You are invited to participate in a research study of what constitutes a good, or bad, proof text. You were selected as a possible participant because of your response to requests for participants in this study. We ask that you read this form and ask any questions you may have before agreeing to be in the study.

Background Information: The purpose of this study is to evaluate the quality and readability of a variety of proof texts. This study is part of a research project to build an automatic system that translates formal, computer-generated proofs into natural language proofs.

Procedures: If you agree to be in this study, we will ask you to do the following: Read a series of proof texts and then answer questions about your perception of their quality. The questionnaire should take about an hour to complete.

Risks and Benefits of being in the Study: We do not anticipate any risks for you participating in this study, other than those encountered in day-to-day life.

There are no direct benefits to you, the subject, in participating, but by gathering this data, we will be able to guide our text generation system towards producing texts which are of greater use to human readers.

Voluntary Nature of Participation: Your decision whether or not to participate will not affect your current or future relations with the University. If you decide to participate, you are free to withdraw at any time without affecting those relationships.

Confidentiality: The records of this study will be kept private. In any sort of report we might publish, we will not include any information that will make it possible to identify you. Research records will be kept in a locked file; only the researchers will have access to the records. Please note that while you are welcome to contact us via e-mail, Internet transmission is neither private nor secure and there is a chance your answers could be read by a third party.

Contacts and Questions: The researcher(s) conducting this study are Amanda Holland-Minkley and Robert Constable. Please ask any questions you have now. If you have questions later, you may contact them at 255-9202, 4116 Upson Hall, hollandm@cs.cornell.edu or 255-9204, 4149 Upson Hall, rc@cs.cornell.edu. If you have an questions or concerns regarding your rights as a subject in this study, you may contact the University Committee on Human Subjects (UCHS) at 5-2943, or access their website at http://www.osp.cornell.edu/Compliance/UCHS/homepageUCHS.htm.

You will be given a copy of this form to keep for your records.

Statement of Consent: I have read the above information, and have received answers to any questions I asked. I consent to participate in the study.

Signature \qquad Date

This consent form was approved by the UCHS on August 27, 2002.

This page intentionally blank.

Proof Text Evaluation and Comparison Study

Return to Upson 4116 or Amanda Holland-Minkley's mailbox

Thank you for taking part in this study to evaluate the quality and readability of a variety of proof texts. This study is part of a research project to build a system that translates formal, computer-generated proofs into a natural language proofs. As part of this project, it is important to look at what readers consider to be good proof texts.

As a participant, you will be asked to read a number of proof texts and answer a variety of questions about them. In order to get an accurate evaluation of these texts, please read them all of the way through, and carefully, before proceeding to the questions. It may help you to read the texts as if you were an instructor reading and evaluating a student's assignment. The intended audience for these texts is an individual who is familiar with the mathematical concepts being used, but wishes to know how to put them together to prove the given theorem.

If you have any questions in the course of completing this survey, feel free to contact me either via e-mail at hollandm@cs.cornell.edu, or in my office at Upson 4116, phone 5-9202. In particular, you are welcome to contact me for clarifications in what you are being asked to do, or explanations of any formal math content appearing in this survey. If at any point you do not wish to continue with the study, feel free to stop, though I would appreciate receiving any portion of the study which you do complete. All materials can be returned to my office or my mailbox in the student mailroom.

Biographical Information

Answers to following questions would be appreciated but are not required. All personal information will be kept strictly confidential, though you may be contacted with follow-up information.

Name \qquad

E-mail Address \qquad

Cornell Status (e.g. undergrad, grad student, researcher, etc.)

What level of mathematics education have you had?

What level of experience do you have in writing math proofs? \qquad

What level of experience do you have with formal mathematics?

Part One: Proof Reading

Shown below is a proof of the theorem:
For an integer a and b, it is the case where there exists an integer y where $\operatorname{GCD}(a ; b ; y)$.
Formally: $\forall a, b: \mathbb{Z} . \exists y: \mathbb{Z} . \operatorname{GCD}(a ; b ; y)$

Your task here is to act as a "grader" for this proof, commenting on possible flaws or improvements. Please read the proof through carefully. Then go back and mark up those aspects of the proof that you would change. Be particularly explicit as to organizational changes you would make, or information which you think was omitted, or was presented badly.

The constructs and lemmas referred to in this proof are:
$\operatorname{GCD}(a ; b ; c)==$ the greatest common divisor of a and b is c gcd_exists $n==\forall b: \mathbb{N} . \forall a: \mathbb{Z} . \exists y: \mathbb{Z} . \operatorname{GCD}(a ; b ; y)$
gcd_p_neg_arg_2 $==\forall a, b, y: \mathbb{Z} . \operatorname{GCD}(a ; b ; y) \Longleftrightarrow \operatorname{GCD}(a ;-b ; y)$

Proof:

There are 2 possible cases. In the first case, assume that a is an integer, b is an integer and $0 \leq b$. By the gcd_exists_n lemma, we have shown there exists an integer y where $\operatorname{GCD}(a ; b ; y)$. In the second case,
assume that a is an integer, b is an integer and $\neg 0 \leq b$. Applying the gcd_p_neg_arg_2 lemma, we can
instead show there exists an integer y where $\operatorname{GCD}(a ;-b ; y)$. Applying the gcd_exists_n lemma, we have
shown there exists an integer y where $\operatorname{GCD}(a ;-b ; y)$.

