
Proof Text Evaluation and Comparison Consent Form

You are invited to participate in a research study of what constitutes a good, or bad, proof text. You were
selected as a possible participant because of your response to requests for participants in this study. We ask
that you read this form and ask any questions you may have before agreeing to be in the study.

Background Information: The purpose of this study is to evaluate the quality and readability of a variety
of proof texts. This study is part of a research project to build an automatic system that translates formal,
computer-generated proofs into natural language proofs.

Procedures: If you agree to be in this study, we will ask you to do the following: Read a series of proof
texts and then answer questions about your perception of their quality. The questionnaire should take about
an hour to complete.

Risks and Benefits of being in the Study: We do not anticipate any risks for you participating in this
study, other than those encountered in day-to-day life.

There are no direct benefits to you, the subject, in participating, but by gathering this data, we will be
able to guide our text generation system towards producing texts which are of greater use to human readers.

Voluntary Nature of Participation: Your decision whether or not to participate will not affect your
current or future relations with the University. If you decide to participate, you are free to withdraw at any
time without affecting those relationships.

Confidentiality: The records of this study will be kept private. In any sort of report we might publish, we
will not include any information that will make it possible to identify you. Research records will be kept in
a locked file; only the researchers will have access to the records. Please note that while you are welcome to
contact us via e-mail, Internet transmission is neither private nor secure and there is a chance your answers
could be read by a third party.

Contacts and Questions: The researcher(s) conducting this study are Amanda Holland-Minkley and
Robert Constable. Please ask any questions you have now. If you have questions later, you may contact them
at 255-9202, 4116 Upson Hall, hollandm@cs.cornell.edu or 255-9204, 4149 Upson Hall, rc@cs.cornell.edu. If
you have an questions or concerns regarding your rights as a subject in this study, you may contact the
University Committee on Human Subjects (UCHS) at 5-2943, or access their website at
http://www.osp.cornell.edu/Compliance/UCHS/homepageUCHS.htm.

You will be given a copy of this form to keep for your records.

Statement of Consent: I have read the above information, and have received answers to any questions I
asked. I consent to participate in the study.

Signature Date

This consent form was approved by the UCHS on August 27, 2002.
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Proof Text Evaluation and Comparison Study

Return to Upson 4116
or Amanda Holland-Minkley’s mailbox

Thank you for taking part in this study to evaluate the quality and readability of a variety of proof texts.
This study is part of a research project to build a system that translates formal, computer-generated proofs
into a natural language proofs. As part of this project, it is important to look at what readers consider to
be good proof texts.

As a participant, you will be asked to read a number of proof texts and answer a variety of questions about
them. In order to get an accurate evaluation of these texts, please read them all of the way through, and
carefully, before proceeding to the questions. It may help you to read the texts as if you were an instructor
reading and evaluating a student’s assignment. The intended audience for these texts is an individual who is
familiar with the mathematical concepts being used, but wishes to know how to put them together to prove
the given theorem.

If you have any questions in the course of completing this survey, feel free to contact me either via e-mail
at hollandm@cs.cornell.edu, or in my office at Upson 4116, phone 5-9202. In particular, you are welcome to
contact me for clarifications in what you are being asked to do, or explanations of any formal math content
appearing in this survey. If at any point you do not wish to continue with the study, feel free to stop, though
I would appreciate receiving any portion of the study which you do complete. All materials can be returned
to my office or my mailbox in the student mailroom.

Biographical Information

Answers to following questions would be appreciated but are not required. All personal information will be
kept strictly confidential, though you may be contacted with follow-up information.

Name

E-mail Address

Cornell Status (e.g. undergrad, grad student, researcher, etc.)

What level of mathematics education have you had?

What level of experience do you have in writing math proofs?

