
Proof Translation Study

March 2000

Thank you for taking part in the latest Nuprl Proof Translation Study. This study is part of a research
project to build a system that translates formal, computer-generated proofs into natural language proofs.
Specifically, we are transforming proofs generated by the Nuprl system into English. As part of this project,
it is important to look at how people perform this translation.

As a participant, you will be asked to read a Nuprl proof and then write a corresponding English version
of the proof. You wil also be asked to answer a small number of biographical questions. You are not required
to answer every question, but the more information you can supply, the better. There are 6 proofs total to
be translated; you should translate them all if possible, though a subset of the proofs can still be used.

For participants who are unfamiliar with the Nuprl system and how to read its proofs, I suggest that you
read the Introduction to Nuprl and How To Read Nuprl Proofs sections of this document. There is
also a Definitions of Nuprl Tactics sheet provided which defines the tactics used in the following proofs.
Feel free to consult any of this material while performing the translation tasks.

Introduction to Nuprl

The Nuprl system is a proof assistant which helps users create formal proofs of theorems. Within the Nuprl
language, one defines mathematical objects and then states theorems to prove about these objects. The
language which Nuprl uses is typed; that is, every mathematical object is explicitly required to have a type.

In order to prove a theorem which has been entered into Nuprl, the user specifies a sequence of tactics to
apply. A tactic is a strategy for proving the current goal given the current hypotheses. The user specifies a
tactic to apply and the tactic runs on the current goal and hypotheses to create a set of new subgoals. The
subgoals created are labeled as “main”, “aux” for auxiliary or “wf” for well-formedness (this is a subset of
the “aux” subgoals). Intuitively, auxiliary subgoals prove supplementary facts which are needed for the main
branch of the proof to hold and well-formedness subgoals prove that the statements made respect the type
information given for the theorem (this is necessary because Nuprl uses a typed language). The user then
specifies tactics to use to prove the new subgoals. This process is repeated until every subgoal is proved, in
which case the entire theorem is proved.

Nuprl also has objects called conversions which can be used to rewrite clauses or parts of clauses. Con-
versions are rewrite rules that take a term and rewrite it to an equivalent term. These may be used to
manipulate hypotheses to facilitate matching. Once a conversion has been defined, tactics are used to run
these conversions and perform the actual rewriting.

The user often knows a sequence of tactics that they wish to apply, such as knowing that once they apply
tactic T they want to apply tactic “Auto” to the auxiliary subgoals in order to prove them automatically as
they will be simple enough to prove in this manner (this occurs often). Nuprl allows the user to combine the
application of tactics, for example by using the “THEN” tactic which takes two tactics as arguments, one to
apply first to the current goal and the second to apply to all of the generated subgoals. The only subgoals
which are shown are those that remain to be proved after all of the listed tactics are run one the specified
subgoals.

Nuprl allows the user to make reference to previously proved theorems, or, as Nuprl refers to them,
lemmas. A lemma is invoked by using the name under which the theorem was proved as an argument to a
tactic that acts on lemmas. the formal statement of the lemma does not need to be given again. Similarly,
mathematical objects such as functions do not need to be defined within a proof but rather are defined
outside of proofs and given names. In order to use the definition of such an object, one uses the name under
which it was defined as an argument to a relevant tactic.

1

How To Read Nuprl Proofs

There are multiple ways to present Nuprl proofs. You are being asked to read proofs that are presented in
a fairly linear, symbolic manner, though the tree structure of the proof should still be evident.

Each step of a Nuprl proof consists of four pieces of information: the hypotheses, the conclusion, the
applied tactic and the generated subgoals. The proof begins with the goal statement to be proved, and at
each step in the proof a tactic is applied that either discharges the proof obligation or produces one or more
new subgoals to prove.

