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Abstract

We consider the problem of learning mixtures of ar-
bitrary symmetric distributions. We formulate sufficient
separation conditions and present a learning algorithm
with provable guarantees for mixtures of distributions
that satisfy these separation conditions. Our bounds are
independent of the variances of the distributions; to the
best of our knowledge, there were no previous algorithms
knownwith provable learning guarantees for distributions
having infinite variance and/or expectation.

For Gaussians and log-concave distributions, our re-
sults match the best known sufficient separation condi-
tions [1, 15]. Our algorithm requires a sample of size
Õ(dk), where d is the number of dimensions and k is the
number of distributions in the mixture.We also show that
for isotropic power-laws, exponential, and Gaussian dis-
tributions, our separation condition is optimal up to a
constant factor.

1. Introduction

Mixture models form one of the most fundamental
classes of generative models for clustered data, and
they are a basic topic of study in statistics and ma-
chine learning. The general problem of analyzing mix-
ture models can be formulated as follows. There is a set
of distributions D1, . . . Dk in d dimensions, with rela-
tive mixing weights w1, . . . wk . We do not see the dis-
tributions, but rather are given a sample S generated
according to the following “mixture” process: to con-
struct each individual sample point s the process ran-
domly selects distribution Di with probability wi, and
then it draws s from Di. The goal, given this sam-
ple, is to classify the points in the mixture, thereby ap-
proximately learning the underlying distributions. In
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this way, mixture models provide a very simple prob-
abilistic framework for the problem of extracting clus-
ters from data.

In the statistics literature, the canonical approach
to analyzing mixture models is through a local search
procedure known as Expectation-Maximization (EM),
which applies iterative improvement to arrive at esti-
mates for the parameters of the distributions in the
mixture [8, 12, 14]. This is an extremely general and
flexible method, but it is known that the local op-
tima found by the EM algorithm can be very far from
the global optimum. In the theoretical computer sci-
ence literature, on the other hand, there has been work
on the learning of mixtures with provable guarantees
[6, 1, 2, 15]. However, this line of work has focused on
(and relied crucially on the properties of) distributions
whose tails decay exponentially or faster, so that out-
liers are extremely rare.

The Present Work: Mixture Models with Arbitrary Dis-
tributions. Here we consider the question of whether
provable guarantees can be obtained for algorithms
that analyze mixture models with more general distri-
butions, including those with heavy tails and with po-
tentially infinite moments (including infinite variances
or even infinite means). Such distributions arise natu-
rally in a wide range of applications [13].

For a mixture of distributions that overlap very
closely, it may be impossible to learn the individual
distributions beyond a certain accuracy threshold. An
important issue, therefore, is to understand the nec-
essary separation conditions on the distributions, re-
lating their overlap to the ability to distinguish be-
tween points from different distributions. Thus, there
are three general open questions here.

• What separation is required to be able to correctly
classify all but ε fraction of points with high prob-
ability?

• Can such learning be done with a sample of poly-
nomial size?

• When can the learning of the mixture be carried
out by a polynomial-time algorithm?



For arbitrary distributions, very little is known for any
of these questions.

We focus here on the first two questions, showing
that for a broad class of distributions, we can learn
mixtures almost as well as if we were given the pre-
cise density functions. Furthermore, the required sam-
ple complexity is almost linear in the dimension and
the number of mixing components. For our most gen-
eral results, we leave open the question of finding a
polynomial-time algorithm.

Our main contribution is to present the first algo-
rithm that provably learns arbitrary symmetric distri-
butions with independent coordinates. The algorithm
has the property that if the centers are sufficiently sep-
arated, then all but an ε fraction of points will be cor-
rectly classified with probability at least (1−δ). Second,
we show that our separation is within a constant fac-
tor of that necessary for a broad class of distributions,
including Gaussians, Laplacian and power-law. The re-
quired sample complexity is polynomial in d (the num-
ber of dimensions), k (the number of distributions),
1/wmin (the smallest mixing weight), and 1/ε. The run-
ning time depends on the separation and in the worst
case is exponential in the number of dimensions.

Notation. We use bold symbols for vectors. For exam-
ple vi is the ith vector and vi is the ith component
of the vector v. This rule applies to distributions as
well, where bold D or Di denotes a distribution in <d,
while D denotes one dimensional distribution. To de-
note a sample point s drawn from distribution D, we
write s ∈ D.

Throughout the paper we consider two types of par-
titions. Specifically, we will consider a partition P =
{P1,P2} of the coordinate set, which will be used for
validation. Secondly, we partition the sample (or a sub-
set) S into k groups, C1, . . .Ck to represent classifica-
tion results. To avoid confusion, we will consistently
refer to the former as a partitioning and to the lat-
ter as a clustering. For a set of samples C, we will write
med C, to denote a point µ, such that µi is a median
point of the ith coordinates of all samples in C.

Given s ∈ <d, and a subset of its coordinates
X = {i1 ≤ i2 ≤ · · · ≤ ir}, we use sX to denote the r-
dimensional vector (si1 , . . . sir ). Also, for an arbitrary
partition P = {P1,P2} of the coordinate set, when it
is clear from context, we will use s′ and s′′ to denote
sP1

and sP2
respectively.

