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Abstract

Halpern and Pass [2011] introduce a logic of justified belief and go on
to prove that strong rationalizability is characterized in this logic in terms
of common justified belief of rationality (CJBR). Their paper provides
semantics for this logic but no axiomatization. We correct this deficiency
by reformulating the definition of justified belief and providing a complete
axiomatization of this new system. We then prove a result analogous to
the characterization of strong rationalizability in terms of CJBR, and
analyze the additional assumptions needed to do so.

1 Introduction

One of the best known solution concepts in game theory is rationalizability
[Pearce 1984]. Roughly speaking, a strategy σ for player i is rationalizable if
σ is a best response to some belief of player i about the strategies of the other
players, under the assumption that these strategies too are rationalizable (so are
themselves best responses to players’ beliefs, and so on). As shown by Tan and
Werlang [1988] and Brandenburger and Dekel [1987], a strategy is rationalizable
if and only if it can be played at a state where rationality is common knowledge.

However, it is known that there is a sense in which rationalizability is too per-
missive. For example, in the well-known centipede game [Rosenthal 1982] (Fig-
ure 1), viewed as a normal-form game, every strategy is rationalizable, despite
a backward induction argument that yields a unique course of action for the
starting player: quitting immediately.1

The culprit here seems to be that the two players may have “incompatible”
beliefs. If the second player (Bob) believes the first player (Alice) will quit
immediately (i.e. if Bob assigns probability 1 to that event), then it is easily

1Recall that in the centipede game two players take turns moving; at each move before
the end, they can either quit the game or continue (the player who moves at the last step can
only quit). For all steps t before the end, the player that moves at t prefers the outcome of
stopping at round t to the outcome of stopping at round t+1. However, for all t, stopping in
round t+ 2 leads to a better outcome for both players than stopping in round t.
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Figure 1: An example of an eight-round centipede game.

seen that Bob can rationalize any strategy, since what he does has no influence
on the outcome. But if Bob can rationalize any strategy, then so can Alice; for
example, if Bob chooses to quit at round 4 (believing that Alice will quit at
round 1), then Alice can rationalize quitting at round 3. A key observation in
this example is that while Alice assigns probability 1 to the event “Alice quits
at round 3”, Bob assigns this same event probability 0.

This suggests that a strengthening of the notion of rationalizability might be
fruitful and, moreover, that the missing component is some sort of “compati-
bility” condition on the players’ beliefs. This strengthening is realized in the
definition of strong rationalizability given by Halpern and Pass [2011] (HP from
now on). Roughly speaking, a strategy is strongly rationalizable if it is rational-
izable using beliefs that are compatible, in the sense that if one player assigns
positive probability to a strategy profile, then all players assign positive proba-
bility to it. HP show that in the centipede game, the only strategy profiles that
are strongly rationalizable are ones where Alice quits right away.

HP analyze strong rationalizability from a modal perspective, using a logic that
includes distinct modal operators for belief and justified belief. Among other
things, they show that common justified belief of rationality (CJBR) character-
izes strongly rationalizable strategies. Roughly speaking, according to the HP
definition, player i has justified belief in ϕ at a state ω, denoted ω |= B∗i ϕ, if (a)
the player believes ϕ (that is, he assigns ϕ probability 1), and (b) his probabil-
ity distribution gives ω positive probability. The problem with this definition is
that at a state ω that is not given positive probability, the player cannot have
justified belief of anything; even B∗i true does not hold. To deal with this, HP
take B∗i ϕ to be true at ω if either the player believes ϕ and gives ω positive
probability, or ϕ is valid.

While this approach does ensure that B∗i true holds at every state, and does
suffice to allow HP to characterize strong rationalizability in terms of CJBR,
it seems somewhat ad hoc. Moreover, the HP definition proves difficult to
generalize or adapt to differing intuitions. For example, it seems reasonable
to require that a player has justified belief of his own beliefs, but there is no
natural way to incorporate this requirement into the definition short of simply
imposing it as a third disjunct.

We provide here a reformulation of the logic of justified belief that, while remain-
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ing true to the original intent, is a more natural object of study. For example,
it allows us to naturally capture the requirement that players have justified be-
lief of their own beliefs. Further evidence of the naturalness of our approach is
provided by a straightforward sound and complete axiomatization of the logic,
a feature lacking in [Halpern and Pass 2011].

Our reformulation is based on the idea of a logic that includes, in addition
to an epistemic belief modality Bi, an alethic modality 2i (that lets us talk
about logical necessity and possibility); B∗i is defined as the conjunction of Bi
and 2i. This idea is somewhat reminiscent of an approach taken by Artemov
and Nogin [2005], who have also considered adding justification to epistemic
logic. They do so by use of “justification terms” of the form t :ϕ. The formula
t : ϕ says that t is an explicit witness (perhaps a proof) that ϕ is true. The
formula also has an epistemic component. The implicit assumption is that an
agent who has a proof understands that he has a proof, so that the implication
(t : ϕ) ⇒ Bϕ holds. No such implication holds for our 2i modality. B∗i ϕ is
perhaps best thought of as “exists t such that t :iϕ holds” (where t :iϕ says that
“agent i has a justification t for ϕ”). (Artemov [2001] and Fitting [2008] have
considered translating formulas with explicit justifications into a simple modal
logic with a 2 operator by replacing each term of the form t : ϕ by 2ϕ.) It
would be interesting to see if there are axioms on justification that would allow
us to reproduce the properties of B∗i using this approach, although doing so is
beyond the scope of this paper.

Our new approach does have a downside: it is no longer the case in general that
CJBR characterizes strong rationalizability in all structures. But this failing can
be mitigated: we can identify exactly which additional properties are needed in
a structure to recover the characterization. This leads to a deeper understanding
of both justified belief and strong rationalizability.

The rest of the paper is organized as follows. In the next section we review
the semantics of the HP notion of justified belief and discuss the shortcomings
of this approach. In Section 3 we motivate, define, and completely axiomatize
a new formulation of justified belief; we then analyze some of its fundamental
properties. The discussion in Sections 2 and 3 is carried out in a general logical
setting. In Section 4, we specialize the setting to games, expanding the lan-
guage to include formulas for strategies and rationality; we then provide a sound
and complete axiomatization. Thus, perhaps surprisingly, we can reason about
rationality in a qualitative language that can talk only about beliefs, rather
than probability and utility. In Section 5, we characterize the key properties
of justified belief needed to prove the characterization of strong rationalizabil-
ity in terms of CJBR. This turns out to require extra “richness” requirements;
Section 6 is therefore devoted to exploring some of the consequences of these
additional requirements, how they might be viewed in a wider context, and di-
rections for future research. Finally, Section 7 presents the proofs that were
omitted from the previous sections.

3



2 The Halpern-Pass Definition of Justified Be-
lief

We begin by establishing a basic logical setting in which the justified belief
operator may be defined.

Let LBn (Φ) denote the language that has primitive propositions in Φ, and is
closed under the standard Boolean connectives as well as the modal operators
Bi (“player i believes that”), for 1 ≤ i ≤ n. (As usual, we omit Φ and write just
LBn when Φ is not relevant.) We use Kripke-style semantics, where associated
to each state ω and each player i is a probability measure on the state space,
thought of as representing player i’s beliefs at ω. Formally, a probability frame
is a tuple (Ω,PR1, . . . ,PRn) satisfying the following conditions:

(P1) Ω is a nonempty topological space;

(P2) each PRi assigns to each ω ∈ Ω a probability measure PRi(ω) on Ω;

(P3) ω′ ∈ PRi[ω]⇒ PRi(ω′) = PRi(ω), where PRi[ω] abbreviates Supp(PRi(ω)),
the support of the probability measure.

Condition (P3) ensures that each player is sure of his own beliefs. The topo-
logical structure on Ω is necessary to make sense of the probability measures,
which are implicitly taken to be defined on the Borel subsets of Ω. We will fre-
quently restrict our attention to finite state spaces with the discrete topology,
in which case all subsets of Ω are measurable, so we can suppress mention of
the topological structure altogether.

A probability structure M is a probability frame together with a valuation func-
tion [[·]]M : Φ → 2Ω. This valuation is extended to all formulas recursively
via:

[[ϕ ∧ ψ]]M =def [[ϕ]]M ∩ [[ψ]]M
[[¬ϕ]]M =def Ω− [[ϕ]]M
[[Biϕ]]M =def {ω ∈ Ω : PRi[ω] ⊆ [[ϕ]]M}.

