

•
(
d
2

)
(d− 2)st2: Two neighbors of the root get label 1 and a third gets label 0.

• 0su2: A single 0 cannot cause any nodes of label 2 to fail.

• d(d− 1)2stu: There are d(d− 1) MERFs where the root has label 2, one neighbor has label
0, and another has label 1. There are d(d − 1)(d − 2) more MERFs where the three of the
neighbors have labels 0, 1, and 2 in some order.

For Td, the terms of total degree up to 2, as well as the s3 and su2 terms, are the same as for
Kd+1, and by the same arguments. For the other degree-3 terms:
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• −
(
d
2

)
s2t: The

(
d
2

)
(d − 2) MERFs from Kd+1 for this term are not present in Td, but the

(
d
2

)
UMERFs each contributing −1 are.

•
(
d
2

)
s2u: There are

(
d
2

)
MERFs where the root gets labeled 2 and two neighbors are labeled 0.

(The other
(
d
2

)
(d− 2) MERFs from Kd+1, where two neighbors of the root are labeled 0 and

a third is labeled 2, are not present here.)

• d(d− 1)st2: A grandchild of the root gets label 0, and the parent of this child together with
the root get label 1.

• 0stu: There is no MERF or UMERF that assigns labels of 0, 1, and 2 to three nodes.

For ∆d, we think of the root r as having neighbor set Z = {v0, v1, v2, . . . , vd−1}, where the only
edge among the nodes in Z is between v0 and v1. We will refer to neighbors of Z that do not belong
to the set Z ∪ {r} as depth-two neighbors. Again the terms of total degree up to 2, as well as the
s3 and su2 terms, are the same as for Kd+1, and by the same arguments. For the other degree-3
terms:

• (2(d − 2) −
(
d
2

)
)s2t: There are

(
d
2

)
UMERFs each contributing −1 as in Kd+1 and Td, and

there are also 2(d − 2) MERFs in which one of v0 or v1 is labeled 0, the other is labeled 1,
and a neighbor of the root in Z − {v0, v1} is labeled 0.

•
(
d
2

)
s2u: We get the

(
d
2

)
MERFs that were present in Td, but not the additional

(
d
2

)
(d−2) that

were present in Kd+1.

• (d+1)(d−2)st2: There are (d−2)(d−1) MERFs where the root and a node w ∈ Z−{v0, v1}
are labeled 1, and one of w’s depth-two neighbors is labeled 0. There are 2(d−2) more MERFs
where, for i ∈ {0, 1}, the root and vi are labeled 1, and one of vi’s depth-two neighbors is
labeled 0.

• 2stu: The root is labeled 2, one of v0 or v1 is labeled 1, and the other is labeled 0.

For one of these graphs G, let fG(s, t, u) denote the root failure probability, and let gG(s, t, u)
denote the sum of all terms in the power series of total degree 4 and higher. Then we have

fKd+1
(s, t, u)− f∆d

(s, t, u) =

[(
d

2

)
(d− 3)−

(
2(d− 2)−

(
d

2

))]
s2t+

[(
d

2

)
(d− 1)−

(
d

2

)]
s2u

+

[(
d

2

)
(d− 2)− (d+ 1)(d− 2)

]
st2 +

[
d(d− 1)2 − 2

]
stu

+(gKd+1
(s, t, u)− g∆d

(s, t, u))

=

[(
d

2

)
− 2

]
(d− 2)s2t+

[(
d

2

)
(d− 2)

]
s2u

+

[(
d

2

)
− (d+ 1)

]
(d− 2)st2 +

[
d(d− 1)2 − 2

]
stu

+(gKd+1
(s, t, u)− g∆d

(s, t, u))
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and

fTd(s, t, u)− f∆d
(s, t, u) = −2(d− 2)s2t+ (d(d− 1)− (d+ 1)(d− 2))st2 − 2stu

+(gTd(s, t, u)− g∆d
(s, t, u))

= (4− 2d)s2t+ 2st2 − 2stu+ (gTd(s, t, u)− g∆d
(s, t, u))

Now, we choose t = ds and u = s. When d = 3, we get

fKd+1
(s, t, u)− f∆d

(s, t, u) = 27s3 + Θ(s4),

and when d > 3 each of the non-zero degree-3 terms of fKd+1
(s, t, u) − f∆d

(s, t, u) has a positive
coefficient, so we get

fKd+1
(s, t, u)− f∆d

(s, t, u) = cds
3 + Θ(s4)

for cd > 0. We also have

fTd(s, t, u)− f∆d
(s, t, u) =

[
4d− 2d2 + 2d2 − 2d

]
s3 + Θ(s4) = 2ds3 + Θ(s4).

It follows that for µ = (s, ds, s, 1− (d+ 2)s) and s sufficiently small, ∆d has a smaller root failure
probability than either of Kd+1 or Td.
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