In general, a proof tree is made up of proof nodes with hypotheses, a conclusion, and an applied tactic.
The top node of a proof tree shows the theorem to be proved as the conclusion and there are no hypotheses.
A leaf of the proof tree is reached when no subgoals are generated after a tactic is applied. The hypothses
are the set of valid premises to use for proving the current goal (or conclusion), which is given after the
�symbol. Hypotheses can be referred to by number; the conclusion can be referred to by the number 0, as if
it were a hypothesis. The applied tactic is the tactic which the user has chosen to apply to the current goal
and hypothesis in order to make progress in the proof. The generated subgoals are the new subgoals which
need to be proved after the tactic is applied to the current goal.

A simple proof can be seen here:

*T add_mono_wrt_eq

� ∀a,b,n:Z. a = b ⇐⇒ a + n = b + n
|
BY GenUnivCD THENA Auto
|\
| 1. a: Z

| 2. b: Z

| 3. n: Z

| 4. a = b
| � a + n = b + n
| |
| BY Auto
| |
| DONE
\
1. a: Z

2. b: Z

3. n: Z

4. a + n = b + n
� a = b
|
BY Using [‘n’,�n�] (BackThruLemma ‘add_cancel_in_eq‘) THEN Auto
|
DONE

This proof has three nodes (or steps) in it. The first step takes the initial goal, with no hypotheses, and
creates two new subgoals, each with four, numbered hypotheses. The tactic applied to create the two new
subgoals is “GenUnivCD THENA Auto”. You can follow the path from the current node to any child nodes
by following the vertical lines draw into the proof. When multiple subgoals are created, all of new nodes are
indented from the previous goal. For longer proofs, a subgoal and its children may be presented separately
from the rest of the tree, with a label given to match the sub-proof with its intended location in the proof
tree.

2

Definitions of Nuprl Tactics

The following is not a complete list of Nuprl tactics; only those tactics which are used in the proofs in this
study are listed here. Tactics are listed alphabetically. If you are do not know what a tactic or a conversion
is, you should consult the Introduction to Nuprl page before proceeding. Feel free to refer to this page while
completing this study. Recall that hypotheses can be referred to by number, with hypothesis 0 being the
conclusion.

... an abbreviation for “THEN Auto”; see the entries for THEN and Auto for further explanation

...a an abbreviation for “THENA Auto”; see the entries for THENA and Auto for further explanation

AbReduce used in the form “AbReduce i”, simplifies hypothesis i using a defined set of equivalences

ArithSimp used in the form “ArithSimp i”, creates a main subgoal where hypothesis i is rewritten to be
in arithmetical canonical form and an auxiliary subgoal to show that the replacement statement is
equivalent to the original statement of hypothesis i

Assert used in the form “Assert t”, generates two subgoals, one which adds t as a new hypothesis and the
other with t as the goal to prove from the current hypotheses

Auto or Auto’ repeatedly applies a set of elementary automatic proving techniques (including Arith,
GenExRepD, and others) until no more progress is made

BLemma an abbreviation for “BackThruLemma”, used in the form “BLemma n” where n is the name of
a lemma whose statement is a universally quantified inference, matches the current current goal to the
consequent of the inference and takes the antecedents of the inference as subgoals

CompNatInd used in the form “CompNatInd i” where i is the number of a hypothesis, does complete
natural number induction on hypothesis i, generating upcase and basecase subgoals

D used in the form “D i”, decomposes the outermost connective of hypothesis i, performing as many Unfold
operations as necessary on externally defined mathematical objects until a connective that it can
decompose is outermost; see Unfold for further information

Decide used in the form “Decide (p)”, performs a case split on whether the proposition p is true or false;
two subgoals are created, one with p added as a new hypothesis and the other with “not p” added as
a new hypothesis

DTerm used in the form “DTerm t i” where t is a term and i is the number of a hypothesis whose outermost
connective is an existential quantifier, decomposes the outermost existential of the hypothesis using t
as the witness