Part One: Proof Reading

Shown below is a proof of the theorem:
For a natural number b and an integer a, it is the case where there exists an integer u and v where $\operatorname{GCD}(a ; b ; u \cdot a+v \cdot b)$.
Formally: $\forall b: \mathbb{N} . \forall a: \mathbb{Z} . \exists u, v: \mathbb{Z} . \operatorname{GCD}(a ; b ; u \cdot a+v \cdot b)$

Your task here is to act as a "grader" for this proof, commenting on possible flaws or improvements. Please read the proof through carefully. Then go back and mark up those aspects of the proof that you would change. Be particularly explicit as to organizational changes you would make, or information which you think was omitted, or was presented badly.

The constructs and lemmas referred to in this proof are:
$\operatorname{GCD}(a ; b ; c)==$ the greatest common divisor of a and b is c

```
comb_for_gcd_p_wf == (\lambdaa,b,y,z.GCD (a;b;y))\ina:\mathbb{Z}->b:\mathbb{Z}->y:\mathbb{Z}->\downarrow\mathrm{ True }->\mp@subsup{\mathbb{P}}{\mathbf{1}}{}
    == GCD (a;b;y) is a well-formed proposition over }a,b\mathrm{ , and }
gcd_p_zero == \foralla:\mathbb{Z.}}\operatorname{GCD}(a;0;a
quot_rem_exists == \foralla:\mathbb{Z}.\forallb:\mp@subsup{\mathbb{N}}{}{+}.\existsq:\mathbb{Z}.\existsr:\mathbb{N}b.a=q\cdotb+r
gcd_p_sym == \foralla,b,y:\mathbb{Z}.\operatorname{GCD}(a;b;y)=>\operatorname{GCD}(b;a;y)
gcd_p_shift == \foralla,b,y,k:Z\mathbb{Z}.\operatorname{GCD}(a;b;y)=>\operatorname{GCD}(a;b+k\cdota;y)
```

Proof:

We proceed by induction over b. There are 2 possible cases. In the first case, assume $b=0$. Applying the
comb_for_gcd_p_wf lemma, we can instead show $\operatorname{GCD}(a ; 0 ; a)$. From the gcd_p_zero lemma, we have shown
$\operatorname{GCD}(a ; 0 ; a)$. In the second case, assume $\neg b=0$. By applying the quot_rem_exists lemma, we know that q
is an integer, r is an integer segment and $a=q \cdot b+r$. By simplification, we know that u is an integer, v is an
integer and $\operatorname{GCD}(b ; r ; u \cdot b+v \cdot r)$. From the comb_for_gcd_p_wf lemma, we know $\operatorname{GCD}(b ; r ; b \cdot u+r \cdot v)$ and we
must show $\operatorname{GCD}(r+b \cdot q ; b ; b \cdot u+r \cdot v)$. Using the gcd_p_sym lemma, we can instead show $\operatorname{GCD}(b ; r+b \cdot q ; b \cdot u+r \cdot v)$.

By applying the gcd_p_shift lemma, we have shown $\operatorname{GCD}(b ; r+b \cdot q ; b \cdot u+r \cdot v)$.

Part One: Proof Reading

Shown below is a proof of the theorem:
For the positive natural number r and s, it is the case where
$\operatorname{CoPrime}(r, s) \Rightarrow(\forall a, b: \mathbb{Z} . \exists x: \mathbb{Z} .(x=a \bmod r) \wedge(x=b \bmod s))$.
Formally: $\forall r, s: \mathbb{N}^{+} . \operatorname{CoPrime}(r, s) \Rightarrow(\forall a, b: \mathbb{Z} . \exists x: \mathbb{Z} . x=a \bmod r \wedge x=b \bmod s)$
Your task here is to act as a "grader" for this proof, commenting on possible flaws or improvements. Please read the proof through carefully. Then go back and mark up those aspects of the proof that you would change. Be particularly explicit as to organizational changes you would make, or information which you think was omitted, or was presented badly.

The constructs and lemmas referred to in this proof are:
$\operatorname{GCD}(a ; b ; c)==$ the greatest common divisor of a and b is c
CoPrime $(a, b)==\operatorname{GCD}(a ; b ; 1)==a$ and b are coprime
gcd_p_sym $==\forall a, b, y: \mathbb{Z} . \operatorname{GCD}(a ; b ; y) \Rightarrow \operatorname{GCD}(b ; a ; y)$
comb_for_eqmod_wf $==(\boldsymbol{\lambda} m, a, b, z . a=b \bmod m) \in m: \mathbb{Z} \rightarrow a: \mathbb{Z} \rightarrow b: \mathbb{Z} \rightarrow \downarrow$ True $\rightarrow \mathbb{P}_{\mathbf{1}}$
$==a=b \bmod m$ is a well-formed proposition over a, b, and m
eqmod_weakening $==\forall a, b: \mathbb{Z} . a=b \Rightarrow(a=b \bmod m)$
Proof:

