A Knowledge-Theoretic Analysis of Uniform Distributed Coordination
and Failure Detectors

Joseph Y. Halpern*
Cornell University
Dept. of Computer Science
Ithaca, NY 14853
halpern@cs.cornell.edu
http://www.cs.cornell.edu/home/halpern

Abstract

It is shown that if there is no bound on the number of
faulty processes, then in a precise sense, in a system
with unreliable but fair communication, Uniform Dis-
tributed Coordination (UDC) can be attained if and
only if a system has perfect failure detectors. This re-
sult is generalized to the case where there is a bound
t on the number of faulty processes. It is shown that
a certain type of generalized failure detector is neces-
sary and sufficient for achieving UDC in a context
with at most ¢ faulty processes. Reasoning about
processes’ knowledge as to which other processes are
faulty plays a key role in the analysis.

1 Introduction

Periodically coordinating specific actions among a group
of processes is fundamental to most distributed com-
puting problems, and especially to replication schemes
that achieve fault tolerance. Unfortunately, as is well
known, it is impossible to achieve coordination in an
asynchronous setting even if there can be at most one
faulty process [FLP85]. This is true even if communi-
cation is reliable. As a result, there has been a great
deal of interest recently in systems with failure de-
tectors [CT96], oracles that provide suspicions as to
which processes in the system are faulty. This inter-
est is heightened by results of [CT96, CHT96] showing
that consensus can be achieved with relatively unre-
liable failure detectors.

Here we consider what kind of failure detectors
are necessary to attain Uniform Distributed Coordi-

*This work was supported in part by NSF under grant IRI-
96-25901.

Aleta Ricciardi
Information Sciences Research Center
Bell Labs — Lucent Technologies
Murray Hill, NJ 07974

aleta@research.bell-labs.com
http://www.bell-labs.com/ aleta

nation (UDC) [GT89]. We have UDC of action « if,
whenever some process (correct or not) performs «,
then so do all the correct processes. If we have reli-
able communication, then it is easy to see that we can
attain UDC no matter how many processes may fail.
Thus, in this setting, UDC is strictly easier than con-
sensus. If communication is unreliable but fair, then
we show that we can attain UDC with no bound on
the number of process failures in the presence of weak
failure detectors, which have the property that even-
tually every faulty process is permanently suspect by
at least one correct process (weak completeness) and
at least one correct process is never suspected (weak
accuracy). Chandra and Toueg [CT96] showed that
consensus with an arbitrary number of failures is also
achievable using weak failure detectors. They consid-
ered a setting with reliable communication, but their
results apply with essentially no change to a setting
where communication is unreliable but fair.

Chandra and Toueg observed that by having pro-
cesses communicate their suspicions, a weak failure
detector can be converted to a strong failure detector,
which satisfies weak accuracy and strong complete-
ness (all correct processes eventually permanently sus-
pect every faulty process). We further observe that,
under a relatively innocuous assumption, in systems
with no bound on the number of faulty processes,
strong failure detectors are equivalent to perfect fail-
ure detectors, which satisfy strong completeness and

strong accuracy—no process is suspected until it crashes.

These results tell us that we can attain UDC if
there is no bound on failures using what are effectively
equivalent to perfect failure detectors. Are perfect
failure detectors really necessary? We show that in a
precise sense they are. Under quite minimal assump-
tions, a system that attains UDC with no bounds on
the number of failures can implement perfect failure
detectors.! Tt is interesting to note that Schiper and
Sandoz’ Uniform Reliable Multicast [SS93] is a spe-

cial case of UDC where the only action of interest

1We remark that our notion of “implement” is stronger
than the notion of reduction used in [CT96, CHT96]; see Sec-

tion 3.

is reliable message delivery. Schiper and Sandoz im-
plement Uniform Reliable Multicast by using the Isis
virtual synchrony model [BJ87], which simulates per-
fect failure detection. Our results support their need
to implement it in this way.

What happens if there is a bound on the number
of faulty processes? Gopal and Toueg [GT89] show
that UDC is achievable with no failure detectors if less
than half the processes can be faulty. Here we gen-
eralize these results, providing a generalized failure
detector that we can show is necessary and sufficient
to attain UDC if there are at most ¢ failures, for each
possible value of t. The generalized failure detector
we consider reports suspicions of the form “at least &
processes in a set S of processes are faulty” (although
it does not specify which k are the faulty ones). Such
generalized failure detectors may be appropriate when
the system can be viewed as consisting of a number of
components, and all we can say is that some process
in a component is faulty, without being able to say
which one it is.

The rest of this paper is organized as follows. In
Section 2, we provide the necessary background, re-
viewing the formal model, failure detectors, the for-
mal language, and the definition of UDC. In Section 3,
we present our analysis in the case that there is no
bound on the number of faulty processes. Our proof
techniques may be of independent interest, since they
make nontrivial use of the knowledge-theoretic tools
of [FHMV95]. Reasoning about the knowledge of the
processes in the system—particularly, their knowl-
edge of which other agents are faulty—plays a key
role in the analysis. In Section 4, we extend this anal-
ysis to the case where there is a known bound ¢ on the
number of faulty processes; we also introduce our gen-
eralized failure detectors. We conclude in Section 5.
Proofs are relegated to the Appendix.

2 Background

2.1 The model

We adopt the familiar model of an asynchronous dis-
tributed system. We assume that there is a fixed finite
set Proc = {p1,...,pn} of processes with no shared
global clock. These processes communicate with one
another by passing messages over a completely con-
nected network of channels. Processes fail by crash-
ing and do not recover, but otherwise follow their as-
signed protocols. There is no bound on the number
of processes that may crash. Channels are not reli-
able. A message that is sent is not necessarily received
and, even if it is received, there is no bound on mes-
sage transmission delay. However, channels do not
corrupt messages and they are fair, in the sense that
if the same message is sent from p to ¢ infinitely often
and g does not crash, then the message is eventually
received by q.

Processes execute actions in a totally ordered se-
quence; corresponding to each action is an event which

is recorded in the process’s history. The events corre-
sponding to p’s actions consist of the communication
events send,(q, msg) (p sends message msg to ¢) and
recup(q, msg) (p receives msg from q), internal events
of the form dop(a) (p executes action a), inity(a) (p
initiates «; see Section 2.4), and the special event
crashy, which models the failure of p.