Thus, the Boolean connectives are interpreted classically, while the formula
Biϕ holds at all states ω such that PRi(ω) assigns probability 1 to ϕ. As is
standard, we often write (M,ω) |= ϕ or just ω |= ϕ for ω ∈ [[ϕ]]M ; similarly,
we write M |= ϕ for [[ϕ]]M = Ω; and we say that ϕ is valid, and write |= ϕ, if
M |= ϕ for all probability structures M . When (M,ω) 6|= ϕ, we say that M
refutes ϕ at ω, or just that ω refutes ϕ.

The goal now is to introduce a second unary modal operator for each player,
B∗i , to be interpreted in some sense as “justified belief”. As a first attempt at
providing semantics for this operator, consider:

ω |= B∗i ϕ⇔ ω |= Biϕ and ω ∈ PRi[ω].
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This is meant to capture the intuition that a justified belief should never rule
out something which might, in fact, obtain; to put the same point evidentially,
one cannot justifiably discount anything that one has not observed evidence
against. In particular, then, a justified belief must include the actual state in
its support.

These semantics for B∗i , however, yield a non-normal operator, since B∗i need
not hold even of valid formulas: at any state ω with ω /∈ PRi[ω], B∗i ϕ fails for
all ϕ. This motivates changing the semantics for B∗i to

ω |= B∗i ϕ ⇔
(a) ω |= Biϕ and ω ∈ PRi[ω], or
(b) ϕ is valid,

which is precisely the HP definition.

This solves one problem but creates another: axiomatizing B∗i now seems to
require an ability to express “is valid” in the object language, since the formula

B∗i ϕ⇒ (Biψ ⇒ ψ) (1)

is valid for all and only refutable ϕ. Thus, it seems that in order to axiomatize
B∗i we need to reason about satisfiability and validity. While this can be done
[Halpern and Lakemeyer 2001], it seems not to get at the essence of justified
belief. It can also be argued that a player ought to have justified belief in his
own beliefs at all states, not just those which lie in the support of their own
probability measure. This can be captured by adding a (rather ugly!) third
disjunct to an already ad hoc definition, but again, this does not seem to be a
natural way to go. This motivates the main goal of this paper: to present an
alternative approach to defining the B∗i operators that resolves all of the issues
raised above.

3 A New Approach to Justified Belief

Returning to the language LBn , we begin, not with B∗i , but by introducing unary
modal operators 2i for each player i. The idea underlying this move stems from
the intuition for justified belief given above: that it should never rule out a
possibility that might obtain. The operators 2i are intended to introduce the
dimension of alethic modality that the word “might” carries in this intuition.
As such, we define the symbols B∗i into our language via

B∗i ϕ =def Biϕ ∧2iϕ,

and henceforth take this as our definition of justified belief. We might read 2iϕ
as “necessarily ϕ” and, dually, 3iϕ =def ¬2i¬ϕ as “possibly ϕ” or “it might be
the case that ϕ”, though we shall see that these readings still require refinement.
Loosely speaking, then, we can read the above as: “player i has justified belief
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in ϕ just in case player i believes ϕ and, moreover, it is not the case that ¬ϕ
might obtain”. Call this new language LB,2n .

We no longer need to give semantics to B∗i directly, since it will inherit its se-
mantics from Bi and 2i. We let Ri[ω] denote {ω′ ∈ Ω : ωRiω

′}, and define a B∗-
frame to be a tuple (Ω,PR1, . . . ,PRn, R1, . . . , Rn) where (Ω,PR1, . . . ,PRn)
is a probability frame, and the following conditions hold:

(F1) each Ri is a reflexive, transitive relation on Ω;

(F2) ω′ ∈ PRi[ω]⇒ Ri[ω
′] ⊆ PRi[ω];

(F3) ωRiω
′ ⇒ PRi(ω′) = PRi(ω).

A B∗-frame (Ω,
−−→
PR,

−→
R ) is said to be based on the probability frame (Ω,

−−→
PR).

Each Ri is called an accessibility relation; we think of it as telling us which
states are “possible” or “imaginable” from which other states, and condition
(F1) is standard in this respect. Condition (F2) expresses a one-directional
transparency between the alethic modality, “it might be the case that” and
its epistemic counterpart, “it is considered possible that”; namely, no player
considers it possible that something might be true without also considering it
possible that it is true (see Figure 3). This may be considered a “dictum of

Figure 2: Condition (F2).

responsible imagining”2: if you consider something impossible, then you cannot
imagine a world where it is possible. Finally, condition (F3) expresses an addi-
tional restriction on alethic possibility: that it is possibility conditioned on the
player’s actual beliefs. That is, any state that is possible (from a given state) is
a state in which the player’s beliefs are the same (as in the given state). As we
shall see, it is (F3) that guarantees that an agent has justified beliefs about his
own beliefs.

We define a B∗-structure to be a B∗-frame together with a valuation function
as described above, extended by the additional rule

[[2iϕ]]M =def {ω ∈ Ω : Ri[ω] ⊆ [[ϕ]]M}.
2We thank Christina Bjorndahl for suggesting this phrasing.
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Thus, 2iϕ holds at a world ω if ϕ holds at all worlds that are Ri-accessible from
ω.

The following result shows that if B∗i ϕ holds according to the HP definition,
then it also holds according to our current formulation.

Proposition 3.1: Let (Ω,
−−→
PR,

−→
R, [[·]]M ) be a B∗-structure. For all ω ∈ Ω, each

1 ≤ i ≤ n, and any formula ϕ, if either

(a) ω |= Biϕ and ω ∈ PRi[ω], or

(b) [[ϕ]]M = Ω, or

(c) ϕ has the form Biψ or ¬Biψ and ω |= ϕ,

then ω |= B∗i ϕ.

Proof: First suppose that (a) holds. Clearly it suffices to show that ω |= 2iϕ.
Let ω′ ∈ Ω be such that ωRiω

′; then condition (F2) ensures that ω′ ∈ PRi[ω],
which implies ω′ |= ϕ, thereby establishing ω |= 2iϕ. Case (b) is obvious. If
(c) holds, observe that by condition (P3) we have ω |= Biϕ, and condition (F3)
guarantees that ω |= 2iϕ. (This is true both if ϕ has the form Biψ and if it has
the form ¬Biψ.)

According to the HP definition, ω |= B∗i ϕ if either (a) ω |= Biϕ and ω ∈ PRi[ω]
or (b) ϕ is valid. Parts (a) and (b) of Proposition 3.1 show that B∗i ϕ continues
to hold in either of these two cases under the new definition. Proposition 3.1(c)
shows that each player also has justified belief in his own beliefs: both Biϕ ⇒
B∗iBiϕ and ¬Biϕ ⇒ B∗i ¬Biϕ are valid. The proof of Proposition 3.1 shows
that (F3) is crucial for these properties.

As we now show, the logic has a straightfoward axiomatization with the Bi as
KD45 operators, the 2i as S4 operators, and two interaction axiom schemes
which capture conditions (F2) and (F3).
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Axiom Schemes:

CPC. All tautologies of classical logic

KB. Bi(ϕ⇒ ψ)⇒ (Biϕ⇒ Biψ)
D. Biϕ⇒ ¬Bi¬ϕ
4B. Biϕ⇒ BiBiϕ
5. ¬Biϕ⇒ Bi¬Biϕ

K2. 2i(ϕ⇒ ψ)⇒ (2iϕ⇒ 2iψ)
T. 2iϕ⇒ ϕ
42. 2iϕ⇒ 2i2iϕ

I1. Biϕ⇒ Bi2iϕ
I2. 3iBiϕ⇒ 2iBiϕ

Rules of Inference:

MP. From ϕ⇒ ψ and ϕ infer ψ
NB. From ϕ infer Biϕ
N2. From ϕ infer 2iϕ

Let AXB∗ consist of the axioms and rules of inference above.

Theorem 3.2: AXB∗ is a sound and complete axiomatization of the language
LB,2n with respect to the class of all B∗-structures.

Soundness is proved as usual, by induction on the length of the deduction; in
particular, condition (F2) guarantees I1 and (F3) guarantees I2, as is easily
checked. Completeness can be proved by the canonical model method. The
(quite standard) details are deferred to Section 7.1.

Since the B∗i operators are defined into our language, they do not occur in the

axiomatization AXB∗ . We catalogue some of their properties here.

