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In light of increasing recent attention to political polarization, understanding how polarization can arise poses

an important theoretical question. While more classical models of opinion dynamics seem poorly equipped to

study this phenomenon, a recent novel approach by Hązła, Jin, Mossel, and Ramnarayan (HJMR) [19] proposes

a simple geometric model of opinion evolution that provably exhibits strong polarization in specialized cases.

Moreover, polarization arises quite organically in their model: in each time step, each agent updates opinions

according to their correlation/response with an issue drawn at random. However, their techniques do not seem

to extend beyond a set of special cases they identify, which benefit from fragile symmetry or contractiveness

assumptions, leaving open how general this phenomenon really is.

In this paper, we further the study of polarization in related geometric models. We show that the exact

form of polarization in such models is quite nuanced: even when strong polarization does not hold, it is

possible for weaker notions of polarization to nonetheless attain. We provide a concrete example where weak

polarization holds, but strong polarization provably fails. However, we show that strong polarization provably

holds in many variants of the HJMR model, which are also robust to a wider array of distributions of random

issues—this suggests that the form of polarization introduced by HJMR is more universal than suggested by

their special cases. We also show that the weaker notions connect more readily to the theory of Markov chains

on general state spaces.
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1 INTRODUCTION
People’s opinions naturally evolve in response to a variety of external factors, like interactions

with other individuals, campaign messaging, media reports, political identities, and random events.

Understanding how opinions evolve and the emergent qualitative features of these dynamics

remains a subject of immense interest in the computer science, economics, and social science

communities.

∗
Supported by NSF grant CCF-1408673 and AFOSR grant FA9550-19-1-0183. Email: jsg355@cornell.edu.
†
Supported in part by a Simons Investigator Award, a Vannevar Bush Faculty Fellowship, a MURI grant, a MacArthur

Foundation grant, and AFOSR grant FA9550-19-1-0183. Email: kleinberg@cornell.edu.
‡
Supported in part by NSF grants CCF-1408673, CCF-1563714 and AFOSR grant FA9550-19-1-0183. Email:

eva.tardos@cornell.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EC ’21, July 18–23, 2021, Budapest, Hungary
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8554-1/21/07. . . $15.00

https://doi.org/10.1145/3465456.3467633

https://doi.org/10.1145/3465456.3467633
https://doi.org/10.1145/3465456.3467633


In recent years, a crucial phenomenon of interest is that of polarization, where agents roughly
partition into groups holding diametric views. That is, rather than agents holding a rich spectrum

of beliefs, individuals instead typically belong to opposite clusters even in cases where beliefs on

separate topics ostensibly ought not be correlated. This phenomenon is somewhat widely observed

to have accelerated in the last couple of decades; for instance, Gentzkow, Shapiro, and Taddy show

that political partisanship is more easily inferrable in recent years than previously from textual

analysis using machine learning methods [13]. While polarization and issue realignment is perhaps

most familiarly observed along political dimensions (for instance, the correlation between beliefs

on climate change and gun rights), these effects are not limited to just these facets [8].

A prototypical way tomodel the evolution of the beliefs of agents, and thereby address phenomena

like polarization, is to assume that the opinion of each agent is scalar- or vector-valued and evolves

according to some prescribed update rule. Many classical models, like the DeGroot and Friedkin-

Johnsen models [7, 11], study opinion evolution as a form of social learning where agents update

beliefs based on the graph-weighted opinions of their neighbors within an ambient network.

However, the original forms of these models do not appear to provide a satisfactory mechanism

to explain polarization, as the dynamics provably lead to less polarization than in the initial

configuration (see Section 1.2 for a larger discussion).

To understand how polarization can arise in a more intrinsic way, Hązła, Jin, Mossel, and Ram-

narayan (HJMR) recently introduced a novel and simple geometric model of opinion dynamics

[19]. In their model, each agent’s opinion is a unit length vector where each dimension represents

a particular relevant political axis. Their dynamics work as follows: at each time, a new random

direction representing a new issue, political figure, or influencer is drawn from some fixed distri-

bution. In response, each agent evaluates the correlation between their current opinions and this

new issue and moves either toward or away from this new direction depending on the strength

and sign of this correlation. The resulting vector is then renormalized to unit length (see Section 2

for the exact model). These random directions model the natural intuition that opinion evolution

is often driven by concrete, possibly random events. For instance, opinions potentially change

dramatically in response to campaign messages or candidates during election seasons, when new

political coalitions form and ideologies can themselves prove malleable to accommodate the new

compositions of these groups. Because each vector is normalized, polarization has a very clean

geometric interpretation: a set of opinion vectors is polarized if they are all equal up to sign.

One of the key findings of HJMR is a proof that these simple dynamics intrinsically and strongly po-
larizewhen restricted to a set of specialized settings. Concretely, when opinions are two-dimensional

(so lie on the unit circle) and the new issues are drawn uniformly at random from the circle, or when

vectors have arbitrary dimension but new issues correspond to one of two “duelling influencers”

that are sufficiently close and drawn with equal probability, then almost surely the distance between

any two starting opinions will converge to 0 or 2 via these random dynamics; in other words,

almost surely any two agents will have opinions either converging to each other or to the negative

of each other so that they are equal up to sign.

However, it is not at all clear whether or not this almost sure polarization is specific to their exact

model formulation: for instance, their technique to show strong polarization in the two-dimensional

case with uniform random directions does not obviously generalize to higher dimensions, nor

to non-uniform distributions—without this high degree of symmetry, it is not clear whether the

dynamics still model polarization (see Section 1.1 for more discussion). Moreover, their dynamics

are completely oblivious in the sense that each agents’ opinions evolve randomly in response to (the

same) new issues but otherwise have no social influence over each other. A natural and important

question in this framework is thus whether, or to what extent, polarization can occur more generally

in related variants that do not satisfy these stringent constraints.



To address this, we can abstractly define geometric opinion dynamics more generally as follows:

the key components of the HJMR model are that (i) the dynamics are random to model the impact

of new political issues that arise, and in fact form a Markov chain on the hypersphere, and (ii) the

set of polarized vectors is invariant under the dynamics. This latter property is of course necessary

to prove that polarization occurs, while the former provides a convenient mathematical framework

to analyze these dynamics. This motivates the following generalization of their dynamics:

Definition 1.1. Let 𝑛 ∈ N be an arbitrary, but otherwise fixed parameter denoting the number

of agents, and let 𝑑 denote the dimension of opinions. In a general model of geometric opinion
dynamics, the evolution of each agent’s opinion follows a discrete-time Markov chain in S𝑑−1

given by a recurrence of the following form:

X(𝑖)
𝑡+1 ∝ X(𝑖)

𝑡 + 𝑓𝑖 (X(1)
𝑡 , . . . ,X(𝑛)

𝑡 , 𝜉𝑡 ), (1)

where X0 = (X(1)
0
, . . . ,X(𝑛)

0
) ∈ (S𝑑−1)𝑛 is a given starting configuration of opinions, 𝜉𝑡 ∈ S𝑑−1 is

drawn i.i.d. over time (and independent of all other random variables) from some distribution D,

and each 𝑓𝑖 : (S𝑑−1)𝑛+1 → R𝑑 is an explicit, fixed updating function.

The implicit normalization in this formulation ensures that each opinion returns to the unit

sphere; in particular, we assume that the unnormalized quantity above is nonzero so that the

projection onto the sphere is well-defined. The joint dynamics of this system thus take place as a

Markov chain in

∏𝑛
𝑖=1 S

𝑑−1
. In such models, the random vector 𝜉𝑡 again denotes a common, random

stimulus that each agent in the system updates opinions with respect to, but now possibly also as a

function of the opinions of the other agents in the system. For example, 𝜉𝑡 may model a particular

issue or figure during election season that splits society into two camps, “for” and “against,” and

opinions update according to these coalitions. Crucially, we also assume that the distribution D
that these vectors are drawn from remains fixed throughout time so that these dynamics form a

time-homogeneous Markov chain.

With this definition, we extend the results of HJMR in this paper by pursuing a more systematic

study of polarization in these general geometric opinion dynamics models that take the form of

Equation (1). The motivating questions we consider are: does strong polarization hold more generally,
or is it specific to the HJMR model formulation? Can strong polarization be shown with nontrivial
network interactions, thereby incorporating a key feature of models like the DeGroot and Friedkin-
Johnsen dynamics? Are there other interesting notions of polarization that hold in these settings, even
if the strong form does not hold?
We show that whether polarization holds in such models is rather surprisingly nuanced and

requires extending the notion of polarization beyond what is proven in HJMR. In particular, we

show that there exist models that weakly polarize in a formal sense, but provably do not satisfy

the stronger form in HJMR. We show that these weaker forms of polarization are connected to

the existence of nontrivial invariant distributions on the induced Markov chain. Nonetheless, we

also prove that strong polarization holds for nontrivial variants of the HJMR model which are

also robust to more general distributions of update vectors—in fact, we show that this holds in a

model that has network interactions in addition to the random updates. We hope that some of our

techniques will prove useful in studying polarization in such models more generally.

1.1 Overview of Results and Techniques
We contribute to the theoretical understanding of polarization in geometric opinion models initiated

in [19]. In Section 2, we begin by identifying, though not necessarily requiring, several natural

natural properties that such dynamics might satisfy and their relation to the problem of polarization.



These will be convenient in our later arguments. We also define formally several distinct geometric

opinion models, including the HJMR model, that will be the subject of our analysis later on.

Our main results in Section 3 show that strong polarization is more universal in such models than
perhaps it would appear from the specialized cases studied by HJMR. In particular, we show that

the strong form of polarization exhibited by HJMR in restricted versions of their model holds in

two other variants we consider. The first model we study, which we term the signed HJMR model,
considers variant of the HJMR dynamics that replaces an inner product with a sign. With these

altered dynamics, we show that strong polarization holds in any dimension and is robust to the

choice of distribution on update vectors so long as it is sufficiently close to the uniform measure

on the sphere. We also show that the same holds in the party model, which notably incorporates

network effects where agents exert influence over each other—such effects are not present in HJMR

and it is not clear how to apply their methods to this setting.