A history for process p, denoted hy, is a sequence
of events corresponding to actions performed by pro-
cess p. A cut is a tuple of finite process histories, one
for each p € Proc. A run is a function from time
(which we take to range over the natural numbers,
for simplicity) to cuts. If 7 is a run, we use Tp(m) to
denote p’s history in the cut r(m). A pair (r, m) con-
sisting of a run r and a time m is called a point. We
write (r,m) ~p (r',m') if rp(m) = rp(m'). We say
that a run r' eztends a point (r,m) if r'(m') = r(m')
for all m" < m. Thus, ' extends (r,m) if r and »'
have the same prefix up to time m.

We assume that a run r satisfies the following.

R1. 7(0) = ({),-..,()) (that is, at time 0, each pro-
cess’s history is empty);

R2. rp(m + 1) = rp(m) or rp(m + 1) is the result of
appending one event to r,(m);

R3. if recv, (p, msg) is in r4(m), then the correspond-
ing send event send,(q, msg) is in rp(m);

RA4. if the event crash, is in rp(m), then the only
events that follow it in 7,(m) are other crash,
events;

R5. if the number of occurrences of send,(q, msg)
in rp(m) grows unboundedly as m increases,
then either the event crash, appears in rq(m)
for some m or the number of occurrences of
recvg (p, MSg) in rq(m) grows unboundedly as m
increases.

When we consider failure detectors, we add further
conditions to runs.

A system is a set of runs. Systems are typically
generated by protocols executed in a certain context.
Formally, a protocol for process p is a function from
finite histories to actions. A joint protocol is a tuple
(P, .., Pn) consisting of a protocol for each process
in Proc. A run 7 is consistent with a joint protocol P
if for each finite prefix h; = h} - e of p;’s history in r,
if e is not a receive or crash event, then e is the event
corresponding to the action P;(h}). A contest for us is
simply a bound on the number of processes that can
fail and a specification of properties of failure detec-
tors (see Section 2.2; see [FHMV95, FHMV97] for a
a more general definition of context). In a given con-
text, a joint protocol generates the system consisting
of all the runs satisfying R1-R5 and the constraints
of the context that are consistent with the protocol.
We say that a protocol has a certain property if the
system it generates has that property.

2.2 Failure Detectors

Informally, a failure detector [CT96] is a per-process
oracle that emits suspicions regarding other processes’
faultiness. These suspicions, in general, are just that.
The fact that a process ¢ is suspected by process p’s
failure detector does not mean that ¢ is in fact faulty.
We then can impose various conditions on the accu-
racy of a failure detector’s suspicions and the com-
pleteness of these suspicions, that is, whether a pro-
cess that is faulty is (eventually) suspected.

Rather than model the failure detector with a spe-
cial tape, as Chandra and Toueg do [CT96], we model
the act of p reading its failure detector by the event
suspect,(S), where S C Proc. This event should be
interpreted as p’s failure detector saying that the pro-
cesses in S are suspected of being faulty. At any
point (r, m), define Suspects,(r,m) = S if and only if
suspect (S) is the most recent failure-detector event
in rp(m). F(r) denotes the faulty processes in run r.

Consider the following properties of failure detec-
tors (the first four are from [CT96]):

Strong Accuracy: No process is suspected before it
crashes. Formally, if ¢ € Suspects,(r,m), then
crashy is in r4(m) for all processes p and g and
times m.

Weak Accuracy: If there is a correct process, then
some correct process is never suspected. For-
mally, if F(r) # Proc then there is some q ¢
F(r) such that ¢ ¢ Suspects,(r, m), for all pro-
cesses p and times m.

Strong Completeness: All faulty processes are even-
tually permanently suspected by all correct pro-
cesses. Formally, if ¢ € F(r) and p ¢ F(r), then
there is a time m such that for all m’ > m,
q € Suspects,(r,m').

Weak Completeness: Each faulty process is eventu-
ally permanently suspected by some correct pro-
cess. Formally, if ¢ € F(r), then there exists
some p ¢ F(r) and a time m such that for all
m' > m, q € Suspects,(r,m').

Impermanent Strong Completeness: All faulty processes

are eventually suspected (but not necessarily
permanently) by all correct processes. Formally,
ifg € F(r)and p ¢ F(r), then g € Suspects,(r,m)
for some time m.

Impermanent Weak Completeness: A faulty processes
is eventually suspected (but not necessarily per-
manently) by some correct process. Formally, if
q € F(r), then there is some p € F(r) such that
q € Suspects,(r, m) for some time m.

2The assumption that F(r) # Proc does not appear in
[CT96], since Chandra and Toueg assume that there always is
at least one correct process. We have added it here so as to
be able to handle the case that all processes in a run fail.

Chandra and Toueg [CT96] define a perfect fail-
ure detector as one that satisfies strong complete-
ness and strong accuracy, a strong failure detector as
one that satisfies strong completeness and weak ac-
curacy, and a weak failure detector as one that satis-
fies weak completeness and weak accuracy. We de-
fine an impermanent-strong failure detector as one
that satisfies impermanent strong completeness and
weak accuracy and an impermanent-weak failure de-
tector as one that satisfies impermanent weak com-
pleteness and weak accuracy. We say that R is a
has perfect (resp., strong, weak, impermanent-strong,
impermanent-weak) failure detectors if for all » € R,
strong completeness and strong accuracy (resp., strong
completeness and weak accuracy; weak completeness
and weak accuracy; impermanent strong complete-
ness and weak accuracy; impermanent weak complete-
ness and weak accuracy) hold.