Proposition 3.3: The following formulas are valid:

(a) B∗i (ϕ⇒ ψ)⇒ (B∗i ϕ⇒ B∗i ψ);

(b) B∗i ϕ⇒ ϕ;

(c) B∗i ϕ⇒ B∗iB
∗
i ϕ;

(d) Biϕ⇒ BiB
∗
i ϕ.

Proof: Part (a) is a routine verification. Part (b) follows easily from the axiom
scheme T. Part (c) follows from the fact that Biϕ and 2iϕ together imply
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BiBiϕ, Bi2iϕ, 2iBiϕ, and 2i2iϕ, as witnessed by the axiom schemes 4B , I1,
I2, and 42, respectively. Part (d) is perhaps best observed by noting that if
ω |= Biϕ and ω′ ∈ PRi[ω], then ω′ |= Biϕ and ω′ ∈ PRi[ω′]; the result now
follows by Proposition 3.1(a).

The absence of a theorem corresponding to axiom 5, negative introspection for
B∗i , is no accident. In fact, even the weaker formula

¬B∗i ϕ⇒ Bi¬B∗i ϕ (2)

is not valid: if ω |= Biϕ∧¬2iϕ, then certainly ω |= ¬B∗i ϕ. However, Proposition
3.3(d) guarantees that ω |= BiB

∗
i ϕ, which of course implies that ω 6|= Bi¬B∗i ϕ.

It is worth noting (and easy to check) that justified belief in the HP sense also
satisfies Proposition 3.3, and also fails to satisfy both negative introspection and
the weaker formulation given in (2).

Having explored some of the syntactic properties of the B∗i operators, we turn
now to a closer examination of B∗-structures; specifically, we are interested in
the role that the relations Ri play in determining the nature of justified belief.
For example, observe that the identity relation satisfies conditions (F1) through
(F3). If M is a B∗-structure in which Ri is the identity, then M |= ϕ ⇔ 2iϕ,
and therefore M |= B∗i ϕ ⇔ (Biϕ ∧ ϕ). Thus, the notion of justified belief we
have defined subsumes the notion of true belief. Moreover, as is well known, Ri
being the identity is characterized syntactically by the axiom scheme

ϕ⇒ 2iϕ.

If we view the identity relation as the minimal relation satisfying (F1) through
(F3), then we are naturally led to the investigation of a “maximal” such relation.
This is a notion that will play an important role for us in Section 5.

Given a probability frame (Ω,
−−→
PR), define the relations Qi as follows: for all

ω, ω′ ∈ Ω,

ωQiω
′ ⇔ (a) PRi(ω′) = PRi(ω), and

(b) ω ∈ PRi[ω]⇒ ω′ ∈ PRi[ω].
(3)

This definition ensures that ωQiω
′ holds whenever it does not violate conditions

(F2) or (F3); intuitively, this should make the Qi “as big as possible”. This
intuition is borne out in the following proposition.

Proposition 3.4: The tuple (Ω,
−−→
PR, Q1, . . . , Qn) is a B∗-frame. In fact, it

is the unique B∗-frame based on the probability frame (Ω,
−−→
PR) in which each

accessibility relation Qi is maximal with respect to inclusion.

Proof: We first need to verify conditions (F1) through (F3). It is immediate
from the definition that each Qi is reflexive, and transitivity is likewise straight-
forward; the remaining conditions are satisfied trivially by definition of the Qi.
Maximality and uniqueness are now evident.
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A B∗-frame (Ω,
−−→
PR,

−→
R ) is called maximal if the relations Ri are maximal in

the sense of Proposition 3.4. Like minimality, maximality can be characterized
syntactically. Let AXB∗

max be the system AXB∗ together with the following two
axiom schemes:

M1. 2iϕ⇒ Biϕ
M2. ϕ⇒ 2i((Biψ ∧ ¬ψ)⇒ 3iϕ)

M1 says that for each state ω, Ri[ω] ⊇ PRi[ω]. M2 is perhaps best understood
as an augmented version of the standard axiom that characterizes symmetric
relations Ri: ϕ ⇒ 2i3iϕ. The formula Biψ ∧ ¬ψ cannot hold at any state
ω satisfying ω ∈ PRi[ω]; thus M2 says essentially that ωRiω

′ implies ω′Riω
whenever ω′ /∈ PRi[ω′].

Theorem 3.5: AXB∗

max is a sound and complete axiomatization of the language
LB,2n with respect to the class of all maximal B∗-structures.

Proof: See Section 7.2.

If M is a maximal B∗-structure, then Theorem 3.5 implies that M |= B∗i ϕ ⇔
2iϕ. Loosely speaking, then, while at one extreme our notion of justified belief
collapses to (merely) true belief, at the other extreme it is realized as full-fledged
necessity.

Up to now, we have not included common (justified) belief in the language, so
as to focus on the main issues involved in defining justified belief. Common
justified belief is needed for the HP characterization of strong rationalizability,
however, so we now add it to the language.

Let LCB∗n be the language that results from adding the operators CB (common
belief) and CB∗ (common justified belief) to LB,2n and closing off under all
the operators. To give semantics to these new operators, we make use of the
following (standard) abbreviations

EB1ϕ =def B1ϕ ∧ · · · ∧Bnϕ
EBkϕ =def EB(EBk−1ϕ)
(EB∗)1ϕ =def B∗1ϕ ∧ · · · ∧B∗nϕ
(EB∗)kϕ =def EB∗((EB∗)k−1ϕ),

and we extend the valuation as follows:

[[CBϕ]]M =def

∞⋂
k=1

[[EBkϕ]]M

[[CB∗ϕ]]M =def

∞⋂
k=1

[[(EB∗)kϕ]]M .

Thus, as usual, common belief of ϕ means that everyone believes that everyone
believes . . . ϕ; common justified belief is defined analogously.
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The axioms for common belief and common justified belief are just variants of
the standard fixed-point axiom and induction rule for common knowledge [Fa-
gin, Halpern, Moses, and Vardi 1995; Halpern and Moses 1992].

Axiom Schemes:

FPACB. CBϕ⇒ EB(ϕ ∧ CBϕ)
FPACB∗ . CB∗ϕ⇒ EB∗(ϕ ∧ CB∗ϕ)

Rules of Inference:

IRCB. From ψ ⇒ EB(ϕ ∧ ψ) infer ψ ⇒ CBϕ
IRCB∗ . From ψ ⇒ EB∗(ϕ ∧ ψ) infer ψ ⇒ CB∗ϕ

Let AXCB∗ be the system that results from adding these axioms and rules
of inference to AXB∗ . Using standard techniques [Fagin, Halpern, Moses, and
Vardi 1995; Halpern and Moses 1992], we can prove the following result (see
Section 7.3 for details).

Theorem 3.6: AXCB∗ is a sound and complete axiomatization of the language
LCB∗n with respect to the class of all B∗-structures.

4 Structures Appropriate for Games

We now want to apply justified belief to game theory, with the goal of charac-
terizing strong rationalizability by CJBR, as in [Halpern and Pass 2011].

Fix a normal-form n-player game Γ, where Σi(Γ) denotes the strategies of player
i in Γ,

Σ(Γ) :=

n∏
i=1

Σi(Γ),

and
Σ−i(Γ) :=

∏
j 6=i

Σj(Γ).

To reason about players’ actions and rationality in Γ, following HP, we take ΦΓ

to consist of the primitive propositions playi(σi) for σi ∈ Σi(Γ) (“player i is play-
ing strategy σi”) and RATi (“player i is rational”), and consider the language
LCB∗n (ΦΓ); to simplify notation, we write LCB∗n (Γ) rather than LCB∗n (ΦΓ). We
make use of the following syntactic abbreviations:

RAT =def RAT1 ∧ · · · ∧RATn
play(−→σ ) =def play1(σ1) ∧ · · · ∧ playn(σn).
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A structure appropriate for Γ (or a Γ-structure for short) is essentially a B∗-
structure that interprets these primitive propositions appropriately. Formally,

it is a tuple M = (Ω, s,
−−→
PR,

−→
R ) where (Ω,

−−→
PR,

−→
R ) is a B∗-frame and s is a

strategy function that associates to each state ω ∈ Ω a pure strategy profile
s(ω) ∈ Σ(Γ) satisfying

(S1) PRi[ω] ⊆ [[si(ω)]]M ,

where si(ω) denotes player i’s strategy in the strategy profile s(ω) and

[[σi]]M := {ω : si(ω) = σi}

(so [[si(ω)]]M = {ω′ : si(ω
′) = si(ω)}). Condition (S1) ensures that player i is

sure of his own strategy. It is worth noting that all Γ-structures also satisfy

(S2) Ri[ω] ⊆ [[si(ω)]]M ,

which shows that the alethic notion of possibility captured by the relation Ri
is possibility conditioned on player i’s actual strategy. This parallels condition
(F3), and ensures that each player has justified belief not only of his own beliefs,
but also of his own strategy. If we omit the relations Ri, we obtain the HP
definition of a probability structure appropriate for Γ (or a probability Γ-structure
for short).