To prove our results in Section 3, we resort to conceptually different techniques from those

of HJMR. Their work shows strong polarization primarily by appealing to either martingale

convergence (in the case of 𝑑 = 2 and with a uniform distribution), which relies on rather delicate

symmetries, or deterministic contraction (in two-point models representing “duelling influences”,

where the challenge of proving contraction is geometric rather than probabilistic). To establish

strong polarization in these variants, we appeal to more general zero-one laws to first simplify the

problem to showing just that there is some nonzero probability of strongly polarizing. We obtain

our main results from this quite general reduction by employing clean probabilistic and geometric

estimates to give the required uniform bounds in our analysis to prove strong polarization.

Our next main contribution is to connect the polarization phenomenon to the general theory of

Markov chains in uncountable state spaces in Section 4. In general, Markov chains in such spaces

have considerably more delicate behavior than with countable or finite state spaces. To do so, we

define weaker notions of polarization than the strong form considered previously; these notions are

motivated by standard notions of convergence from probability theory. We first show that in most

cases, whether these weaker forms of polarization hold in geometric opinion dynamics is in fact

equivalent to the existence of nontrivial invariant distributions of the Markov chain defined by the

dynamics. We then turn to showing the utility of these more nuanced notions of polarization with a

concrete example: we conclude by proving that the original HJMR model with orthonormal updates

satisfies our notion of weak polarization, but provably does not satisfy strong polarization—in fact,

we show that almost surely, almost every starting configuration will not strongly polarize. We do

so by connecting these dynamics to pathwise properties of infinite balls-in-bins processes, which

we analyze by applying yet another zero-one law of Hewitt and Savage.

1.2 Related Work
Our work broadly relates to the vast body of theoretical work in opinion dynamics that studies

concrete models wherein agents update numerical beliefs and the resulting properties of these

dynamics; for a comprehensive survey of this style of work, see [4]. The particular geometric model

of opinion dynamics considered by Hązła, Jin, Mossel, and Ramnarayan [19] motivates many of the

considerations in this work. To our knowledge, their work is first to introduce the dynamics in

Equation (1) in the specific form given below in Equation (2). We are not aware of related work

exploring polarization in variants of their model.

Polarization more generally has been studied in other models of opinion dynamics, typically in

the more well-understood DeGroot and Friedkin-Johnsen dynamics mentioned above. Both models

assume that agents update opinions according to the graph-weighted average of their neighbors,

and both of these models have been extensively studied for their analytical elegance, tractability, and

deep connections to well-studied topics like finite-state Markov chains and random walks [14, 15].



However, an idiosyncratic feature of these models is that they are often inherently contractive:

opinions get closer due to the dynamics—for instance, in the DeGroot model, agents will necessarily

converge to a common limiting opinion under very mild connectedness assumptions. Therefore,

the price of the analytic simplicity of this model is that no nontrivial polarization can occur. The

Friedkin-Johnsen model typically will not exhibit perfect consensus, but the network effects of the

process nonetheless cause initial opinions to contract closer to a common consensus. This suggests

that these models simply are not well-equipped to offer a mechanism for this phenomenon.

Recent theoretical work has attempted to combine the analytically desirable features of these

models with questions of polarization by incorporating new elements to the model. For instance,

behavioral biases like biased assimilation, which underlies the intuition behind the HJMR model,

have also been fruitfully studied in the context of DeGroot dynamics [6]. Motivated by recent

events, a related line of work has also attempted to understand polarization by incorporating the

influence of external actors or platforms into the dynamics. Polarization then arises either explicitly

or implicitly because of the (possibly orthogonal) objectives of these external parties [1, 5, 12, 21].

A related model by Hegselmann and Krause [18] circumvents near-consensus by allowing agents

to filter out overly dissimilar opinions before averaging at each step, but already this modest

extension incurs a high cost: many basic questions about convergence remain open in this model,

greatly complicating a more extensive understanding of how polarization arises [2]. Moreover, the

polarization in this model is somewhat built-in by requiring that far opinions stop responding to

each other. While these lines of work have shed significant light on how polarization can arise in

such models, and certainly such forces can help explain an empirical increase in polarization in the

last few decades, the polarization that arises does not arise organically via the original dynamics.

As we discuss in Section 4, geometric models of opinion dynamics can be viewed as a special case

of the more general theory of Markov chains in non-discrete state spaces. The results in this setting

are significantly more involved than corresponding results on discrete state spaces; an accessible

reference to some important results in this area can be found in the surveys of Hairer [16, 17]. As

we show, polarization is related to the set of invariant distributions on the Markov chain induced

by the dynamics. Numerous techniques have been developed to determine the uniqueness of an

invariant distribution in these settings, as well as the rate and mode of convergence to it if possible

(see for instance, [3]). It would be interesting to find new ways to apply results from this area

to provide quantitative bounds on the convergence to polarization when one can prove strong

polarization holds.

2 PRELIMINARIES
As stated above, we are primarily interested in the polarization properties of these random processes

given by Equation (1). Throughout this paper, we reserve 𝑛 to denote the number of agents

and 𝑑 to denote the dimensionality of opinions. We write ∥ · ∥𝑝 for the standard ℓ𝑝-norm and

S𝑑−1 = {x ∈ R𝑑 : ∥x∥2 = 1}. We will write 𝑃S𝑑−1 : R
𝑑 \ {0} → S𝑑−1 for the projection onto the unit

sphere, i.e. 𝑃S𝑑−1 (x) = x/∥x∥2. We also write e𝑖 for the 𝑖th standard basis vector in R𝑑 , where 𝑑 will

be clear from context. For a set of vectors x1, . . . , x𝑛 ∈ R𝑑 , we define cone(x1, . . . , x𝑛) = {z ∈ R𝑑 :

z =
∑𝑛
𝑖=1 𝛼𝑖x𝑖 , 𝛼𝑖 ≥ 0}. We write ∠(x, y) for the angle between x and y.

For given 𝑛,𝑑 , we then define 𝐷 ⊆ ∏𝑛
𝑖=1 S

𝑑−1
to be the set of diagonal opinion vectors, i.e. the

set of elements of the form (x, . . . , x) for a single vector x ∈ S𝑑−1. For a sign vector 𝝈 ∈ {−1, 1}𝑛 ,
define 𝝈 (𝐷) := {X ∈ ∏𝑛

𝑖=1 S
𝑑−1

: X = (𝜎1x, . . . , 𝜎𝑛x), x ∈ S𝑑−1}. Finally, we define the set 𝑃 of

polarized vectors by 𝑃 =
⋃

𝝈 ∈{−1,1}𝑛 𝜎 (𝐷). In other words, 𝑃 is the set of tuples of vectors such that

each vector is equal to the rest up to sign. This definition allows for consensus as a special case,

but in many settings, consensus or near-consensus is exponentially unlikely (see Remark 3.1).



For a subset 𝐴 in some Euclidean space and a point x, we define 𝜌 (x, 𝐴) := infy∈𝐴 ∥x − y∥2 to
denote the distance from a point to a set with respect to the Euclidean metric. With this in mind,

we define strong polarization of a geometric opinion dynamics model as follows:

Definition 2.1. LetX𝑡 := (X(1)
𝑡 , . . . ,X(𝑛)

𝑡 ) be a discrete-timeMarkov chain as given by Equation (1).

Then X𝑡 strongly polarizes (from X0) if almost surely, 𝜌 (X𝑡 , 𝑃) → 0; that is, the distance between

X𝑡 and the set of polarized vectors converges to zero almost surely.

There are several natural properties that one might desire in these dynamics. Below, we consider,

though do not require, the following properties which abstracts those of the original HJMR model:

Definition 2.2. If each function 𝑓𝑖 (·, 𝜉) is continuous from
∏𝑛
𝑖=1 S

𝑑−1
to R𝑑 for each fixed 𝜉 , then

we say the dynamics are continuous.

We will show in Section 4 that continuity implies various desirable properties for the dynamics.

Note that if this is the case, combined with the fact that we assume the unnormalized update rule is

always nonzero, it follows that the dynamics are jointly continuous as transitions from

∏𝑛
𝑖=1 S

𝑑−1
to

itself. This follows because the the map taking the joint opinion vector to the unnormalized opinion

vectors is continuous and nonzero in every coordinate, which is then composed coordinatewise

with a continuous map on R𝑑 \ {0}, and so is continuous.

Definition 2.3. The dynamics are sign-invariant if, for all 𝑖 ∈ [𝑛], the function 𝑓𝑖 is odd with

respect to x𝑖 , but even with respect to the other arguments (i.e. with respect to x−𝑖 and 𝜉).

Sign-invariance implies each agent reacts to the random update vector and the others the same

regardless if any are negated. This feature will be present in all of the models we consider below,

including the original HJMRmodel. The intuition behind sign-invariance is that from the perspective

of each agent, if he or she were to react “positively” to the new issue or a different opinion, she

would react “negatively” to the negative of that issue or different opinion—sign-invariance thus

asserts that these reactions are balanced.

Definition 2.4. If 𝑓𝑖 (X(𝑖)
𝑡 ,X(−𝑖)

𝑡 , 𝜉) = 𝑓𝑗 (X( 𝑗)
𝑡 ,X(−𝑗)

𝑡 , 𝜉) when X(𝑖)
𝑡 = X( 𝑗)

𝑡 and X(−𝑖)
𝑡 = X(−𝑗)

𝑡 , we

say that the dynamics are symmetric, as the updates do not depend on the identities of the agents.

Definition 2.5. If each function 𝑓𝑖 does not depend on X(−𝑖)
𝑡 for each 𝑖 (so that 𝑓𝑖 depends only on

X(𝑖)
𝑡 and 𝜉𝑡 ), then we say the dynamics are oblivious.

In this case, each component of the above process follows a Markov chain, and the joint dynamics

form a particular coupling where each component responds to the same update vector. However,

any polarization that arises happens indirectly because agents do not influence each other.

