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Comparative maps are a powerful tool for aggregating genetic information
about related organisms, for inferring phylogenetic relationships, and for examining
hypotheses about the evolution of gene families and the functional significance of
orthologous genes. Construction of any genetic map is laborious, but compiling
comparative maps across multiple species requires a large investment of manual
effort on the part of biologists. In this paper we present efficient algorithms that
help in automating this effort and offer an explicit set of principles on which to
base the construction of such maps. We compare the results of three approaches:
manual expert analysis, a simple linear algorithm, and a more complex stack-based
algorithm. All three methods produce remarkably similar results, with the stack

algorithm more closely approximating the manual expert analysis.

1 Background

Comparative mapping. Comparative mapping is based on the principle that
the order of homologous genes along the chromosomes of different eukaryotic
species is often conserved both within and between families. Conservation of
gene order (synteny) in defined chromosomal regions of different species suggests
that those chromosomal segments are likely to be derived from a common ances-
tral linkage group (i.e. that the segments are homeologous). The construction of
comparative maps between the genomes of different species using a common set
of gene probes allows us to exploit the collective research accumulated for each
of the species under consideration, and it suggests hypotheses about the origin
and phylogenetic relationships among species as well as fundamental principles of
genome evolution.

Comparative maps allow us to use structural and functional information about
one genome to make predictions about another genome. In particular, these maps
aid in the efficient localization of genes of interest and contribute to the isolation
and characterization of those genes. The isolation of genes from organisms with



large genomes and/or low or uneven levels of recombination along the chromo-
somes may be facilitated by first isolating a homologous gene in a well character-
ized genome. In particular, for plant species, we would like to localize, clone, and
characterize genes controlling functions such as predisposition to diseases, crop
yield potential, nutritional quality, and response to environmental stress, includ-
ing pollutants or toxins. Comparative maps also offer opportunities to gain new
insights into the evolution of multi-gene families, the interaction of specific genes
in complex metabolic and physiological pathways, and the distinctive nature of
certain developmental patterns and adaptations that have occurred in individual
taxa over the course of evolution.

Rice and Maize. The rice genome provides a good basis for comparative map-
ping efforts because it has a small, diploid genome (approximately 430 Mb [2])
with relatively few internal duplications, well-developed genetic maps (containing
about 3000 RFLP, SSLP, and morphological markers), a physical map covering
more than 80% of the genome, and an international initiative to sequence the en-
tire genome [20, 36]. The maize genome offers a marked contrast to rice, with a
genome size six times larger (approximately 2600 Mb [2], or nearly the same size
as the human genome), a high proportion (60-80%) of rapidly evolving repetitive
DNA, and a recent polyploidization event (followed by a subsequent return to
disomic inheritance) resulting in global gene duplication. Because of its genome
complexity, there is little chance that maize will be fully sequenced soon, and it
stands to benefit from comparative studies with maps of other grass species hav-
ing less complex genomes, such as rice. The numerous, well-characterized mutants
available in maize, in addition to its well-developed molecular map, are invaluable
for the characterization of plant gene function and plant development, so rice may
also benefit from rice-maize comparative map studies.

Based on the use of homologous gene probes (cDNA markers which hybridize
to both the rice and maize genomes (see [1, 51])), conserved linkage segments can
be defined in rice and maize. Most of these homeologous segments are duplicated
within the maize genome, reflecting the polyploidization event that distinguishes
the maize lineage. The extensive segmental similarity of the genomes coupled
with the complexity offered by the recent polyploidization event make the rice-
maize comparative map an excellent starting point for the development of a robust
algorithmic model that can handle the complications that arise in comparative
mapping studies.

Related work on comparative mapping and genome comparison. In
order to construct a comparative map, one must first decide how homeologous
portions of different genomes will be identified and defined. This can be done
in several fundamentally different ways. One way is to hybridize a portion of
one genome (e.g. a chromosome) with the entirety of another genome, as can
be accomplished via chromosome painting using FISH (see, for example, [3, 50]).
Another possibility is to identify orthologous loci using conserved genes, RFLPs,
or microsatellite markers which can be reciprocally mapped onto the genomes of



multiple organisms. This has been done for many groups of plants and animals.
Using both of these approaches, many comparative maps have been constructed
by biologists; for example, see work on Solanaceae [25, 43|, Brassica [23], grasses
[1,9, 12,47, 51], rat-mouse-human [41], dog-human [6], cat-human [29], and mouse-
human [10], as well as more general reviews of comparative studies of mammals
[8, 15, 32, 33]. In all of these studies, it has become apparent that some lin-
eages are marked by a slow rate of chromosomal evolution, with few breakpoints
and minimal rearrangements while other lineages show evidence of a more rapid
rate of evolutionary change, marked by global reorganization and consequently,
much smaller regions of synteny. In the case of prokaryotes, Koonin and Galperin
comment that although protein sequences are frequently conserved, there is lit-
tle conservation of genome organization [21]. This illustrates that very different
mechanisms of genome evolution operate in eukaryotic and prokaryotic genomes.