The function s induces a valuation [[·]]M : Ω → 2Ω on primitive propositions as
follows:

[[playi(σi)]]M =def [[σi]]M
[[RATi]]M =def {ω ∈ Ω : si(ω) is a best response given PRi(ω)},

where the notion of “best response” is determined in Γ according to player i’s
beliefs on the strategies of other players induced by PRi(ω). More precisely, a
probability measure π on Ω induces a probability measure µ on Σ−i(Γ) via

µ(σ−i) = π([[σ−i]]M ),

where σ−i and [[σ−i]]M are defined in the obvious way. The measure µ can then
be combined with the utility function given by the game Γ to generate a notion
of “best response” via expected utility.

We next provide axioms that characterize the interpretation of playi(σi) and
RATi in Γ-structures. Given S ⊆ Σ−i(Γ) and σ−i ∈ Σ−i(Γ), let

χS(σ−i) =def

{
¬Bi¬ play−i(σ−i) if σ−i ∈ S
Bi¬ play−i(σ−i) if σ−i /∈ S.

Axiom Schemes:
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G1.
∨

σi∈Σi(Γ)

playi(σi)

G2. ¬
(
playi(σi) ∧ playi(σ′i)

)
, for σi 6= σ′i

G3. playi(σi)⇔ Bi playi(σi)

G4. RATi ⇔ Bi(RATi)

G5. (playi(σi) ∧ RATi) ⇒
∨
S∈Xσi

∧
σ−i∈Σ−i(Γ) χS(σ−i), where Xσi is the set

of all S ⊆ Σ−i(Γ) such that there exists a probability measure µ on Σ−i(Γ)
such that σi is a best response to µ and Supp(µ) = S

G6. (playi(σi) ∧ ¬RATi) ⇒
∨
S∈Yσi

∧
σ−i∈Σ−i(Γ) χS(σ−i), where Yσi is the

set of all S ⊆ Σ−i(Γ) such that there exists a probability measure µ on
Σ−i(Γ) such that σi is not a best response to µ and Supp(µ) = S.

G1–G4 are straightforward. G1 and G2 say that, in each state, a player plays
exactly one strategy; G3 and G4 say that a player is certain of his strategy
and of whether or not he is rational. The interesting axioms are G5 and G6.
Intuitively, G5 says that if RATi holds and player i is playing σi, then player
i must consider possible a collection of strategy profiles on which he could put
a probability that would justify his playing σi. G6 is interpreted analogously.
Notice that these axioms do not specify player i’s actual belief. Nevertheless,
they are all we need to get completeness.

Let AXCB∗(Γ) be the axiom system that results by adding G1–G6 to AXCB∗ .
For expository purposes, we restrict our attention to finite Γ-structures.

Theorem 4.1: AXCB∗(Γ) is a sound and complete axiomatization of the lan-
guage LCB∗n (Γ) with respect to the class of all finite Γ-structures.

The proof of this Theorem is deferred to Section 7.4. It is worth noting that
this result can be extended to the infinite case provided we take a little more
care in defining Γ-structures; more specifically, in the infinite case it becomes
important to insist that the strategy function respects the topological structure
of Ω.

5 Characterizing Strong Rationalizability

A strategy σi for player i in game Γ is strongly rationalizable if, for each player j,
there is a set Zj ⊆ Σj(Γ) and, for each strategy σ′j ∈ Zj , a probability measure
µσ′j on Σ−j(Γ) such that

(a) σi ∈ Zi,

13



(b) Supp(µσ′j ) ⊆ Z−j ,

(c) σ′j is a best response to (the beliefs) µσ′j , and

(d) for all players j, h and all strategy profiles −→σ ′ ∈ Z1×· · ·×Zn, if µσ′j (σ
′
−j) >

0, then µσ′h(σ′−h) > 0.

The standard definition of a rationalizable strategy can be recovered by omitting
the final condition. HP prove the following theorem:

Theorem 5.1: A strategy σi for player i in a game Γ is strongly rationalizable
if and only if there exists a finite probability structure M appropriate for Γ and
a state ω such that si(ω) = σi and (M,ω) |= CB∗(RAT ).

Of course, this theorem is proved in their paper using their version of justified
belief. We seek a version of this result that holds in our logical setting. Two
obstacles arise, each stemming from the fact that the implication

ω |= B∗i ϕ⇒ ω ∈ PRi[ω] (4)

is licensed according to the HP definition of B∗i , provided ϕ is not valid, but
it is not licensed according to our definition of B∗i , even for refutable ϕ. As
(4) plays a central role in many of the results proved by HP, including the
proof of Theorem 5.1, we are motivated to find a suitable substitute. This leads
naturally to an investigation of the conditions under which ω |= B∗i ϕ even when
ω /∈ PRi[ω].

Proposition 3.1(c) tells us that if ϕ = Biψ then B∗i ϕ might hold even when
ω /∈ PRi[ω]. However, this particular way in which (4) can fail is more a feature
of our system than a bug, and it will not impede our ability to prove Theorem 5.1
using our definition of B∗i . A more serious problem is that B∗i ϕ holds trivially
not just when ϕ is valid, but, as Proposition 3.1(b) shows, whenever ϕ is true
at all states in the structure. Thus, in order for B∗i ϕ to have any bite at all, it
is not enough that ϕ be merely refutable, but ϕ must in fact be refuted at some
state in the structure. This is the first of the two obstacles mentioned above: if
B∗i ϕ is to imply anything at all, the structure must be “sufficiently rich” as to
refute ϕ, if ϕ is refutable at all.

The second obstacle is perhaps best observed by recalling that if M is a structure
in which Ri is the identity, then M |= B∗i ϕ ⇔ (Biϕ ∧ ϕ). Since we could very
well have ω |= Biϕ and ω |= ϕ without having ω ∈ PRi[ω], this suggests that
a second type of “richness” property is required, one which ensures that the
relations Ri are “sufficiently large”.

We capture the notion of “sufficiently large” using the notion of a maximal
accessibility relation, as defined in Section 3. We call a Γ-structure maximal if
its accessibility relations are maximal in this sense.

14



Proposition 5.2: Let (Ω, s,
−−→
PR,

−→
R ) be a maximal Γ-structure. For all ω ∈ Ω,

if ω |= B∗i ϕ and there exists ω′ ∈ Ω such that PRi(ω′) = PRi(ω) and ω′ |= ¬ϕ,
then ω ∈ PRi[ω].

Proof: If not, then conditions (a) and (b) of the definition given in (3) are
satisfied and thus ωRiω

′; this contradicts the assumption that ω |= B∗i ϕ, since
ω′ |= ¬ϕ.

Thus, maximal Γ-structures license the implication in (4), provided that the
Γ-structure refutes ϕ at some state ω′ with PRi(ω′) = PRi(ω). The follow-
ing definition and lemma will therefore provide exactly the tools we need to
formulate and prove our version of Theorem 5.1.

Fix a Γ-structure M = (Ω, s,
−−→
PR,

−→
R ). A state ω ∈ Ω is called i-rich with

respect to ϕ (in M) if there exists ω′ ∈ Ω such that PRi(ω′) = PRi(ω) and
(M,ω′) 6|= ϕ. More generally, given S ⊆ Ω and F ⊆ LCB∗n (Γ), say that S is
i-rich with respect to F if for all ω ∈ S and all ϕ ∈ F , ω is i-rich with respect
to ϕ.

Lemma 5.3: Every finite Γ-structure (Ω, s,
−−→
PR) can be extended to a finite

Γ-structure (Ω′, s′,
−−→
PR′) such that, for each 1 ≤ i ≤ n, Ω is i-rich with respect

to {RATj : j 6= i} in (Ω′, s′,
−−→
PR′).

Proof: See Section 7.5.

Theorem 5.4: A strategy σi for player i in a game Γ is strongly rationalizable
if and only if there exists a finite maximal Γ-structure M such that

(a) for each 1 ≤ i ≤ n, [[CB∗(RAT )]]M is i-rich with respect to {RATj : j 6= i},
and

(b) there is some ω ∈ Ω such that si(ω) = σi and (M,ω) |= CB∗(RAT ).