Separation Conditions. In formulating these results, an
important issue is the definition of the separation con-
dition on the distributions. The recent work on mix-
tures of Gaussians has parameterized separation in
terms of σmax, the maximum variance in any coor-
dinate, and d, the number of dimensions. The ini-

tial work of Dasgupta used a random projection to
learn distributions of Gaussians whose centers were
at least Ω(σmax

√
d) apart [6]. Soon thereafter, Das-

gupta and Schulman [7] and Arora and Kannan[2] im-
proved the required separation to Ω(d1/4σmax). The
latter work also included an additional nonpositive
term that allowed even concentric distributions, pro-
vided they have different variances. (This property did
not carry through any of the subsequent results, in-
cluding ours.) The separation condition was further
improved by Vempala and Wang [15], who use spec-
tral techniques [3] to learn mixtures of isotropic dis-
tributions. Their algorithm allowed a separation of
Ω̃(σmax),

1 and they noted that the logarithmic gap
could be removed at the expense of a larger running
time. The result of [15] was generalized to log-concave
and non-isotropic distributions by Kannan et al [11]
and Achlioptas and McSherry [1]. In the latter work,
the class of distributions was further generalized to g-
concentrated and f-converged and allowed limited de-
pendence between coordinates, although these too have
rapidly decaying tails.

When dealing with heavy-tailed distributions, the
higher moments are less useful in defining separation
conditions; indeed, they can be infinite. A useful prin-
ciple in such cases is that medians can be more ro-
bust than means and moments. Motivated by this, we
define the median radius of a one-dimensional distribu-
tion as follows, and subsequently parameterize the nec-
essary separation conditions in these terms.

Definition 1 Let X be a real random variable with cu-
mulative density function F (x). The center of X is the
minimum c such that F (c) = 1/2. The 1

2 -radius, or ra-
dius, of X is theminimumvalueR such that half the prob-
ability mass lies in the interval [c − R, c + R]. A vector
random variable X, is said to have center at c and ra-
dius at most R, if each Xi has center at ci and its median
radius at most R. 2.

We note here that basic tail inequalities imply the
median radius is always at most

√
2 times the maxi-

mal variance. On the other hand, the variance might be
much larger than the median radius; moreover, the me-
dian radius is defined for any distribution, even those
with infinite variance.

To simplify the exposition of our results, we will only
consider distributions that are symmetric around their
centers, and with densities that monotonically decrease
away from the centers. However, our results are easily

1 The Ω̃(.) notation is used to hide polylogarithmic factors.
2 Note that this median radius is computed for a single coordi-

nate, as opposed to the d-dimensional median radius used in

[2], which would be O(
√

d) times larger



generalized to distributions that have these properties
only approximately.

There is a final notion, that we will use: this is
the performance of the Bayes-optimal algorithm that
knows all the parameters of the mixture model. Essen-
tially, the performance of the Bayes-optimal algorithm
is the best one could possibly achieve, and so it rep-
resents a useful baseline for comparison. For a broad
class of distributions, we show that the separation con-
ditions with which we can achieve strong learning re-
sults are necessary even for the Bayes-optimal algo-
rithm to achieve good bounds. We note that approx-
imation bounds with respect to Bayes-optimal date
back to the seminal work of Cover and Hart [5], who
showed that the nearest-neighbor algorithm is within a
factor of two of the error rate of Bayes-optimal. How-
ever, their result required an exponential amount of la-
beled data, whereas our approach — based on a more
complicated algorithm than the nearest-neighbor rule
– does not use labeled data at all.

Overview of Results. Our results are concerned with
two classes of high-dimensional distributions. The first
class is F0(R) consisting of all probability distributions
in <d with independent coordinates, each with 1/2-
radius at most R, and symmetric and monotonically
decreasing tails. The second class is a subset of F0, de-
noted F1(R). Any D ∈ F1(R), centered at µ, satis-
fies the additional condition that for any x ∈ Di, we
have

∀α ≥ 1, Pr [|x − µi| ≥ αR] ≤ 1

2αR

We emphasize that this property is very weak. For ex-
ample, all distributions with finite variance, as well as
Zipf distributions with power coefficient at least one,
satisfy it.

Recall that we assume a number of sample points
that is polynomial in d, k, 1/wmin, and 1/ε. We show
that for a mixture of distributions D1, . . .Dk from F1,
with centers at µ1, . . . µk satisfying the pairwise sepa-
ration condition

||µi − µj ||2 ≥ Ω

(

Rk5/2

ε2

)

there is an algorithm that correctly classifies all but an
ε fraction of points with high probability.

For the more general case of distributions from F0,
we need to impose a second type of condition as well,
motivated by the following considerations. For any
fixed separation it is possible to design two symmet-
ric distributions in one dimension, with median radii
equal to 1, such that any algorithm will misclassify
points with probability at least 1/4. Suppose we now
construct a d-dimensional distribution by using these

one-dimensional distributions in each coordinate, and
choosing centers that only differ in one coordinate.
Then n − 1 coordinates are providing no information,
and in the remaining one coordinate we have a 1/4
probability of misclassification. Thus, to handle arbi-
trary distributions in F0, we need a slope condition that
says, essentially, the centers are not aligned along one
axis (or a small number of axes).

Specifically, we show that for a mixture of distrib-
utions D1, . . .Dk from F0, with centers at µ1, . . . µk

satisfying ||µi − µj ||2 ≥ Ω

(

R
√

k
ε

)

and
||µi−µj ||2
||µi−µj ||∞

≥

Ω

(

√

k
ε

)

there is an algorithm that will correctly clas-

sify all but an ε fraction of points with high probabil-
ity. The second requirement here is the specific form of
the slope condition that we require.

The basic idea behind our approach is as follows.
Suppose we knew the centers of each distribution; how
would we classify them? An obvious answer would be to
assign each point to the closest center. But which dis-
tance function should we use for defining “closeness”?
We use the L1 norm, and show a sense in which it is bet-
ter for this purpose than L2 norm. Again, this can be
viewed as an application of a general robustness prin-
ciple from statistics, that L1 can be more robust than
L2 [13, 4, 10, 9]. However, we are not aware of previ-
ous applications of this principle to provide provable
guarantees for mixture models of the type we obtain
here.