In this work, we treat such models in relatively full generality and also specialize to particular

models where more specific techniques can establish various desirable properties. The concrete

examples we will consider are listed below:

Definition 2.6 (HJMR Model). In the HJMR Model [19], the update for each agent 𝑖 takes the

following form for some fixed scalar 𝜂 > 0:

X(𝑖)
𝑡+1 ∝ X(𝑖)

𝑡 + 𝜂 · ⟨X(𝑖)
𝑡 , 𝜉𝑡 ⟩𝜉𝑡 , (2)

where 𝜉𝑡 ∼ D is drawn i.i.d. over time from some distribution D on S𝑑−1. In words, each agent

moves in the (signed) direction of the random update vector proportionally to the correlation with

their current opinion, and then renormalizes.

Note that this model satisfies continuity, sign-invariance, obliviousness, and symmetry (assuming

𝜂 is a constant over all agents).



Definition 2.7 (Signed HJMR Model). In the signed HJMRmodel, the update rule in Equation (2)

is amended to

X(𝑖)
𝑡+1 ∝ X(𝑖)

𝑡 + 𝜂 · sgn(⟨X(𝑖)
𝑡 , 𝜉𝑡 ⟩)𝜉𝑡 . (3)

Here, we define sgn(0) = 0, but in our applications below, we will assume 𝜉𝑡 is drawn from a

continuous distribution so that almost surely ⟨X(𝑖)
𝑡 , 𝜉𝑡 ⟩ ≠ 0. In this case, the amount the vector

updates does not depend on the correlation. This choice is intended to model elections, where one

is in favor either towards or against a particular candidate and is drawn “all-or-nothing” towards

or against the views of this candidate. This model is not continuous due to the sign function, but is

still sign-invariant, oblivious, and symmetric (assuming 𝜂 is a constant over all agents).

Definition 2.8 (Party Model). Suppose each agent 𝑖 has multipliers (𝜂 (𝑖)
1
, . . . , 𝜂

(𝑖)
𝑛 ) where 𝜂 (𝑖)

𝑗
≥ 0

measures the influence of agent 𝑗 on agent 𝑖 . The party model is defined by:

X(𝑖)
𝑡+1 ∝ X(𝑖)

𝑡 +
©­­«

∑
𝑗 ∈[𝑛]:sgn( ⟨X( 𝑗 )

𝑡 ,𝜉𝑡 ⟩)=sgn( ⟨X(𝑖 )
𝑡 ,𝜉𝑡 ⟩)

𝜂
(𝑖)
𝑗
X( 𝑗)
𝑡 −

∑
𝑗 ∈[𝑛]:sgn( ⟨X( 𝑗 )

𝑡 ,𝜉𝑡 ⟩)≠sgn( ⟨X(𝑖 )
𝑡 ,𝜉𝑡 ⟩)

𝜂
(𝑖)
𝑗
X( 𝑗)
𝑡

ª®®¬ . (4)
That is, each agent moves towards the vectors that came on the same “side” of the random issue

𝜉𝑡 , and away from those on the opposite “side” of the issue. While this latter assumption may

appear non-obvious, there is considerable empirical evidence for the sociological principle that

“out-group conflict builds in-group solidarity” [20]: when a binary issue creates disagreement within

a collection of people, the people on each side of the disagreement move toward those they agree

with and away from those they disagree with [10, 22]. Once again, this model is not continuous due

to the sign function, and also is not oblivious as clearly the update rule depends on the values of

the other agents. However, it remains sign-invariant, as negating one’s own opinions interchanges

the sums, and flipping either 𝜉𝑡 or any other agents opinions only permutes summands.

For any sort of polarization to arise, it is natural to ensure that the dynamics are such that if the

vector are completely polarized, then they will surely remain so. We provide one simple condition

that is easily verified
1
:

Lemma 2.9. Suppose that some geometric opinion dynamics satisfy symmetry and sign-invariance.
Then 𝝈 (𝐷) is invariant under the transitions for every 𝝈 ∈ {−1, 1}𝑛 .
Finally, note that if the dynamics are oblivious and strongly polarizes for 𝑛 = 2 agents, then it

must do so for any finite 𝑛 by a simple union bound. Note that oblivious and symmetric dynamics

ensure that the process is well-defined for any number of agents.

Lemma 2.10. Suppose that the opinion dynamics are symmetric and oblivious. Then if any form of
convergence holds for 𝑛 = 2 agents, the same holds for any finite number of agents.

3 MODELS WITH STRONG POLARIZATION
In this section, we prove the strong polarization of the signed HJMR model and the party model.

To do this, we first establish a simple, but powerful general principle that will significantly simplify

the analysis that has the following simple intuition: suppose momentarily that geometric opinion

dynamics were a finite-state Markov chain and that “polarization” is an absorbing state of the

Markov chain. Then from standard and simple Markov estimates, so long as it is possible to reach

the state “polarized” from any starting point in some fixed finite number of steps, an easy calculation

shows that almost surely the Markov chain will become “polarized.” In that case, it would suffice to

1
Note that the converse of Lemma 2.9 trivially fails: one can simply ensure the dynamics are invariant on each such set and

otherwise define them arbitrarily.



show that from any starting state, there is some nonzero probability of reaching “polarized” from

any starting state in some finite number of steps.

In general, this idea is not so simple to formalize because the geometric opinion dynamics lie in

a non-discrete state space, and moreover, it is often only possible to reach 𝑃 asymptotically, not in

any finite number of steps. However, by appealing to more general zero-one laws, we show that

this intuition nonetheless holds:

Theorem 3.1. For any geometric model of opinion dynamics that satisfies the Markov property, the
following are equivalent:
(1) For every choice of starting vector X0, PrX0

(𝜌 (X𝑡 , 𝑃) → 0) = 1.

(2) For every choice of starting vector X0, PrX0
(𝜌 (X𝑡 , 𝑃) → 0) ≥ 𝑐 for some constant 𝑐 > 0.

Proof. One direction is trivial, so we assume the second condition. Consider the dynamics

started at any choice of starting vector X0, and consider the event 𝐴 = {𝜌 (X𝑡 , 𝑃) → 0}. Let F𝑡 =
𝜎 (𝜉0, . . . , 𝜉𝑡−1) be the filtration generated by the random updates up to time 𝑡 and let F∞ = 𝜎 (𝜉0, . . .)
be the filtration generated by all of them. By standard arguments, 𝐴 ∈ F∞.
For each 𝑇 ≥ 0, define 𝐴𝑇 := E[1(𝐴) |F𝑇 ]. As 1(𝐴) is an indicator random variable, Lévy’s

upward theorem (Theorem 4.2.11 of [9]) implies that 𝐴𝑇 = E[1(𝐴) |F𝑇 ] → E[1(𝐴) |F∞] = 1(𝐴)
almost surely. But observe that by the Markov property, 𝐴𝑇 = PrX𝑇

(𝜌 (Z𝑡 , 𝑃) → 0), where Z𝑡 gives
the dynamics started at Z0 = X𝑇 . In particular, 𝐴𝑇 ≥ 𝑐 > 0 pointwise. Because 𝐴𝑇 → 1(𝐴) almost

surely and is bounded from below almost surely by a strictly positive quantity, the only way this

can happen is if 1(𝐴) ≡ 1 almost surely (over the realizations of the 𝜉𝑡 ), so that 𝐴 holds almost

surely. As X0 was arbitrary, this completes the harder direction. □

3.1 Strong Polarization in Signed HJMR Model
Our first main result is that strong polarization holds in the signed HJMR model with a common

value of 𝜂 > 0, and that this holds for a general class of distributions:

Theorem 3.2. Suppose there are 𝑛 ≥ 1 agents in the signed HJMR model given by Equation (3)

where each 𝜉𝑡 is drawn i.i.d. from a distribution D that is equivalent to the uniform (Haar) measure 𝜇,
i.e. there exists𝐶,𝐶 ′ > 0 such that for every measurable set𝐴 ⊆ S𝑑−1,𝐶𝜇 (𝐴) ≤ Pr(𝜉𝑡 ∈ 𝐴) ≤ 𝐶 ′𝜇 (𝐴).
Then this system strongly polarizes from any choice of starting vector X0.

Remark 3.1. It can be shown that for any sign-invariant dynamics that strongly polarizes, if X0

is drawn uniformly from (S𝑑−1)𝑛 , then each possible clustering is equally likely even conditioned on
the sequence {𝜉𝑡 }∞𝑡=0 almost surely. In particular, the probability over starting configurations and the
random updates of consensus is exponentially small in 𝑛.

To set up this result, we establish a sequence of lemmas that will prove useful. We begin with a

simple geometric fact:

Lemma 3.3. Let x, y ∈ S𝑑−1 and suppose z ∈ R𝑑 is such that ∥x + z∥2, ∥y + z∥2 ≥ 1 + 𝜖 for some
𝜖 ≥ 0. Then ∥𝑃S𝑑−1 (x + z) − 𝑃S𝑑−1 (y + z)∥2 ≤ ∥x−y∥2

1+𝜖 .

Proof. We may assume x ≠ ±y. Consider the arrangement of vectors x + z, y + z, x − y in the

plane spanned by {x + z, y + z} forming a triangle with a vertex at the origin and adjacent sides

x + z, y + z. By the assumption that these vectors have length at least 1 + 𝜖 , scaling this triangle

by a factor of 𝑟 = (1 + 𝜖)−1 ensures that 𝑟 (x + z) and 𝑟 (y + z) continue to have at least unit norm,

and the distance between them is at most 𝑟 (∥x − y∥2). As projection onto S𝑑−1 is a contraction in

Euclidean distance for vectors of length at least 1, it follows that

∥𝑃S𝑑−1 (x + z) − 𝑃S𝑑−1 (y + z)∥2 = ∥𝑃S𝑑−1 (𝑟 (x + z)) − 𝑃S𝑑−1 (𝑟 (y + z))∥2 ≤ 𝑟 ∥x − y∥2 .



□

Next, we show that with some constant probability, a random vector drawn from D will not

split two vectors that form an acute angle, and that the probability of splitting at all tends to zero

as the distance tends to zero.

Lemma 3.4. There exists constants 𝛽,𝛾 > 0 depending on 𝑑 and the measure of equivalence such
that the following holds: suppose that X0 = (X(1)

0
,X(2)

0
) satisfies ⟨X(1)

0
,X(2)

0
⟩ ≥ 0. Then the probability

that 𝜉0 satisfies:

(1) sgn(⟨X(1)
0
, 𝜉0⟩) = sgn(⟨X(2)

0
, 𝜉0⟩), and

(2) |⟨X(𝑖)
0
, 𝜉0⟩| ≥ 𝛾 for 𝑖 = 1, 2,

is at least 𝛽 .