ExistHD used in the form “ExistHD i” where i is the number of a hypothesis that is an existential formula,
replaces hypothesis i with hypotheses for the witness(es) of the existential quanitifier and the asserted
proposition in terms of these witnesses

FLemma an abbreviation for “FwdThruLemma”; see the entry for FwdThruLemma for more information

FwdThruLemma used in the form ”FwdThruLemma n” where n is the name of a lemma whose statement
is a universally quantified inference, matches the antecedents to current hypotheses and adds the
consequent of the inference as a new hypothesis

HypSubst used in the form “HypSubst i c” where i is the number of a hypothesis of the form “t1 = t2”
and c is the number of a hypothesis or the goal, a new subgoal is created where all occurrences of t1
in clause number c are replaced with occurrences of t2, a subgoal with “t1 = t2” as the goal and a wf
subgoal

InstConcl used in the form “InstConcl [t1,...,tn]”, instantiates the existential quantifiers in the conclusion
with the terms t1 through tn

InstHyp used in the form “InstHyp [t1,...,tn] i”, instantiates a universal formula in hypothesis i with the
terms t1 through tn

3

InstLemma used in the form “InstLemma n [t1,..,tn]” where n is the name of a lemma, instantiates the
lemma n with the terms t1 through tn

LemmaC used in the form “LemmaC n” where n is the name of a lemma whose statement is a universally
quantified inference with the consequent ”a r b” where r is an equivalence relation, creates a conversion
to replace instances of a with instances of b

NatInd used in the form “NatInd i” where i is the number of a hypothesis, does natural number induction
on hypothesis i, generating upcase and basecase subgoals

NSubsetInd used in the form “NSubstInd i” where i is the number of a hypothesis that indicates a subrange
of the natural numbers; does induction on that subrange, generating upcase and basecase subgoals

NthC used in the form “NthC i c”, specifies that the conversion c should be applied in the ith place where
it is applicable

OnMCls an abbreviation for “OnMClauses”; used in the form “OnMCls [i1,...,in] T” where i1,...,in are
hypothesis numbers and T is a tactic, runs T on each hypothesis in the list, in the order listed,
considering only main subgoals

OnVar used in the form “OnVar v T” where v is a variable existing in the proof and T is a tactic, runs T
using the hypothesis declaring v as its argument

RecCaseSplitNth used in the form “RecCaseSplitNth i n” where i is a hypothesis number and n is the
name of an externally defined mathematical object, replace n with its definition in the ith position
where it is applicable and repeat recursively, decompositing “if-then-else” statements as necessary

RecUnfold used in the form “RecUnfold n i” where n is the name of an externally defined mathematical
object and i is a hypothesis number, recursively replaces n with its definition in the hypothesis i

Rewrite used in the form “Rewrite c i” where c is a conversion and i is the number of a hypothesis or the
goal, applies the conversion to the clause i

RWN an abbreviation for “Rewrite (NthC n c)”; see the entries for Rewrite and NthC for further infor-
mation

SeqOnM used in the form “SeqOnM [T1,...Tn]” where T1,...,Tn are tactics, runs T1 through Tn on successive
main suboals

SIAuto runs the same as Auto but with SupInf added to the set of automatic proving techniques used

SupInf used in the form “SupInf”, solves integer inequalities

THEN used in the form “T1 THEN T2” where T1 and T2 are tactics, runs T1 and then runs T2 on all of
the generated subgoals

THENA used in the form “T1 THENA T2” where T1 and T2 are tactics, runs T1 and then runs T2 on the
auxiliary subgoals generated

THENM used in the form “T1 THENM T2” where T1 and T2 are tactics, runs T1 and then runs T2 on the
main subgoal generated

TryOnAllClauses used in the form “TryOnAllClauses T” where T is a tactic, run T on all hypotheses and
the conclusion, doing nothing if it fails

Unfold used in the form “Unfold n i” where n is the name of an externally defined mathematical object,
replaces n with its definition anywhere that it appears in hypothesis i

UnivCD decomposes universal quantifiers and implications in the conclusion until the outermost connective
is not one of these two connectives; see D for further information on decomposition

Using used in the form “Using [s1,...,sn] T” where [s1,...,sn] is a list of substitutions, runs tactic T using
the list of substitutions to help it instantiate universally quantified variables as called for

4

Proof Translation Study - Instructions

Fill out the following information.