If we are not given the centers, then the next idea
is to find a reasonable estimate for them. We do this
by exhaustive clustering of a subset S0 of size Ω̃(dk).
To discriminate between correct and incorrect assign-
ments, we develop a validation test that fails with a
probability that is much smaller than k−|S0|, and thus
one could apply union bound. The idea behind the vali-
dation test is simply to partition the set of coordinates
into two parts, and cluster on each subset indepen-
dently. The validation fails if the two clusterings differ
significantly. Finally we show that at the moment we
consider the correct clustering, our estimate of the cen-
ters will be good enough that assigning points to the
closest center works well.

2. Classification with known centers

Here we show that the algorithm that assigns each
point to the closest center (with respect to L1) works
for arbitrary distributions. This results follows from the
lemma below, which states that a sample drawn from
symmetric distribution is much more likely to be closer
to the center of the distribution, than to a fixed point



µ, given that µ is sufficiently separated from center.
Where separation includes both distance and slope con-
ditions. We then eliminate the slope condition at the
expense of narrowing the class of allowed distributions
to F1.

3

Lemma 2.1 Let ε and C be constants and let D be a dis-
tribution centered at the origin with radius R. Let µ be a
point such that ||µ||2 ≥ 4R(C + 1√

ε
), and having a slope

ratio ||µ||2
||µ||∞ at least 4(C + 1√

ε
). A point x sampled from

D will satisfy

||x − µ||1 − ||x||1 ≥ C||µ||2 ≥ C2R (1)

with probability at least 1 − ε.

Proof. We need to show that Q = ||x − µ||1 − ||x||1 >
C||µ||2 with probability at least (1− ε). We write Q in
the coordinate form

Q =

d
∑

i=1

|xi − µi| − |xi| =

d
∑

i=1

qi (2)

where qi = |xi − µi| − |xi|. Recall that by Chebyshev’s
inequality, Pr [Q ≤ E [Q] − tσ (Q)] < 1

t2 . Since the ab-
solute value of qi is at most µi and since all qi are in-
dependent, σ (Q) ≤ ||µ||2. It is sufficient then to prop-
erly estimate E [Q]. Without loss of generality, assume
that µi ≥ 0 for all i. Then

qi =







µi xi < 0
µi − 2xi 0 ≤ x ≤ µi

−µi xi ≥ µi

. (3)

Thus

E [qi] = µi(Pr [xi ≤ 0]−Pr [xi ≥ µi])+

µi
∫

0

(µi−2x)Di(x)dx

where Di(x) is the density function of xi. Using the
fact that Di is symmetric around 0 and non-increasing
on x ≥ 0 we obtain:

E [qi] ≥ µiPr [0 ≤ xi ≤ µi] .

To estimate Pr [0 ≤ xi ≤ µi] we recall that
R ≤ ||µ||2/(4(C + 1√

ε
)), and so at least half of the

weight is concentrated in [− ||µ||2
4(C+ 1√

ε
)
, ||µ||2

4(C+ 1√
ε
)
]. Tak-

ing into account that µi ≤ ||µ||∞ ≤ ||µ||2
4(C+ 1√

ε
)

and that

xi is symmetric with decreasing density, we immedi-
ately have:

Pr [0 ≤ xi ≤ µi] ≥
µi

4

4(C + 1√
ε
)

||µ||2
=

µi

||µ||2
(C +

1√
ε
)

3 We remind the reader that F1 still includes most if not all of
the standard distributions used for data analysis.

and so

E

[

∑

i

qi

]

≥
∑

i

µ2
i

||µ||2
(C +

1√
ε
) ≥ ||µ||2(C +

1√
ε
),

Thus, from Chebyshev’s inequality we get

Pr

[

Q ≤ ||µ||2((C +
1√
ε
)) − t||µ||2

]

≤ 1/t2.

Substituting t = 1√
ε
, we get Pr [Q < C||µ||2] ≤ ε. The

final step that C||µ||2 ≥ C2R follows from the condi-
tion ||µ||2 ≥ 4R(C + 1√

ε
).

The slope condition in this lemma is a property
of the L1 norm, rather than the analysis. Consider
the following example with two distributions: one is
centered at the origin and the other is centered at
µ = (1000, 1, . . . , 1). The coordinate density function of
the first distribution has half of its mass uniformly dis-
tributed in the interval [−0.01, 0.01] and the other half
uniformly distributed over the remainder of the inter-
val [−10100, 10100]. The second distribution is obtained
from the first by translation by vector µ. Thus for any
point, roughly half the coordinates will be very close to
the center, but the other half will be almost uniformly
distributed over a interval of size 2× 10100. Given this
fact, the distributions are easy to distinguish. But our
L1 algorithm will fail to distinguish between the distri-
butions with probability at least 1/5. This is because,
in the computation of L1 distance, the contribution
of each coordinate is proportional to the distance be-
tween the centers on that coordinate, in this case to µi.
Since the first coordinate is 1000 times any other co-
ordinate, if the dimension d < 1000, then the correct-
ness of the algorithm depends entirely on the contribu-
tion of the first coordinate. Since the first coordinate
will wrong about one quarter of the time, the L1 algo-
rithm will be wrong with probability at least 1/5. This
implies that our algorithm has a seemingly counter-
intuitive property: For some instances of the problem,
it is possible to move centers so that each coordinate
difference increases, yet, as the slope ratio decreases,
the probability of a wrong assignment increases. Ob-
serve that if µ = (1, 1, . . . 1) the L1 algorithm would
have worked correctly.