Proof: Proposition 5.2 together with Lemma 5.3 can be used to change the
proof of Theorem 5.1 given by HP into a proof of this theorem. We defer details
to Section 7.6.

6 Maximality and Richness Revisted

Theorem 5.4, although analogous to Theorem 5.1 insofar as it establishes a cor-
respondence between strong rationalizability and CJBR, loses some of its force
due to the additional requirements of maximality and richness. If the goal was
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to build a logic for which consistency of the formula playi(σi) ∧ CB∗(RAT ) is
equivalent to strong rationalizability, then Theorem 5.4 as it stands has fallen
short of that goal. One approach to getting such a logic would be to get axioms
that force the maximality and i-richess requirements of Theorem 5.4. Axiom-
atizing maximality is accomplished (Theorem 3.5), but axiomatizing i-richness
proves elusive.

But perhaps we do not have to go quite this far. Maximality and i-richness are
sufficient requirements on a Γ-structure to ensure that it satisfies the implication
(4). Although (4) is a key characteristic of the HP definition of justified belief,
and is used in the HP proof of Theorem 5.1, a close examination of the proof
reveals that it is not essential. It can be replaced by a syntactic requirement.

Let A denote the collection of all formulas of the form

CB∗(RAT )⇒ (Bi¬play(−→σ )⇒ ¬play(−→σ )),

where 1 ≤ i ≤ n and −→σ ∈ Σ(Γ). The structure of these formulas is reminiscent
of (1); in fact, each element of A is implied by a formula of the form (1) (since
CB∗(RAT ) implies B∗i (RAT )). Moreover, Proposition 5.2 guarantees that any
maximal Γ-structure satisfying condition (a) in Theorem 5.4 validates every
formula in A (see Section 7.7 for details). On the other hand, as already alluded
to, modifying the proof of Theorem 5.1 yields the following result.

Proposition 6.1: If M is a finite Γ-structure such that M |= A, and (M,ω) |=
CB∗(RAT ) ∧ playi(σi), then σi is strongly rationalizable.

Proof: See Section 7.7.

From Proposition 6.1 together with the preceding discussion and Theorem 5.4
we can then deduce:

Theorem 6.2: A strategy σi for player i in a game Γ is strongly rationalizable
if and only if there exists a finite Γ-structure M such that M |= A and a state
ω satisfying si(ω) = σi and (M,ω) |= CB∗(RAT ).

This theorem generates several interesting follow-up questions to which we do
not yet know the answers. Does A give an axiomatization of the class of max-
imal Γ-structures satisfying condition (a) in Theorem 5.4? We have argued
already that it is sound, but completeness remains an open question, despite
the suggestive juxtaposition of Theorems 5.4 and 6.2. In either case, what is
the relationship between the axioms that characterize maximality and the col-
lection A? Can axioms for i-richness alone be teased out of A in some fashion?
If the class of Γ-structures satisfying A turns out to be strictly smaller than the
class considered in Theorem 5.4, it is natural to wonder whether we can find an
appropriate semantic characterization of the former class.
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7 Proofs

7.1 Soundness and completeness in LB,2
n

Theorem 7.1: AXB∗ is a sound axiomatization of the language LB,2n with
respect to the class of all B∗-structures.

Proof: Suppose AXB∗ ` ϕ; we must show that ϕ is valid with respect to the
class of all B∗-structures. As is standard, the proof proceeds by induction on
the length of the deduction of ϕ. Here we will simply establish that the axiom
schemes I1 and I2 are sound, as the rest of the proof is well-known (see, for
example, [Fagin, Halpern, Moses, and Vardi 1995]).

Fix a B∗-structure M = (Ω,
−−→
PR,

−→
R, [[·]]M ). Suppose first that ω |= Biϕ; let

ω′ ∈ PRi[ω] and let ω′′ be such that ω′Riω
′′. Then (F2) guarantees that

ω′′ ∈ PRi[ω], from which it follows that ω′′ |= ϕ. Thus ω′ |= 2iϕ, and so
ω |= Bi2iϕ, which establishes soundness of I1.

Now suppose that ω |= 3iBiϕ. Then we can find some ω′ such that ωRiω
′ and

ω′ |= Biϕ. Condition (F3) ensures that PRi(ω′) = PRi(ω) and therefore ω |=
Biϕ as well. As such, if ω′′ is any state such that ωRiω

′′, another application
of (F3) yields ω′′ |= Biϕ and therefore ω |= 2iBiϕ, which establishes soundness
of I2.

We will prove completeness using the canonical model method. In fact, for the
purpose of later theorems, it will be convenient for us to establish the stronger
fact that AXB∗ has the finite model property. To this end we need several
definitions and lemmas.

Let SubB∗(ϕ) denote the collection of all subformulas of ϕ together with the
formulas 2iψ for each Biψ that is a subformula of ϕ. Let

Sub+B∗(ϕ) := SubB∗(ϕ) ∪ {¬ψ : ψ ∈ SubB∗(ϕ)}.

Let Ωϕ be the collection of all maximal, consistent (with respect to AXB∗)
subsets of Sub+B∗(ϕ). Clearly Ωϕ is a finite set. Given any X ⊆ LB,2n , define

XBi := {ψ : Biψ ∈ X}, and

X2i := {ψ : 2iψ ∈ X}.

Finally, for each F ∈ Ωϕ define

Beli(F ) := {G ∈ Ωϕ : G2i ⊇ FBi and GBi = FBi}.

Lemma 7.2: For all F ∈ Ωϕ and each 1 ≤ i ≤ n, Beli(F ) 6= ∅.
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Proof: Given F ∈ Ωϕ, set

Γ := {2iψ : Biψ ∈ F} ∪ {Biψ : Biψ ∈ F} ∪ {¬Biψ : ¬Biψ ∈ F}.

It is easy to see that Γ ⊂ Sub+B∗(ϕ). In addition, we will show that Γ is
consistent. For suppose not; then

AXB∗ ` ¬
∧
ξ∈Γ

ξ ⇒ AXB∗ ` Bi¬
∧
ξ∈Γ

ξ

⇒ AXB∗ ` ¬Bi
∧
ξ∈Γ

ξ

⇒ AXB∗ ` ¬
∧
ξ∈Γ

Biξ,

which is a contradiction, since each Biξ is logically equivalent to a formula in F ,
and F is consistent. Indeed, if ξ = 2iψ, then Biψ ∈ F and AXB∗ ` Biξ ⇔ Biψ;
if ξ = Biψ, then Biψ ∈ F and AXB∗ ` Biξ ⇔ Biψ; and if ξ = ¬Biψ, then
¬Biψ ∈ F and AXB∗ ` Biξ ⇔ ¬Biψ.

From this we can conclude that there exists aG ∈ Ωϕ such thatG ⊇ Γ. It follows
immediately that G2i ⊇ FBi and that GBi ⊇ FBi . Moreover, if ψ ∈ GBi , then
Biψ ∈ G and so certainly ¬Biψ /∈ G, from which it follows that ¬Biψ /∈ Γ
and thus ¬Biψ /∈ F . Maximality of F then guarantees that Biψ ∈ F , whence
ψ ∈ FBi and so GBi ⊆ FBi . This establishes that G ∈ Beli(F ), as desired.

In light of Lemma 7.2, we can define PRϕi (F ) to be the probability measure
on Ωϕ which puts the uniform distribution on Beli(F ) (and probability zero
elsewhere).

Proposition 7.3: Given PRϕi as defined above, we have

(a) PRϕi [F ] = Beli(F ), and

(b) GBi = FBi ⇒ PRϕi (G) = PRϕi (F ).

Proof: Fact (a) is immediate from the defintion, while (b) follows from the
implications

GBi = FBi ⇒ Beli(G) = Beli(F )

⇒ PRϕi (G) = PRϕi (F ).

We also define the relations Rϕi on Ωϕ by

FRϕi G ⇔ (G2i ⊇ F2i and GBi = FBi).

Lemma 7.4: The tuple (Ωϕ,PRϕ1 , . . . ,PR
ϕ
n, R

ϕ
1 , . . . , R

ϕ
n) is a B∗-frame.
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Proof: Conditions (P1) and (P2) are satisfied trivially. By Proposition 7.3, in
order to see that (P3) and (F3) are satisfied, it suffices to observe that each of
G ∈ PRϕi [F ] and FRϕi G implies that GBi = FBi . Condition (F1), reflexivity
and transitivity of the relations Rϕi , is an easy consequence of the definition.
It remains to verify that condition (F2) holds: suppose that G ∈ PRϕi [F ] and
GRϕi H; then H2i ⊇ G2i ⊇ FBi and HBi = GBi = FBi , which shows that
H ∈ PRϕi [F ], as desired.