What level of experience do you have with formal mathematics?
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Part One: Proof Reading

Shown below is a proof of the theorem:
For an integer a and b, it is the case where there exists an integer y where GCD(a;b;y).
Formally: ∀a,b:Z. ∃y:Z. GCD(a;b;y)

Your task here is to act as a “grader” for this proof, commenting on possible flaws or improvements. Please
read the proof through carefully. Then go back and mark up those aspects of the proof that you would
change. Be particularly explicit as to organizational changes you would make, or information which you
think was omitted, or was presented badly.

The constructs and lemmas referred to in this proof are:
GCD(a;b;c) == the greatest common divisor of a and b is c
gcd exists n == ∀b:N. ∀a:Z. ∃y:Z. GCD(a;b;y)
gcd p neg arg 2 == ∀a,b,y:Z. GCD(a;b;y) ⇐⇒ GCD(a;−b;y)

Proof:

There are 2 possible cases. In the first case, assume that a is an integer, b is an integer and 0 ≤ b. By

the gcd exists n lemma, we have shown there exists an integer y where GCD(a;b;y). In the second case,

assume that a is an integer, b is an integer and ¬0 ≤ b. Applying the gcd p neg arg 2 lemma, we can

instead show there exists an integer y where GCD(a;−b;y). Applying the gcd exists n lemma, we have

shown there exists an integer y where GCD(a;−b;y).
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Part One: Proof Reading

Shown below is a proof of the theorem:
For a natural number b and an integer a, it is the case where there exists an integer u and v where

GCD(a;b;u · a + v · b).
Formally: ∀b:N. ∀a:Z. ∃u,v:Z. GCD(a;b;u · a + v · b)

Your task here is to act as a “grader” for this proof, commenting on possible flaws or improvements. Please
read the proof through carefully. Then go back and mark up those aspects of the proof that you would
change. Be particularly explicit as to organizational changes you would make, or information which you
think was omitted, or was presented badly.

The constructs and lemmas referred to in this proof are:
GCD(a;b;c) == the greatest common divisor of a and b is c
comb for gcd p wf == (λa,b,y,z.GCD(a;b;y)) ∈ a:Z → b:Z → y:Z → ↓True → P1

== GCD(a;b;y) is a well-formed proposition over a, b, and y
gcd p zero == ∀a:Z. GCD(a;0;a)
quot rem exists == ∀a:Z. ∀b:N+. ∃q: Z. ∃r:Nb. a = q · b + r
gcd p sym == ∀a,b,y:Z. GCD(a;b;y) ⇒ GCD(b;a;y)
gcd p shift == ∀a,b,y,k:Z. GCD(a;b;y) ⇒ GCD(a;b + k · a;y)

Proof:

We proceed by induction over b. There are 2 possible cases. In the first case, assume b = 0. Applying the

comb for gcd p wf lemma, we can instead show GCD(a;0;a). From the gcd p zero lemma, we have shown

GCD(a;0;a). In the second case, assume ¬b = 0. By applying the quot rem exists lemma, we know that q

is an integer, r is an integer segment and a = q · b+r. By simplification, we know that u is an integer, v is an

integer and GCD(b;r;u · b+v · r). From the comb for gcd p wf lemma, we know GCD(b;r;b ·u+ r · v) and we

must show GCD(r+b·q;b;b·u+r·v). Using the gcd p sym lemma, we can instead show GCD(b;r+b·q;b·u+r·v).

By applying the gcd p shift lemma, we have shown GCD(b;r + b · q;b · u + r · v).
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Part One: Proof Reading

Shown below is a proof of the theorem:
For the positive natural number r and s, it is the case where

CoPrime(r,s) ⇒ (∀a,b:Z. ∃x:Z. (x = a mod r) ∧ (x = b mod s)).
Formally: ∀r,s:N+. CoPrime(r,s) ⇒ (∀a,b:Z. ∃x:Z. x = a mod r ∧ x = b mod s)

Your task here is to act as a “grader” for this proof, commenting on possible flaws or improvements. Please
read the proof through carefully. Then go back and mark up those aspects of the proof that you would
change. Be particularly explicit as to organizational changes you would make, or information which you
think was omitted, or was presented badly.