Proof. We first show this when 𝜉0 is drawn uniformly from the sphere and then simply change

constants when moving to any measure that is equivalent to Haar measure. But this is clear: the

probability of 𝜉0 satisfies the first property is at least 1/2 under these assumptions, as the direction

of 𝜉0 in the plane spanned by X(1)
0
,X(2)

0
is itself uniform and using the acuteness of the two vectors.

Moreover, the distribution of |⟨𝜉0, z⟩| does not depend on z by uniformity, so we may choose 𝛾 > 0

small enough so that the probability of the second property is at least 7/8 for any fixed z. By a

union bound, it follows that the probability 𝜉0 has the desired properties is at least 1/4 under Haar
measure. Under the true, equivalent distribution, the probability is thus at least 𝛽 := 𝐶/4 > 0. □

Lemma 3.5. Under the assumptions and notation of Lemma 3.4, the probability that sgn(⟨X(1)
0
, 𝜉0⟩) ≠

sgn(⟨X(2)
0
, 𝜉0⟩) is at most𝑂 (∥X(1)

0
−X(2)

0
∥2) and𝑂 (∠(X(1)

0
,X(2)

0
)), where the implicit constant depends

only on 𝑑 and the measure of equivalence.

Proof. We first show this for Haar measure. By an analogous argument, the set of vectors with

the desired property have directions lie in a band of width 𝑂 (∥X(1)
0

− X(2)
0

∥2) in the plane spanned

by X(1)
0
,X(2)

0
, and therefore has probability at most 𝑂 (∥X(1)

0
− X(2)

0
∥2) and 𝑂 (∠(X(1)

0
,X(2)

0
)) by

uniformity. For the true distribution, this can increase by a factor of at most 𝐶 ′
, which we may

absorb into the implicit constant. □

With this result in hand, we turn to the proof of the main theorem:

Proof of Theorem 3.2. We begin with a series of reductions that simplifies the problem. First,

because these dynamics are oblivious, we observe that by Lemma 2.10 it suffices to consider the

case 𝑛 = 2 with an arbitrary starting vector X0 = (X(1)
0
,X(2)

0
). Next, by sign-invariance of these

dynamics, we may assume that ⟨X(1)
0
,X(2)

0
⟩ ≥ 0 by possibly flipping the sign of one of the vectors

and noting that both the dynamics and the set 𝑃 are invariant under these sign changes. Note that

this implies that the two starting vectors form an acute angle. Finally, by Theorem 3.1, it suffices to

show that the probability that ∥X(1)
𝑡 − X(2)

𝑡 ∥2 → 0 is bounded below by some nonzero constant

𝑐 > 0, uniformly over the choice of starting vector (though assuming nonnegative inner product).

We use the notation of Lemma 3.4. Note that the good event of Lemma 3.4 and the bad event of

Lemma 3.5 are disjoint, though not mutually exhaustive. We claim that by the craps principle, the

probability of encountering a random update 𝜉𝑡 satisfying the good event before the bad event is

at least 𝛽/(𝛽 +𝑂 (∥X(1)
0

− X(2)
0

∥2)). Indeed, while an update need not satisfy either event, on the

complement of the bad event, ∥X(1)
𝑡 − X(2)

𝑡 ∥2 is nonincreasing so long as the bad event does not

occur as the unnormalized lengths increase by sign-invariance with respect to 𝜉𝑡 (so that we may



assume both signs are positive) and contractions decrease distances. The claim then follows from

the crap’s principle, Lemma 3.4, and Lemma 3.5.

Moreover, on this event, the distance between X(1)
𝑡+1 and X(2)

𝑡+1 decreases by a factor of (1 + 𝜖)−1
where 𝜖 = Ω(𝜂𝛾) by Lemma 3.3 (using z = ±𝜂 · 𝜉𝑡 ) and the fact that the inner products are

bounded below on the good event. It follows that on this event, the new distance between vectors

is at most ∥X(1)
0

− X(2)
0

∥2/(1 + 𝜖). By the strong Markov property, we may iterate this argument

to show that the probability of the good event occurring before the bad event is now at least

𝛽/(𝛽 +𝑂 (∥X(1)
0

−X(2)
0

∥2/(1+𝜖))) ≥ 1−𝑂
(
∥X(1)

0
−X(2)

0
∥2

1+𝜖

)
where we absorb the constant 𝛽 . It follows

that the probability that the good event occurs infinitely often without the bad event is at least

∞∏
𝑘=0

(
1 −𝑂

(
∥X(1)

0
− X(2)

0
∥2

(1 + 𝜖)𝑘

))
≥

∞∏
𝑘=0

(
1 −𝑂

(
1

(1 + 𝜖)𝑘

))
,

where we simply upper bound ∥X(1)
0

− X(2)
0

∥2 ≤ 2 in the inequality. Note that if this occurs, then

Lemma 3.3 show that this implies that ∥X(1)
𝑡 − X(1)

𝑡 ∥2 → 0 as the distance is nonincreasing and

geometrically decreases infinitely often. From standard analysis,

∞∏
𝑘=0

(
1 −𝑂

(
1

(1 + 𝜖)𝑘

))
> 0 ⇐⇒

∞∑
𝑘=0

𝑂

(
1

(1 + 𝜖)𝑘

)
< ∞,

and the latter is clearly true as a geometric series. Moreover, these lower bounds are uniform over

the value of ∥X(1)
0

− X(2)
0

∥2. By the reductions above, this completes the proof. □

3.2 Strong Polarization in the Party Model
We now turn to proving strong polarization in the party model. One complicating factor is that

these dynamics are not oblivious, unlike the other models where strong polarization is known.

Therefore, we have to reason about multiple vectors acting on each other at the same time.

To set up the formal statement of the result, we need the following definition: for any given set

of nonnegative coefficients 𝜼, let 𝐴 = 𝐴(𝜼) be the (directed) 𝑛 × 𝑛 adjacency matrix defined by

𝐴𝑖 𝑗 =

{
1 if 𝜂

(𝑖)
𝑗

> 0

0 otherwise.

In other words, we consider the directed graph with a directed edge from 𝑖 to 𝑗 if 𝑗 influences 𝑖 . We

say that 𝐴 is irreducible if 𝐴𝑛 > 0 componentwise. This is equivalent to the existence of a directed

path between any two agents 𝑖 and 𝑗 . Our main result of this section is as follows:

Theorem 3.6. Suppose there are 𝑛 ≥ 1 agents in the party model where each 𝜉𝑡 is drawn i.i.d. from
a distributionD that is equivalent to the uniform (Haar) measure 𝜇, i.e. there exists𝐶,𝐶 ′ > 0 such that
for every measurable set 𝐵 ⊆ S𝑑−1, 𝐶𝜇 (𝐵) ≤ Pr(𝜉𝑡 ∈ 𝐵) ≤ 𝐶 ′𝜇 (𝐵). Moreover, suppose that 𝐴 = 𝐴(𝜼)
is irreducible. Then this system strongly polarizes from any choice of starting vector X0.

To prove this, we follow a similar high-level plan as that of Theorem 3.2. By sign-invariance,

we will assume via Lemma 3.7 that each component of X0 lies on one side of a hyperplane with

margin strictly bounded below by zero regardless of the individual configuration. We then construct

a potential function that is equivalent to the maximum angle between any two agents with the

property that, assuming the dynamics do not split up the vectors on the next 𝑛 iterations, it is

guaranteed to decay by some factor strictly bounded above by 1. Since, as we will again see, the

probability that a random vector splits up any two components is essentially bounded by the



maximum angle between any two components and this quantity is decreasing geometrically, it will

follow that the probability of strong polarization is bounded below uniformly. We may then again

conclude via Theorem 3.1 that the system strongly polarizes from any starting configuration.

We now carry out this plan. First, we show that there always exists a signing of the starting

configuration such that all vectors lie on one side of some hyperplane with nontrivial margin:

Lemma 3.7. For all 𝑑, 𝑛 ≥ 1, there exists a constant 𝜆 = 𝜆(𝑛,𝑑) > 0 such that for any x1, . . . , x𝑛 ∈
S𝑑−1, there exists z ∈ S𝑑−1 such that |⟨z, x𝑖⟩| ≥ 𝜆 for all 𝑖 ∈ [𝑛].

Proof. Simply choose 𝜆 > 0 such that the probability of a random unit vector drawn from Haar

measure does not satisfy the condition for a given 𝑖 is at most 1/(𝑛 + 1) and then apply a union

bound to conclude there exists such a vector. Note that this choice of 𝜆 indeed depends on 𝑑, 𝑛, but

not on the choice of vectors as the distribution of the inner product of a uniformly random vector

on the sphere with a fixed vector does not depend on the identity of this fixed vector. □

Next, we proceed with several purely geometric results that will enable us to show contraction

of a suitable potential function.

Lemma 3.8. Let x1, . . . , x𝑛 ∈ S𝑑−1 all lie strictly on one side of a hyperplane in R𝑑 . Define y by

y ∈ arg min

v∈S𝑑−1
max

𝑗 ∈[𝑛]
∠(v, x𝑗 ).

Note y exists as the objective function is continuous and the constraint set is compact. Let 𝐻 =

y⊥ be the orthogonal subspace to y and let 𝑃𝐻 be the orthogonal projection onto 𝐻 . Then 0 ∈
conv(𝑃𝐻 (x1), . . . , 𝑃𝐻 (x𝑛)).

Proof. Observe that the desired claim is implied by y ∈ cone(x1, . . . , x𝑛). To see this, suppose

that this holds: suppose there exists 𝛼𝑖 ≥ 0 such that y =
∑𝑛
𝑖=1 𝛼𝑖x𝑖 . Note that not all 𝛼𝑖 are zero as

y has unit norm by construction. Then applying 𝑃𝐻 to both sides, we deduce that

0 = 𝑃𝐻 (y) =
𝑛∑
𝑖=1

𝛼𝑖𝑃𝐻 (x𝑖 ).