By simplification, we know that r is the positive natural number, s is the positive natural number, a is an
integer, b is an integer and $\operatorname{CoPrime}(r, s)$ and we must show where $x=a \bmod r$ and $x=b \bmod s$, there
exists an integer x where $x=a \bmod r$ and $x=b \bmod s$, There are 2 possible cases. In the first case, assume
there exists an integer x where $x=1 \bmod r$ and $x=0 \bmod s$. By simplification, we know $\operatorname{GCD}(r ; s ; 1)$ and
we must show $\operatorname{GCD}(s ; r ; 1)$. From the gcd_p_sym lemma, we have shown $\operatorname{GCD}(s ; r ; 1)$. In the second case,
assume that there exists an integer x where $x=1 \bmod r$ and $x=0 \bmod s$ and there exists an integer x
where $x=1 \bmod s$ and $x=0 \bmod r$. By simplification, we know that p is an integer, q is an integer, $p=1$
$\bmod r, p=0 \bmod s, q=1 \bmod s$ and $q=0 \bmod r$. There are 2 possible cases. In the first case, we need
to show $(a \cdot p+b \cdot q)=a$ mod r. Using the comb_for_eqmod_wf lemma, we can instead show $a=a$ mod
r. Using the eqmod_weakening lemma, we have shown $a=a \bmod r$. In the second case, we need to show
$(a \cdot p+b \cdot q)=b \bmod s$. By the comb_for_eqmod_wf lemma, we can instead show $b=b \bmod s$. From the
eqmod_weakening lemma, we have shown $b=b \bmod s$.

Part Two: Proof Comparison

Shown below are two accounts of the same approach to the proof of the theorem:
For a natural number b and an integer a, it is the case where there exists an integer y where $\operatorname{GCD}(a ; b ; y)$. Formally: $\forall b: \mathbb{N} . \forall a: \mathbb{Z} . \exists y: \mathbb{Z} . \operatorname{GCD}(a ; b ; y)$

Please read both of the proofs carefully and then answer the questions given below.

The constructs and lemmas referred to in this proof are:

```
GCD}(a;b;c)== the greatest common divisor of a and b is 
gcd}(a;b)== the greatest common divisor of a and 
comb_for_gcd_p_wf == (\lambdaa,b,y,z.GCD (a;b;y))\ina:\mathbb{Z}->b:\mathbb{Z}->y:\mathbb{Z}->\downarrow\mathrm{ True }->\mp@subsup{\mathbb{P}}{\mathbf{1}}{}
    == GCD (a;b;y) is a well-formed proposition over }a,b\mathrm{ , and }
gcd_p_zero == \foralla:Z . GCD (a;0;a)
quot_rem_exists == \foralla:\mathbb{Z}.\forallb:\mp@subsup{\mathbb{N}}{}{+}.\existsq:\mathbb{Z}.\existsr:\mathbb{N}b.a=q\cdotb+r
gcd_p_sym == \foralla,b,y:\mathbb{Z}.\operatorname{GCD}(a;b;y)=>\operatorname{GCD}(b;a;y)
add_com == \foralla,b:\mathbb{Z}.a+b=b+a
gcd_p_shift == \foralla,b,y,k:\mathbb{Z}.\operatorname{GCD}(a;b;y)=>\operatorname{GCD}(a;b+k\cdota;y)
```

Proof A: We proceed by induction over b. There are 2 possible cases. In the first case, assume $b=0$. By the comb_for_gcd_p_wf lemma, we can instead show $\operatorname{GCD}(a ; 0 ; a)$. By the gcd_p_zero lemma, we have shown $\operatorname{GCD}(a ; 0 ; a)$. In the second case, assume $\neg b=0$. From the quot_rem_exists lemma, we know that q is an integer, r is an integer segment and $a=q \cdot b+r$. By simplification, we know there exists an integer y where $\mathrm{GCD}(b ; r ; y)$. By simplification, we know that y is an integer and $\operatorname{GCD}(b ; r ; y)$ and we must show $\operatorname{GCD}(a ; b ; y)$. Using the gcd_p_sym lemma, we can instead show $\operatorname{GCD}(b ; q \cdot b+r ; y)$. By the add_com lemma, we can instead show $\operatorname{GCD}(b ; r+q \cdot q ; y)$. Applying the gcd_p_shift lemma, we have shown $\operatorname{GCD}(b ; r+q \cdot b ; y)$.

Proof B: Proof by strong natural number induction on b. Base: Assume $b=0$. Show $\forall a: \mathbb{Z} . \exists y: \mathbb{Z}$ such that $\operatorname{gcd}(a, 0)=y$ by theorem $\forall a: \mathbb{Z} . \operatorname{gcd}(a, 0)$ $=a$ so $y=a$. Induction: Assume $b \in \mathbb{N} ; b \neq 0$, $a \in \mathbb{Z}$, I.H.: $\forall b_{1}<b \Rightarrow\left(\forall a: \mathbb{Z} . \exists y: \mathbb{Z} . \operatorname{gcd}\left(a, b_{1}\right)\right.$ $=y)$. Then let $q \in \mathbb{Z}, r \in \mathbb{N}(r<b)$ such that $a=q \cdot b+r$. Since $b \in \mathbb{N} \Rightarrow b \in \mathbb{Z}$, and $r<b$ by the I.H. we have $\exists y: \mathbb{Z}$. $\operatorname{gcd}(b, r)=y$. So y $=\operatorname{gcd}(b, r)=\operatorname{gcd}(b, r+q \cdot b)[$ by gcd_p_shift $]=$ $\operatorname{gcd}(b, q \cdot b+r)$ [by additive com.] $\operatorname{gcd}(b, a)[$ since $a=q \cdot b+r]=\operatorname{gcd}(a, b)[$ by gcd_p_sym]. Therefore y exists such that $y=\operatorname{gcd}(a, b) \forall a: \mathbb{Z}, \forall b: \mathbb{N}$.