However, if we limit ourselves to the class F1 of dis-
tributions, then a slightly increased separation condi-
tion precludes this problem. Recall that D belongs to
F1(µ, R), if each Di is symmetric around µi and for
xi ∈ Di we have

Pr [|xi − µi| ≥ αR] ≤ 1

2α
, ∀α ≥ 1. (4)

The following lemma analyzes the classification rule for
this class of distributions.



Lemma 2.2 Fix ε ≤ 1
10 . Suppose D1 ∈ F1(R) and µ ∈

<d satisfies ||µ||2 ≥ 6000R
ε2 . Then x sampled from D1 will

satisfy

∆ = ||x − µ||1 − ||x||1 ≥ ||µ||2
15

with probability at least 1 − ε.

Proof Sketch. To prove this lemma we split the set of co-
ordinates into ‘large’ and ‘small’ coordinates according
to the absolute values of µi, with threshold at O(R

ε ).
For the former set we use our tail condition (4) and for
the latter set we use the technique from lemma 2.1. Fur-
ther details are provided in the full version of the pa-
per.

Lemmas 2.1 and 2.2, together with the union bound,
make the following theorem immediate:

Theorem 2.3 Consider a mixture of k distributions
D1, . . . Dk, with known centers µ1, . . . µk. If either of
the following conditions is satisfied, then classification
according to the nearest center in the L1 norm fails with
probability at most ε.

• For every i and j, ||µi − µj ||2 ≥ Ω(R
√

k
ε ) and

||µi−µj ||2
||µi−µj ||∞

≥ Ω(
√

k
ε ) or

• Each distribution belongs to class F1 and for every

i and j, we have ||µi − µj ||2 ≥ Ω(R k2

ε2 )

L2 vs. L1: an example. One might wonder why not to
use L2 norm to define closeness. Here we construct an
example of a mixture of distributions which is separa-
ble by our L1 algorithm but not using the L2 norm.
The data consists of two mixtures of Cauchy distribu-
tions: D0, centered at 0, and D1, centered at µ. The
coordinate density functions of the one-dimensional

Cauchy distributions has the form D0i(x) = 2/π
x2+1 and

D1i(x) = 2/π
(µi−x)2+1 We will show that with R/δ separa-

tion between the centers, any similar algorithm based
on L2 norm must make an error on a Theta(1) frac-
tion of the points, where the constant is independent
of δ.

Note that the 1/2 radius of the coordinate distribu-
tions is 1, thus L1 by the theorem 2.3 L1 norm classi-
fication works. For L2 norm we prove the following:

Lemma 2.4 Suppose µ =
(

1√
δd

. . . , 1√
δd

)

.. For any

constant δ, and for d sufficiently large, the algorithm
which assigns sample x to C̃0 if ||x||2 ≤ ||x − µ||2, and
to C̃1 otherwise misclassifies at least 1/4 fraction of the
points with high probability.

The details of the proof are in the full version. The
basic intuition can be gotten by looking at the random
variable Z = ‖x−µ‖2

2−‖x‖2
2 = µtµ−2xtµ. Note that

Z follows a Cauchy distribution with scale parameter
2||µ||1, and center either at ||µ||22 or −||µ||22. It easily
follows that the probability of misclassification, which
is the probability that Z is greater than (or less than)
0, is very close to 1/2.

3. Algorithm for learning mixtures

In this section we present our main algorithm. In
order to build some intuition, suppose again that we
knew the centers. Theorem 2.3 from the previous sec-
tion then tells us that assigning each point to the near-
est center in the L1 sense produces the correct cluster-
ing. Now, unless centers are aligned along one (or just
a few) coordinate axes, if we partition the set of co-
ordinates in half and cluster the points independently
using each half of the coordinates, we should get ap-
proximately the same clusterings. This suggests select-
ing a sample S0 of the points, and keeping a test set S1

for cross-validation. We then exhaustively test all pos-
sible clusterings of S0. Let C̃1, . . . , C̃k be one such pos-
sible clustering of S0. For each of the clusters C̃i, the
center µ̃i = med(C̃i) is computed. In order to do cross-
validation, we first do a random partitioning of the co-
ordinates into two sets (P1,P2). The projection of the
computed centers µ̃i onto P1 and P2 induce two clus-
terings C̃′ and C̃′′ of the test set S1. These two cluster-
ings can then be tested against one another to see if
they match. For any sample x, the probability of as-
signing x ∈ Di to a cluster in C̃′

j or C̃′′
j depends only on

the distribution that it has come from, and the two de-
cisions are independent. Thus two clusterings C̃′ and
C̃′′ will be close to each other if and only if these prob-
abilities are close to each other and all the probabili-
ties are close to either 0 or 1. But then both C̃′ and C̃′′

are close to the true clustering and thus the loop will
only be broken when both clusterings are correct.

In order for the cross-validation phase to work, we
need that the centers are not aligned along only a few
axes. To simplify our presentation, we start with an al-
gorithm that assumes this condition holds. After that,
we show that if all mixture components belong to F1,
then the data can be split into “superclusters” each
containing one or more distributions, so that within
each “supercluster” this assumption is satisfied.

The algorithm without preprocessing is robust in the
following sense: independently of the center location, if
a certain clustering is accepted, then it is very close
to the original one with high probability. If the cen-
ters are aligned, however, the algorithm might not find
any clustering to be acceptable.

One further construction needs comment here. In-
stead of dividing S0 into k clusters, the algorithm ac-



tually divides it into k + 1 clusters, making sure that
the k + 1st cluster C̃k+1 is small, and is then removed
from the data set. We will see that this is done to han-
dle errors introduced by the preprocessing phase. The
intuition is that C̃k+1 will capture samples that are in-
troduced in error by the preprocessing phase.