The constructs and lemmas referred to in this proof are:
GCD(a;b;c) == the greatest common divisor of a and b is c
CoPrime(a,b) == GCD(a;b;1) == a and b are coprime
gcd p sym == ∀a,b,y:Z. GCD(a;b;y) ⇒ GCD(b;a;y)
comb for eqmod wf == (λm,a,b,z.a = b mod m) ∈ m:Z → a:Z → b:Z → ↓True → P1

== a = b mod m is a well-formed proposition over a, b, and m
eqmod weakening == ∀a,b:Z. a = b ⇒ (a = b mod m)

Proof:

By simplification, we know that r is the positive natural number, s is the positive natural number, a is an

integer, b is an integer and CoPrime(r,s) and we must show where x = a mod r and x = b mod s, there

exists an integer x where x = a mod r and x = b mod s, There are 2 possible cases. In the first case, assume

there exists an integer x where x = 1 mod r and x = 0 mod s. By simplification, we know GCD(r;s;1) and

we must show GCD(s;r;1). From the gcd p sym lemma, we have shown GCD(s;r;1). In the second case,

assume that there exists an integer x where x = 1 mod r and x = 0 mod s and there exists an integer x

where x = 1 mod s and x = 0 mod r. By simplification, we know that p is an integer, q is an integer, p = 1

mod r, p = 0 mod s, q = 1 mod s and q = 0 mod r. There are 2 possible cases. In the first case, we need

to show (a · p + b · q) = a mod r. Using the comb for eqmod wf lemma, we can instead show a = a mod

r. Using the eqmod weakening lemma, we have shown a = a mod r. In the second case, we need to show

(a · p + b · q) = b mod s. By the comb for eqmod wf lemma, we can instead show b = b mod s. From the

eqmod weakening lemma, we have shown b = b mod s.
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Part Two: Proof Comparison

Shown below are two accounts of the same approach to the proof of the theorem:
For a natural number b and an integer a, it is the case where there exists an integer y where GCD(a;b;y).
Formally: ∀b:N. ∀a:Z. ∃y:Z. GCD(a;b;y)

Please read both of the proofs carefully and then answer the questions given below.

The constructs and lemmas referred to in this proof are:
GCD(a;b;c) == the greatest common divisor of a and b is c
gcd(a;b) == the greatest common divisor of a and b
comb for gcd p wf == (λa,b,y,z.GCD(a;b;y)) ∈ a:Z → b:Z → y:Z → ↓True → P1

== GCD(a;b;y) is a well-formed proposition over a, b, and y
gcd p zero == ∀a:Z. GCD(a;0;a)
quot rem exists == ∀a:Z. ∀b:N+. ∃q: Z. ∃r:Nb. a = q · b + r
gcd p sym == ∀a,b,y:Z. GCD(a;b;y) ⇒ GCD(b;a;y)
add com == ∀a,b:Z. a + b = b + a
gcd p shift == ∀a,b,y,k:Z. GCD(a;b;y) ⇒ GCD(a;b + k · a;y)

Proof A: We proceed by induction over b. There
are 2 possible cases. In the first case, assume
b = 0. By the comb for gcd p wf lemma, we
can instead show GCD(a;0;a). By the gcd p zero
lemma, we have shown GCD(a;0;a). In the second
case, assume ¬b = 0. From the quot rem exists
lemma, we know that q is an integer, r is an in-
teger segment and a = q · b + r. By simplifi-
cation, we know there exists an integer y where
GCD(b;r;y). By simplification, we know that y
is an integer and GCD(b;r;y) and we must show
GCD(a;b;y). Using the gcd p sym lemma, we can
instead show GCD(b;q · b + r;y). By the add com
lemma, we can instead show GCD(b;r + q · q;y).
Applying the gcd p shift lemma, we have shown
GCD(b;r + q · b;y).