Define a valuation function [[·]]ϕ : Φ→ 2Ωϕ by

[[p]]ϕ = {F ∈ Ωϕ : p ∈ F}.

Lemma 7.5: For all formulas ψ, for all F ∈ Ωϕ, if ψ ∈ Sub+B∗(ϕ) then F ∈
[[ψ]]ϕ if and only if ψ ∈ F .

Proof: The proof procedes by induction on complexity of ψ. The base case is
given by definition. The inductive steps corresponding to the Boolean connec-
tives are straightforward and so will be omitted.

Assume inductively the result holds for ψ. We first show that it holds also for
Biψ. Suppose Biψ ∈ F and let G ∈ PRϕi [F ]; then 2iψ ∈ G and therefore
ψ ∈ G. By the inductive hypothesis, then, we know that G ∈ [[ψ]]ϕ, from which
it follows that F ∈ [[Biψ]]ϕ. Conversely, suppose that F ∈ [[Biψ]]ϕ. Set

Γ := {2iψ : Biψ ∈ F} ∪ {Biψ : Biψ ∈ F} ∪ {¬Biψ : ¬Biψ ∈ F}

as in Lemma 7.2, and consider the set Γ∪{¬ψ}. If this set were consistent, then
as in Lemma 7.2 it could be extended to a set G ∈ Ωϕ with G ∈ PRϕi [F ]. But
in this case we would have both ¬ψ ∈ G and ψ ∈ G, the latter a consequence
of the assumption that F ∈ [[Biψ]]ϕ together with G ∈ PRϕi [F ]. It follows that
Γ ∪ {¬ψ} is not consistent, and as such

AXB∗ `
∧
ξ∈Γ

ξ ⇒ ψ,

from which we can deduce that

AXB∗ `
∧
ξ∈Γ

Biξ ⇒ Biψ. (5)

As we saw in the proof of Lemma 7.2, for each ξ ∈ Γ the formula Biξ is equivalent
to a formula in F ; it therefore follows from (5) that Biψ ∈ F , as desired.

We next show that the result holds for 2iψ. Suppose 2iψ ∈ F and let G ∈
Rϕi [F ]; then 2iψ ∈ G and so ψ ∈ G, which yields G ∈ [[ψ]]ϕ and therefore
F ∈ [[2iψ]]ϕ. Conversely, suppose that F ∈ [[2iψ]]ϕ. Set

Γ := {2iψ : 2iψ ∈ F} ∪ {Biψ : Biψ ∈ F} ∪ {¬Biψ : ¬Biψ ∈ F}
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and consider Γ ∪ {¬ψ}; if this set were consistent, then it is not hard to check
that it could be extended to a set G ∈ Ωϕ with G ∈ Rϕi [F ], in which case we
would have both ¬ψ ∈ G and ψ ∈ G. Thus Γ ∪ {¬ψ} is not consistent, so

AXB∗ `
∧
ξ∈Γ

ξ ⇒ ψ,

from which we can deduce that

AXB∗ `
∧
ξ∈Γ

2iξ ⇒ 2iψ. (6)

As above, for each ξ ∈ Γ the formula 2iξ is equivalent to a formula in F ;
indeed, if ξ = 2iψ, then 2iψ ∈ F and AXB∗ ` 2iξ ⇔ 2iψ; if ξ = Biψ, then
Biψ ∈ F and AXB∗ ` 2iξ ⇔ Biψ; and if ξ = ¬Biψ, then ¬Biψ ∈ F and
AXB∗ ` 2iξ ⇔ ¬Biψ. It therefore follows from (6) that 2iψ ∈ F , as desired.
This completes the induction.

Theorem 7.6: AXB∗ is a complete axiomatization of the language LB,2n with
respect to the class of all B∗-structures.

Proof: We prove the contrapositive. Suppose that AXB∗ 6` ϕ; we must show
that ϕ is refuted on some B∗-structure. Fix

Mϕ = (Ωϕ,PRϕ1 , . . . ,PR
ϕ
n, R

ϕ
1 , . . . , R

ϕ
n , [[·]]ϕ)

as defined above. By Lemma 7.4, Mϕ is a B∗-structure. Observe that ¬ϕ ∈
Sub+B∗(ϕ) and that {¬ϕ} is consistent by assumption. Therefore there is an
F ∈ Ωϕ extending {¬ϕ}, so that ¬ϕ ∈ F . It then follows from Lemma 7.5 that
F ∈ [[¬ϕ]]ϕ, so F /∈ [[ϕ]]ϕ. Thus Mϕ 6|= ϕ, which completes the proof.

7.2 Maximality (sketch)

Theorem 7.7: AXB∗

max is a sound axiomatization of the language LB,2n with
respect to the class of all maximal B∗-structures.

Proof: As in Theorem 7.1, we will content ourselves with demonstrating that
the two new axiom schemes, M1 and M2, are sound.

Fix a maximal B∗-structure M = (Ω,
−−→
PR,

−→
R, [[·]]M ). Suppose first that ω |=

2iϕ, and let ω′ ∈ PRi[ω]. Then certainly PRi(ω′) = PRi(ω) and also (triv-
ially) ω ∈ PRi[ω] ⇒ ω′ ∈ PRi[ω]. Thus, by definition of maximality, we must
have ωRiω

′, and therefore ω′ |= ϕ. This shows that ω |= Biϕ and thereby
establishes soundness of M1.
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Next suppose that ω |= ϕ, and let ω′ ∈ Ri[ω] such that ω′ |= Biψ ∧ ¬ψ. Then
certainly ω′ /∈ PRi[ω′], and thus the implication ω′ ∈ PRi[ω′]⇒ ω ∈ PRi[ω′] is
again trivially satisfied. Moreover, since ωRiω

′, (F3) guarantees that PRi(ω′) =
PRi(ω). By maximality, then, we must have ω′Riω, whence ω′ |= 3iϕ, which
establishes soundness of M2.

Let Q denote the class of finite B∗-frames satisfying

(Q1) PRi[ω] ⊆ Ri[ω], and

(Q2) (ωRiω
′ and ω′ /∈ PRi[ω′])⇒ ω′Riω.

Theorem 7.8: AXB∗

max is a complete axiomatization of the language LB,2n with
respect to the class Q.

Proof: To come.

Given a B∗-structure M = (Ω,
−−→
PR,

−→
R, [[·]]M ) inQ, we construct a finite maximal

B∗-structure which refutes the same formulas as M . This construction, together
with Theorem 7.8, allows us to conclude that AXB∗

max in fact axiomatizes the
class of all maximal B∗-frames.

7.3 Incorporating common belief

Theorem 7.9: AXCB∗ is a sound axiomatization of the language LCB∗n with
respect to the class of all B∗-structures.

Proof: In light of Theorem 7.1, it will suffice to establish soundness of the axiom
schemes FPACB and FPACB∗ and the rules of inference IRCB and IRCB∗ .

Fix a B∗-structure M = (Ω,
−−→
PR,

−→
R, [[·]]M ). Suppose first that ω |= CB∗ϕ; then

certainly ω |= EB∗ϕ. Moreover, for each 1 ≤ i ≤ n and all k ≥ 1, observe that

[[CB∗ϕ]]M ⊆ [[(EB∗)k+1ϕ]]M

⊆ [[B∗i ((EB∗)kϕ)]]M

= [[Bi((EB
∗)kϕ)]]M ∩ [[2i((EB

∗)kϕ)]]M

It follows from this that if ω′ ∈ PRi[ω] then ω′ |= (EB∗)kϕ for all k ≥ 1, which
implies ω′ |= CB∗ϕ and therefore establishes that ω |= Bi(CB

∗ϕ). Similarly,
if ω′ ∈ Ri[ω] then again we must have ω′ |= (EB∗)kϕ for all k ≥ 1, which
yields ω′ |= CB∗ϕ, whence ω |= 2iCB

∗ϕ. We conclude that ω |= EB∗(CB∗ϕ),
thereby establishing soundness of FPACB∗ .