Following the algorithm, the analysis consists of
three parts. First we show that partitioning the coordi-
nates will change distances by at most a factor of 2 with
probability at least 1− 1

k2 . Second, we show that if par-
titioning doesn’t change the distances much, then when
the algorithm considers the clustering C̃i = S0 ∩ Ci,
with high probability it will terminate with an approx-
imately correct classification. Finally we show that un-
less clusterings C̃′ and C̃′′ are approximately correct
the algorithm will never declare success for any parti-
tion of the coordinates.

Algorithm 1

Input: Sample S
Output: Clustering (C̃1, . . . , C̃k).

Description:

1. Pick a random partition P = {P1,P2} of the coor-
dinate set. For any vector v, we will use v′ and v′′ to
denote the projection to P1 and P2 respectively.

2. Pick a random subset S0 ⊂ S of size
96dk log dk

8δ

wmin
, and

let S1 = S − S0

3. For all possible clusterings of S0 into k + 1 groups
{C̃1, . . . C̃k, C̃k+1}, do the following:

3a. Check that group C̃k+1 contains less than ε|S0|
2

points, and ignore C̃k+1 in steps 3b - 3e

3b. For each group C̃i, compute µ̃i = med C̃i. Let
µ̃′

i and µ̃′′
i denote the projection of µ̃i into P1

and P2 respectively.

3c. Cluster points from S1 with respect to
µ̃′ and µ̃′′. E.g: C̃′

i = {s ∈ S1

∣

∣∀j ∈
[1 . . . k], ||s′ − µ̃′

i||1 ≤ ||s′ − µ̃′
j ||1} and

C̃′′
i = {s ∈ S1

∣

∣∀j ∈ [1 . . . k], ||s′′ − µ̃′′
i ||1 ≤

||s′′ − µ̃′′
j ||1}.

3d. If
∑

i C̃′
i 4 C̃′′

i > 10εm or any of the clusters C̃′
i

has size less than ε|S1|
2 , go to the next iteration.

3e. Else, the C̃′
i that has been found corresponds to

an approximately correct clustering. Set µ̃i =
med C̃′

i, and reassign all points from S to the
closest µ̃i. Stop the algorithm.

4. If this point is reached, repeat steps 1− 3 (up to a
maximum of log 1

δ repetitions).

3.1. Algorithm analysis

In all following results, we will be implicitly assum-
ing that our centers satisfy one of the two following
separation conditions:

• For every i and j, ||µi − µj ||2 ≥ 10R
√

k
ε and

||µi−µj ||2
||µi−µj ||∞

≥ 10
√

k
ε or

• Each distribution belongs to class F1 and for every

i and j, ||µi − µj ||2 ≥ 15000R k2

ε2

Coordinate partitioning. We start with the definition
of a “good partition.”

Definition 2 A partition P = (P1,P2) is called a
good partition if, for all i and j, projection onto P1 and
P2 decreases distances by at most factor of 2, that is,

||µ′
i − µ′

j ||2 ≥ ||µi−µj ||2
2 , and ||µ′′

i − µ′′
j ||2 ≥ ||µi−µj ||2

2 .

Now we show that if the slope ratio is at least
10

√
log k then the partition where each coordinate is

picked with probability 1/2 is good with probabil-
ity at least 1 − 1

k2 .

Lemma 3.1 Let hmin = mini,j
||µi−µj ||2
||µi−µj ||∞

. If hmin ≥
10

√
log k then with probability at least 1 − 1

k2 , a random
partition (P1,P2) is a good partition.

The proof is a simple consequence of Chernoff bounds.

Analysis: Correct clustering of S0. Suppose the algo-
rithm is at the step where C̃i = S0 ∩Ci; we show that if
the coordinate partition is good, then with high prob-
ability the algorithm will terminate at this point.

In what follows, to avoid confusing notation, we will
assume that all the data is already projected down to
either P1 or P2, and the goal is to show that if the sep-
aration of the centers (in the projected space) exceeds
the minimum threshold, then the probability of error
is at most δ.

We begin with a simple lemma stating that median
points of C̃i will be close to actual distribution centers
with high probability.

Lemma 3.2 If sample S0 has size at least
96dk log dk

8δ

wmin
,

then with probability at least 1− δ/2, the following holds:

||µ̃i − µi||∞ ≤ R√
dk

(5)

Moreover, for s ∈ Di, and each coordinate j,

Pr [sj ∈ [µij , µ̃ij ]] ≤
1

4
√

dk
, (6)

where µ̃i = med(S0 ∩ Ci), and R is the 1
2 -radius of the

underlying distribution on each coordinate.



Now we are ready to state the main technical lemma
of this part, which asserts that given slightly perturbed
centers, all but a small fraction of points will be clas-
sified correctly.

Lemma 3.3 Suppose the distribution centers satisfy the
separation condition, and a set of points {µ̃1, µ̃2, . . . µ̃k}
satisfies (5) and (6) for all i. Then for any s drawn from
Di, with probability at least 1 − ε, we have ||s − µ̃i||1 ≤
||s − µ̃j ||1.

We summarize the results of this part in the follow-
ing theorem.

Theorem 3.4 Suppose P = (P1,P2) is a good parti-

tion, suppose sample S0 has size at least Θ(
d log dk

8δ

wmin

), and
let µ̃i = medS0∩Ci. Then with probability at least (1−δ)
the following holds. For any sample x drawn from any of
the Di, the probability of x being misclassified is at most
ε.

Proof. From lemma 3.2, it follows that the conditions
of lemma 3.3 are satisfied with probability at least (1−
δ), and the result follows.