As the resolution of comparative mapping improves, smaller regions of syn-
teny can be increasingly recognized. Increased marker density makes it possible to
document chromosomal relationships among rapidly evolving genomes and among
ever more distantly related organisms. It also provides insights into the mecha-
nisms that drive genome evolution in both rapidly changing and highly conserved
genomes. Chromosomal evolution is marked by duplication, deletion, fusion, fis-
sion, translocation, transposition, and inversion events. In some eukaryotes, there
can be extensive genome rearrangements [23, 42] that add significantly to the dif-
ficulty of constructing and interpreting comparative maps. With this in mind,
we have attempted to construct algorithms that are general enough to be widely
applicable in a variety of situations.

It is beneficial to consider the genomes of more than two organisms when
building a comparative map. Although in this work we will develop algorithms that
work on pairs of genomes, it is helpful to begin with a model system where there are
many related comparative maps defined by experts. The grass family is indeed
such a system. In addition to the maize-rice maps, there are also comparative
maps for millet-rice [13], saccharum-sorghum [26], sorghum-maize [34], rice-wheat
[22], rice-triticeae-oat [44], wheat against rice, maize and oat [45], and oat against
wheat, rice, and maize [46]. There is also a low resolution map which puts grass
species on a single circular comparative map [12, 27].

Work in the area of discrete algorithms has developed methods for inferring evo-
lutionary “distance” between genomes, based on finding parsimonious sequences
of genome rearrangements — such analysis typically asks, What is the minimum
number of rearrangement events needed to convert one given genome into an-
other? One can view this as a generalization of the standard edit distance used
for sequence alignment [16, 49], viewed at the scale of whole genomes and allow-
ing highly non-local transformations [37, 38]. For surveys on this approach, see
Pevzner and Waterman [35], Hannenhalli [17], and Nadeau and Sankoff [31]. An
algorithmic approach in a different spirit can be found in Sankoff, Ferretti, and
Nadeau [39]; the authors describe rules for identifying corresponding regions in
two genomes, without explicitly trying to minimize the length of a sequence of
genome rearrangements. This is much more closely related to our approach here,



and we compare our work with that of [39] below.

2 The Chromosome Labeling Problem

From a computational point of view, comparative mapping involves a spectrum
of activities centered around modeling the evolutionary relationships between
genomes of different species. When dealing with a pair of species, as we will
do here, some of the basic concerns are

(i) identifying a large number of loci on the two genomes that can be put into cor-
respondence, through markers that can be comparatively mapped to locations
in both genomes;

(ii) inferring larger segments in the two genomes exhibiting extensive homeology;
and

(iii) hypothesizing a sequence of evolutionary events by which the two species have
diverged from a common ancestor.

Note that these activities build on each other in order; (ii) makes use of the
data from (i), and higher-level results as in (iii) can be expressed in terms of the
homeologous segments found in (ii).

This hierarchy of issues can be seen in the comparative analysis of rice and
maize performed by Wilson et al. [51], the initial point of departure for our work
here. In [51], a large collection of loci comparatively mapped between rice and
maize was used to define a relatively small collection of homeologous segments;
and it was from the structure of these segments that hypotheses could be made
about the genomes of ancestral grass species. Consider Figure 2, a schematic
representation of data collected by Wilson et al. for maize chromosomes 1 and 6.!
In parentheses following each marker name is the rice linkage group in which a
corresponding marker is found — a linkage group in the present context is specified
by a rice chromosome number 1-12, and the symbol ‘L’ or ‘S’ to indicate the long
or short arm of the chromosome. To the left of each list of markers is a labeling
of the maize chromosome defined by Wilson et al.: it partitions (most of) each
maize chromosome into a small number of segments defined by a preponderance
of markers homologous to one arm of a single chromosome in rice, labeling this
maize segment with the appropriate rice chromosome arm.