Questions:
How do these proofs compare on general readability?
___ Proof A is much better than Proof B. Proof A is slightly better than Proof B. Proof A and Proof B are about the same. Proof A is slightly worse than Proof B. Proof A is much worse than Proof B.

How do these proofs compare on organizational quality?
Proof A is much better than Proof B.
\ldots Proof A is slightly better than Proof B.
Proof A and Proof B are about the same.
Proof A is slightly worse than Proof B.
Proof A is much worse than Proof B.

How do these proofs compare on ability to express the central proof idea?
Proof A is much better than Proof B.
\ldots Proof A is slightly better than Proof B.
\square Proof A and Proof B are about the same.
Proof A is slightly worse than Proof B.
Proof A is much worse than Proof B.

Part Two: Proof Comparison

Shown below are two accounts of the same approach to the proof of the theorem:
For an integer p, it is the case where $\operatorname{prime}(p) \Rightarrow\left(\forall a_{1}, a_{2}: \mathbb{Z} . p\left|a_{1} \cdot a_{2} \Rightarrow p\right| a_{1} \vee p \mid a_{2}\right)$. Formally: $\forall p: \mathbb{Z} . \operatorname{prime}(p) \Rightarrow\left(\forall a_{1}, a_{2}: \mathbb{Z} . p\left|a_{1} \cdot a_{2} \Rightarrow p\right| a_{1} \vee p \mid a_{2}\right)$

Please read both of the proofs carefully and then answer the questions given below.

The constructs and lemmas referred to in this proof are:

$$
\begin{aligned}
& b \mid a==\exists c: \mathbb{Z} . a=b \cdot c==b \text { divides } a \\
& a \sim b==a|b \wedge b| a \\
& \text { prime }(a)==\neg(a=0) \wedge \neg(a \sim 1) \wedge(\forall b, c: \mathbb{Z} . a|b \cdot c \Rightarrow a| b \vee a \mid c)==a \text { is prime } \\
& \operatorname{GCD}(a ; b ; c)==\text { the greatest common divisor of } a \text { and } b \text { is } c \\
& \operatorname{CoPrime}(a, b)==\operatorname{GCD}(a ; b ; 1)==a \text { and } b \text { are coprime } \\
& \text { decidable_divides }==\forall a, b: \mathbb{Z} . \operatorname{Decidable}(a \mid b)==\text { it is decidable if } a \text { divides } b \\
& \text { coprime_iff_ndivides }==\forall a, p: \mathbb{Z} . \operatorname{prime}(p) \Rightarrow(\operatorname{CoPrime}(p, a) \Longleftrightarrow \neg(p \mid a))
\end{aligned}
$$

Proof A: Assume we have a prime integer p and two integers a_{1} and a_{2} such that p divides (a_{1}. a_{2}). Assume p doesn't divide a_{1} or a_{2}. Then coprime_iff_ndivides implies that p and a_{1} are coprime and p and a_{2} are coprime. But then, by coprime_prod, p and $a_{1} \cdot a_{2}$ are coprime so p does not divide $a_{1} \cdot a_{2}$ and we have reached a contradiction. So p must divide one of a_{1} or a_{2}.

Questions:
How do these proofs compare on general readability?

Proof B: By simplification, we know that p is an integer, a_{1} is an integer, a_{2} is an integer, $\operatorname{prime}(p)$ and $p \mid a_{1} \cdot a_{2}$ and we must show $p \mid a_{1}$ or $p \mid a_{2}$. There are 2 possible cases. In the first case, assume $p \mid a_{1}$. Therefore, we have shown $p \mid a_{1}$ or $p \mid a_{2}$. In the second case, assume $\neg p \mid a_{1}$. By applying the decidable_divides lemma, we know $\neg p \mid a_{2}$ and we must show $p \mid a_{2}$. Applying the coprime_iff_ndivides lemma, we know that $\operatorname{CoPrime}\left(p, a_{1}\right)$ and $\operatorname{CoPrime}\left(p, a_{2}\right)$. Using the coprime_iff_ndivides lemma, we know that $\operatorname{CoPrime}\left(p, a_{1} \cdot a_{2}\right)$ and $\neg p \mid a_{1} \cdot a_{2}$. Therefore, we have shown $p \mid a_{2}$.
__ Proof A is much better than Proof B. Proof A is slightly better than Proof B. Proof A and Proof B are about the same. Proof A is slightly worse than Proof B. Proof A is much worse than Proof B.

How do these proofs compare on organizational quality?

Proof A is much better than Proof B.
\ldots Proof A is slightly better than Proof B.
\ldots Proof A and Proof B are about the same.
Proof A is slightly worse than Proof B.
Proof A is much worse than Proof B.

How do these proofs compare on ability to express the central proof idea?
___ Proof A is much better than Proof B.
___ Proof A is slightly better than Proof B.
Proof A and Proof B are about the same.
Proof A is slightly worse than Proof B.
Proof A is much worse than Proof B.