Chandra and Toueg show that, in many cases of
interest, we can convert a failure detector satisfying
weak completeness to one satisfying strong complete-
ness, while still preserving accuracy properties; the
same holds for weak impermanent completeness and
strong impermanent completeness. Thus, we do not
consider weak (impermanent) completeness further.
Note that in the presence of strong accuracy, we can
trivially convert a failure detector that satisfies im-
permanent strong completeness to one that satisfies
strong completeness by always outputting the list of
all previously suspected processes. As we show in
Section 3, under a minimal assumption that should
surely be satisfied in practice, if there is no bound
on the number of faults, a failure detector that sat-
isfies weak accuracy must also satisfy strong accu-
racy. Thus, if there is no bound on the number of
faults, then there is essentially no difference between
impermanent-strong failure detectors and perfect fail-
ure detectors.®

2.3 The Formal Language

Our language for reasoning about distributed coordi-
nation involves time and knowledge. The underlying
notion of time is linear (so our language extends lin-
ear time temporal logic). We find it useful to be able
to reason about the past as well as the future. For-
mally, we start with primitive propositions and close
off under Boolean combinations, O, and the epistemic
operators K, for each process p.

A formula is true or false relative to a tuple (R, r,m)
consisting of a system R, run » € R, and time m.
We write (R,r,m) |= ¢ if the formula ¢ is true at
the point (r,m) in system R. Among the primi-
tive propositions in the language are send,(q, msg),
recvg(p, msg), crash(p), dop(e), and initp(a). The
truth of these primitive propositions is determined by
the cut in the obvious way; for example, send, (¢, msg)
is true at point (r, m) precisely when send, (g, msg) is

31n the notation of Chandra and Toueg, impermanent-S &
S P for t = n — 1 failures.

an event in p’s history component of (r,m). Oy holds
at a point if it holds from that point on in the run.
Thus, (R, r,m) | Qg if and only if (R, r,m') | ¢ for
all m' > m. As usual, we define Gy = —O-; thus,
< is the dual of O. It is easy to see that (R,r,m) |
Cp if (R,r,m') & ¢ for some m' > m. Finally,
Ky is true if ¢ is true at all the points that p con-
siders possible, given its current history. Formally,
(R,m,m) |E Kpp if and only if (R,r',m) | ¢ for all
points (r',m') ~, (r,m). We say a formula ¢ is valid
in system R, denoted R = o, if (R,r,m) |= ¢ for all
points (r,m) in R.

In our analysis, we make particular use of local and
stable formulas. A formula ¢ is local to process p in
system R if at every point p knows whether it is true,
that is, if Kpe V Kp—ep is valid in R. Thus, all for-
mulas describing a process’s local state, for example,
send, (g, msg), recvg(p, msg), crash(p), and inity(a),
are local to only that process. It follows from the
properties of knowledge that formulas of the form
K, are also local to p, since K, (K,,go) V Kp(nKpp)
is valid in every system. A stable formula is one that,
once true, remains true; that is, ¢ is stable in sys-
tem R if ¢ = Oy is valid in R. All of send, (g, msg),
recvg (p, msg), crash(p), and init,() are stable.

2.4 Distributed Coordination

We are interested in modeling distributed coordina-
tion of certain actions among the processes in Proc.
The actions may be allocating a resource, delivering
multicast messages, or committing a transaction; we
are not concerned with the specifics. We are also
not concerned here with other requirements such as
executing actions in a particular order (e.g., total-
order multicast) or not executing conflicting actions
(e.g., consensus). We are interested only in the even-
tual, distributed execution of these actions.

Formally, we assume that each process p has a set
Ap of coordination actions it may want to perform.
We further assume that the sets A, and A, are dis-
joint for p # ¢. (Think of the actions in .4, as some-
how being tagged by p.) We assume that for each
action in a € A,, there is a special action of initiat-
ing a. The corresponding event init,() can appear
only in p’s history, and can appear at most once in a
run. Intuitively, if init,(a) appears in p’s history, we
would like all the processes in Proc to perform «. The
only question is what requirements we should make
of actions performed by processes that crash.

Uniform Distributed Coordination (UDC) of ac-
tion a occurs if whenever any p’ € Proc executes o €
Ap, then so eventually does every correct ¢ € Proc.
As well, no process performs o € A, unless p initiates
it. Formally, UDC of o € A, holds in a system R if
the following three conditions hold:

DC1. R [initp(a) = O(doy(e) V crash(p));

DC2 RE A, . Proc (dop:(a) =
O(dog(a) V crash(q)));

DC3. R E A, Proc (doq(oz) = initp(a)).

Non-Uniform Distributed Coordination (nUDC) re-
quires coordination only if the process that performs

a is correct. Thus, nUDC of « holds in a system R if
DC1, DC3, and the following hold:

DOL RE A, Proc (dop:(a) =
O(dog(a) V crash(q) vV crash(p'))) .

The next propositions show that, unlike UDC, nUDC
is easy to attain, and that reliable communication is

significant for UDC.

Proposition 2.1: There is a protocol that attains
nUDC, even without failure detectors, in a context
where there is no bound on the number of failures.

Proposition 2.2: UDC is achievable in a context
where communication is reliable and there is no bound
on the number of failures.

Propositions 2.1 and 2.2 highlight some of the dif-
ferences between UDC, nUDC, and consensus. Unlike
consensus, both UDC and nUDC are attainable in
asynchronous systems with failures (although UDC
needs reliable communication); indeed, they are at-
tainable no matter how many processes may fail. How-
ever, as we shall see in the next two sections, things
change when we consider UDC in a context with un-
reliable communication.

3 UDC With No Bound on Failures

We start by showing that UDC is achievable in a
context with unreliable communication, provided we
have impermanent-strong failure detectors.

Proposition 3.1: There is a protocol that attains
UDC in a context with itmpermanent-strong failure de-
tectors.

Chandra and Toueg [CT96] prove a result analo-
gous to Proposition 3.1 for consensus. They show that
consensus is achievable with strong failure detectors
in a context with at most n — 1 failures where com-
munication is reliable. Their algorithm works without
change even if we have only impermanent-strong fail-
ure detectors and allow n failures. Moreover, their
algorithm can be easily modified to deal with unreli-
able, but fair, communication. Thus, unlike UDC, the
reliability of communication has no significant impact
on the attainability of consensus.

We next prove what is essentially a converse to
Proposition 3.1. Specifically, we show that if pro-
cesses can perform UDC and there is no bound on
the number of possible failures, then they can simu-
late perfect failure detectors (since under our assump-
tions, impermanent-strong and perfect failure detec-
tors are equivalent). Thus, among other things, we
need to make precise the notions of “simulating a
perfect failure detector” and “no bound on process
failures”.