Proof B: Proof by strong natural number induc-
tion on b. Base: Assume b = 0. Show ∀a:Z. ∃y:Z
such that gcd(a,0) = y by theorem ∀a:Z. gcd(a,0)
= a so y = a. Induction: Assume b ∈ N; b �= 0,
a ∈ Z, I.H.: ∀b1 < b ⇒ (∀a:Z.∃y:Z. gcd(a,b1)
= y). Then let q ∈ Z, r ∈ N (r < b) such that
a = q · b + r. Since b ∈ N ⇒ b ∈ Z, and r < b
by the I.H. we have ∃y:Z. gcd(b,r) = y. So y
= gcd(b,r) = gcd(b,r + q · b) [by gcd p shift] =
gcd(b, q ·b+r) [by additive com.] = gcd(b,a) [since
a = q · b + r] = gcd(a,b) [by gcd p sym]. Therefore
y exists such that y = gcd(a,b) ∀a:Z, ∀b:N.

Questions:
How do these proofs compare on general readabil-
ity?

Proof A is much better than Proof B.
Proof A is slightly better than Proof B.
Proof A and Proof B are about the same.
Proof A is slightly worse than Proof B.
Proof A is much worse than Proof B.

How do these proofs compare on organizational
quality?

Proof A is much better than Proof B.
Proof A is slightly better than Proof B.
Proof A and Proof B are about the same.
Proof A is slightly worse than Proof B.
Proof A is much worse than Proof B.

How do these proofs compare on ability to express the central proof idea?
Proof A is much better than Proof B.
Proof A is slightly better than Proof B.
Proof A and Proof B are about the same.
Proof A is slightly worse than Proof B.
Proof A is much worse than Proof B.
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Part Two: Proof Comparison

Shown below are two accounts of the same approach to the proof of the theorem:
For an integer p, it is the case where prime(p) ⇒ (∀a1,a2:Z. p | a1 · a2 ⇒ p | a1 ∨ p | a2).
Formally: ∀p:Z. prime(p) ⇒ (∀a1,a2:Z. p | a1 · a2 ⇒ p | a1 ∨ p | a2)

Please read both of the proofs carefully and then answer the questions given below.

The constructs and lemmas referred to in this proof are:
b | a == ∃c:Z. a = b · c == b divides a
a ∼ b == a | b ∧ b | a
prime(a) == ¬(a = 0) ∧ ¬(a ∼ 1) ∧ (∀b,c:Z. a | b · c ⇒ a | b ∨ a | c) == a is prime
GCD(a;b;c) == the greatest common divisor of a and b is c
CoPrime(a,b) == GCD(a;b;1) == a and b are coprime
decidable divides == ∀a,b:Z. Decidable(a | b) == it is decidable if a divides b
coprime iff ndivides == ∀a,p:Z. prime(p) ⇒ (CoPrime(p,a) ⇐⇒ ¬(p | a))

Proof A: Assume we have a prime integer p and
two integers a1 and a2 such that p divides (a1 ·
a2). Assume p doesn’t divide a1 or a2. Then
coprime iff ndivides implies that p and a1 are
coprime and p and a2 are coprime. But then, by
coprime prod, p and a1 ·a2 are coprime so p does
not divide a1 · a2 and we have reached a contra-
diction. So p must divide one of a1 or a2.

Proof B: By simplification, we know that p is an
integer, a1 is an integer, a2 is an integer, prime(p)
and p | a1 · a2 and we must show p | a1 or p | a2.
There are 2 possible cases. In the first case, as-
sume p | a1. Therefore, we have shown p | a1

or p | a2. In the second case, assume ¬p | a1.
By applying the decidable divides lemma, we
know ¬p | a2 and we must show p | a2. Apply-
ing the coprime iff ndivides lemma, we know
that CoPrime(p,a1) and CoPrime(p,a2). Using
the coprime iff ndivides lemma, we know that
CoPrime(p,a1 · a2) and ¬p | a1 · a2. Therefore, we
have shown p | a2.