Part Two: Proof Comparison

Shown below are two accounts of the same approach to the proof of the theorem:
For an integer a, b_{1} and b_{2}, it is the case where if $\operatorname{CoPrime}\left(a, b_{1}\right)$ then if $\operatorname{CoPrime}\left(a, b_{2}\right)$ then
CoPrime $\left(a, b_{1} \cdot b_{2}\right)$.
Formally: $\forall a, b_{1}, b_{2}: \mathbb{Z}$. CoPrime $\left(a, b_{1}\right) \Rightarrow \operatorname{CoPrime}\left(a, b_{2}\right) \Rightarrow \operatorname{CoPrime}\left(a, b_{1} \cdot b_{2}\right)$

Please read both of the proofs carefully and then answer the questions given below.

The constructs and lemmas referred to in this proof are:
$\operatorname{GCD}(a ; b ; c)==$ the greatest common divisor of a and b is c $\operatorname{CoPrime}(a, b)==\operatorname{GCD}(a ; b ; 1)==a$ and b are coprime coprime_bezout_id $==\forall a, b: \mathbb{Z} . \operatorname{CoPrime}(a, b) \Longleftrightarrow(\exists x, y: \mathbb{Z} \cdot a \cdot x+b \cdot y=1)$ add_mono_wrt_eq $==\forall a, b, n: \mathbb{Z} . a=b \Longleftrightarrow a+n=b+n$ mul_functionality_wrt_eq $==\forall i_{1}, i_{2}, j_{1}, j_{2}: \mathbb{Z} . i_{1}=j_{1} \Rightarrow i_{2}=j_{2} \Rightarrow i_{1} \cdot i_{2}=j_{1} \cdot j_{2}$

Proof A: Application of the lemma coprime」bezout_id to the assumptions and conclusion reduces our task to showing that for some $x, y, a \cdot x+\left(b_{1} \cdot b_{2}\right) \cdot y=1$ assuming that for some $x, y, a \cdot x+b_{1} \cdot y=1$ and that for some $x, y, a \cdot x+b_{2} \cdot y=1$ So by our assumptions there are $x_{1}, y_{1}, x_{2}, y_{2}$ such that $a \cdot x_{1}+b_{1} \cdot y_{1}=1$ and $a \cdot x_{2}+b_{2} \cdot y_{2}=1$ Adding $\left(-a \cdot x_{1}\right)$ to both sides of the first equation, and adding $\left(-a \cdot x_{2}\right)$ to both sides of the second, then simplifying, gives us (A) $b_{1} \cdot y_{1}=1+-a \cdot x_{1}$ and $b_{2} \cdot y_{2}=1+-a \cdot x_{2}$ Taking $x_{1}+x_{2}-a \cdot x_{1} \cdot x_{2}$ and $y_{1} \cdot y_{2}$ as witnesses for x, y of our goal, it is enough to show that $a \cdot\left(x_{1}+x_{2}-a \cdot x_{1} \cdot x_{2}\right)+b_{1} \cdot b_{2} \cdot y_{1} \cdot y_{2}=1$ which, by adding $\left(\left(1-a \cdot x_{1}\right) \cdot\left(1-a \cdot x_{2}\right)-1\right)$ to both sides and simplifying, further reduces to showing $b_{1} \cdot b_{2} \cdot y_{1} \cdot y_{2}=1+a \cdot a \cdot x_{1} \cdot x_{2}+-a \cdot x_{1}+-a \cdot x_{2}$ But this equality is equivalent to multiplying the left-hand sides of the equations of (\mathbf{A}) above and equating them to the product of the right hand sides, i.e. it follows from (A) by the general fact that $i_{1}=j_{1}$ and $i_{2}=j_{2}$ imply $i_{1} \cdot i_{2}=j_{1} \cdot j_{2}$.

Proof B: By simplification, we know that a is an integer, b_{1} is an integer, b_{2} is an integer, CoPrime $\left(a, b_{1}\right)$ and CoPrime $\left(a, b_{2}\right)$ and we must show CoPrime $\left(a, b_{1} \cdot b_{2}\right)$. From the coprime_bezout_id lemma, we know that there exists an integer x and y where $a \cdot x+b_{1} \cdot y=1$ and there exists an integer x and y where $a \cdot x+b_{2} \cdot y=1$ and we must show when $a \cdot x+b_{1} \cdot b_{2} \cdot y=1$, there exists an integer x and y where $a \cdot x+b_{1} \cdot b_{2} \cdot y=1$, By simplification, we know that x_{1} is an integer, y_{1} is an integer, x_{2} is an integer, y_{2} is an integer, $a \cdot x_{1}+b_{1} \cdot y_{1}=1$ and $a \cdot x_{2}+b_{1} \cdot b_{2} \cdot y=$ 1. By applying the add_mono_wrt_eq lemma, we know that $b_{1} \cdot y_{1}=1+-a \cdot x_{1}$ and $b_{2} \cdot y_{2}=$ $1+-a \cdot x_{2}$. By simplification, we can instead show $a \cdot\left(x_{1}+x_{2}-a \cdot x_{1} \cdot x_{2}\right)+b_{1} \cdot b_{2} \cdot y_{1} \cdot y_{2}=1$. By the add_mono_wrt_eq lemma, we can instead show $b_{1} \cdot b_{2} \cdot y_{1} \cdot y_{2}=1+a \cdot a \cdot x_{1} \cdot x_{2}+-a \cdot x_{1}+-a \cdot x_{2}$. By the mul_functionality_wrt_eq lemma, we have shown $b_{1} \cdot b_{2} \cdot y_{1} \cdot y_{2}=1+a \cdot a \cdot x_{1} \cdot x_{2}+-a \cdot x_{1}+-a \cdot x_{2}$.