The following principles underly the construction of this labeling. First, it
should represent a high-level global view of the relationships between the rice and
maize chromosomes; in other words, there should be relatively few distinct seg-
ments in the labeling, so that a large volume of marker data can be distilled into
a concise representation from which further hypotheses can be made at a global

LOur representation here differs from that of [51] in the following ways: we list only markers
that were comparatively mapped in rice; we do not indicate distance between markers on the
chromosomes; and for certain subsets of the markers whose relative orders could not be resolved
(in other words, they were at distance 0 from each other), we have fixed a linear order according
to the most statistically probable linkage relationships.



level. Second, consistent with providing a representation at a global scale of res-
olution, the labeling need not “explain” the presence of every marker. While
maize contains, on average, twice as many copies of each locus as does rice (due
to the global polyploidization event that gave rise to the modern maize lineage),
local gene duplication and transposition events in both genomes have resulted in
a situation where it is frequently impossible to distinguish which copy is the true
ortholog. Thus, cDNAs mapping to positions that do not conform to predicted
synteny relationships are allowed in a global labeling, and positively identified as
small deviations. The rationale for this is that gene markers that are “out-of-
place” at the level of resolution of the current map provide potentially valuable
information as “seeds” for future, higher resolution mapping studies where addi-
tional information may provide the missing links necessary to identify new, smaller
regions of homeology.

Here is a simple, if not entirely apposite, analogy for this approach to labeling.
If we consider the partition of the earth’s surface into continents and oceans (a
type of labeling), the representation at a global scale of resolution may not seek
to model the fact that small bodies of water (lakes) are contained in the large
land masses, and small patches of land (islands) are contained in the large water
masses. Such a high-level representation is valuable for reasoning at this scale;
in order to consider finer scales, one must take these more detailed features into
account.

The Present Work: A Computational Approach. The construction of
global chromosome labelings as in Figure 2 has essentially been a manual pro-
cess, performed by domain experts using underlying knowledge about the species
being compared. In this work, we model chromosome labeling as a computational
problem; we ask: Is there a simple algorithmic rule that can generate labelings
similar to those built by hand in Figure 2?7 Such an algorithm would not only
be useful in automating the process of constructing such labelings; it would also
be useful for making explicit the assumptions that underly such labelings, so that
we can reason about their consequences more directly. Further it would provide a
rational basis for moving to higher-level comparisons in the future — for example,
the comparison of different pairwise comparative maps to each other, particularly
maps constructed independently by different research groups.

Note that while we wish to model chromosome labeling computationally, it is
not, a priori a precisely defined computational problem. Indeed, our goal will be
to design an underlying model together with efficient algorithms for producing
labelings. In this way, we can bring a formal problem definition to bear on issue
(ii) in the hierarchy of problems above, much the way that the formalization of
genome rearrangement problems brought a mathematical concreteness to issue
(iii). Guided by the motivation above, we favor simpler models and algorithms,
with few tunable parameters, as these impart a greater conceptual robustness to
the labelings obtained.

To discuss these issues more concretely, we settle on the following general
terminology. We begin with two genomes, the base and the target. We wish to



label segments of the target using names of linkage groups from the base. In our
case, maize is the target, and the labels will be the chromosome arms of rice.
(Thus, we consider a set of 24 labels: the long and short arm of each of the 12 rice
chromosomes.) A consequence of using this coarse-grained set of labels is that we
do not address the question of whether relative order has been preserved in the
segments being labeled. This is based on the assumption that a significant cluster
of markers in the target genome which all belong to the same linkage group in the
base genome provides strong evidence of significant synteny. Our approach does
not, seek to identify inversions or other intrachromosomal rearrangements, leaving
this to a more fine-grained level of resolution.

A simplification in our model is that the markers on the target chromosome
are assumed to be fully and correctly ordered. This will not be strictly the case
in practice, since it may be impossible to distinguish the order of nearby markers
with a finite mapping population, and such markers will be mapped to the same
location. For other markers, the order inferred through mapping experiments may
be in error. Nevertheless, it is possible for us to obtain an order that represents a
good approximation to a correct, total ordering; we leave more detailed concerns
about this issue for future work.

The construction of chromosome labelings is a natural setting in which to
formalize the trade-off between parsimony and accuracy. We seek to partition
each chromosome in the target genome into a sequence of contiguous segments,
each with a given label. We seek to do this in a way that minimizes a penalty
function consisting of the following two types of terms:

(a) A penalty that increases with the number of segments we use in the partition.
(A larger number of segments constitutes a less parsimonious labeling.)