Next, suppose that [[ψ ⇒ EB∗(ϕ ∧ ψ)]]M = Ω; we wish to show that [[ψ ⇒
CB∗ϕ]]M = Ω. So suppose that ω |= ψ; we will show by induction on k that for
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all k ≥ 1, ω |= (EB∗)kϕ. The base case k = 1 follows from the assumption that
ω |= ψ ⇒ EB∗(ϕ ∧ ψ). Now assume inductively that ω |= (EB∗)kϕ. From the
fact that [[ψ ⇒ EB∗(ϕ ∧ ψ)]]M = Ω it follows easily that

[[(EB∗)k(ψ ⇒ EB∗(ϕ ∧ ψ))]]M = Ω,

which yields
[[(EB∗)kψ ⇒ (EB∗)k(EB∗(ϕ ∧ ψ))]]M = Ω,

and therefore ω |= (EB∗)k+1ϕ, as desired. Thus ω |= CB∗ϕ, which establishes
soundness of IRCB∗ .

Soundness of FPACB and IRCB is proved analogously.

For the completeness result, we assume the framework of Section 7.1 with two
modifications. First, we replace the system AXB∗ by AXCB∗ throughout; sec-
ond, we interpret SubB∗(ϕ) with respect to the language LCB∗n and we expand
this set to include all subformulas of EB(ψ ∧ CBψ) for each CBψ that is a
subformula of ϕ, and likewise to include all subformulas of EB∗(ψ ∧CB∗ψ) for
each CB∗ψ that is a subformula of ϕ. Call this new collection SubCB∗(ϕ) and
set

Sub+CB∗(ϕ) := SubCB∗(ϕ) ∪ {¬ψ : ψ ∈ SubCB∗(ϕ)}.

With these modifications, the corresponding proofs of Lemmas 7.2 through 7.4
go through unchanged, while the proof of Lemma 7.5 must be extended to
include inductive steps for the modal operators CB and CB∗.

Lemma 7.10: For all formulas ψ, for all F ∈ Ωϕ, if ψ ∈ Sub+CB∗(ϕ) then
F ∈ [[ψ]]ϕ if and only if ψ ∈ F .

Proof: Assume inductively that the result holds for ψ. Note that, formally
speaking, EBψ is an abbreviation for B1ψ ∧ · · · ∧ Bnψ, and so by the same
argument as in the proof of Lemma 7.5, we can deduce that for all F ∈ Ωϕ, if
EBψ ∈ Sub+CB∗(ϕ) then

F ∈ [[EBψ]]ϕ ⇔ EBψ ∈ F.

Similarly, since EB∗ψ is formally an abbreviation for (B1ψ∧21ψ)∧· · ·∧(Bnψ∧
2nψ), we can make the analogous deduction: for all F ∈ Ωϕ, if EB∗ψ ∈
Sub+CB∗(ϕ) then

F ∈ [[EB∗ψ]]ϕ ⇔ EB∗ψ ∈ F.

We wish to show that CBψ satisfies the statement of the lemma. We be-
gin by proving by induction on k that for all k ≥ 1, if CBψ ∈ F then
F ∈ [[EBkψ]]ϕ; this will establish half of what we want, namely that CBψ ∈ F
implies F ∈ [[CBψ]]ϕ. For the base case k = 1, note that the axiom scheme
FPACB guarantees that EBψ ∈ F , which in turn implies that F ∈ [[EBψ]]ϕ.
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Now suppose that F ∈ [[EBkψ]]ϕ and let G ∈ PRϕi [F ]. Once again, FPACB

applies to guarantee that EB(CBψ) ∈ F , and therefore BiCBψ ∈ F ; thus
CBψ ∈ G and so G ∈ [[EBkψ]]ϕ. It follows that F ∈ [[BiEB

kψ]]ϕ and therefore
F ∈ [[EBk+1ψ]]ϕ, which completes the induction.

Conversely, suppose that F ∈ [[CBψ]]ϕ. The main idea behind this direction of
the proof is developed in detail in [Halpern and Moses 1992], to which we will
defer the technical details. For each G ∈ Ωϕ, let

ϕG =def

∧
G.

Since G is finite we know ϕG ∈ LCB
∗

n , and therefore since Ωϕ is finite we know
that

ϕ̃ =def

∨
{ϕG : G ∈ [[CBψ]]ϕ} ∈ LCB

∗

n

as well. The formula ϕ̃ can be thought of as a description of precisely those
states in Mϕ which satisfy CBψ. As such, the following fact from [Halpern and
Moses 1992] should come as little surprise:

AXCB∗ ` ϕ̃⇒ EB(ψ ∧ ϕ̃).

Using IRCB , it follows that

AXCB∗ ` ϕ̃⇒ CBψ,

and therefore since by assumption

AXCB∗ ` ϕF ⇒ ϕ̃,

it is easy to see that CBψ ∈ F , as desired. The inductive step corresponding
to CB∗ is completely analogous.

The completeness result follows immediately as in Section 7.1.

Theorem 7.11: AXCB∗ is a complete axiomatization of the language LCB∗n

with respect to the class of all B∗-structures.

7.4 Incorporating rationality

Theorem 7.12: AXCB∗(Γ) is a sound axiomatization of the language LCB∗n (Γ)
with respect to the class of all finite Γ-structures.

Proof: Fix a finite Γ-structure M = (Ω, s,
−−→
PR,

−→
R ). Soundness of G1 and

G2 is an immediate consequence of the definition of a strategy function. Like-
wise, soundness of G3 is a straightforward consequence of condition (S1), while
soundness of G4 follows easily from the combination of conditions (S1) and
(P3).
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Next, suppose that ω |= playi(σi) ∧ RATi. Then by definition σi is a best
response to the beliefs given by PRi(ω); more precisely, σi is a best response to
the probability measure µ on Σ−i(Γ) defined by

µ(σ−i) = PRi(ω)([[σ−i]]M ).

It follows that Supp(µ) ∈ Xσi . If σ−i ∈ Supp(µ) then there must exist a state
ω′ ∈ [[σ−i]]M with ω′ ∈ PRi[ω], which implies ω |= ¬Bi¬play−i(σ−i). Thus

ω |=
∧

σ−i∈Supp(µ)

¬Bi¬play−i(σ−i).

Similarly, if σ−i /∈ Supp(µ) then for every state ω′ ∈ [[σ−i]]M we know that
ω′ /∈ PRi[ω], which implies ω |= Bi¬play−i(σ−i). Thus

ω |=
∧

σ−i /∈Supp(µ)

Bi¬play−i(σ−i).

This establishes soundness of G5.

Finally, suppose that ω |= playi(σi) ∧ ¬RATi, which implies that σi is not a
best response to the beliefs given by PRi(ω). Let

µ(σ−i) = PRi(ω)([[σ−i]]M );

then Supp(µ) ∈ Yσi . As above, it follows that

ω |=
∧

σ−i∈Σ−i(Γ)

χSupp(µ)(σ−i),

which establishes soundness of G6.

To prove completeness, we assume the framework of Section 7.3 with some
further modifications. First, we replace the system AXCB∗ with AXCB∗(Γ);
second, we interpret SubCB∗(ϕ) with respect to the language LCB∗n (Γ) and we
expand this set to include all subformulas of instances of the axiom schemes G1
through G6. Call this new collection SubΓ(ϕ) and define

Sub+Γ (ϕ) := SubΓ(ϕ) ∪ {¬ψ : ψ ∈ SubΓ(ϕ)}.

Since there are finitely many primitive propositions, it is not difficult to see that
SubΓ(ϕ) remains a finite set (and thus so does Ωϕ).

Finally, we modify the definition of the probability measures PRϕi (F ) according
to which playi(σi) ∈ F , and whether RATi ∈ F or ¬RATi ∈ F . Observe that
in Section 7.1, although we defined PRϕi (F ) to be the uniform measure on
Beli(F ), we made no use of this particular definition beyond using it to prove
Proposition 7.3. We will exploit this “wiggle room” here, but first we need to
do some preliminary work.

Let Pi be a syntactic abbreviation for ¬Bi¬.
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Lemma 7.13: Let F ∈ Ωϕ. If Piψ ∈ F , then there exists a G ∈ Beli(F ) with
ψ ∈ G; if ¬Piψ ∈ F , then for all G ∈ Beli(F ) we have ψ /∈ G.

Proof: First suppose that Piψ ∈ F and set

∆ := {2iχ : Biχ ∈ F} ∪ {Biχ : Biχ ∈ F} ∪ {¬Biχ : ¬Biχ ∈ F}.