Name

E-mail Address

Cornell Status (e.g. undergrad, grad student, researcher, etc.)

What experience to do you have in writing math proofs?

How proficient would you say you are in reading formal logical?

How proficient would you say you are in reading Nuprl proofs?

How proficient would you say you are in using the Nuprl system?

For each of the following six proofs, please follow the following procedure:

1. Read the proof carefully.

2. Describe in a single sentence what the proof is trying to show.

3. Describe in 1-2 sentences what approach the proof uses; i.e., give a high-level description of the proof
approach such that an experienced mathematician could produce a similar proof.

4. Write out an English language version of the proof given. Think about how you would want the proof
to look if you were handing it out to a student who is just learning this material and wants to see a
“perfect” example of this proof.

You may use symbols and formulas where it seems natural.

Please make sure that all of your responses are legible as we are interested in exactly what word and symbol
choices you make.

When you are finished, please turn in this sheet along with your work on each of the proofs. You are
encouraged but not required to complete the entire study; if you choose to stop before working on all of the
proofs, please turn in as much of the study as you have completed.

5

(blank page)

6

Translation Study: Proof One

Proof Concepts

*T int_entire � ∀a,b:Z. a * b = 0 ⇒ a = 0 ∨ b = 0

Proof

*T int_entire_a

� ∀a,b:Z. a �= 0 ⇒ b �= 0 ⇒ a * b �= 0
|
BY UnivCD THENA Auto
|
1. a: Z

2. b: Z

3. a �= 0
4. b �= 0
� a * b �= 0
|
BY Decide �a * b = 0� THENA Auto
|\
| 1. a: Z

| 2. b: Z

| 3. a �= 0
| 4. b �= 0
| 5. a * b = 0
| � a * b �= 0
| |
| BY FwdThruLemma ‘int_entire‘ [5] THEN Auto
| |
| 1. a: Z

| 2. b: Z

| 3. a �= 0
| 4. b �= 0
| 5. a * b = 0
| 6. a = 0 ∨ b = 0
| � a * b �= 0
| |
| BY D 6 THEN Auto
| |
| DONE
\
1. a: Z

2. b: Z

3. a �= 0
4. b �= 0
5. ¬(a * b = 0)
� a * b �= 0
|
BY Auto
|
DONE

7

(blank page)

8

Translation Study: Proof Two

Proof Concepts

Nb Nb = { x ∈ N | x < b }

Proof

*T quot_rem_exists_n

� ∀a:N. ∀b:N
+. ∃q:N. ∃r:Nb. a = q * b + r

|
BY (UnivCD ...a)
|
1. a: N

2. b: N
+

� ∃q:N. ∃r:Nb. a = q * b + r
|
BY % Generalize: introduce induction var and invariant %
| Assert �∀c:N. (∃q:N. a = q * b + c) ⇒ (∃q:N. ∃r:Nb. a = q * b + r)�

| THENA (D 0 ...a)
|\
| 1. a: N

| 2. b: N
+

| 3. c: N

| � (∃q:N. a = q * b + c) ⇒ (∃q:N. ∃r:Nb. a = q * b + r)
| |
| BY (OnVar ‘c’ CompNatInd ...a) THENM (D 0 ...a)
| |
| 1. a: N