(b) A penalty for each marker that does not belong to the linkage group used to
label its segment. (Such “out-of-place” markers are not well explained by the
labeling.)

In effect, such a model seeks to interpolate between the following two extremes: a
labeling consisting of a single segment (which minimizes penalties of type (a), but
incurs a lot of penalty of type (b)), and a labeling in which each marker belongs to
its own segment (which can minimize penalty terms (b), but incurs a large penalty
of type (a)). Moreover, our basic models will turn out to have a single parameter,
essentially the relative values of the penalty terms of types (a) and (b).

We introduce the models and algorithms formally in the next two sections. We
begin with a simple linear model that can be viewed as a type of hidden Markov
model. (See e.g. [14] for an overview of hidden Markov models and some of their
applications.) This approach turns out to have some shortcomings — in effect, it
is too “local” in its behavior — and we modify it to a stack-based model, in which
the penalty terms of type (a) are derived from a stack-like relation among the
segments in the partition. We find that our stack model produces labelings that
closely correspond to those of Wilson et al.; the reader can see an example of this
for maize chromosomes 1 and 6 in Figure 3, and we discuss the comparison among
the methods in the final sections of the paper. This transition from local Markov



models to stack-based models for the purpose of capturing long-range dependencies
has a long history of analogues in the study of programming languages and natural
language [7, 19]

Thus we see that the chromosome labeling problem addresses issues that lie nat-
urally between the low-level identification of corresponding loci between genomes,
and the bulk of the algorithmic work on finding short sequences of genome rear-
rangements to explain evolutionary divergence. The work of Sankoff, Ferretti, and
Nadeau on conserved segment identification [39] can be viewed as proceeding from
similar motivation, and addressing a similar type of issue in comparative mapping:
given a pair of genomes, they wish to find corresponding pairs of conserved regions
that show a high degree of synteny. (See also [30].) There are several fundamental
differences between their work and ours. First, they seek a model that “explains”
the presence of every marker; to keep the number of regions small despite this,
they allow for regions to be non-contiguous. Second, while they formulate their
problem in terms of a penalty function to be minimized, their function is more
complex: it contains three tunable parameters (capturing the extents to which
each region is short, dense, and not interrupted by other regions), and it is not
known how to efficiently find the optimal partition under this function. In con-
trast, the objective functions underlying our models can be solved to optimality
by efficient algorithms.

3 The Linear Model

Our most basic model is a direct adaption of the principles discussed above. We fix
a chromosome in the target genome, and let M = (1,2, ..., n) denote the sequence
of markers in order on this chromosome. For each marker i, we assume it has been
comparatively mapped to a single linkage group ¢; in the base genome. (Markers
that have not been comparatively mapped in the base genome are not informative
for our purposes; below, we will mention an extension to markers with more than
one associated linkage group in the base genome.) The label set L consists of all
linkage groups in the base genome; let k£ denote the number of labels in L. We
define a simple comparison function 4(-,-) on pairs of labels as follows: §(a,b) =0
if a =b; and §(a,b) =1 if a #b.

A labeling of the chromosome is a function f : M — L; in other words, it
assigns a label to each marker. We encode penalties of types (a) and (b) from the
previous section as follows. For a constant s, we impose a penalty of s for each
consecutive pair of markers ¢ and i+ 1 such that f(i) # f(i+1); this is a boundary
between adjacent segments, and we are charged a segment opening penalty of s for
introducing the new segment. For a constant m, we impose a penalty of m for
each marker i such that f(7) # ¢;; this is a marker that is not “explained” by the
labeling f. The sum of all these penalties defines the objective function; formally,
we can write it as

QUf) =s({i: f() # fE+1)}) +m([{i: f(1) # G3)-



For our objective function to yield meaningful labelings, we must have 0 < m < s;
indeed, we may assume with no loss of generality that m = 1, so that s (or, more
properly, the ratio s/m) is the single parameter of the model.