Questions:
How do these proofs compare on general readabil-
ity?

Proof A is much better than Proof B.
Proof A is slightly better than Proof B.
Proof A and Proof B are about the same.
Proof A is slightly worse than Proof B.
Proof A is much worse than Proof B.

How do these proofs compare on organizational
quality?

Proof A is much better than Proof B.
Proof A is slightly better than Proof B.
Proof A and Proof B are about the same.
Proof A is slightly worse than Proof B.
Proof A is much worse than Proof B.

How do these proofs compare on ability to express the central proof idea?
Proof A is much better than Proof B.
Proof A is slightly better than Proof B.
Proof A and Proof B are about the same.
Proof A is slightly worse than Proof B.
Proof A is much worse than Proof B.
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Part Two: Proof Comparison

Shown below are two accounts of the same approach to the proof of the theorem:
For an integer a, b1 and b2, it is the case where if CoPrime(a,b1) then if CoPrime(a,b2) then

CoPrime(a,b1 · b2).
Formally: ∀a,b1,b2:Z. CoPrime(a,b1) ⇒ CoPrime(a,b2) ⇒ CoPrime(a,b1 · b2)

Please read both of the proofs carefully and then answer the questions given below.

The constructs and lemmas referred to in this proof are:
GCD(a;b;c) == the greatest common divisor of a and b is c
CoPrime(a,b) == GCD(a;b;1) == a and b are coprime
coprime bezout id == ∀a,b:Z. CoPrime(a,b) ⇐⇒ (∃x,y:Z. a · x + b · y = 1)
add mono wrt eq == ∀a,b,n:Z. a = b ⇐⇒ a + n = b + n
mul functionality wrt eq == ∀i1,i2,j1,j2:Z. i1 = j1 ⇒ i2 = j2 ⇒ i1 · i2 = j1 · j2

Proof A: Application of the lemma
coprime bezout id to the assumptions and
conclusion reduces our task to showing that for
some x,y, a · x + (b1 · b2) · y = 1 assuming that
for some x,y, a · x + b1 · y = 1 and that for some
x,y, a · x + b2 · y = 1 So by our assumptions there
are x1,y1,x2,y2 such that a · x1 + b1 · y1 = 1 and
a · x2 + b2 · y2 = 1 Adding (−a · x1) to both sides
of the first equation, and adding (−a · x2) to both
sides of the second, then simplifying, gives us (A)
b1 · y1 = 1 + −a · x1 and b2 · y2 = 1 + −a · x2

Taking x1 +x2 − a ·x1 · x2 and y1 · y2 as witnesses
for x,y of our goal, it is enough to show that
a · (x1 + x2 − a · x1 · x2)+ b1 · b2 · y1 · y2 = 1 which,
by adding ((1 − a · x1) · (1 − a · x2) − 1) to both
sides and simplifying, further reduces to showing
b1 · b2 · y1 · y2 = 1 + a · a · x1 · x2 +−a · x1 +−a · x2

But this equality is equivalent to multiplying the
left-hand sides of the equations of (A) above and
equating them to the product of the right hand
sides, i.e. it follows from (A) by the general fact
that i1 = j1 and i2 = j2 imply i1 · i2 = j1 · j2.

Proof B: By simplification, we know that a
is an integer, b1 is an integer, b2 is an in-
teger, CoPrime(a,b1) and CoPrime(a,b2) and
we must show CoPrime(a,b1 · b2). From the
coprime bezout id lemma, we know that there
exists an integer x and y where a ·x+b1 ·y = 1 and
there exists an integer x and y where a·x+b2 ·y = 1
and we must show when a ·x+ b1 · b2 · y = 1, there
exists an integer x and y where a ·x+b1 · b2 ·y = 1,
By simplification, we know that x1 is an integer,
y1 is an integer, x2 is an integer, y2 is an inte-
ger, a · x1 + b1 · y1 = 1 and a · x2 + b1 · b2 · y =
1. By applying the add mono wrt eq lemma, we
know that b1 · y1 = 1 + −a · x1 and b2 · y2 =
1+−a ·x2. By simplification, we can instead show
a · (x1 + x2 − a · x1 · x2) + b1 · b2 · y1 · y2 = 1. By
the add mono wrt eq lemma, we can instead show
b1 ·b2 ·y1 ·y2 = 1+a ·a ·x1·x2+−a ·x1+−a ·x2. By
the mul functionality wrt eq lemma, we have
shown b1·b2 ·y1 ·y2 = 1+a·a·x1 ·x2+−a·x1+−a·x2.