| 2. b: N
+

| 3. c: N

| 4. ∀c1:N. c1 < c ⇒ (∃q:N. a = q * b + c1) ⇒ (∃q:N. ∃r:Nb. a = q * b + r)
| 5. ∃q:N. a = q * b + c
| � ∃q:N. ∃r:Nb. a = q * b + r
| |
| BY % Case split on whether c is good enough yet %
| | (Decide �c < b� ...a)
| |\
| | 1. a: N

| | 2. b: N
+

| | 3. c: N

| | 4. ∀c1:N. c1 < c ⇒ (∃q:N. a = q * b + c1) ⇒ (∃q:N. ∃r:Nb. a = q * b + r)
| | 5. ∃q:N. a = q * b + c
| | 6. c < b
| | � ∃q:N. ∃r:Nb. a = q * b + r
| | |
| | BY % Invariant and condition true implies original goal%
| | | (D 5 THEN InstConcl [�q�;�c�] ...)
| | |
| | DONE
| \
| 1. a: N

| 2. b: N
+

| 3. c: N

| 4. ∀c1:N. c1 < c ⇒ (∃q:N. a = q * b + c1) ⇒ (∃q:N. ∃r:Nb. a = q * b + r)
| 5. ∃q:N. a = q * b + c

9

| 6. ¬(c < b)
| � ∃q:N. ∃r:Nb. a = q * b + r
| |
| BY % Inductive Case%
| | InstHyp [�c - b�] 4 THEN SIAuto
| |
| 1. a: N

| 2. b: N
+

| 3. c: N

| 4. ∀c1:N. c1 < c ⇒ (∃q:N. a = q * b + c1) ⇒ (∃q:N. ∃r:Nb. a = q * b + r)
| 5. ∃q:N. a = q * b + c
| 6. ¬(c < b)
| � ∃q:N. a = q * b + (c - b)
| |
| BY % Check invariant maintained %
| | D 5 THEN (InstConcl [�q + 1�] ...)
| |
| DONE
\
1. a: N

2. b: N
+

3. ∀c:N. (∃q:N. a = q * b + c) ⇒ (∃q:N. ∃r:Nb. a = q * b + r)
� ∃q:N. ∃r:Nb. a = q * b + r
|
BY (InstHyp [�a�] 3 ...)
|
1. a: N

2. b: N
+

3. ∀c:N. (∃q:N. a = q * b + c) ⇒ (∃q:N. ∃r:Nb. a = q * b + r)
� ∃q:N. a = q * b + a
|
BY % Check invariant holds initially %
| (InstConcl [�0�] ...)
|
DONE

10

Translation Study: Proof Three

Proof Concepts

CoPrime CoPrime(a,b) == GCD(a;b;1)
fib fib(n) == if (n = 0) ∨ (n = 1) then 1 else fib(n - 1) + fib(n - 2) fi
*T gcd_p_one � ∀a:Z. GCD(a;1;1)
*T gcd_p_sym � ∀a,b,y:Z. GCD(a;b;y) ⇒ GCD(b;a;y)
*T gcd_p_shift � ∀a,b,y,k:Z. GCD(a;b;y) ⇒ GCD(a;b + k * a;y)

Proof

*T fib_coprime

� ∀n:N. CoPrime(fib(n),fib(n + 1))
|
BY (D 0 THENM OnVar ‘n’ NatInd ...a)
|\
| � CoPrime(fib(0),fib(0 + 1))
| |
| BY RecUnfold ‘fib‘ 0 THEN AbReduce 0
| |
| � CoPrime(1,1)
| |
| BY Unfold ‘coprime‘ 0 THEN (BLemma ‘gcd_p_one‘ ...)
| |
| DONE
\
1. n: Z

2. 0 < n
3. CoPrime(fib(n - 1),fib((n - 1) + 1))
� CoPrime(fib(n),fib(n + 1))
|
BY (OnMCls [0;3] ArithSimp ...a)
|
1. n: Z