We now describe an efficient algorithm, based on dynamic programming, that
computes a labeling f of minimum total penalty. For any value of ¢ between 1
and n, and any a € L, we let S[i, a] denote the optimal (minimum) penalty of a
labeling of the prefix of M of length ¢ which ends in label a, and let f7, be such
an optimal labeling. Now, let f’ denote the labeling of the first 7 —1 markers in

* . 1% (and hence f) assigns some label b to marker i—1, where possibly b = a;
if /7 does not have penalty S[i—1, b], we could replace it with a better labeling of
the first ¢—1 markers ending in b, resulting in a labeling better than f;,. But this
is not possible, so f’ achieves the penalty S[i — 1, b].

This justifies the following recurrence relation.

Sli,al =m-6(4;i,a) + rbréiil(S[ifl,b] + s-4(b,a))

Beginning with the initialization S[0, a] = 0 for each label a, we can build up the
values S[i, a] in order of increasing i.

We can then determine an optimal labeling for all of M: it is one that achieves
the minimum value of S[n, a], over all labels a € L. The recurrence takes O(k)
time to invoke for each value of SJ-,-]; and there are kn such values to compute.
Thus the total running time is O(k?n). Since we view the label set as having fixed
constant size, this is a running time linear in the number of markers.

4 The Stack Model

We now describe a more sophisticated model that provides labelings on rice-maize
data closer to that of Wilson et al. [51]; it is designed to take into account certain
long-range correlations in the sequence, and in the process corrects some counter-
intuitive behavior exhibited by the linear model.

To begin with, we consider an informative example, an instance of the labeling
problem in which s = 2t, for a number ¢, and M is a sequence of markers of length
9t. For three distinct labels a, b, and ¢, the first 3t markers in M have ¢; = «;
the next 3t have ¢; = b; and the final 3¢ have ¢; = ¢. Then one can check that
the unique optimal solution under the linear model is the obvious labeling that
produces three segments labeled a, b, and c¢. Now consider the same instance,
except that the final 3¢ markers have ¢; = a. In this case, the unique optimal
solution under the linear model is a single segment labeled a. The point is that in
this latter instance, changing to a segment labeled b and then back to one labeled
a would cost 2s = 4t, and so it is worth paying for 3¢ out-of-place markers in the
middle in order to have a single segment labeled a. In the first instance, on the
other hand, there was still a cost of 2s = 4t for two new segments; but there, the
alternative was to pay 6t for out-of-place markers.

Thus, somewhat surprisingly, the linear model treats labelings of the form a-
b-c and a-b-a differently; to capture the types of analysis described by Wilson et



al., we would like a model that treats such labelings comparably. Intuitively, this
requires a way to handle long-range correlations in a labeling more accurately.

To accomplish this, we add a push-down stack to the model, where segments
we wish to remember are saved in a last-in-first-out (LIFO) manner. Thus, at all
times there will not just be a current segment label, but also an auxiliary stack of
labels that have been seen earlier in the labeling. There will now be several ways
to switch from a current label a to a new one: (i) we can replace a with a new
label b, as in the linear model; (ii) we can push a new label b on top of a, so that
a will be saved beneath b; or (iii) we can pop a off the top of the stack, revealing
whichever label is lying just below a. The key point is that while operations (i)
and (ii) incur the usual segment opening penalty s, the pop operation (iii) will
incur zero cost.

a b b b

Figure 1: Intuitive notion of stacking segments.

As an example of this process, consider Figure 1. We see that the segment
labeled ¢ has been pushed on top of the segment labeled b, and that the segment
labeled d has been pushed on top of that. Then d is popped off, leaving ¢ visible,
and then c is popped off, leaving b visible. Subsequently e is pushed on top of the
segment labeled b, f replaces e linearly, and then is popped off once again leaving
label b visible. The labeling described in this figure is a-b-c-d-c-b-e-f-b.

This stack model suggests a correspondence with the genome rearrangement
process of insertion. When a segment is pushed on top of another segment, it
effectively splits the existing segment into two pieces, one on either side of the
new segment, as if the new segment is inserting itself into the old. While this is a
suggestive and potentially useful connection, we do not mean to overemphasize the
role of insertions in the construction of comparative maps; rather, the stack model
is fundamentally designed for algorithmic reasons, to improve on the behavior of
the linear model, and to better capture the type of analysis in Wilson et al.’s
notion of labeling.

An Optimal Algorithm. We thus seek a labeling f that minimizes a penalty
function composed of the following terms: a cost of m for each marker ¢ such that
f(@) # 4;; a cost of s for each segment that is pushed onto the stack of current
labels; and a cost of s for each segment that replaces a previous segment as in the
linear model; each pop will have no cost.