As

∑𝑛
𝑖=1 𝛼𝑖 > 0, we may renormalize these conefficients so that their sum is one to deduce

that 0 ∈ conv(𝑃𝐻 (x1), . . . , 𝑃𝐻 (x𝑛)). Moreover, note that y can equivalently be defined via y ∈
arg max

v∈S𝑑−1
min𝑗 ∈[𝑛] ⟨y, x𝑗 ⟩. This holds as the inner product is a monotonically decreasing function

of angle on [0, 𝜋] and so the optimization problems are equivalent.

Therefore, suppose that y ∉ cone(x1, . . . , x𝑛). By the separating hyperplane theorem, there exists

a unit vector u such that ⟨u, x𝑖⟩ > 0 for all 𝑖 ∈ [𝑛] but ⟨u, y⟩ < 0. Write R𝑑 in an orthogonal basis

that includes u. Then the coordinate with respect to u for each of the x𝑖 is strictly positive, while

the coordinate for y is strictly negative. Therefore, by reflecting y about u, we obtain unit ỹ such

that ⟨ỹ, x𝑖⟩ > ⟨y, x𝑖⟩ for all 𝑖 ∈ [𝑛], contradicting the optimality of y. □

Lemma 3.9. Let z1, . . . , z𝑛 satisfy ∥z𝑖 ∥ ≤ 1 for all 𝑖 ∈ [𝑛] and 0 ∈ conv(z1, . . . , z𝑛). Then




 1𝑛 𝑛∑
𝑖=1

z𝑖







2

≤ 1 − 1

𝑛
.

Proof. We consider two cases:

(1) First, suppose that 0 ∈ {z1, . . . , z𝑛}; without loss of generality, suppose z1 = 0. Then




 1𝑛 𝑛∑
𝑖=1

z𝑖







2

=






 1𝑛 𝑛∑
𝑖=2

z𝑖







2



As 0 is trivially in the convex hull no matter the choice of z2, . . . , z𝑛 , the convexity of the

Euclidean norm implies that this latter quantity is optimized for z2 = . . . = z𝑛 = u for some

unit vector u. This has norm 1 − 1

𝑛
as needed.

(2) Now suppose that 0 ∉ {z1, . . . , z𝑛}. We claim that there exists some 𝑗 ∈ [𝑛] such that setting

z𝑗 = 0 does not decrease the desired quantity, thereby reducing to the previous case.

To see this, suppose that this is false. In particular, for every 𝑗 ∈ [𝑛],




 1𝑛 𝑛∑
𝑖=1

z𝑖







2

>






 1𝑛 ∑
𝑖≠𝑗

z𝑖







2

⇐⇒
〈
z𝑗 ,

∑
𝑖≠𝑗

z𝑖

〉
> 0.

This in turn clearly implies that 〈
z𝑗 ,

𝑛∑
𝑖=1

z𝑖

〉
> 0. (5)

By assumption, we may write 0 =
∑𝑛
𝑖=1 𝛼𝑖z𝑖 for some nonnegative scalars summing to 1.

Multiplying Equation (5) by 𝛼 𝑗 for each 𝑗 ∈ [𝑛] and summing, we obtain

0 =

〈
0,

𝑛∑
𝑖=1

z𝑖

〉
=

〈
𝑛∑
𝑗=1

𝛼 𝑗z𝑗 ,
𝑛∑
𝑖=1

z𝑖

〉
> 0,

a contradiction.

□

Next, we show that the irreducibility of 𝐴 implies that there is geometric decay in the minimal

angle in each 𝑛 steps that the dynamics do not split the vectors. We start with the following crude,

but intuitive lemma:

Lemma 3.10. Let x0 = (x(1)
0
, . . . , x(𝑛)

0
) be any set of vectors all lying strictly on one side of a

hyperplane with 𝜆 = 𝜆(𝑛,𝑑) > 0 margin (i.e. there exists unit v satisfying ⟨v, x(𝑖)
0
⟩ > 𝜆 for all 𝑖 ∈ [𝑛]),

and consider the update rule given by Equation (4) where the second summand is empty.
Suppose that we apply this update rule 𝑛 times to obtain x𝑛 . Then, there exists 𝜖 = 𝜖 (𝑛,𝑑,𝜼) > 0

such that x𝑛 ∝ 𝑀x0 for some row-stochastic matrix𝑀 depending on x0 satisfying

𝑀 = 𝜖Π + (1 − 𝜖)𝑄, (6)

where every entry of Π is equal to 1/𝑛 and 𝑄 is some arbitrary stochastic matrix.

Remark 3.2. In the above matrix equation, we interpret x𝑡 as a 𝑛 × 𝑑 matrix where the 𝑖th row is
x(𝑖)𝑡 . Moreover, the point of the lemma is that 𝜖 depends on 𝑛,𝑑,𝜼, but not on the starting configuration.

Proof. We show the following claim by induction: for each 1 ≤ 𝑘 ≤ 𝑛, there exists 𝜖𝑘 =

𝜖 (𝑛,𝑑,𝜼, 𝑘) such that x𝑘 ∝ 𝑀𝑘x0 where 𝑀𝑘 is a row-stochastic matrix such that (𝑀𝑘 )𝑖 𝑗 > 𝜖𝑘 if

𝑗 ∈ Γ𝑘 (𝑖), where Γ𝑘 (𝑖) is the set of nodes reachable from 𝑖 in 𝑘 steps in the directed graph induced

by 𝐴 = 𝐴(𝜼) above. This clearly implies the claim by setting 𝜖 = 𝜖𝑛 noting that Γ𝑘 (𝑖) ⊆ Γ𝑘+1 (𝑖) by
the fact that this matrix has ones on the diagonal.

For the base case 𝑘 = 1, by definition (and absorbing the term x(𝑖)
0

into the 𝜂
(𝑖)
𝑖

multiplier):

x(𝑖)
1

∝ ∑𝑛
𝑗=1 𝜂

(𝑖)
𝑗
x( 𝑗)
0
. By dividing by 𝜂 (𝑖) ≜

∑𝑛
𝑗=1 𝜂

(𝑖)
𝑗
, we clearly obtain the claim with 𝜖1 ≜

min𝑖∈[𝑛] min

𝑗 ∈[𝑛]:𝜂 (𝑖 )
𝑗

>0

𝜂
(𝑖)
𝑗
/𝜂 (𝑖) . Note that this is independent of x0.



Now suppose it holds for some 𝑘 ≥ 1 so that x𝑘 ∝ 𝑀𝑘x0. By applying the base case to x𝑘+1
(noting that x𝑘 still lies on the same side of the hyperplane by convexity with same margin),

x𝑘+1 ∝ 𝑀 ′
1
x𝑘 ∝ (𝑀 ′

1
𝑀𝑘 )x0 .

By the induction hypothesis, (𝑀 ′
1
)𝑖 𝑗 ≥ 𝜖 (𝑛,𝑑,𝜼, 1) for all 𝑗 ∈ Γ(𝑖), while (𝑀𝑘 )𝑖 𝑗 ≥ 𝜖 (𝑛,𝑑,𝜼, 𝑘) for all

𝑗 ∈ Γ𝑘 (𝑖). For any 𝑗 ∈ Γ𝑘+1 (𝑖), there exists some 𝑗 ′ ∈ [𝑛] such that 𝑗 ′ ∈ Γ𝑘 (𝑖) and 𝑗 ∈ Γ( 𝑗 ′). From
the definition of matrix multiplication, if 𝑗 ∈ Γ𝑘+1 (𝑖), it follows that (𝑀 ′

1
𝑀𝑘 )𝑖, 𝑗 ≥ 𝜖1 · 𝜖𝑘 . Letting

𝜖𝑘+1 ≜ 𝜖1 · 𝜖𝑘 and noting the product of stochastic matrices is stochastic, the claim follows. □

Finally, we show that one can get the geometric rate of convergence with respect to a natural

potential function.

Lemma 3.11. Let x1, . . . , x𝑛 ∈ S𝑑−1 all lie strictly on one side of a hyperplane in R𝑑 with margin at
least 𝜆 = 𝜆(𝑛,𝑑) > 0. Define Φ(x1, . . . , x𝑛) by

Φ(x1, . . . , x𝑛) = min

v∈S𝑑−1
max

𝑖∈[𝑛]
∠(v, x𝑖 ). (7)

Let x′
1
, . . . , x′𝑛 be the updated vectors after 𝑛 iterations of the update rule in Equation (4) when the

second summand is empty. Then there exists 𝑐 = 𝑐 (𝑛,𝑑,𝜼) > 0 such that

Φ(x′
1
, . . . , x′𝑛) ≤ (1 − 𝑐)Φ(x1, . . . , x𝑛).

Proof. Let y be an optimizer in Equation (7) and let 𝐻 be the orthogonal complement. Let 𝑃𝐻
be the corresponding orthogonal projection onto 𝐻 and 𝑃y be the orthogonal projection onto y.
Note that for any vector z, z = 𝑃𝐻 z + 𝑃yz. By Lemma 3.10, we have x′ ∝ 𝑀x for some stochastic

matrix𝑀 such that𝑀 = 𝜖Π + (1 − 𝜖)𝑄 .
Now, observe that by the definition ofΦ and from elementary geometry, ∥𝑃𝐻 (x𝑖 )∥2 ≤ sin(Φ(x1, . . . , x1))

while ⟨y, x𝑖⟩ = ⟨y, 𝑃yx𝑖⟩ ≥ cos(Φ(x1, . . . , x1)) for all 𝑖 ∈ [𝑛]. Now by definition,

Φ(x′
1
, . . . , x′𝑛) ≤ max

𝑖∈[𝑛]
∠(y, x′𝑖 ) = max

𝑖∈[𝑛]
∠(y, (𝑀x)𝑖 ),

as angles do not change under positive scaling.