Questions:
How do these proofs compare on general readabil-
ity?

Proof A is much better than Proof B.
Proof A is slightly better than Proof B.
Proof A and Proof B are about the same.
Proof A is slightly worse than Proof B.
Proof A is much worse than Proof B.

How do these proofs compare on organizational
quality?

Proof A is much better than Proof B.
Proof A is slightly better than Proof B.
Proof A and Proof B are about the same.
Proof A is slightly worse than Proof B.
Proof A is much worse than Proof B.

How do these proofs compare on ability to express the central proof idea?
Proof A is much better than Proof B.
Proof A is slightly better than Proof B.
Proof A and Proof B are about the same.
Proof A is slightly worse than Proof B.
Proof A is much worse than Proof B.
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Part Two: Proof Comparison

Shown below are two accounts of the same approach to the proof of the theorem:
For a natural number n, it is the case where CoPrime(fib(n),fib(n + 1)).
Formally: ∀n:N. CoPrime(fib(n),fib(n + 1))

Please read both of the proofs carefully and then answer the questions given below.

The constructs and lemmas referred to in this proof are:
GCD(a;b;c) == the greatest common divisor of a and b is c
CoPrime(a,b) == GCD(a;b;1) == a and b are coprime

fib(n) == the nth Fibonacci number ==
{

1 if n = 0 or n = 1
fib(n − 1) + fib(n − 2) otherwise

gcd p one == ∀a:Z. GCD(a;1;1)
comb for fib wf == (λn,z.fib(n)) ∈ n:N → ↓True → N

== fib(n) is a well-formed function over n
comb for coprime wf == (λa,b,z.CoPrime(a,b)) ∈ a:Z → b:Z → ↓True → P1

== CoPrime(a,b) is a well-formed proposition over a and b
gcd p sym == ∀a,b,y:Z. GCD(a;b;y) ⇒ GCD(b;a;y)
gcd p shift == ∀a,b,y,k:Z. GCD(a;b;y) ⇒ GCD(a;b + k · a;y)

Proof A: We proceed by induction over n.
Consider the base case. By simplification,
we can instead show CoPrime(1,1). By the
gcd p one lemma, we have shown CoPrime(1,1).
In the step case, assume the inductive hy-
pothesis that CoPrime(fib(n − 1),fib(n − 1 +
1)). By the comb for fib wf lemma, we know
CoPrime(fib(−1 + n),fib(n)) and we must show
CoPrime(fib(n),fib(1 + n)). There are 2 possible
cases. In the first case, assume 1+n = 0 or 1+n =
1. Therefore, we have shown CoPrime(fib(n),1).
In the second case, assume ¬1+n = 0 and ¬1+n =
1. By applying the comb for coprime wf lemma,
we can instead show CoPrime(fib(n),fib(1 + n −
1)+fib(1+n−2)). By the gcd p shift lemma, we
have shown CoPrime(fib(n),fib(−1 + n)+fib(n)).