We can find such a labeling of minimum cost, together with the associated



sequence of pushes, pops, and replacements, by an efficient algorithm based on
dynamic programming. The algorithm will be similar in spirit to dynamic pro-
gramming algorithms for parsing strings with respect to a context-free grammar
[19], and for predicting RNA secondary structures [14]. This is natural, since both
of these latter applications involve using stack structures to model long-range de-
pendencies; at the same time, our algorithm exhibits some differences at a technical
level.

We keep much of the same notation as in the previous section. For any values
7 and j such that 1 < ¢ < j <n, and any a € L, let M|z, j] denote the subsequence
of M which starts at position ¢ and ends at position j. We let S[i, j, a] denote the
optimal (minimum) cost of a labeling f of M][i, j] with the property that f(i) = a.
Let f7;, be such a labeling with optimal cost S[i, j, al.

Clearly S[i,i,a] = m - (4, a). For j > i, we claim that S[-, -, ] satisfies the
following recurrence relation.

gniil Sli+1,4,0) +m -84, a) +s-5(b,a),
.. . c

5[, j; a] = min min  S[i, k, a] + S[k+1, j, d]
i<k<j

We can prove this as follows. Consider the label b assigned to marker i+1 by f},.
If b = a, then we can apply the first line of the recurrence. If b # a, and the stack
in f7, never returns to the current copy of a in M [i+1, 5], we can again apply the
first line of the recurrence. Finally, suppose b # a, and the stack in [7jq returns
to the current copy of a for at least one marker in M[i+1,j] . Then 7 > i+ 1;
let £+ 1> ¢+ 1 be the minimum index at which the stack returns to the current
copy of a. The transition from the label at k to the label a at k 4 1 has zero cost,
since it is achieved by a pop; thus we can apply the second line of the recurrence.

Using this recurrence relation, we can build up all values of S|, j, a] iteratively
as follows. We initialize S[i,4,a] = m - §(¢;,a) for all ¢ and all a € L. We then
compute all S[i, j, a] using the recurrence in order of increasing j — i. Finally,
an optimal labeling is one that achieves the minimum value of S[1, n, a], over all
labels a € L.

Each invocation of the recurrence relation involves the examination of O(k +n)
quantities, and takes O(k + n) time; since we assume k < n, this can be written
as O(n). There are O(kn?) values S[i, j, a] that must be computed, so the total
running time is O(kn3), or cubic in the number of markers.

Extensions. In order to have our model more closely match the results achieved
by the biologists, and to better model actual biological data, several small exten-
sions were made to the algorithm described above.

Although in eukaryotes the two arms of a chromosome are considered to be
different linkage groups, they are connected. Beginning a segment labeled with
the other arm of the previously labeled segment should therefore be cheaper than
beginning an unrelated segment. To accomplish this without adding new param-
eters, we modified the algorithm so that beginning a related segment (i.e. the
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opposite arm of the segment we are replacing or popping) costs s/2, half as much
as beginning an unrelated segment. Also, for markers comparatively mapped to a
centromeric region of a rice chromosome, or to an unknown arm of the chromosome,
we imposed a penalty of m/2 to label them with either arm of the appropriate
chromosome. For markers that were comparatively mapped to multiple locations
in rice, we allowed the algorithm to choose the better location in computing an
optimal labeling.

We made a few modifications to further favor labelings with fewer segments.
In cases where there were multiple optima, we reported a primary labeling based
on a tie-breaking rule in which segments were extended for as long as possible.
Also, we increased the cost for a pop operation from 0 to a very small positive
quantity € > 0; this causes the algorithm to favor labelings that do not perform
pop’s when they do not strictly improve the objective function.

5 Results and Discussion

The Wilson map was the initial yardstick with which the success of the algorithms
was measured. We have since undertaken preliminary tests on data from other
species. It is important to note that the Wilson map was constructed as a single
map aligning the entire maize genome with the rice genome, and information from
one part, of the maize genome was leveraged against decisions for other portions
of the genome. In contrast, the maps produced by our algorithms are constructed
separately for each maize chromosome.