Therefore, we consider the (unnormalized) set of vectors (𝑀x)𝑖 . By linearity and the fact𝑀 is

row-stochastic, we still have ∥𝑃y (𝑀x)𝑖 ∥2 = ⟨y, (𝑀x)𝑖⟩ ≥ cos(Φ(x1, . . . , x𝑛)). On the other hand,

∥𝑃𝐻 (𝑀x)𝑖 ∥ = ∥𝜖𝑃𝐻 (x) + (1 − 𝜖)𝑃𝐻 x̃𝑖 ∥, (8)

where x = 1

𝑛

∑𝑛
𝑖=1 x𝑖 and x̃𝑖 is some arbitrary convex combination. We thus have by linearity

∥𝑃𝐻 x̃𝑖 ∥ ≤ sin(Φ(x1, . . . , x𝑛)). (9)

Moreover, again by linearity, 𝑃𝐻x = 1

𝑛

∑𝑛
𝑖=1 𝑃𝐻x𝑖 . Recall that by Lemma 3.8, 0 ∈ conv(𝑃𝐻x1, . . . , 𝑃𝐻x𝑛)

and therefore by scaling and applying Lemma 3.9 with z𝑖 = 𝑃𝐻x𝑖 ,

∥𝑃𝐻x∥2 ≤
(
1 − 1

𝑛

)
sin(Φ(x1, . . . , x𝑛)) . (10)

Putting it all together, we now have by monotonicity of the function tan(𝛼) on [0, 𝜋/2) and the

triangle inequality with Equations (8) to (10) that

tan

(
Φ(x′

1
, . . . , x′𝑛)

)
≤ max

𝑖∈[𝑛]

∥𝑃𝐻 (𝑀x)𝑖 ∥2
∥𝑃y (𝑀x)𝑖 ∥

≤
𝜖
(
1 − 1

𝑛

)
sin(Φ(x1, . . . , x𝑛)) + (1 − 𝜖) sin(Φ(x1, . . . , x𝑛))

cos(Φ(x1, . . . , x𝑛))
=

(
1 − 𝜖

𝑛

)
tan(Φ(x1, . . . , x𝑛)) .



We may assume that Φ(x1, . . . , x𝑛) < 𝜋/2 − 𝛿 for some small enough 𝛿 = 𝛿 (𝑛,𝑑) > 0 by the

assumption that x1, . . . , x𝑛 lie on one side of a hyperplane with margin 𝜆 = 𝜆(𝑛,𝑑) > 0. The

function tan(·) has derivative bounded between 1 and some constant depending on 𝑛,𝑑 on the

interval [0, 𝜋/2 − 𝛿] and thus by Lemma 3.12, the above geometric decay of tan ◦Φ implies that

Φ(x′
1
, . . . , x′𝑛) ≤ (1 − 𝑐) · Φ(x1, . . . , x𝑛) for some constant 𝑐 = 𝑐 (𝑛,𝑑,𝜼) > 0. □

Lemma 3.12. Let 𝑓 : [0, 𝑎] → [0, 𝑏] be a differentiable function such that 𝑓 (0) = 0 and 1 ≤ 𝑓 ′ ≤ 𝐾

for some constant 𝐾 . If 𝑓 (𝑥) ≤ (1 − 𝑐) 𝑓 (𝑦), then 𝑥 ≤ (1 − 𝑐 ′)𝑦 for 𝑐 ′ = 𝑐/2𝐾 .

Proof. Observe from the Mean Value Theorem, the assumption, and the fact 𝑓 (𝑦) ≥ 𝑓 (𝑥) ≥ 𝑥
from the derivative condition that

𝑦 − 𝑥 ≥ 𝑓 (𝑦) − 𝑓 (𝑥)
𝐾

≥ 𝑐 𝑓 (𝑦)
𝐾

≥ 𝑐𝑥

𝐾
.

It immediately follows that 𝑦 ≥
(
1 + 𝑐

𝐾

)
𝑥 . As (1+𝑧)−1 ≤ 1−𝑧/2 for 𝑧 ≤ 1, we obtain the claim. □

Finally, we can return to the proof of Theorem 3.6:

Proof of Theorem 3.6. By sign-invariance and Lemma 3.7, wemay assume that each component

of X0 = (X(1)
0
, . . . ,X(𝑛)

0
) lies strictly on one side of a hyperplane in R𝑑 with margin at least

𝜆 = 𝜆(𝑛,𝑑) > 0; this follows because we may sign the starting configuration arbitrarily, run

the dynamics, and then undo the signing by sign-invariance without affecting the polarization

properties of the dynamics. We now show that with some constant (independent of X0) probability,

the dynamics monotonically decrease Φ(X𝑡 ) to zero. Moreover, it is easy to see by the triangle

inequality that for any vectors x1, . . . , x𝑛 ,

Φ(x1, . . . , x𝑛) ≤ max

𝑖, 𝑗
∠(x𝑖 , x𝑗 ) ≤ 2Φ(x1, . . . , x𝑛). (11)

Therefore, Φ(X𝑡 ) → 0 implies the same of the maximum angle between components and thus

implies polarization.

Observe that if the dynamics do not split the vectors on any of the next 𝑛 iterations, Lemma 3.11

implies that Φ(X𝑛) ≤ (1 − 𝑐)Φ(X0) for some constant 𝑐 > 0 independent of X0. This occurs with

at least some nonzero constant probability 𝛿 (again, depending on 𝑛,𝑑,𝜼, but not on X0) by the

margin condition, Lemma 3.5, and the equivalence with the standard Haar measure.

Now, recall from Lemma 3.5 and a union bound that the probability that the dynamics split up

any given x1, . . . , x𝑛 that all lie strictly on one side of a hyperplane with is 𝑂 (max𝑖, 𝑗 ∠(x𝑖 , x𝑗 )) =
𝑂 (Φ(x1, . . . , x𝑛)) by Equation (11), where the implicit constant depends on 𝑛,𝑑 and the measure

of equivalence. The probability that the sequence Φ(X𝑡 ·𝑛) → 0 is at least the probability that

Φ(X(𝑡+1) ·𝑛) ≤ (1 − 𝑐)Φ(X𝑡 ·𝑛) for each 𝑡 ≥ 0. As we have shown that the probability that this fails

decays geometrically, it follows that this latter probability is at least

∞∏
𝑡=0

(
1 − Θ𝑛,𝑑,𝜼

(
(1 − 𝑐)𝑡

) )
> 𝑐 ′

for some constant 𝑐 ′ > 0 that does not depend on X0, where the inequality follows from the same

standard analysis argument as in Theorem 3.2. This immediately implies that strong polarization

holds with constant probability on the restriction of the sequence to each 𝑛 steps. To extend this to

the whole sequence, by inspecting the proof of Lemma 3.11, it is easy to see that if the vectors are

not split at some time 𝑡 + 1, then Φ(X𝑡+1) ≤ Φ(X𝑡 ) for every 𝑡 ≥ 0, not just on the subsequence

(though we may not have strict contraction). In particular, the event that the dynamics never split

up the vectors implies Φ(X𝑡 ) → 0, and this holds with constant nonzero probability depending on

just 𝑛,𝑑,𝜼. By Equation (11) and Theorem 3.1, we conclude the result. □



4 WEAK POLARIZATION AND MARKOV CHAINS
In the previous section, we showed that the strong polarization observed by HJMR extends to

nontrivial variants of geometric opinion dynamics. However, we caution that it is not generally true
that just any geometric opinion model, even one that is continuous and 𝑃-invariant, will strongly

polarize from an arbitrary configuration of starting opinions. As a trivial example, suppose that

the updates are such that they simply apply a common orthogonal transformation to each vector

at each time. This is clearly continuous and 𝑃-invariant, but obviously does not lead polarization

except in very pathological examples.

While these trivial examples show that strong polarization does not necessarily hold in such

models, it is natural to wonder if it is possible for other dynamics to satisfy other forms of polariza-

tion even if they do not satisfy strong polarization. In this section, we consider weaker forms of

polarization than the strong form from Definition 2.1 (restated as part (1) in the definition below):

Definition 4.1. LetX𝑡 := (X(1)
𝑡 , . . . ,X(𝑛)

𝑡 ) be a discrete-timeMarkov chain as given by Equation (1).

(1) X𝑡 strongly polarizes (from X0) if almost surely, 𝜌 (X𝑡 , 𝑃) → 0.

(2) X𝑡 weakly polarizes (from X0) if, for any fixed 𝜖 > 0, Pr(𝜌 (X𝑡 , 𝑃) ≥ 𝜖)
𝑡→∞→ 0.

(3) X𝑡 weakly polarizes on average (from X0) if, for any fixed 𝜖 > 0,

lim

𝑇→∞

E
[∑𝑇

𝑡=1 𝐼𝑃𝜖 (X𝑡 )
]

𝑇
= 1,

where 𝐼𝑃𝜖 is the indicator of the set 𝑃𝜖 ≜ {z ∈ (S𝑑−1)𝑛 : 𝜌 (z, 𝑃) ≤ 𝜖}.

It is not difficult to see that these forms of convergence are listed in decreasing order of strength:

Proposition 4.2. Strong polarization implies weak polarization, which in turn implies weak
polarization on average.

Proof. Suppose that X𝑡 strongly polarizes. Then by definition, for any fixed 𝜖 > 0, there exists

an almost surely finite (but random) 𝑇 such that for 𝑡 ≥ 𝑇 , 𝜌 (X𝑡 , 𝑃) < 𝜖 . For any fixed 𝛿 > 0, there

exists 𝐾 = 𝐾 (𝛿) large enough such that Pr(𝑇 ≥ 𝐾) < 𝛿 . It follows that for 𝑡 ≥ 𝐾 ,

Pr(𝜌 (X𝑡 , 𝑃) ≥ 𝜖) ≤ Pr(𝑇 ≥ 𝐾) < 𝛿.
As 𝛿 > 0 is arbitrary, it follows that the probability of being at least 𝜖-far from 𝑃 tends to zero. As

𝜖 > 0 is arbitrary, this gives weak polarization.

For the second implication, fix 𝛿 > 0 and let𝐾 be large enough so that for all 𝑡 ≥ 𝐾 , Pr(𝜌 (X𝑡 , 𝑃) ≥
𝜖/𝑛) ≤ 𝛿/2. Then for all 𝑇 ≥ 2𝐾/𝛿 ,

E
[∑𝑇

𝑡=1 𝐼𝑃𝜖 (X𝑡 )
]

𝑇
≥

∑𝑇
𝑡=1 Pr(𝜌 (X𝑡 , 𝑃) ≤ 𝜖/𝑛)

𝑇
≥ (1 − 𝛿/2) − 𝐾/𝑇 ≥ 1 − 𝛿.