Questions:

How do these proofs compare on general readability?

Proof A is much better than Proof B. Proof A is slightly better than Proof B. Proof A and Proof B are about the same. Proof A is slightly worse than Proof B. Proof A is much worse than Proof B.

How do these proofs compare on organizational quality?
Proof A is much better than Proof B.
Proof A is slightly better than Proof B.
Proof A and Proof B are about the same.
Proof A is slightly worse than Proof B.

How do these proofs compare on ability to express the central proof idea? Proof A is much better than Proof B. Proof A is slightly better than Proof B. Proof A and Proof B are about the same. Proof A is slightly worse than Proof B. Proof A is much worse than Proof B.

Part Two: Proof Comparison

Shown below are two accounts of the same approach to the proof of the theorem:
For a natural number n, it is the case where $\operatorname{CoPrime}(\operatorname{fib}(n), f i b(n+1))$.
Formally: $\forall n: \mathbb{N}$. CoPrime $(\mathrm{fib}(n), \mathrm{fib}(n+1))$

Please read both of the proofs carefully and then answer the questions given below.

The constructs and lemmas referred to in this proof are:
$\operatorname{GCD}(a ; b ; c)==$ the greatest common divisor of a and b is c $\operatorname{CoPrime}(a, b)==\operatorname{GCD}(a ; b ; 1)==a$ and b are coprime

$$
\begin{aligned}
& \operatorname{fib}(n)==\text { the } n^{t h} \text { Fibonacci number }== \begin{cases}1 & \text { if } n=0 \text { or } n=1 \\
\operatorname{fib}(n-1)+\operatorname{fib}(n-2) & \text { otherwise }\end{cases} \\
& \text { gcd_p_one }==\forall a: \mathbb{Z} . \operatorname{GCD}(a ; 1 ; 1) \\
& \text { comb_for_fib_wf }==(\boldsymbol{\lambda} n, z . \text { fib }(n)) \in n: \mathbb{N} \rightarrow \downarrow \text { True } \rightarrow \mathbb{N} \\
& ==\operatorname{fib}(n) \text { is a well-formed function over } n \\
& \text { comb_for_coprime_wf }==(\boldsymbol{\lambda} a, b, z . \operatorname{CoPrime}(a, b)) \in a: \mathbb{Z} \rightarrow b: \mathbb{Z} \rightarrow \downarrow \text { True } \rightarrow \mathbb{P}_{\mathbf{1}} \\
& ==\operatorname{CoPrime}(a, b) \text { is a well-formed proposition over } a \text { and } b \\
& \text { gcd_p_sym }==\forall a, b, y: \mathbb{Z} . \operatorname{GCD}(a ; b ; y) \Rightarrow \operatorname{GCD}(b ; a ; y) \\
& \text { gcd_p_shift }==\forall a, b, y, k: \mathbb{Z} . \operatorname{GCD}(a ; b ; y) \Rightarrow \operatorname{GCD}(a ; b+k \cdot a ; y)
\end{aligned}
$$

Proof A: We proceed by induction over n. Consider the base case. By simplification, we can instead show CoPrime $(1,1)$. By the gcd_p_one lemma, we have shown CoPrime (1,1). In the step case, assume the inductive hypothesis that $\operatorname{CoPrime}(\operatorname{fib}(n-1), \operatorname{fib}(n-1+$ $1)$). By the comb_for_fib_wf lemma, we know CoPrime $(\mathrm{fib}(-1+n), \mathrm{fib}(n))$ and we must show CoPrime $(\operatorname{fib}(n)$, $\mathrm{fib}(1+n))$. There are 2 possible cases. In the first case, assume $1+n=0$ or $1+n=$ 1. Therefore, we have shown $\operatorname{CoPrime}(\operatorname{fib}(n), 1)$. In the second case, assume $\neg 1+n=0$ and $\neg 1+n=$ 1. By applying the comb_for_coprime_wf lemma, we can instead show CoPrime(fib (n), $\mathrm{fib}(1+n-$ $1)+\mathrm{fib}(1+n-2))$. By the gcd_p_shift lemma, we have shown $\operatorname{CoPrime}(\operatorname{fib}(n), \operatorname{fib}(-1+n)+\operatorname{fib}(n))$.

Proof B: By induction on n we are going to prove that $\mathrm{fib}(n)$ and $\mathrm{fib}(n+1)$ are coprime. Base case: ($n=0$) We compute fib(0) and fib $(0+1)$ (both are equal to 1) and by gcd_p_one lemma they are indeed co-prime. Induction step: $(n>0)$: We know that $\operatorname{fib}(n-1)$ and $\operatorname{fib}(n)$ are co-prime, and we want to show that $\mathrm{fib}(n)$ and $\mathrm{fib}(n+1)$ are co-prime. We know that it is not the case that $n+1=0$ or $n+1=1$, so $\operatorname{fib}(n+1)=\operatorname{fib}(n)+$ fib $(n-1)$. But from gcd_p_sym and gcd_p_shift lemma, we know that this sum is co-prime with $\mathrm{fib}(n-1)$ iff $\operatorname{fib}(n-1)$ and $\operatorname{fib}(n)$ are co-prime.