Proof B: By induction on n we are going to prove
that fib(n) and fib(n + 1) are coprime. Base case:
(n = 0) We compute fib(0) and fib(0 + 1) (both
are equal to 1) and by gcd p one lemma they are
indeed co-prime. Induction step: (n > 0): We
know that fib(n − 1) and fib(n) are co-prime, and
we want to show that fib(n) and fib(n + 1) are
co-prime. We know that it is not the case that
n + 1 = 0 or n + 1 = 1, so fib(n + 1) = fib(n) +
fib(n − 1). But from gcd p sym and gcd p shift
lemma, we know that this sum is co-prime with
fib(n − 1) iff fib(n − 1) and fib(n) are co-prime.

Questions:
How do these proofs compare on general readabil-
ity?

Proof A is much better than Proof B.
Proof A is slightly better than Proof B.
Proof A and Proof B are about the same.
Proof A is slightly worse than Proof B.
Proof A is much worse than Proof B.

How do these proofs compare on organizational
quality?

Proof A is much better than Proof B.
Proof A is slightly better than Proof B.
Proof A and Proof B are about the same.
Proof A is slightly worse than Proof B.
Proof A is much worse than Proof B.

How do these proofs compare on ability to express the central proof idea?
Proof A is much better than Proof B.
Proof A is slightly better than Proof B.
Proof A and Proof B are about the same.
Proof A is slightly worse than Proof B.
Proof A is much worse than Proof B.
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Part Three: Proof Recreation

Shown below is a partial proof of the theorem:
For an integer a and b, it is the case where gcd(a;b) ∼ gcd(b;a).
Formally: ∀a,b:Z. gcd(a;b) ∼ gcd(b;a)

A line has been omitted from the proof, as indicated by the blank. Please read the proof through carefully,
and then fill in on the blank the content needed to make the proof complete. Be sure to look over the lemmas
provided, as the step omitted may requiring using one of them.

The constructs and lemmas referred to in this proof are:
b | a == ∃c:Z. a = b · c == b divides a
a ∼ b == a | b ∧ b | a
gcd(a;b) == the greatest common divisor of a and b
GCD(a;b;c) == the greatest common divisor of a and b is c
gcd elim == ∀a,b:Z. ∃y:Z. GCD(a;b;y) ∧ gcd(a;b) = y
gcd unique == ∀a,b,y1,y2:Z. GCD(a;b;y1) ⇒ GCD(a;b;y2) ⇒ y1 ∼ y2

assoced weakening == ∀a,b:Z. a = b ⇒ a ∼ b

Proof:

By simplification, we know that a is an integer and b is an integer and we must show gcd(a;b) ∼ gcd(b;a). By

applying the gcd elim lemma, we know that there exists an integer y where GCD(a;b;y) and gcd(a;b) = y

and there exists an integer y where GCD(b;a;y) and gcd(b;a) = y.

From the gcd unique lemma, we know that GCD(a;b;y2) and y1 ∼ y2. Applying the assoced weakening

lemma, we have shown gcd(a;b) ∼ gcd(b;a).
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Part Three: Proof Recreation

Shown below is a partial proof of the theorem:
For an integer a and b, it is the case where there exists an integer u and v where GCD(a;b;u · a + v · b).
Formally: ∀a,b:Z. ∃u,v:Z. GCD(a;b;u · a + v · b)

A line has been omitted from the proof, as indicated by the blank. Please read the proof through carefully,
and then fill in on the blank the content needed to make the proof complete. Be sure to look over the lemmas
provided, as the step omitted may requiring using one of them.

The constructs and lemmas referred to in this proof are:
GCD(a;b;c) == the greatest common divisor of a and b is c
CoPrime(a,b) == GCD(a;b;1) == a and b are coprime
bezout ident n == ∀b:N. ∀a:Z. ∃u,v:Z. GCD(a;b;u · a + v · b)
gcd p neg arg == ∀a,b,y:Z. GCD(a;b;y) ⇒ GCD(a;−b;y)

Proof:

There are 2 possible cases. In the first case, assume that a is an integer, b is an integer and 0 ≤ b. Applying

the bezout ident n lemma, we have shown there exists an integer u and v where GCD(a;b;u ·a+v ·b). In the

second case, assume that a is an integer, b is an integer and ¬0 ≤ b.