Analysis: Stopping condition. We show that the algo-
rithm stops when both C̃′ and C̃′′ are very close to
the true clustering. The proof is based on the follow-
ing idea. For random x ∈ Di, the assignments in C̃′

and C̃′′ are fully independent from each other. Let p′ij
and p′′ij denote the probabilities that a random sample

from Di will be assigned to C̃′
j and C̃′′

j respectively. Re-

call that the algorithm stops only if Y =
∑

i C̃′
i 4C̃′′

i , is
small. We prove correctness of the algorithm by show-
ing that (i) Y is tightly concentrated around its expec-
tation and (ii) the expectation is small only if cluster-
ings C̃′ and C̃′′ are approximately correct.

We start with the expectation of Y . Obviously the
expected contribution of x ∈ Di to C̃′

j 4 C̃′′
j is p′ij(1 −

p′′ij) + p′′ij(1 − p′ij), and thus

E [Y ] =
∑

i |Ci|
∑

j(p
′
ij(1 − p′′ij) + p′′ij(1 − p′ij)) ≥

≥ mwmin

∑

i

∑

j(p
′
ij(1 − p′′ij) + p′′ij(1 − p′ij)).

Therefore E [Y ] is only small when for i and j p′ij and
p′′ij are close to each other, and furthermore each is close
to 0 or 1. To show that Y is concentrated around its ex-
pectation, we prove the following lemma.

Lemma 3.5 For any set of probabilities {p′
ij} and

{p′′ij}, we have Pr [|Y −E [Y ] | > max(E [Y ] /2, εm)] <
exp(−εm/12).

Proof. Each sample x ∈ Di is independent and
contributes 1 to Y with fixed probability. Thus we
can use Chernoff bounds to show that Y is concen-
trated. We use the following version of the bound:4

Pr[|Y − E [Y ] | > t|] < exp
(

−t2

4(t+E[Y ])

)

. Choosing

t = max(E [Y ] /2, εm), we have the required proba-
bility.

Now we prove the main lemma of this section, which
says that with probability 1− exp[− εm

20 ] the algorithm
stops only after encountering an approximately correct
clustering.

Lemma 3.6 With probability 1 − exp[− εm
20 ], the stop-

ping criteria accepts a pair of clusterings C̃′ and C̃′′ only
if there exists a matching π such that

∑

C̃′
i 4 Cπi ≤ εm.

Proof. Note that there are fewer than (k + 1)|S0|

possible clusterings of the training sample, and
each gives rise to possibly different sets of assign-
ment probabilities p′ and p′′. By lemma 3.5 and
the union bound, the probability that for all par-
titions, Y is below max(2E [Y ] , εm) is bounded by
1−(k+1)|S0| exp(−εm/10) ≤ 1−exp(−εm/20), where

we have used that m ≥ 20|S0| log k
ε . In other words

with high probability, for each clustering of S0, the ex-
pected value of the symmetric difference on S1 is not
too far from the actual value.

Now consider the point where the algorithm stops;
the two clusterings C̃′ and C̃′′ are such that Y ≤ εm
and thus E [Y ] ≤ Y + εm ≤ 2εm. But

E [Y ] ≥ wminm
∑

i

∑

j

(p′ij(1 − p′′ij) + p′′ij(1 − p′ij)),

and since all terms are non-negative for any i and
j we have p′ij(1 − p′′ij) + p′′ij(1 − p′ij) ≤ 2ε

wmin

. Obvi-

ously this holds only if p′′ij , p
′
ij 6∈ [ 4ε

wmin
, 1 − 4ε

wmin
] and

|p′ij −p′′ij | < 0.5. Finally, recall that the stopping condi-

tion ensures that each cluster in C̃′ is large, and hence
the matrix {p′ij} is indeed close to a permutation ma-
trix. Thus there is a permutation π such that for any
point x ∈ Di, the probability of misclassification is at
most 4ε

wmin

; applying standard tail inequalities we im-
mediately have the desired result.

Finally, by unifying the results of the previous sec-
tions, we can formulate the proof of the main theorem.

Theorem 3.7 Suppose a mixture of k distributions
D1, . . . , Dk, in <d, is such that either one of the follow-
ing conditions is satisfied:

• For every i and j, ||µi − µj ||2 ≥ Ω

(

R
√

k
ε

)

and

||µi−µj ||2
||µi−µj ||∞

≥ Ω

(

√

k
ε

)

or

4 One can verify it by replacing the denominator with
max(t,E [Y ]).



• Each distribution belongs to class F1 and for every i

and j, ||µi − µj ||2 ≥ Ω
(

Rk5/2
√

log k
ε2

)

.

Then, given a sampleS of size at least Ω̃( dk
wmin

), with prob-
ability at least 1 − δ the algorithm classifies all the sam-
ples correctly, except for at most an ε/wmin fraction of
them. The time taken is due to the exhaustive cluster-
ing of S0 and hence is exponential in both d and k.

Proof. We present the proof of the algorithm when the
condition hmin > 10

√
log k is satisfied i.e. the centers

are not aligned along a few axes. In particular, this in-
cludes the case when all pairs of distributions satisfy
the first bulleted condition above. The general case fol-
lows immediately from the preprocessing step, which
is detailed in the appendix. The algorithm proceeds by
first choosing the set S0 and then partitioning the coor-
dinate set into (P1,P2). Hence, putting together the re-
sult from Theorem 3.4 and Lemma 3.6, it follows that,
in one iteration of steps 3a − 3e:

1. Partition (P1,P2) is balanced with probability at
least 1 − 1

k2 .

2. If the clustering {C̃1, . . . , C̃k} of S0 matches the ac-
tual clustering {C1, . . . , Ck} then the centers {µ̃i}
induce an ε-error clustering with probability at
least 1 − δ.

3. The stopping criterion accepts only an ε/wmin-
error clustering with probability 1 − exp[− εm

20 ].