Questions:
How do these proofs compare on general readability?
__ Proof A is much better than Proof B. Proof A is slightly better than Proof B. Proof A and Proof B are about the same. Proof A is slightly worse than Proof B. Proof A is much worse than Proof B.

How do these proofs compare on organizational quality?

Proof A is much better than Proof B.
Proof A is slightly better than Proof B.
\ldots Proof A and Proof B are about the same.
Proof A is slightly worse than Proof B.
Proof A is much worse than Proof B.

How do these proofs compare on ability to express the central proof idea?
\qquad Proof A is much better than Proof B. Proof A is slightly better than Proof B. Proof A and Proof B are about the same. Proof A is slightly worse than Proof B. Proof A is much worse than Proof B.

Part Three: Proof Recreation

Shown below is a partial proof of the theorem:
For an integer a and b, it is the case where $\operatorname{gcd}(a ; b) \sim \operatorname{gcd}(b ; a)$.
Formally: $\forall \mathrm{a}, \mathrm{b}: \mathbb{Z} . \operatorname{gcd}(\mathrm{a} ; \mathrm{b}) \sim \operatorname{gcd}(\mathrm{b} ; \mathrm{a})$

A line has been omitted from the proof, as indicated by the blank. Please read the proof through carefully, and then fill in on the blank the content needed to make the proof complete. Be sure to look over the lemmas provided, as the step omitted may requiring using one of them.

The constructs and lemmas referred to in this proof are:
$b \mid a==\exists c: \mathbb{Z} . a=b \cdot c==b$ divides a
$a \sim b==a|b \wedge b| a$
$\operatorname{gcd}(a ; b)==$ the greatest common divisor of a and b
$\operatorname{GCD}(a ; b ; c)==$ the greatest common divisor of a and b is c
gcd_elim $==\forall a, b: \mathbb{Z} . \exists y: \mathbb{Z} . \operatorname{GCD}(a ; b ; y) \wedge \operatorname{gcd}(a ; b)=y$
gcd_unique $==\forall a, b, y_{1}, y_{2}: \mathbb{Z} . \operatorname{GCD}\left(a ; b ; y_{1}\right) \Rightarrow \operatorname{GCD}\left(a ; b ; y_{2}\right) \Rightarrow y_{1} \sim y_{2}$
assoced_weakening $==\forall a, b: \mathbb{Z} . a=b \Rightarrow a \sim b$

Proof:

By simplification, we know that a is an integer and b is an integer and we must show $\operatorname{gcd}(a ; b) \sim \operatorname{gcd}(b ; a)$. By
applying the gcd_elim lemma, we know that there exists an integer y where $\operatorname{GCD}(a ; b ; y)$ and $\operatorname{gcd}(a ; b)=y$
and there exists an integer y where $\operatorname{GCD}(b ; a ; y)$ and $\operatorname{gcd}(b ; a)=y$.

From the gcd_unique lemma, we know that $\operatorname{GCD}\left(a ; b ; y_{2}\right)$ and $y_{1} \sim y_{2}$. Applying the assoced_weakening
lemma, we have shown $\operatorname{gcd}(a ; b) \sim \operatorname{gcd}(b ; a)$.

Part Three: Proof Recreation

Shown below is a partial proof of the theorem:
For an integer a and b, it is the case where there exists an integer u and v where $\operatorname{GCD}(a ; b ; u \cdot a+v \cdot b)$. Formally: $\forall a, b: \mathbb{Z} . \exists u, v: \mathbb{Z} . \operatorname{GCD}(a ; b ; u \cdot a+v \cdot b)$

A line has been omitted from the proof, as indicated by the blank. Please read the proof through carefully, and then fill in on the blank the content needed to make the proof complete. Be sure to look over the lemmas provided, as the step omitted may requiring using one of them.

The constructs and lemmas referred to in this proof are:
$\operatorname{GCD}(a ; b ; c)==$ the greatest common divisor of a and b is c
CoPrime $(a, b)==\operatorname{GCD}(a ; b ; 1)==a$ and b are coprime
bezout_ident $\mathrm{n}==\forall b: \mathbb{N} . \forall a: \mathbb{Z} . \exists u, v: \mathbb{Z} . \operatorname{GCD}(a ; b ; u \cdot a+v \cdot b)$
gcd_p_neg_arg $==\forall a, b, y: \mathbb{Z} . \operatorname{GCD}(a ; b ; y) \Rightarrow \operatorname{GCD}(a ;-b ; y)$

Proof:

There are 2 possible cases. In the first case, assume that a is an integer, b is an integer and $0 \leq b$. Applying
the bezout_ident_n lemma, we have shown there exists an integer u and v where $\operatorname{GCD}(a ; b ; u \cdot a+v \cdot b)$. In the
second case, assume that a is an integer, b is an integer and $\neg 0 \leq b$.

Applying the gcd_p_neg_arg lemma, we have shown there exists an integer u and v where $\operatorname{GCD}(a ; b ; u \cdot a+v \cdot b)$.