“Simulating a perfect failure detector” means that
there is a function from process p’s histories to events
of the form suspect (S) such that if these events are
inserted into the history, the resulting run satisfies the
properties of perfect failure detectors (with respect to
these new failure-detector events). Formally, for each
run r € R, we construct a run f(r) such that for each
process p, we have

o f(r)p(0) = ()5 ()
o if rp,(m + 1) = rp(m), then f(r)p(2m + 1) =
f(r)p(2m +2) = f(r),(2m);

o if rp,(m+1) =ry(m)-e, then f(r),(2m+1) =

f(r)p(2m)-suspect,(S), where S = {q : (R,r,m) |=

Kp(crash(q))} and f(r)p(2m +2) = f(r)p(2m +
1) - ¢, where ¢/ = e unless e is of the form
suspect ,(S), in which case €' is suspect’,(S).

In f(r), process p’s history is identical to its history
in r except that, at each odd step, p’s failure detector
reports the processes that p knows have crashed at
the corresponding point in R. In addition, we relabel
the failure detector events in r so that they are not
counted as failure detector eventsin f(r) (and thus do
not need to be considered when we show that R' has
perfect failure detectors). Now define system R' =
{f(r) : 7 € R}. Proposition 3.2 shows that the failure
detector in R’ is perfect, under suitable assumptions.

The notion of simulation implicitly underlying this
specific definition for perfect failure detectors is more
general that the notion of reduction used in [CT96,
CHT96]. For example, in these papers, it is shown
that if consensus can be solved by means of a failure
detector (and there are at most ¢ < n/2 failures), then
that failure detector can be transformed to a particu-
lar failure detector called OW (for eventually weak),
which satisfies eventual weak accuracy and weak com-
pleteness; see [CT96] for the precise definition. Since
consensus can be solved with OW failure detectors,
these failure detectors are viewed as the weakest fail-
ure detectors for consensus. It follows immediately
from our simulation that if UDC can be attained us-
ing some failure detector, then that failure detector
can be transformed in a trivial sense to a perfect fail-
ure detector. We just ignore the failure detector al-
together and use the transformation above. However,
our notion of simulation does not depend on using
failure detectors to attain UDC. Thus, it applies in
situations where the reductions of [CT96, CHT96] do
not.

Consider the following four properties of R, which
formalize some standard assumptions.

Al. If there exists a run in R where all the processes
in S crash, and (r,m) is a point in R such that
no process in Proc — S has crashed, then there
is a run 7' extending (r, m) such that F(r') = S.

A2. If F(r1) = F(r2) and (11, m) ~4 (r2,m) for all
q & F(r1), then there are extensions 7; and rj
of (r1,m) and (r2,m), respectively, such that
(r1,m') ~g (r3,m') for all m' > m and all ¢ ¢
F(r1), and all the processes in F'(ri) crash by
time m + 1 in 7] and r}.

A3. The formula Kginity(e) is insensitive to failure
by ¢, where a formula ¢ local to g is said to be
insensitive to failure by q if for all runs r,»’ € R,
if rj(m') = rq(m) - crashq, then (R,7,m) = ¢
iff (R,v,m') E .

A4. If ¢ is a stable formula local to some process
p in R that is insensitive to failure by p and
there is some S C Proc such that (R,r,m) |=
/\qes —Kyp, then there exists a point (r',m)
such that (a) rj(m) = rq(m) for ¢ € S, (b)for
q ¢ S, there is a prefix h of rq(m) (not necessar-
ily strict) such that r; (m) is either h or h-crash,,
and ry(m) = h - crashy only if crashy € rq(m),

(©) (R,r',m) |= —.

A5;. For every S C Proc such that |S| < ¢, there
exists a run r € R such that F(r) = S.

A1 essentially says that process failures are indepen-
dent of other events. If it is possible for the processes
in S to crash, this may happen at any time in any run.
A2 says that the actions of non-faulty processes are
not affected by those of faulty processes from whom
they hear nothing. Thus, if two points (r,m) and
(r',m) are indistinguishable to the correct processes,
then there are extensions of these runs that continue
to be indistinguishable, in which they hear nothing
further from the faulty processes. A3 says that a pro-
cess cannot learn that p initiated « just by crashing.
A4 says, among other things, that if each of the pro-
cesses in S considers - possible, where ¢ is a sta-
ble failure-insensitive formula local to some process,
then there is a point where —¢ is true that all the
processes in S simultaneously consider possible. We
discuss A4 in more detail below. Ab; captures the
assumption that at most ¢ processes may fail. Thus,
Ab,, captures the assumption that there is no bound
on process failures.

In the presence of Al, if there is no bound on the

number of failures, strong failure detectors are perfect
failure detectors.

Proposition 3.2: If R satisfies A1 and Abn_1 (or
Ab,), then R satisfies weak accuracy iff R satisfies
strong accuracy.

It follows from Proposition 3.2 that if R satisfies Al
and A5, _1, then R has strong failure detectors iff R
has perfect failure detectors.

A1l and A3 are properties we would expect to hold
of all systems generated by protocols in the contexts
of interest to us. A2 implicitly assumes that there is
no information relevant to the system beyond what is
in the processes’ states. For example, suppose each
process had a message buffer, such that once a mes-
sage was in ¢’s buffer, then as long as ¢ did not
crash, ¢ would eventually receive the message. Con-
sider two runs r; and rg such that (r1,m) ~g (72, m),
F(r1) = F(r2), and F(r1) consists of all processes
other than q. Moreover, suppose that there is a mes-
sage mSg in ¢’s buffer in (r1,m), but not in (r2, m).
By A2, there are extensions of] and 75 of (r1, m) and
(r2, m) such that all processes other than ¢ crash in
round m+1 in both rj and 5 and (r;, m') ~g (ry, m')
for all m' > m. But this is impossible, since q receives
msg in r; but not in 75.