Then, conditioned on the fact that hmin > 10
√

log k,
the union bound on the above error probabilities im-
plies that the total probability of getting an ε/wmin-
error clustering in log

(

1
δ

)

iterations is at least 1 −
(

1 − 1
k2 − δ

)log( 1

δ ) − log
(

1
δ

)

exp[− εm
20 ] ≥ 1 − 2δ.

3.2. Large separation between centers

In this part we show that if the distances between
centers is at least at least Ω(R

√
d), then performing ex-

haustive search on a set S0 of size only Θ( log dk
wmin

) would
suffice. This immediately results in an algorithm that
is polynomial in the number of dimensions. Note that
this result is similar in strength to Dasgupta’s origi-
nal algorithm [6], yet allowing a much wider class of
distributions.

Theorem 3.8 Suppose a mixture of k distribu-
tions D1, . . . , Dk, in <d, satisfy condition of Theo-
rem 3.7, and in addition the distance between centers
is at least R

√
d. Then, given a sufficiently large sam-

ple, we can provide the same guarantees as in Theorem
3.7.

We again omit the proof of this theorem, as it is al-
most same as that of Theorem 3.7. The only difference
a is that given separation Ω(R

√
d), we can allow the

approximated center to be within Θ(R
√

d), of the true
center. The polynomial time bound follows as the num-
ber of clusterings that are computed from the test set
S0 is (k + 1)|S0| and hence is polynomial in d.

Note that because of the stopping condition, our al-
gorithm will never produce an invalid clustering. Thus
one can make the algorithm run in close to the mini-
mum possible time, by simply starting with just k sam-
ples and doubling it every time the algorithm finds no
suitable clustering.

4. Minimal separation results

In order to obtain a lower bound showing that a cer-
tain separation between centers is in fact necessary to
learn mixtures, we consider the Bayes-optimal method
for classification: given exact knowledge of two density
functions ρ1 and ρ2, with equal mixing weights, one
should classify a point x as coming from the first dis-
tribution if ρ1(x) > ρ2(x). This classification is incor-
rect with probability ρ2(x)/(ρ1(x)+ρ2(x)). No method
can achieve a misclassification probability better than
this. Note that since the Bayes-optimal algorithm has
no notion of scale, it suffices to consider R = 1.

In this section we show that for a fixed number of
components k, and a fixed accuracy, a separation of at
least Ω(R) is necessary, even for the Bayes-optimal al-
gorithm. It is enough to assume k = 2 and equal mix-
ing weights. We start with the following simple observa-
tion: if the Bayes-optimal algorithm encounters points
on which it is not confident (i.e. the ratio of probabil-
ity densities is close to 1) with constant probability,
then it classifies points incorrectly with constant prob-
ability.

Lemma 4.1 Suppose c > 0, and we have a mixture of
distributionsD1 andD2 with density functions ρ1(x) and
ρ2(x). If for x ∈ D1, the ratio of densities ρ1(x)/ρ2(x) ≤
c with probability at least t. then in the case of equal mix-
ing weights, the Bayes-optimal algorithm will make an
error with probability at least t

2(c+1) .

Proof. Indeed, consider the set M = {x ∈
<d|ρ1(x)/ρ2(x) ≤ c}. Let ρ1(M) and ρ2(M) be prob-
ability densities concentrated in M , according to D1

and D2. Obviously ρ2(S) ≥ ρ1(M)
c ≥ t. Now con-

sider the set M1 = {x ∈ M |ρ1(x) ≥ ρ2(x)}. The
Bayes-optimal algorithm will assign a point in M1 to
the first distribution, and a point in M2 = M − M1 to
the second.



Obviously, if ρ1(M2) ≥ t
c+1 , then the optimal al-

gorithm would make a mistake with probability at
least t

c+1 . Otherwise, if ρ1(S2) ≤ t
c+1 , then ρ1(M1) ≥

t − ρ1(M2) ≥ ct
(c+1) , and thus ρ2(M1) ≥ t

c+1 , since

M1 ⊆ M . Since the distributions have equal weight,
the lemma follows immediately.

We now show that, for certain classes of distributions,
if the minimum separation is less than an absolute con-
stant c1, then the misclassification error is at least an
absolute constant c2. This establishes a sense in which
a constant separation on centers is asymptotically nec-
essary in at least some cases.

Lemma 4.2 There exist constants c1 and c2, indepen-
dent of n, so that the following holds. For a mixture of two
Cauchy distributions D1(0, 1) and D2(µ, 1), with equal
mixing weights, if ||µ||2 < c1, then the Bayes-optimal al-
gorithm will misclassify a random sample from D1 with
probability at least c2.

Proof. We take c1 = 1/2. It is enough to show that
for a random point drawn from D1, the following holds

with probability at least 2/3: t(x) = ρ1(x)
ρ2(x) ≤ 8 where

ρ1(x) =
∏ π/2

x2

i +1
and ρ2(x) =

∏ π/2
(xi−µi)2+1 are the

probability densities of D1 and D2, respectively.
We show this by estimating ln t(x). We have

ln t(x) = ln ρ1(x)
ρ2(x) =

∑

ln
(

1 +
−2µixi+µ2

i

x2

i +1

)

, and us-

ing ln(1 + x) ≤ x, we have

ln t(x) ≤
∑ −2µixi + µ2

i

x2
i + 1

≤
∣

∣

∣

∣

∑ −2µixi

x2
i + 1

∣

∣

∣

∣

+ ||µ||22.