Part Three: Proof Recreation

Shown below is a partial proof of the theorem:
For any integers a_{1}, a_{2}, and b, if a_{1} and a_{2} are coprime and a_{1} and a_{2} both divide b, then $a_{1} \cdot a_{2}$ divides b. Formally: $\forall a_{1}, a_{2}, b: \mathbb{Z}$. CoPrime $\left(a_{1}, a_{2}\right) \Rightarrow a_{1}\left|b \Rightarrow a_{2}\right| b \Rightarrow a_{1} \cdot a_{2} \mid b$

A line has been omitted from the proof, as indicated by the blank. Please read the proof through carefully, and then fill in on the blank the content needed to make the proof complete. Be sure to look over the lemmas provided, as the step omitted may requiring using one of them.

The constructs and lemmas referred to in this proof are:

$$
b \mid a==\exists c: \mathbb{Z} \cdot a=b \cdot c==b \text { divides } a
$$

$\operatorname{GCD}(a ; b ; c)==$ the greatest common divisor of a and b is c
$\operatorname{CoPrime}(a, b)==\operatorname{GCD}(a ; b ; 1)==a$ and b are coprime
$\operatorname{prime}(a)==\neg(a=0) \wedge \neg(a \sim 1) \wedge(\forall b, c: \mathbb{Z} . a|b \cdot c \Rightarrow a| b \vee a \mid c)==a$ is prime
coprime_bezout_id $==\forall a, b: \mathbb{Z}$. CoPrime $(a, b) \Longleftrightarrow(\exists x, y: \mathbb{Z} . a \cdot x+b \cdot y=1)$
coprime_iff_ndivides $==\forall a, p: \mathbb{Z} . \operatorname{prime}(p) \Rightarrow(\operatorname{CoPrime}(p, a) \Longleftrightarrow \neg(p \mid a))$
quot_rem_exists $==\forall a: \mathbb{Z} . \forall b: \mathbb{N}^{+} . \exists q: \mathbb{Z} . \exists r: \mathbb{N} b . a=q \cdot b+r$

Proof:

Assume we have coprime integers a_{1} and a_{2}, and a_{1} and a_{2} both divide the integer b. By coprime_bezout_id,
$\operatorname{CoPrime}\left(a_{1}, a_{2}\right)$ implies that there are integers x and y such that $a_{1} \cdot x+a_{2} \cdot y=1$. To show that $a_{1} \cdot a_{2}$ divides
b, we will construct c such that $b=\left(a_{1} \cdot a_{2}\right) \cdot c$. We know there are integers c_{1} and c_{2} such that $b=a_{1} \cdot c_{1}$
and $b=a_{2} \cdot c_{2}$.

We can rewrite this as $a_{1} \cdot\left(a_{2} \cdot c_{2}\right) \cdot x+a_{2} \cdot\left(a_{1} \cdot c_{1}\right) \cdot y=b$, so our c is $c_{2} \cdot x+c_{1} \cdot y$ and we are done.

Part Three: Proof Recreation

Shown below is a partial proof of the theorem:
For an integer a and nonzero integer n, it is the case when $n \mid a$ if and only if $(a \div n) \cdot n=a$.
Formally: $\forall a: \mathbb{Z} . \forall n: \mathbb{Z}^{-\mathbf{0}} \cdot n \mid a \Longleftrightarrow(a \div n) \cdot n=a$

A line has been omitted from the proof, as indicated by the blank. Please read the proof through carefully, and then fill in on the blank the content needed to make the proof complete. Be sure to look over the lemmas provided, as the step omitted may requiring using one of them.

The constructs and lemmas referred to in this proof are:

$$
\begin{aligned}
& b \mid a==\exists c: \mathbb{Z} . a=b \cdot c==b \text { divides } a \\
& \text { divides_iff_rem_zero }==\forall a: \mathbb{Z} . \forall b: \mathbb{Z}^{-0} . b \mid a \Longleftrightarrow a \text { rem } b=0 \\
& \text { add_mono_wrt_eq }=\forall a, b, n: \mathbb{Z} \cdot a=b \Longleftrightarrow a+n=b+n \\
& \text { add_com_== } \forall a, b: \mathbb{Z} \cdot a+b=b+a \\
& \text { div_rem_sum == } \forall a: \mathbb{Z} . \forall n: \mathbb{Z}^{-\mathbf{0}} \cdot a=(a \div n) \cdot n+a \text { rem } n \\
& \text { divisor_of_minus }==\forall \forall a, b: \mathbb{Z} . a|b \Rightarrow a|-b \\
& \text { quot_rem_exists }==\forall a: \mathbb{Z} . \forall b: \mathbb{N}^{+} . \exists q: \mathbb{Z} . \exists r: \mathbb{N} b . a=q \cdot b+r
\end{aligned}
$$

Proof:

There are 2 possible cases. In the first case, assume that a is an integer, n is nonzero integer and $n \mid a$. By ap-
plying the divides_iff_rem_zero lemma, we know $(a$ rem $n)=0$.

By simplification, we know $(a \div n) \cdot n+(a$ rem $n)=(a \div n) \cdot n$. From the div_rem_sum lemma, we have
shown $(a \div n) \cdot n=a$. In the second case, assume that a is an integer, n is nonzero integer and ($a \div$
$n) \cdot n=a$. By simplification, we can instead show there exists an integer c when $a=n \cdot c$. Therefore, we
have shown there exists an integer c when $a=n \cdot c$.