The stack-based algorithm (including the extensions discussed above) was run
on the data set used by Wilson et al. [51], with the following modifications. The
Wilson data set is not fully ordered, since several markers may be mapped to
the same location (due to the limited number of recombination events available
for interpreting order in the small mapping populations used in these studies),
and other markers are mapped with lower confidence (such that they can be posi-
tioned within an interval, but not to a predicted point on the map). Because our
algorithms require that the markers be presented in a linear order, markers were
ordered according to the most statistically probable linkage relationships. Our
algorithms also require that all markers under consideration in the target genome
(in this case, maize) are labeled with a corresponding putative region of homeology
in the base genome (rice). The manual expert analysis did not impose this require-
ment, and in fact there are portions of the maize genome which, at the current
level of resolution, show no synteny corresponding to any segment in rice. Ignor-
ing this, an evaluation of the comparative maps generated by the stack algorithm
side-by-side with the comparative maps in [51] show few significant differences for
low values of the segment opening penalty s.

In two of the ten maize chromosomes (maize 6 and maize 7), all markers in-
cluded in a syntenic segment in [51] were included in the identically-labeled seg-
ment by our algorithm. The results of the stack model for maize chromosome
6 are shown in Figure 3. The linear model produced only two segments for this
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chromosome, labeled 6S and 5L; the fact that it did not produce a segment labeled
6L is a direct consequence of the linear model’s difficulty in handling labelings of
the form a-b-a, as discussed above.

The differences in the other eight chromosomal maps were of several types.
Biologists consider the short arms of rice chromosomes 11 and 12 to be largely
syntenic to each other, indicative of a duplication in the rice lineage. As such,
tracts of maize markers that are homologous to similarly ordered markers on rice
11S are considered to give evidence for synteny with both rice chromosomes 11S
and 12§, and vice versa. This complication has not been incorporated into our
model, accounting for differences in the constructed maps for maize chromosomes
3 and 10.

Our algorithms did not detect small homeologous segments identified in the
Wilson maps on maize chromosomes 2, 3, and 9 because there were not more than
2 maize markers providing evidence of synteny. In constructing the Wilson maps,
genomes from other members of the grass family were taken into consideration,
as well as other domain-specific knowledge to corroborate these inferences about
synteny; but this kind of information was not available to our algorithms.

Our algorithm performed pop operations on maize chromosomes 4, 5, and 8
for the purpose of matching a single additional homologous marker. It is un-
clear if these differences represent possible improvements to the Wilson map (see
discussion for chromosome 1 below for an example of how this is possible) or not.

In each of maize chromosomes 1 and 5 the stack algorithm produced a syntenic
segment which was not included in [51], but which looks suggestive, and will be
investigated further by biologists. The results for maize chromosome 1 are shown
in Figure 3. This same map was generated with the segment opening penalty
s set at 2, 3, or 4. The addition of the first segment labeled 10L was caused
by the ability to pop a label, since otherwise a segment with just two markers
would not be created, even with s = 2 due to our tie-breaking rule. This alternate
comparative map suggests that the segment syntenic to 8L, which is determined
to have been inserted into a 3S-10L-3L composite chromosome at the boundary
between the 3S and 10L segments in [51], was in fact inserted a short distance
away from this boundary in the middle of the 10L segment. The linear model did
not find this segment, instead producing the same result as the Wilson map.

The output comparative maps for the stack model which were most similar
to the Wilson maps as described above were obtained with the segment opening
penalty as shown in Table 1. Where multiple penalty values are shown, they all
produce the same labeling.

6 Further Directions

We are currently pursuing further extensions of the algorithms described here. One
direction is to incorporate a whole-genome perspective for optimizing the labeling.
We are also investigating richer frameworks for labeling that more fully integrate
ordering and distance information among markers.
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Maize chromosome | segment opening penalty (s) ‘

2,34
2,3
2,3,4,5,6,7
2,3
o
2,3,4,5
2,3,4,5,6
2,3,4,5,6,7
2,34

10 2,3
s = 3 produces map more like Wilson map without the suggestive new segment

[

OO0 || U x| W N

*

Table 1: Values of segment opening penalty s for which the resulting labeling
approximates the Wilson map.

We have begun preliminary investigations of the performance of the algorithms
on data from other species, including mouse-human data obtained from the Web
site of The Jackson Laboratory [28]. Our analysis indicates that, given their
efficiency, the algorithms described here will be able to scale up to input sizes
significantly larger than what we have dealt with in the rice-maize comparison.
In addition, because the algorithms are based on a general model, involving a
small number of clearly delineated assumptions, they are applicable to a range of
settings, and a variety of datasets.
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Figure 2: Markers comparatively mapped in rice for maize chromosomes 1 and 6.
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Figure 3: Results of manual and automated chromosome labeling.
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