2. 0 < n
3. CoPrime(fib(-1 + n),fib(n))
� CoPrime(fib(n),fib(1 + n))
|
BY (RecCaseSplitNth 2 ‘fib‘ ...a)
|\
| 1. n: Z

| 2. 0 < n
| 3. CoPrime(fib(-1 + n),fib(n))
| 4. 1 + n = 0 ∨ 1 + n = 1
| � CoPrime(fib(n),1)
| |
| BY SIAuto
| |
| DONE
\
1. n: Z

2. 0 < n
3. CoPrime(fib(-1 + n),fib(n))
4. ¬(1 + n = 0) ∧ ¬(1 + n = 1)
� CoPrime(fib(n),fib((1 + n) - 1) + fib((1 + n) - 2))

11

|
BY (ArithSimp 0 ...a)
|
1. n: Z

2. 0 < n
3. CoPrime(fib(-1 + n),fib(n))
4. ¬(1 + n = 0) ∧ ¬(1 + n = 1)
� CoPrime(fib(n),fib(-1 + n) + fib(n))
|
BY TryOnAllClauses (Unfold ‘coprime‘)
| THEN SeqOnM
| [FLemma ‘gcd_p_sym‘ [3]
| ;Using [‘k’,�1�] (FLemma ‘gcd_p_shift‘ [-1])
| ;ArithSimp (-1)]
| THEN SIAuto
|
DONE

12

Translation Study: Proof Four

Proof Concepts

GCD GCD(a;b;y) == y | a ∧ y | b ∧ (∀z:Z. z | a ∧ z | b ⇒ z | y)
*T gcd_p_zero � ∀a:Z. GCD(a;0;a)
*T quot_rem_exists � ∀a:Z. ∀b:N

+. ∃q: Z. ∃r:Nb. a = q * b + r
*T gcd_p_sym � ∀a,b,y:Z. GCD(a;b;y) ⇒ GCD(b;a;y)
*T mul_com � ∀a,b:Z. a * b = b * a
*T gcd_p_shift � ∀a,b,y,k:Z. GCD(a;b;y) ⇒ GCD(a;b + k * a;y)

Proof

*T bezout_ident_n

� ∀b:N. ∀a:Z. ∃u,v:Z. GCD(a;b;u * a + v * b)
|
BY (D 0 THENM OnVar ‘b’ CompNatInd THENM D 0 ...a)
|
1. b: N

2. ∀b1:N. b1 < b ⇒ (∀a:Z. ∃u,v:Z. GCD(a;b1;u * a + v * b1))
3. a: Z

� ∃u,v:Z. GCD(a;b;u * a + v * b)
|
BY (Decide �b = 0� ...a)
|\
| 1. b: N

| 2. ∀b1:N. b1 < b ⇒ (∀a:Z. ∃u,v:Z. GCD(a;b1;u * a + v * b1))
| 3. a: Z

| 4. b = 0
| � ∃u,v:Z. GCD(a;b;u * a + v * b)
| |
| BY (InstConcl [�1�;�0�] THENM HypSubst 4 0 THENM ArithSimp 0 ...a)
| |
| 1. b: N

| 2. ∀b1:N. b1 < b ⇒ (∀a:Z. ∃u,v:Z. GCD(a;b1;u * a + v * b1))
| 3. a: Z

| 4. b = 0
| � GCD(a;0;a)
| |
| BY (BLemma ‘gcd_p_zero‘ ...)
| |
| DONE
\
1. b: N

2. ∀b1:N. b1 < b ⇒ (∀a:Z. ∃u,v:Z. GCD(a;b1;u * a + v * b1))
3. a: Z

4. ¬(b = 0)
� ∃u,v:Z. GCD(a;b;u * a + v * b)
|
BY (InstLemma ‘quot_rem_exists‘ [�a�;�b�] ...a) THEN ExistHD (-1)
|
1. b: N