Applying the gcd p neg arg lemma, we have shown there exists an integer u and v where GCD(a;b;u·a+v ·b).
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Part Three: Proof Recreation

Shown below is a partial proof of the theorem:
For any integers a1, a2, and b, if a1 and a2 are coprime and a1 and a2 both divide b, then a1 ·a2 divides b.
Formally: ∀a1,a2,b:Z. CoPrime(a1,a2) ⇒ a1 | b ⇒ a2 | b ⇒ a1 · a2 | b

A line has been omitted from the proof, as indicated by the blank. Please read the proof through carefully,
and then fill in on the blank the content needed to make the proof complete. Be sure to look over the lemmas
provided, as the step omitted may requiring using one of them.

The constructs and lemmas referred to in this proof are:
b | a == ∃c:Z. a = b · c == b divides a
GCD(a;b;c) == the greatest common divisor of a and b is c
CoPrime(a,b) == GCD(a;b;1) == a and b are coprime
prime(a) == ¬(a = 0) ∧ ¬(a ∼ 1) ∧ (∀b,c:Z. a | b · c ⇒ a | b ∨ a | c) == a is prime
coprime bezout id == ∀a,b:Z. CoPrime(a,b) ⇐⇒ (∃x,y:Z. a · x + b · y = 1)
coprime iff ndivides == ∀a,p:Z. prime(p) ⇒ (CoPrime(p,a) ⇐⇒ ¬(p | a))
quot rem exists == ∀a:Z. ∀b:N+. ∃q: Z. ∃r:Nb. a = q · b + r

Proof:

Assume we have coprime integers a1 and a2, and a1 and a2 both divide the integer b. By coprime bezout id,

CoPrime(a1,a2) implies that there are integers x and y such that a1 ·x+a2 ·y = 1. To show that a1 ·a2 divides

b, we will construct c such that b = (a1 · a2) · c. We know there are integers c1 and c2 such that b = a1 · c1

and b = a2 · c2.

We can rewrite this as a1 · (a2 · c2) · x + a2 · (a1 · c1) · y = b, so our c is c2 · x + c1 · y and we are done.
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Part Three: Proof Recreation

Shown below is a partial proof of the theorem:
For an integer a and nonzero integer n, it is the case when n | a if and only if (a ÷ n) · n = a.
Formally: ∀a:Z. ∀n:Z−0. n | a ⇐⇒ (a ÷ n) · n = a

A line has been omitted from the proof, as indicated by the blank. Please read the proof through carefully,
and then fill in on the blank the content needed to make the proof complete. Be sure to look over the lemmas
provided, as the step omitted may requiring using one of them.

The constructs and lemmas referred to in this proof are:
b | a == ∃c:Z. a = b · c == b divides a
divides iff rem zero == ∀a:Z. ∀b:Z−0. b | a ⇐⇒ a rem b = 0
add mono wrt eq == ∀a,b,n:Z. a = b ⇐⇒ a + n = b + n
add com == ∀a,b:Z. a + b = b + a
div rem sum == ∀a:Z. ∀n:Z−0. a = (a ÷ n) · n + a rem n
divisor of minus == ∀a,b:Z. a | b ⇒ a | −b
quot rem exists == ∀a:Z. ∀b:N+. ∃q: Z. ∃r:Nb. a = q · b + r

Proof:

There are 2 possible cases. In the first case, assume that a is an integer, n is nonzero integer and n | a. By ap-

plying the divides iff rem zero lemma, we know (a rem n) = 0.

By simplification, we know (a ÷ n) · n + (a rem n) = (a ÷ n) · n. From the div rem sum lemma, we have

shown (a ÷ n) · n = a. In the second case, assume that a is an integer, n is nonzero integer and (a ÷

n) · n = a. By simplification, we can instead show there exists an integer c when a = n · c. Therefore, we

have shown there exists an integer c when a = n · c.
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