Assumption A4 is perhaps the least standard as-
sumption. A4 assumes that processes are essentially

using a full-information protocol (FIP) [Coa86, FHMV95]

to generate R and places some restrictions on the in-
formation they can get from failure detectors. With
an FIP, when a process p sends a message to g, it
sends complete information about its state. To see
why we need FIPs for A4, suppose that neither p nor
q have crashed at (r,m), and at some time g sends a
message msg to p', which p’ receives. Then p’ sends
p a message saying crash(q) V send, (p’, msg), which p
receives by time m. Thus, (R, r,m) = K,(crash(q) V

send, (p', msg)) A=K (crash(q)) A= (send, (p', msg)).

Then there cannot exist a point (r',m’) such that (a)
rp(m') = rp(lm), (b) r, (m'), is a prefix of r4(m), and
(c) (R,r",m") |= —sendq(p', msg). If that were the
case, then necessarily (R,r’,m') |E crash(q), because
Kp(crash(q) V sendy(p', msg)) holds at (R, r, m), vio-

lating the assumption that r;(m') is a prefix of rq(m).

This example violates A4 because p’' did not tell
p all it knew, which is precisely what cannot happen
with a full-information protocol. Assuming that R is
generated by an FIP, under reasonable assumptions
about failure detectors, R should satisfy A4. To see
why, given (r,m), we can construct run »' as follows.
First note that (R, r,0) |E —, for ¢ stable and local
to p, for otherwise ¢ would be true at all points in
R and so would K,p. So let m;, be the first time
in r where ¢ becomes true. Let S C Proc be the
processes that do not know ¢ at (r,m). If processes
are following a full-information protocol, there can
be no chain of messages from p to a process ¢ € S
between times my, and m in r, for if there were, ¢
would know ¢ at (r,m).* For each process ¢ € Proc,

4There is a message chain from p to ¢ between m, and
m > my if there is a sequence of messages msgy, ..., msg,
and processes pi,..., P41 such that (a) msg; is sent by p;
to p;+1 and is received, (b) p; 41 sends msg; | after receiving
msgy,, (¢) p = p1, (d) ¢ = pr+1, () p sends msgy at or after
myp, and (f) q receives msgy, 11 at or before m. If the processes
follow a full-information protocol, then p; 11 knows everything

let mq be the least time at or before m at which there
is a message chain from p to ¢ in r between m, and
myg, if there is such a time; otherwise, we take mq =
m + 1. Note that for ¢ € S, we have mqg = m + 1.
We then construct r' so that ry(m') = rq(m') for
m' < my — 1; if ¢ does not crash in r between times
mg and m inclusive, then 74(m') = rq(mg — 1) for
m' > my; otherwise, rq(m') = rq(mq — 1) - crashy for
m' > mg. By construction, we have rq(m) = ry(m)
for ¢ € S. For ¢' ¢ S, we have that 7, (m) is either
rg(mg — 1) or ryr(mq — 1) - crashy:. The reason we
need to add crash, is that the failure detector of some
process ¢ € S might report that ¢’ fails in ». Since
rq(m) = rj(m), if ¢’s failure detector is accurate, it
must be the case that ¢’ also fails in »'. Assuming
the failure detectors are “reasonable” (in particular,
cannnot say something like “either p has crashed or
p received the message”), then r’' should indeed be
a run in R. Note that if (R,r,m) | —crash(p) then
rp(m) = rp(myp); otherwise, either ry,(m) = rp(mp—1)
or 7,(m) = rp(mp — 1) - crash,. Since ¢ is insenstive
to failure by p, we have that (R,r',m) | —. Thus,
(r',m) satisfies the requirements of A4.

Theorem 3.4 shows that if R attains UDC and
satisfies A1-A4 and A5,, (or A5,_1) then the system
R' has perfect failure detectors. In light of this dis-
cussion, our result can be viewed as saying that un-
der some relatively innocuous assumptions (A1-A3),
if there is no bound on the number of failures (A5,,)
and the processes are telling each other as much as
they can (A4), then attaining UDC is tantamount to
having perfect failure detectors. Before proving that,
we provide a characterization of the facts that must
be known by a process before it can perform a coor-
dination action «. Specifically, a process must know
that if there are any correct processes at all, then one
of these knows that a has been initiated. Although
the proposition is phrased in terms of the knowledge
of the initiating process p (and this is all we need
for our proofs), a straightforward extension of the ar-
gument shows that it holds for every process p’ that
performs .

Proposition 3.3: If R satisfies A1, A2, and A4,
then

R /\peProc /\aeAp

K, (initp(oz) A /\quroc O(Kqinitp(a) V crash(q)))

= K, (V O-crash(q) =

qeProc

V,eProc (in"itp(a) A DﬁcraSh(Q))) -

Note that the clause quProc O-crash(q) in the an-
tecedent of the right-hand side of the the formula in
Proposition 3.3 is trivially true if we assume Ab; for
t <n —1. We are now ready to state our theorem.

that p; knows when it receives msg;.

Theorem 3.4: Suppose R is the system generated by
a protocol that attains UDC, R satisfies A1-A4 and
Abn (or Ab5n—1) and in each runr € R, if p is correct
in T, then p initiates actions infinitely often inr (i.e.,
infinitely many events of the form init,(a) appear in
p’s history in r). Then the system R’ generated as
above is one with perfect failure detectors.

4 Generalized Failure Detectors

Theorem 3.4 shows that if there is no bound on the
number of failures (or a bound of n — 1), then UDC
essentially requires perfect failure detectors. On the
other hand, as Gopal and Toueg [GT89] show, if there
are fewer than n/2 failures, then UDC is attainable
without failure detectors. We now generalize both of
these results, characterizing the type of failure detec-
tor needed to attain UDC if there is a bound of ¢ on
the number of possible failures, for all values of t.