As this holds for all large enough 𝑇 and 𝛿 was arbitrary, the claim follows. □

4.1 Polarization and Invariant Distributions
With these weaker forms of polarization, we now proceed to show their connection to the theory

of invariant distributions in general Markov chains. To begin, we will actually consider the simplest

case of 𝑛 = 1 agent, where clearly all forms of polarization are trivial.

Proposition 4.3. Consider 𝑛 = 1 agent updating opinions via dynamics that are continuous in the
current state, i.e. the function 𝑃S𝑑−1 (x + 𝑓1 (x, 𝜉)) is continuous in x ∈ S𝑑 for every fixed realization of
𝜉 . Then there exists an invariant distribution on S𝑑−1 for these dynamics.

Moreover, assume



(1) There exists some point y ∈ S𝑑−1 such that for any open neighborhood 𝑈 of y, and any choice
of starting point 𝑥 ∈ S𝑑−1 for the dynamics, there exists some 𝑡 = 𝑡 (x,𝑈 ) such that Prx (X(1)

𝑡 ∈
𝑈 ) > 0.

(2) The dynamics admit a continuous density with respect to the standard Haar measure on S𝑑−1,
i.e. distribution of X(1)

1
given X(1)

0
= x has a density with respect to standard Haar measure.

Then the above invariant distribution is unique.

Proof. From our continuity assumption, it follows that the dynamics are Feller, i.e. for any
continuous function ℎ : S𝑑−1 → S𝑑−1, the map from x to E[ℎ(x′)] where x′ takes one step of the

dynamics, remains continuous (Definition 2.36 of [16]). Because S𝑑−1 is compact and the dynamics

are Feller, it follows that there exists at least one invariant measure (Corollary 4.18 of [16]).

For the second part, the first additional assumption implies there exists an accessible point

y ∈ S𝑑−1, while the second implies that the dynamics satisfy the strong Feller property (Definition

2.5 of [17]), i.e. the transition operator maps bounded measurable functions to continuous functions.

From Corollary 2.7 of [17], this implies that the dynamics have a unique invariant distribution. □

We now consider invariant distributions on the joint opinion vector and then compare to the

above results.

Proposition 4.4. Consider 𝑛 ≥ 1 agents updating opinions, and suppose the dynamics are jointly
continuous for every fixed realization of 𝜉 . Then there exists an invariant distribution for the vector
(X(1) , . . . ,X(𝑛) ) under these dynamics. Moreover, if the dynamics preserve 𝜎 (𝐷) for each 𝜎 ∈ {−1, 1}𝑛 ,
there exists such a distribution supported in 𝝈 (𝐷) for every 𝝈 ∈ {−1, 1}𝑛 .
If the dynamics are oblivious and satisfy the stronger assumptions of the previous proposition

componentwise, then the 𝑖th marginal distribution of every such invariant distribution is unique.

Proof. The first part is identical to the proof of Proposition 4.3 using the Feller property. The

second claim holds from the assumed invariance of 𝝈 (𝐷) and noting that the same argument

holds when restricting to this invariant, compact set. The last claim follows from the obliviousness,

as then the restriction of any invariant distribution to any component must yield an invariant

distribution of the 𝑛 = 1 dynamics. This distribution is unique from Proposition 4.3. □

Remark 4.1. Note that by Proposition 4.3, it is not true that there exists a unique invariant dis-
tribution for 𝑛 > 1 agents for most natural dynamics. The failure of the uniqueness of the invariant
distribution arises because the joint dynamics typically will not have either accessible points nor satisfy
the strong Feller property, as the set of possible updated values forms a lower-dimensional subset of∏𝑛
𝑖=1 S

𝑑−1 and so cannot admit a density.

With these results in hand, we can finally turn to the connection with polarization, which a
priori is a statement about whether dynamics starting at arbitrary points converge to the polarized

set in some suitable sense. The connection is the following:

Theorem 4.5. Suppose that every invariant distribution of the joint dynamics with continuous
updates has support contained in 𝑃 . Then X𝑡 weakly polarizes on average from any choice of starting
vectors.

Proof. The proof of this result is implicit in the proof of the Krylov-Bogolubov theorem (Theorem

4.17 of [16]). Fix any choice X0 of starting vectors for the joint dynamics. Define the family of

probability measures for𝑇 = 1, 2, . . . by𝑄𝑇 (𝐴) := 1

𝑇

∑𝑇−1
𝑡=0 Pr(X𝑡 ∈ 𝐴). Then because the state space

is compact, Prokhorov’s Theorem (Theorem 4.15 of [16]) asserts that this sequence of measures

contains a weakly convergent subsequence 𝑄𝑇𝑘 for 𝑘 = 1, . . ., with weak limit we denote 𝜇∗;



moreover, from the proof of the Krylov-Bogolubov theorem and the fact that we assumed the

dynamics are Feller, 𝜇∗ is invariant.
Now, by our assumption, every invariant measure for these dyamics is concentrated on 𝑃 . For

any fixed 𝜖 > 0, let 𝑃𝜖 be as defined above. Because 𝜇
∗
is supported on 𝑃 by assumption, 𝜇∗ (𝜕𝑃𝜖 ) = 0,

where 𝜕𝐴 denotes the boundary of a set 𝐴. Recall that weak convergence of measures is equivalent

to convergence on all continuity sets 𝐴 that satisfy 𝜇∗ (𝜕𝐴) = 0. It follows immediately that

𝑄𝑇𝑘 (𝑃𝜖 ) =
∑𝑇𝑘−1
𝑡=0

Pr(X𝑡 ∈ 𝑃𝜖 )
𝑇𝑘

→ 𝜇∗ (𝑃𝜖 ) = 1.

Moreover, this same argument holds for any subsequence of {𝑄𝑇 }∞𝑇=0, possibly with a different

invariant measure which is nonetheless supported on 𝑃 by assumption. In particular, for any subse-

quence of the scalar sequence {𝑄𝑇 (𝑃𝜖 )}∞𝑇=1, there exists a further subsequence which converges to 1.
From standard analysis, any sequence such that every subsequence contains a further subsequence

that converges to a fixed number 𝑐 must itself converge to 𝑐 . Therefore, it follows that𝑄𝑇 (𝑃𝜖 ) → 1,

which by linearity of expectation is the statement of weak polarization on average. □

The converse always holds even when the dynamics are not continuous (though we do need to

assume that there exists some invariant distribution).

Theorem 4.6. Suppose that under the geometric opinion dynamics, there exists an invariant distri-
bution 𝜇∗ that puts nontrivial mass on the set of nonpolarized vectors, i.e. 𝜇∗ (𝑃𝑐 ) > 0. Then the opinion
dynamics do not weakly converge on average. In particular, if the dynamics are continuous, then the
dynamics weakly polarize on average if and only if every invariant distribution is supported on 𝑃 .

Proof. The assumption and taking limits for 𝜖 → 0 with continuity of measure implies that

there exists some 𝜖 > 0 such that 𝜇∗ (𝑃𝑐𝜖 ) > 0. By invariance, this means that for every 𝑡 ≥ 0,

PrX0∼𝜇∗ (X𝑡 ∈ 𝑃𝜖 ) = 𝜇∗ (𝑃𝑐𝜖 ) > 0, which trivially implies that for every 𝑇 ≥ 0,

EX0∼𝜇∗

[
E

[∑𝑇−1
𝑡=0 𝐼𝑃𝜖

𝑇

] ]
= 1 − 𝜇∗ (𝑃𝑐𝜖 ),

where the inner expectation is over the sequence of random vectors {𝜉𝑡 }𝑇𝑡=1. By Fatou’s lemma,

EX0∼𝜇∗

[
lim inf

𝑇→∞
E

[∑𝑇−1
𝑡=0 𝐼𝑃𝜖

𝑇

] ]
≤ lim inf

𝑇→∞
EX0∼𝜇∗

[
E

[∑𝑇−1
𝑡=0 𝐼𝑃𝜖

𝑇

] ]
= 1 − 𝜇∗ (𝑃𝑐𝜖 ).

This implies that there exists some fixed X0 ∈
∏𝑛
𝑖=1 S

𝑑−1
such that

lim inf

𝑇→∞
E

[∑𝑇−1
𝑡=0 𝐼𝑃𝜖

𝑇

]
≤ 1 − 𝜇∗ (𝑃𝑐𝜖 ) < 1,

when the process is started at X0. By definition, it follows that the process does not weakly polarize

on average with this choice of starting vector. The last claim then follows from combining the

above with Theorem 4.5. □

As an application, HJMR proved that for 𝑑 = 2 and 𝜉𝑡 is uniform on the unit circle, every finite

set of vectors strongly polarizes. By Proposition 4.2, this implies weak polarization on average.

Because their dynamics are oblivious, admit a density for each single agent system, and every point

is accessible, the unique invariant measure for the dynamics of a single agent is clearly uniform.

Theorem 4.6 shows that every invariant measure on the joint system must be supported on 𝑃 .

To summarize, under very natural conditions, these geometric dynamics have invariant distribu-

tions in 𝑃 , essentially by 𝑃-invariance of the dynamics. In the oblivious case, the projections of any



invariant distribution on each component will be unique under natural regularity assumptions and

the only ambiguity is in how these distributions are coupled together. If one can show that these

𝑃-invariant measures are the only such measures, or contrapositively that no invariant measure

can put nontrivial mass on the complement of 𝑃 , then the previous result immediately supplies

weak polarization on average.

4.2 HJMR Model and Weak Polarization
Given the results in the previous sections, it is perhaps tempting to believe that under some

necessary form of irreducibility, strong polarization will arise. In this section, we exhibit a model

where weak polarization on restricted subsets of initial configurations holds, but strong polarization

provably does not. We do so in a very simple version of the original HJMR model by showing how

the dynamics in this case relate to basic properties of simple random walks in Z and more generally,

infinite balls-in-bins processes.