(7)

The second term is at most c2
1 = 1

4 , so we just need
to upper-bound the first sum. Recall that x is drawn

from D1(0, 1), and so for any i, we have E
[

µixi

x2

i +1

]

= 0,

and σ2
(

2µixi

x2

i +1

)

≤ 4µ2
i , where the former follows from

the symmetry of xi around 0, and the latter from
the fact that xi

x2

i +1
< 1. Thus for x drawn from D1,

we have Pr
[∣

∣

∣

∑ −2µixi

x2

i +1

∣

∣

∣
≥ 3.5||µ||2

]

≤ 1/3. Combining

this with (7) we have Pr
[

ln t(x) ≤ 7
4 + 1

4 ≤ 2
]

> 2/3,
and hence t(x) ≤ 8 with probability at least 2/3.

Note, that exactly the same proof generalizes to arbi-
trary power laws. For fixed power coefficient the ratio
between necessary and sufficient conditions will be a
constant. For exponential distributions, it is easy to
see that our algorithm from Section 2, with known
centers, is Bayes-optimal.5 By rewording the proof of

5 This can be seen by taking logarithms of density functions, and
noting that ln is monotonic

the lemma 2.1, we can obtain necessary condition as
well. Finally, for Gaussian distributions, the result fol-
lows from the fact that choosing the L2 closest center
is Bayes-optimal, and thus the separation of at least
Ω(σ) = Ω(R) is necessary.

5. Conclusions and Open Problems

We have presented a new technique for learning ar-
bitrary mixtures of distributions using the L1 norm.
Through probabilistic analysis, we were able to show
that a very simple algorithm can correctly learn almost
arbitrary distributions.

Now we outline open problems with respect to learn-
ing mixture models. Perhaps the most intriguing ques-
tion is existence of a polynomial time algorithm. One
potential way to try achieving this goal is to replace ex-
haustive search step by some variation of the k-median
problem defined on the set S0. Although the general k-
median problem is NP-hard, it is plausible that in the
special case where the input comes from a mixture of
distributions, there might exist a polynomial-time al-
gorithm that provides strong enough guarantees for our
purposes, with high probability.

Another approach would be the projection of the
sample to a lower-dimensional subspaces while preserv-
ing the cluster structure[15, 6, 1]. However, it can be
shown that orthogonal projections are not very use-
ful with infinite variances, leaving open the question of
finding an appropriate projection.

We have shown that separation Θ(R) is needed to
learn mixtures of power-law distributions and Gaussian
distributions; however the constant changes for differ-
ent distributions. Can this proof be generalized to have
a single constant for all distributions? A final issue is
to produce logarithmic dependence on the error-rate;
this would be a very interesting extension of our work,
as it would show that even a slight increase in separa-
tion will increase the learning rate dramatically. As a
first preliminary result in this direction, we can show
that such bounds are indeed possible at the expense of
an additional constraint on the slope.
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A. Aligned Centers: Preprocessing Step

Recall that Algorithm 1 works if in addition to the
separation condition, the slope for each pair is at least
Ω(

√
log k). Therefore if the algorithm fails, there will

be pairs of centers i and j, such that ||µi − µj ||∞ ≥
||µi−µj ||2√

log k
. The preprocessing step will pre-cluster the

data in such a way that each part will now only con-
tain distributions that satisfy slope condition. The al-
gorithm works as follows. We look for a coordinate i
for which there is at least a pair of centers, µ1 and
µ2 say, such that the distance between µ1i and µ2i is
large. This means that the projections of all the sam-
ple data on this coordinate will form at least two inter-
vals which are separated by a sparse interval having at
most an ε

k fraction of the points. We will split the sam-
ple into superclusters that are defined by these inter-
vals on the ith coordinate.

Without loss of generality we assume that wmin ≥ ε.

Algorithm 2

Input: Sample S, and coordinate i,

Output: A collection of k′ superclusters,

Description:

1. Check that S has at least wminm/2 samples; else re-
turn S as a supercluster.

2. Look at the ith coordinates of all the sample points.
Find the lower and upper limits Bl and Br such that
the interval [Bl, Br] has the middle 1 − ε

2k fraction
of the points. Delete all samples whose coordinates
fall outside this range.

3. Partition [Bl, Br] into intervals of size

s = max
(

Br−Bl

10k , 10Rk
wminε

)

, with the hth inter-

val being Ih = [Bl + (h − 1)s, Bl + hs].

4. From the list {Ih}, find an interval I = [Il, Ir] such
that I has at most εm

k samples, and there are at least
wminm/2 samples on each side of I. If no such in-
terval can be found then return S as a single super-
cluster.

5. Partition the sample set as S1 = {s ∈ S|si < Il}
and S2 = {s ∈ S|si > Ir}. Delete all the samples
whose ith coordinate falls in I.

6. If the value of s was chosen to be 10Rk
wminε , then return

the parts S1 and S2. Else call the algorithm recur-
sively with (S1, {i}) and (S2, {i}).

Once we cluster our data, we essentially run the orig-
inal algorithm on each supercluster, while guessing the
number of centers that lie in this supercluster. After we
have computed the k possible centers, they are again
tested out in the cross-validation phase as before. The
following lemma summarizes the effects of running the
preprocessing algorithm on the data; the proof is given
in the full version of the paper.

Lemma A.1 Given m >
10k log( d

δ )

εwmin
samples, the pre-

processing satisfies the following condition with probabil-
ity at least 1 − δ.

1. If µi and µj are such that ||µi − µj ||∞ > 300Rk2

ε2 ,
then samples from Di and Dj will be in separate
superclusters, except for at most an ε-fraction of
points.

2. If centers µi and µi′ are in the same supercluster,
then after deleting the preprocessed coordinates, the
distance ||µi − µi′ ||2 does not decrease by more than
100k5/2R

ε2 additively.

3. For each sample x drawn from the ith distribution
Di, with probability 1 − ε, x will ultimately be clas-
sified in the same supercluster as µi.