A generalized failure detector reports that (it sus-
pects that) at least k processes in a set S are faulty.
As we discussed earlier, such generalized failure de-
tectors are appropriate when processes can observe
faulty behavior in some component(s) without being
able to tell which processes in the component are ac-
tually faulty. We model such generalized suspicions
by using events of the form suspect, (S, k). We are
interested in generalized failure detectors that give
useful information. Of course, what is “useful” may
depend on the application. Given a system R and an
upper bound of ¢ on the number of failures that may
occur in a run of R, we say that suspect,(S,k) is a
t-useful failure-detector event for r if (a) F(r) C S
and (b) n — |S| > min(¢,n — 1) — k (or, equivalently,
k > |S| —n + min(¢,n — 1). Note that if p learns at
the point (r,m) that there are k faulty processes in S
and n — |S| > min(¢,n — 1) — k, then p can conclude
that, if there are any correct processes at all in r, then
one of the processes in Proc — S is correct at (r,m)
(although it may not know which one). Just knowing
that some processes in a set are correct is not in gen-
eral useful. For example, if ¢ < n, then all processes
know that at least n —t processes in Proc are correct.
As we shall see, what makes this fact useful is that
F(r) C S, even though p may not know this.

A generalized failure detector in R is t-useful if
for all » € R and processes p, we have:

Generalized Strong Accuracy: if suspect,, (S, k) is in rp(m)

then there is a subset S’ C S such that |S'| =k
and for all ¢ € S’, we have that crash, is in

rq(m).

Generalized Impermanent Strong Completeness: if p is
correct, then there is a t-useful failure-detector
event for r in r,(m), for some m.

Note that it is trivial to construct a t-useful failure
detector in a context with at most ¢ failures if t <
n/2: repeatedly output (S,0) for every S C Proc
with |S| = t. Suspecting no processes in any subset S

trivially satisfies generalized strong accuracy, and in
every run r at least one t-sized subset of Proc must
contain F'(r). Whenever F(r) C S, then (S,0) is a
t-useful failure-detector event.

Also note that if suspect ,(S, k) is an (n —1)-useful
or n-useful failure-detector event, then we must have
|S| = k, since the only way to have £ > |S| — 1 is
to have k = |S|. Thus, we can easily convert an n-
useful or (n — 1)-useful generalized failure detector to
a perfect failure detector, by just reporting events of
the form suspect,(S) every time the generalized fail-
ure detector reports suspect,, (S, k) with |S| = k. Con-
versely, we can easily convert a perfect failure detector
to an n-useful (and hence (n—1)-useful) failure detec-
tor. Given a history for process p, we simply replace
each event suspect,(S) by the event suspect,(S', k),
where S’ is the union of S together with all the sets
that appeared in prior failure detector events in the
history, and k = |S’|. It is easy to see that this gives
us a useful failure detector. Thus, the following result
generalizes Proposition 3.1 and Gopal and Toueg’s re-
sult.

Proposition 4.1: There is a protocol that attains
UDC in a context with a bound of t on the number of
failures and with t-useful generalized failure detectors.

We want a converse to Proposition 4.1 that gen-
eralizes Theorem 3.4. We show that if processes can
perform UDC in a context with a bound t on the
number of failures, then t-useful generalized failure
detectors can be simulated in that context.

Given system R, construct system R’ as follows.
Fix an order Sg, ..., San_1 of the subsets of Proc. For
each run r € R, let R' = {f(r) : r € R} where f(r)
is constructed exactly as before, with just one minor
change:

o if rp,(m+1) =rp(m)-e, then f(r),(2m+1) =
f(r)p(2m) - suspect ,(Si, k), where [is the length
of the history rp,(m+1) mod 2™ and k£ = max |{k' :
(R,r,m) = Kp(k' processes in S have crashed)}|
and f(r)p(2m +2) = f(r)p(2m + 1) - €', where

e is as before.
In the full paper we prove the following.

Theorem 4.2: Suppose R is the system generated by
a protocol that attains UDC in a context with at most
t failures, R satisfies A1-A4 and A5, and in each
run r € R, if p is correct in r then p initiates actions
infinitely often in r. Then the system R' generated as
above is one with t-useful generalized failure detectors.

5 Conclusions

We have shown that the problem of Uniform Dis-
tributed Coordination in asynchronous systems varies
in its complexity both with communication guaran-
tees and with the number of failures that must be

0<i<n/2 | nj2<i<n—-1]n—-1<i<n
Reliable channels UDC no FD no FD no FD
consensus || OW ¢ Strong Perfect
Unreliable channels UDC no FD t-useful Perfect T
consensus || OW t Strong Perfect 7

Table 1: UDC versus consensus by failure-detector type; 1 indicates optimality.

tolerated (see Table 1). Unlike consensus UDC is
sensitive to communication guarantees. This is sig-
nificant since UDC is likely the only acceptable re-
liability guarantee for many wide-area applications,
precisely where reliable communication cannot be as-
sumed.

Note that we have completely characterized the
type of failure detector required to attain UDC for
all values of ¢t. For consensus, it is known that OW is
necessary and sufficient if ¢ < n/2. (Recall that in this
case no failure detectors at all are necessary to attain
UDC.) While strong (actually, impermanent-strong)
failure detectors suffice for consensus for n/2 <t <
n, there is no characterization of exactly the type of
failure detector that is required. The notion of t-
useful failure detectors defined here may prove useful
in that regard. We leave exploring this issue for future
work.

Acknowledgments: We thank Marcos Aguilera, Boris
Deianov, and Sam Toueg for their perceptive coments,
particularly with regard to assumption A4.

References

[ACT97] M. K. Aguilera, W. Chen, and S. Toueg.
Heartbeat: a timeout-free failure de-
tector for quiescent reliable communica-
tion. In Proceedings of the 11th Inter-
national Workshop on Distributed Algo-
rithms, pages 126-140. Springer-Verlag,
1997. A full version is also available
as Technical Report 97-1631, Department
of Computer Science, Cornell University,

1997.

[BJ8T] K. Birman and T. Joseph. Exploiting Vir-
tual Synchrony in Distributed Systems.
In 11th Symposium on Operating System
Principles, pages 123-138, 1987.

[CHT96] T. D. Chandra, V. Hadzilacos, and
S. Toueg. The weakest failure detector for
solving consensus. Journal of the ACM,
46:685-722, 1996.

[Coa86) B. Coan. A communication-efficient
canonical form for fault-tolerant dis-
tributed protocols. In Proc. 5th ACM
Symp. on Principles of Distributed Com-
puting, pages 63-72, 1986.