In this section, we will consider the HJMR dynamics where the update vector is drawn uniformly

from a complete orthonormal set of basis vectors in R𝑑 ; because the HJMR dynamics commute

with orthogonal transformations, we will assume that these are the standard basis vectors. Towards

showing that weak, but not strong, polarization holds, we need the following simple calculation

showing that the random updates in this process are commutative, greatly simplifying updating.

Lemma 4.7. Let v ∈ S𝑑−1 be an arbitrary starting vector. Then for any sequence 𝜉1, . . . , 𝜉𝑇 of
update vectors drawn from {e1, . . . , e𝑑 }, the vector z obtained after 𝑇 steps of the dynamics given by
Equation (2) and starting at v satisfies

z ∝
(
(1 + 𝜂)𝑁

(1)
𝑇 𝑣1, . . . , (1 + 𝜂)𝑁

(𝑑 )
𝑇 𝑣𝑑 )

)
,

where 𝑁 (𝑖)
𝑇

is the number of times 𝜉𝑡 = e𝑖 up to time 𝑇 .
In particular, with orthonormal update vectors, the vector obtained after 𝑇 steps of the dynamics

depends only on the multiset {𝜉1, . . . , 𝜉𝑇 } and not on the order they arrive.

Proof. Observe that the functional form of the update rule in Equation (2) is homogeneous in

the starting vector in that scaling the starting vector leads to the same update. As a consequence,

one can perform the dynamics as stated by renormalizing after every step, or by applying the

update rule without renormalizing until the end.

As a result of this observation, it suffices to show that for any vector v ∈ R𝑑 \ {0}, the effect of
applying the update vector 𝜉 = e𝑖 is proportional to (𝑣1, . . . , (1+𝜂)𝑣𝑖 , . . . , 𝑣𝑑 ). This is sufficient as then

we may iterate these updates without renormalizing until the only the end of the 𝑇 unnormalized

updates to deduce commutativity. This is now immediate to see from Equation (2). □

Notice that the vector (𝑁 (1)
𝑡 , . . . , 𝑁

(𝑑)
𝑡 ) is precisely a balls-in-bins process with 𝑑 bins and 𝑡 balls.

The identity of Lemma 4.7 shows that to understand the behavior of the process with orthonormal

update vectors, we need to understand the sample path properties of an infinite balls-in-bins process.

This is done in the following lemma:

Lemma 4.8. Consider an infinite balls-in-bins process with 𝑑 labeled bins {1, . . . , 𝑑}. Let 𝑁 (𝑖)
𝑡 denote

the number of balls in bin 𝑖 at time 𝑡 . Then almost surely, the following holds:

(1) For each fixed 𝑖 ∈ [𝑑], 𝑁 (𝑖)
𝑡 = max𝑗 ∈[𝑑 ] 𝑁

( 𝑗)
𝑡 for infinitely many 𝑡 .

(2) For each fixed 𝑖, 𝑗 ∈ [𝑑], 𝑁 (𝑖)
𝑡 = 𝑁

( 𝑗)
𝑡 = max𝑘∈[𝑑 ] 𝑁

(𝑘)
𝑡 for infinitely many 𝑡 .

Proof. Recall from the Hewitt-Savage zero-one law that any event depending on a sequence of

i.i.d. random variables that is invariant under finite permutations has probability 0 or 1 (Theorem



2.5.4 of [9]). The first listed event evidently has this property. Clearly by the pigeonhole principle,

there surely exists a (random) index 𝑖∗ ∈ [𝑑] that is infinitely often the largest, and so by symmetry,

the probability that any fixed 𝑖 ∈ [𝑑] has this property is at least 1/𝑑 by a union bound. The

Hewitt-Savage zero-one law then implies that the probability is one.

For the second claim, note that the previous claim and the fact that each 𝑁
(𝑖)
𝑡 is nondecreasing

in time and changes by at most one in each round implies that infinitely often, there must be at

least two indices of bins that are at least as large as the rest (if not, then with positive probability a

single index is the unique largest element for all but finitely many times). Again by the pigeonhole

principle and symmetry, each fixed pair (𝑖, 𝑗) has probability at least

(
𝑑
2

)−1
of having this property,

hence by the Hewitt-Savage zero-one law has probability one. □

Lemma 4.9. Consider an infinite balls-in-bins process with 𝑑 labeled bins {1, . . . , 𝑑}. Let 𝑁 (𝑖)
𝑡 denote

the number of balls in bin 𝑖 at time 𝑡 . Then for any fixed constant 𝐾 ∈ N, the probability that there
exists two bins 𝑖 ≠ 𝑗 such that |𝑁 (𝑖)

𝑡 − 𝑁 ( 𝑗)
𝑡 | ≤ 𝐾 is 𝑂 (1/

√
𝑡), where the implicit constant depends on

𝐾,𝑑 , but not 𝑡 .

Proof. Observe that the distribution of 𝑁
(𝑖)
𝑡 − 𝑁 ( 𝑗)

𝑡 for any fixed 𝑖 ≠ 𝑗 is equal to that of a lazy,

simple random walk on Z that updates with probability 2/𝑑 . It is well-known (for instance, by the

central limit theorem or Littlewood-Offord lemma) that for non-lazy simple random walks on Z, the

probability that the walk has magnitude at most some fixed constant 𝐾 at time 𝑡 is 𝑂

(
1√
𝑡

)
, where

the implicit constant depends on 𝐾 . To account for laziness, note that with all but exponentially

small probability, the number of updates to the 𝑖 or 𝑗th bin at time 𝑡 will exceed, say, 𝑡/𝑑 . We can

then apply the result for non-lazy simple random walks and absorb the error term, just changing

the implicit constant to depend on 𝑑 as well to account for the smaller number of steps. We may

then apply a union bound over such pairs. □

We can now turn to a full analysis of the polarization behavior of this system.

Theorem 4.10. Consider the HJMR dynamics in S𝑑−1 given by Equation (2), where 𝜉𝑡 is drawn i.i.d.
and uniformly from {e1, . . . , e𝑑 }. Let X0 = (X(1)

0
,X(2)

0
) ∈ (S𝑑−1)2 be such that the two vectors have

equal supports but are not equal up to sign. Then:
(1) The vector X𝑡 weakly polarizes.
(2) With probability 1, ∥X(1)

𝑡 − X(2)
𝑡 ∥2 ̸→ 0, 2. In particular, no nontrivial pair of starting vectors

polarizes with nonzero probability.

Remark 4.2. If the distribution of random updates is not uniform, but instead has strictly unequal
probabilities associated to each basis vector, then it is easy to amend the argument to show that now
strong polarization holds between any two starting vectors with the same support, simply because
both vectors will get concentrated about the basis vector in their support with the largest probability.
Moreover, note that there do exist invariant distributions in this system, considered as

∏𝑛
𝑖=1 S

𝑑−1,
that are not supported on 𝑃 . However, this does not contradict Theorem 4.6 because Theorem 4.10 only
applies to vectors with equal supports, a full measure set.

Proof of Theorem 4.10. Let X0 = (X(1)
0
,X(2)

0
) ∈ (S𝑑−1)2 be as stated. Recall that to show weak

polarization, we must show that for any fixed 𝜖 > 0,

Pr

(
∥X(1)

𝑡 − X(2)
𝑡 ∥2 ∧ ∥X(1)

𝑡 + X(2)
𝑡 ∥2 > 𝜖

)
= 𝑜 (1).

Recall that from Lemma 4.7, the (unnormalized) 𝑖th component of each vector is amplified multi-

plicatively by a factor of (1 + 𝜂)𝑁
(𝑖 )
𝑡 before renormalization. From this, it is easy to see that for any



fixed X0 and 𝜖 > 0, there exists some finite 𝐾 = 𝐾 (X0, 𝜖) ∈ N such that if 𝑁
(𝑖)
𝑡 ≥ 𝑁

( 𝑗)
𝑡 +𝐾 for some

𝑖 ∈ [𝑑] and all 𝑗 ≠ 𝑖 , then both components of X𝑡 are individually 𝜖/2-close to ±e𝑖 . By the triangle

inequality, it would then follow that X𝑡 satisfies ∥X(1)
𝑡 − X(2)

𝑡 ∥2 ∧ ∥X(1)
𝑡 + X(2)

𝑡 ∥2 ≤ 𝜖 . Applying

Lemma 4.9 with this value of 𝐾 , we see that the probability of this event is 1 −𝑂
(

1√
𝑡

)
, where the

constant depends only on 𝐾,𝑑 and hence tends to 1 with 𝑡 as needed. As 𝜖 > 0 was arbitrary, this

proves the first claim.

For the second, we rely on the other properties we have already shown of the infinite balls-in-bins

process. By assumption, as X(1)
0

and X(2)
0

are not equal up to sign, there exists a pair of indices such

that the vectors restricted to these indices are not equal up to a constant. Without loss of generality,

we assume that these indices are 1, 2. By Lemma 4.8, there almost surely exist infinitely many times

𝑡 such that 𝑁
(1)
𝑡 = 𝑁

(2)
𝑡 = max𝑘∈[𝑑 ] 𝑁

(𝑘)
𝑡 . By the unnormalized form of the directions at each such

time 𝑡 given by Lemma 4.7, it follows that at each such time, the first and second components of

each vector remain proportional to their value at the beginning of this process but are now scaled

by a factor that is at least 1 after normalization. In particular, at each such time 𝑡 where this holds,

the distance between X(1)
𝑡 and X(2)

𝑡 exceeds some strictly positive constant. Because this occurs

infinitely often almost surely, the claim follows. □

5 CONCLUSIONS
In this paper, we have attempted to more closely study the polarization phenomenon that arises

in geometric models as considered by HJMR. We introduce different forms of polarization and

consider how these relate to more general Markov principles. Finally, we consider these various

forms of polarization in concrete models to extend the class of natural dynamics that exhibit this

property. We hope that some of the techniques we introduce here to complement the original

results of HJMR prove useful in understanding the probabilistic properties of these models.

However, the most general version of this question remains open: are there very general, easily
verified, conditions on the update rule that ensures that some form of polarization arises (perhaps

under some sort of irreducibility assumption)? Are there other interesting models of geometric

opinion formation under which strong polarization holds? Understanding which sorts of dynamics

lead to polarization, and also a better sense of why, may shed significant insight into the theoretical

underpinnings of this phenomenon.
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