2. ∀b1:N. b1 < b ⇒ (∀a:Z. ∃u,v:Z. GCD(a;b1;u * a + v * b1))
3. a: Z

4. ¬(b = 0)
5. q: Z

13

6. r: Nb
7. a = q * b + r
� ∃u,v:Z. GCD(a;b;u * a + v * b)
|
BY (InstHyp [�r�;�b�] 2 ...a) THEN ExistHD (-1)
|
1. b: N

2. ∀b1:N. b1 < b ⇒ (∀a:Z. ∃u,v:Z. GCD(a;b1;u * a + v * b1))
3. a: Z

4. ¬(b = 0)
5. q: Z

6. r: Nb
7. a = q * b + r
8. u: Z

9. v: Z

10. GCD(b;r;u * b + v * r)
� ∃u,v:Z. GCD(a;b;u * a + v * b)
|
BY (InstConcl [�v�;�u - q * v�] THENM HypSubst 7 0 THENM OnMCls [0;10] ArithSimp ...a)
|
1. b: N

2. ∀b1:N. b1 < b ⇒ (∀a:Z. ∃u,v:Z. GCD(a;b1;u * a + v * b1))
3. a: Z

4. ¬(b = 0)
5. q: Z

6. r: Nb
7. a = q * b + r
8. u: Z

9. v: Z

10. GCD(b;r;b * u + r * v)
� GCD(r + b * q;b;b * u + r * v)
|
BY (BLemma ‘gcd_p_sym‘ ...a)
|
1. b: N

2. ∀b1:N. b1 < b ⇒ (∀a:Z. ∃u,v:Z. GCD(a;b1;u * a + v * b1))
3. a: Z

4. ¬(b = 0)
5. q: Z

6. r: Nb
7. a = q * b + r
8. u: Z

9. v: Z

10. GCD(b;r;b * u + r * v)
� GCD(b;r + b * q;b * u + r * v)
|
BY (RWN 1 (LemmaC ‘mul_com‘) 0 THENM BLemma ‘gcd_p_shift‘ ...)
|
DONE

14

Translation Study: Proof Five

Proof

*T stamps

� ∀i:{8...}. ∃m,n:N. 3 * m + 5 * n = i
|
BY D 0 THENA Auto
|
1. i:{8...}
� ∃m,n:N. 3 * m + 5 * n = i
|
BY NSubsetInd 1 THEN Auto
|\
| 1. i:Z

| 2. 0 < i
| 3. 8 = i
| � ∃m,n:N. 3 * m + 5 * n = i
| |
| BY DTerm �1� 0 THENM DTerm �1� 0 THEN Auto
| |
| DONE
\
1. i:Z

2. 8 < i
3. ∃m,n:N. 3 * m + 5 * n = i - 1
� ∃m,n:N. 3 * m + 5 * n = i
|
BY D 3 THEN D 4
|
1. i:Z

2. 8 < i
3. m:N

4. n:N

5. 3 * m + 5 * n = i - 1
� ∃m,n:N. 3 * m + 5 * n = i
|
BY Decide �n > 0� THENA Auto
|\
| 1. i:Z

| 2. 8 < i
| 3. m:N

| 4. n:N

| 5. 3 * m + 5 * n = i - 1
| 6. n > 0
| � ∃m,n:N. 3 * m + 5 * n = i
| |
| BY DTerm �m + 2� 0 THENM DTerm �n - 1� 0 THEN Auto
\
1. i:Z

2. 8 < i
3. m:N

4. n:N

5. 3 * m + 5 * n = i - 1
6. ¬(n > 0)
� ∃m,n:N. 3 * m + 5 * n = i
|

15

BY DTerm �m - 3� 0 THENM DTerm �n + 2� 0 THEN Auto
|
1. i:Z

2. 8 < i
3. m:N

4. n:N

5. 3 * m + 5 * n = i - 1
6. ¬(n > 0)
� 0 ≤ m - 3
|
BY SupInf THEN Auto
|
DONE

16