[CT96] T. D. Chandra and S. Toueg. Unreliable
Failure Detectors for Reliable Distributed
Systems. Journal of the ACM, 43(2):225—
267, 1996.

[FHMV95] R. Fagin, J. Y. Halpern, Y. Moses, and
M. Y. Vardi. Reasoning about Knowledge.
MIT Press, Cambridge, Mass., 1995.

[FHMV97] R. Fagin, J. Y. Halpern, Y. Moses, and
M. Y. Vardi. Knowledge-based programs.
Distributed Computing, 10(4):199-225,
1997.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Pa-
terson. Impossibility of distributed con-
sensus with one faulty processor. Journal

of the ACM, 32(2):374-382, 1985.
[GT89] A. Gopal and S. Toueg. Reliable Broad-

cast in Synchronous and Asynchronous
Environments. In 3rd WDAG. Springer
Verlag (LNCS 392), pages 110-123, 1989.

[SS93] A. Schiper and A. Sandoz. Uniform Reli-
able Multicast in a Virtually Synchronous
Environment. In Proceedings of the IEEE
13th ICDCS, 1993.

Appendix — Proofs of Propositions and Theorems

Proposition 2.1: There is a protocol that attains
nUDC, even without failure detectors, in a context
where there is no bound on the number of failures.

Proof: We just sketch the protocol here, since it is so
simple. Whenever a process p wants to attain nUDC
of action a (i.e., if init,(a) is in p’s history) p goes
into a special nUDC(«) state. If a process is in an
nUDC(«) state, it performs o and sends an a-message
repeatedly to all other processes (which, intuitively,
tells them to perform «). If a process receives an
a-message telling it to perform «, it goes into an
nUDC() state, if it has not already done so. It is
easy to see that this protocol attains nUDC. ® Il

5This protocol, like most of the others we present in this
paper, does not have any mechanism for termination. Pro-
cesses keep sending messages forever. Since message commu-
nication is unreliable, it is not hard to show that there is
in fact no protocol that attains nUDC and terminates. We
can deal with this problem by adding a heartbeat mechanism
[ACT97], but this issue is beyond the scope of this paper.

Proposition 2.2: UDC is achievable in a context
where communication is reliable and there is no bound
on the number of failures.

Proof: We proceed just as in the proof of Propo-
sition 2.1, except that before performing the action
«, a process simply sends a message to all other pro-
cesses telling them to perform a and inform all other
processes if they have not already done so. More pre-
cisely, if init, («) is in p’s history, p goes into a special
UDC(«) state. If a process is in a UDC(«) state, it
sends an a-message to all processes and then performs
a. If a process receives an o message, it goes into a
UDC-state if it has not already done so. Since a pro-
cess g performs « only after sending out an c-message
to all processes, if communication is reliable, ¢ knows
that all other correct processes will receive the mes-
sage, and thus also perform «, even if q crashes. il

Proposition 3.1: There is a protocol that attains
UDC in a context with impermanent-strong failure de-
tectors.

Proof: The proof is similar in spirit to that of Propo-
sition 2.1. Whenever a process wants to attain UDC
of action a, it goes into a special UDC(«) state. If a
process p is in a UDC(«) state, it sends an a-message
repeatedly to all other processes telling them to per-
form o and reads its failure detector repeatedly. Pro-
cess p performs « if, for every process ¢, p receives an
acknowledgment from g to its a-message or p’s failure
detector says that ¢ is faulty. However, p continues to
send a-messages even after performing o, until it has
received an acknowledgment for all processes (which
may never happen).® Every time a process ¢ receives
an a-message from p, ¢ sends an acknowledgment to
p; it also goes into a UDC(a) state if it has not already
done so.

To show that this protocol attains UDC, it suf-
fices to show that, in every run, (1) if a process p
is in a UDC(«) state, then p will eventually perform
« or crash and (2) if p performs « then every other
correct process performs a. To see that (1) holds,
suppose that p is in a UDC(@) state in run r. Then
p repeatedly sends an a-message in r, so if p is cor-
rect, then eventually every correct process g will get
p’s a-message and acknowledge it. Since a correct
process sends an acknowledgment for each c-message
it receives, R5 ensures that p will eventually get an
acknowledgment from every correct process. Since p
has a impermanent-strong failure detector, it will also
eventually suspect every faulty process. Thus, it will
perform «, according to the protocol above.

To see that (2) holds, first observe that since p
has a weakly accurate failure detector, there is some
correct process, say ¢*, that p never suspects. Thus, if

61f p has a strongly accurate failure detector rather than
just a weakly accurate failure detector, it can actually stop
sending messages after performing «. This follows from the
proof of Proposition 3.1.

p performs «, it must receive an acknowledgment from
q" to its a-message. Hence, ¢* goes into a UDC(«)
state and, by the previous argument, also performs
«. Since g* is correct, all correct processes eventually
receive an a-message from ¢* and so perform «. I

Proposition 3.2: If R satisfies A1 and Abn—1 (or
Ab,), then R satisfies weak accuracy iff R satisfies
strong accuracy.

Proof: Let R satisfy A1, A5,,_1, and weak accuracy.
If R does not satisfy strong accuracy, then there is a
point (r,m) such that suspect,(S, k) € rp(m), ¢ € S,
and ¢ has not failed in S. Let S’ = Proc — {q}. By
A5,,_1, there is a run r’ where all the processes in S’
fail. Thus, by Al, there is a run r" extending (r,m)
such that all the processes in S’ fail in r". Thus, q
is the only correct process in '. By weak accuracy,
we must have that ¢ is never suspected as faulty in
r"" contradicting the assumption that it is in fact sus-
pected by p. I

Proposition 3.3: If R satisfies A1, A2, and A4,

then
R |= /\pE Proc /\aeAp

K, (initp(a) A N, eProc @ (Eginity(@) v crash(q)))

= K, (quProc O-crash(q) =

V,eProc (in“itp(a) A DﬁCfﬁSh(Q))) :

Proof: Suppose, by way of contradiction, that

(R,r,m) E
K, (initp(oz) A N, eProc O(Eyinity() v crash(q)))

A -Kp quProc O-crash(q)

= quPI’OC (innitp(a) A Dﬂcrash(q))) .
(1)

Then there must be a point (r!,m') ~, (r,m) such
that

(R, rl, m') = initp () A quProc O-crash(g)A
/\quI’OC (D_‘C’aSh(‘]) = —'innitp(a)) .

We have (R, 7, m') |= /\qu(rl) —Kginit,(a). Since
p knows that it initiated o at (r!,m'), we must have
p € F(r'). Moreover, F(r') # Proc.

By A4, there exists a point (r2,m') such that
(r2,m') ~g (r',m’) for ¢ € Proc—F(r') and (R, ?,m') |
—inity(a). By Al, there exists a run r° extending
(r?,m’) such that F(r3) = F(r'). Since 3 extends

(r>,m'), we must have r}(m') = r3(m') for all ¢ €
Proc — F(r'). By A2, there exist runs +* and 5 ex-

tending 7! and r®, respectively, such that r;l(m”) =
5
q

F(r') (and, in particular, p) crash by time m' + 1.
Thus, inity(e) is not in p’s history in #°, which means
that (R,»°,m') E /\quroch(rl) O-Kyinity(a). Since

r* and 75 are indistinguishable to such ¢ from m’' on-

r2(m") for m'" > m'. Moreover, all the processes in

ward, we have (R, r*,m') = /\quI’OC—F(rl) O-Kyinity ().

Since (r,m) ~p (r',m') and r* extends (r',m'), we

must have (r,m) ~p (r*,m'). Hence, we have (R,r,m) |

-K, (O(innitp(oz) Vcrash(q))) for ¢ € Proc— F(r").
This gives the desired contradiction to (1). il

Theorem 3.4: Suppose R is the system generated
by a protocol that attains UDC, R satisfies A1-A4 and
Ab, (or Ab5n,—1) and in each runr € R, if p is correct
wn 7, then p initiates actions infinitely often inr (i.e.,
infinitely many events of the form init,(a) appear in
p’s history in r). Then the system R’ generated as
above is one with perfect failure detectors.

Proof: It is immediate from the construction that p
crashes in (r,m) iff p crashes in (f(r),2m). It easily
follows that p’s failure detector satisfies strong accu-
racy. To show that it satisfies strong completeness,
suppose that p is correct and q fails in run f(r) € R’
and hence also in run r» € R. Since p initiates actions
infinitely often in R, there must be some action « ini-
tiated by p in f(r) after g has failed. Since R satisfies
UDC, by DC1, p must eventually perform « in run
r, say at time m. Moreover, by DC2, p knows that,
for each process ¢' (and, in particular, q), ¢’ must
eventually either crash or must perform «. Using
DC3, it easily follows that we must have (R,r,m) |

K, (<> (/\q'eProc Kyinitp(a) V crash(q))) Since R
satisfies Al, A2, and A4 by assumption, it follows
from Proposition 3.3 that

(R,r,m) =

K, Vq'ePrOC O-crash(q') =

vq'ePrOC (Kq:initp(a) A Dﬂcrash(q'))) .

(2)
Suppose that (R, r,m) | O~Kpcrash(g). Since ¢

crashes in r before p initiates o, we also have (R, r,m) |E

=K, initp(a). Thus, there must exist a point (r',m') ~,

(r,m) such that (R, ', m') | —crash(q)A—~K, Kinit, ().

Since Kginit,(a) is stable, local to g, and (by A3) in-
sensitive to failures by ¢, by A4, there must exist a
point (r®,m') ~, (r',m') such that r}(m') is a pre-
fix of 7j(m') and (R,r?,m') | —K,init,(a). Since

ro(m') is a prefix of r} (m'), we also have (R, r*, m') =

—crash(q). This means (2, m') ~, (r,m) and (R,%,m') &=

~crash(q) A ~Kjyinity ().

By A5,_1 (or the stronger Ab5,) and Al, there
is a run r® extending (r?,m’) such that all processes
except q fail in 3. Of course, (3, m') ~, (r,m) and

3 !
(R,T » M) ': /\q’GPrOC—{q}
Ocrash(q') A = Kyinit, (o) A O-crash(q) .

But this contradicts (2). Il

Proposition 4.1: There is a protocol that attains
UDC in a context with a bound of t on the number of
failures and with t-useful generalized failure detectors.

Proof: Whenever a process wants to attain UDC of
action «, it goes into a special UDC(«) state. If a
process p is in a UDC(«) state, it sends an a-message
repeatedly to all other processes telling them to per-
form « and reads its failure detector repeatedly. Pro-
cess p performs o at time m if, by time m, (a) its
failure detector reports suspect, (S, k), (b) it has re-
ceived messages from all the processes in Proc — S
acknowledging «, and (c) n — |S| > min(¢,n — 1) — k.
Process p continues to send a-messages to ¢ € S until
it either receives an acknowledgment from ¢ or knows
q to be faulty. A process that receives an c-message
from p sends an acknowledgment to p and goes into
a UDC(«a) state if it has not already done so.

To show that this protocol attains UDC, again it
suffices to show that, in every run, (1) if a process p
is in a UDC(«) state, then p will eventually perform
a or crash and (2) if p performs o then every other
correct process performs a. For (1), suppose that p is
in a UDC(«) state in run r. Then p repeatedly sends
an a-message in r, so if p is correct, then eventually
every correct process g will get it and acknowledge
it. Since a process ¢ acknowledges p’s a-message each
time it gets it, by R5, p will eventually get an acknowl-
edgment from every correct process. Since p has a
t-useful failure detector, if it is correct in r, there will
be a t-useful failure-detector event say suspectp(S, k),
in rp(m) for some m > m,. Since p eventually gets
acknowledgments from all the processes in Proc — S
(since these, at least, are correct in r), it will eventu-
ally perform «, according to the algorithm.

To see that (2) holds, the arguments for (1) show
that if p performs o as a result of the failure-detector
event suspect (S, k), all the processes in Proc—S have
received an « message (and hence are in a UDC(«)
state) and Proc — S contains at least one correct pro-
cess, say ¢, if there are any correct processes in r.
Since ¢ continues to send a-messages to all processes,
all the correct processes in r will eventually be in a
UDC(a) state. It then follows from (1) that all the
correct processes will perform «. [