Assume for contradiction that ∆ ∪ {ψ} is inconsistent. We then have

AXCB∗(Γ) `
∧
ξ∈∆

ξ ⇒ ¬ψ

from which it follows that

AXCB∗(Γ) `
∧
ξ∈∆

Biξ ⇒ Bi¬ψ. (7)

As we observed in Lemma 7.2, each Biξ is equivalent to a formula in F , and
therefore (7) implies that Bi¬ψ ∈ F , a clear contradiction since Piψ ∈ F by
assumption. Thus ∆ ∪ {ψ} is consistent and so can be extended to an element
G ∈ Ωϕ; as we saw in Lemma 7.2, G ∈ Beli(F ). This proves the first statement
of the Lemma. The second statement follows immediately from the definition
of Beli(F ): if ¬Piψ ∈ F , then also Bi¬ψ ∈ F and so for any G ∈ Beli(F ) we
must have 2i¬ψ ∈ G, whence ψ /∈ G.

For each σi ∈ Σi(Γ) and each S ∈ Xσi , let µσi,S be a fixed probability measure
witnessing the fact that S ∈ Xσi ; that is, σi is a best reponse to µσi,S and
Supp(µσi,S) = S. Likewise, for each σi ∈ Σi(Γ) and each S ∈ Yσi , let νσi,S be
a fixed probability measure witnessing the fact that S ∈ Yσi .

Given F ∈ Ωϕ, it is easy to see, using G1 and G2, that there is a unique
σi ∈ Σi(Γ) with playi(σi) ∈ F . If RATi ∈ F , then by G5 we know that, for
some S ∈ Xσi , ∧

σ−i∈Σ−i(Γ)

χS(σ−i) ∈ F.

Otherwise, if RATi /∈ F , then by G6 we know that, for some S ∈ Yσi ,∧
σ−i∈Σ−i(Γ)

χS(σ−i) ∈ F.

For each σ−i ∈ Σ−i(Γ), set

Fσ−i = {G ∈ Beli(F ) : play−i(σ−i) ∈ G}.

Lemma 7.14: The sets Fσ−i partition Beli(F ); moreover, Fσ−i 6= ∅ if and only
if σ−i ∈ S.
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Proof: The first statement is a straightforward consequence of G1 and G2,
while the second is an immediate corollary of Lemma 7.13 together with the
fact that ∧

σ−i∈Σ−i(Γ)

χS(σ−i) ∈ F.

It light of this Lemma, it makes sense to define PRϕi (F ) to be the unique
measure on Beli(F ) which is uniform on each (nonempty) set Fσ−i and such
that, for all σ−i ∈ Σ−i(Γ),

PRϕi (F )(Fσ−i) =

{
µσi,S(σ−i) if RATi ∈ F
νσi,S(σ−i) if RATi /∈ F

. (8)

By Lemma 7.14, each PRϕi (F ) is in fact a probability measure. We next re-prove
Proposition 7.3 in this new setting.

Proposition 7.15: Given PRϕi as defined above, we have

(a) PRϕi [F ] = Beli(F ), and

(b) GBi = FBi ⇒ PRϕi (G) = PRϕi (F ).

Proof:

(a) The containment PRϕi [F ] ⊆ Beli(F ) is immediate from the definition. For
the reverse inclusion, suppose that G ∈ Beli(F ). Then by Lemma 7.14 we
know that G ∈ Fσ−i for some σ−i ∈ S, whence G ∈ PRϕi [F ] by definition.

(b) If GBi = FBi then Beli(F ) = Beli(G). Moreover, axioms G3 and G4
guarantee that playi(σi) ∈ F if and only if playi(σi) ∈ G, and likewise
RATi ∈ F if and only if RATi ∈ G. Finally, in defining PRϕi (F ), we made
essential use of a set S ⊆ Σ−i(Γ) satisfying∧

σ−i∈Σ−i(Γ)

χS(σ−i) ∈ F ; (9)

in fact, Lemma 7.14 shows that this set S is completely determined by
Beli(F ). It follows that S is the unique subset of Σ−i(Γ) satisfying (9), and
also that ∧

σ−i∈Σ−i(Γ)

χS(σ−i) ∈ F ⇐⇒
∧

σ−i∈Σ−i(Γ)

χS(σ−i) ∈ G.

Therefore, by definition of PRϕi , we can deduce that PRϕi (G) = PRϕi (F ),
as desired.

26



Finally, we define a strategy function sϕ : Ωϕ → Σ(Γ) by assigning to each
F ∈ Ωϕ the unique strategy profile −→σ such that play(−→σ ) ∈ F , guaranteed to
exist by G1 and G2. A revised version of Lemma 7.10 appropriate in this
context is now within our grasp.

Lemma 7.16 : For all formulas ψ, for all F ∈ Ωϕ, if ψ ∈ Sub+Γ (ϕ) then
F ∈ [[ψ]]ϕ if and only if ψ ∈ F .

Proof: The entirety of the proof given in Lemma 7.10 (a substantial part of
which was, in fact, given in Lemma 7.5) goes through unchanged, with the
exception of the base case of the induction. In the present context, we must
consider not the generic atomic propositions p, q, r . . ., but rather the primitive
propositions playi(σi) and RATi, whose semantics are of course quite different.

First consider the formula playi(σi). We have:

F ∈ [[playi(σi)]]
ϕ ⇔ sϕi (F ) = σi

⇔ playi(σi) ∈ F,

as a direct consequence of the definition of sϕ. Next consider the formula RATi;
we have:

F ∈ [[RATi]]
ϕ ⇔ sϕi (F ) is a best response to PRϕi (F )

⇔ RATi ∈ F,

the last equivalence a consequence of the definition of PRϕi , in particular equa-
tion (8), which stipulates that sϕi (F ) is a best response to (the projection of)
PRϕi precisesly when RATi ∈ F . This completes the proof.

Corollary 7.17: AXCB∗(Γ) is a complete axiomatization of the language LCB∗n (Γ)
with respect to the class of all finite Γ-structures.

7.5 Extending to i-rich structures

Let M = (Ω, s,
−−→
PR) be a finite probability Γ-structure. For each 1 ≤ i ≤ n, let

β(i) ∈ Σ(Γ) be a strategy profile such that β(i)i is not a best response to (the
belief that places probability 1 on) β(i)−i. Set

Ω̃ := (Ω× {0, 1, . . . , n}) t {1, . . . , n}

and define s̃ : Ω̃→ Σ(Γ) by

s̃j(ω, h) =

{
sj(ω) if j 6= h
β(h)h if j = h

, s̃(h) = β(h).
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Let δω̃ denote the point-mass probability measure concentrated on ω̃ ∈ Ω̃, and
let PRhj (ω) be the probability measure on Ω̃ given by

PRhj (ω)(ω′, h′) =

{
PRj(ω)(ω′) if h′ = h
0 if h′ 6= h

, PRhj (ω)(h′) = 0.

Define

P̃Rj(ω, h) =

{
PR0

j (ω) if j 6= h
δh if j = h

, P̃Rj(h) = δh.

Proposition 7.18:

(a) M̃ = (Ω̃, s̃, P̃R1, . . . , P̃Rn) is a finite probability Γ-structure;

(b) M̃ restricted to Ω × {0} is isomorphic to M (via the natural projection of
Ω× {0} onto Ω);

(c) (∀h > 0)(∀ω ∈ Ω)
[
(ω, h) |= ¬RATh

]
;

(d) (∀ω ∈ Ω)(∀h, j > 0)
[
j 6= h⇒ P̃Rj(ω, h) = P̃Rj(ω, 0)

]
;

(e) for all 1 ≤ i ≤ n, Ω× {0} is i-rich with respect to {RATj : j 6= i}.

Proof:

(a) It is easy to see that each P̃Rj assigns to each state in Ω̃ a probability

measure on Ω̃. To verify condition (P3), let ω̃ ∈ Ω̃. Observe first that if
1 ≤ h′ ≤ n and h′ ∈ P̃Rj [ω̃], then it must be the case that P̃Rj(ω̃) = δh′ ,
whence (P3) is satisfied. Observe also that for h′ > 0 and any ω′ ∈ Ω,
(ω′, h′) /∈ P̃Rj [ω̃]. Finally, suppose that (ω′, 0) ∈ P̃Rj [ω̃]; then by definition

P̃Rj(ω̃) = PR0
j (ω) for some ω ∈ Ω such that PRj(ω)(ω′) > 0, from which

it follows that PRj(ω′) = PRj(ω); thus

P̃Rj(ω′, 0) = PR0
j (ω
′) = PR0

j (ω) = P̃Rj(ω̃),

as desired. It remains only to verify condition (S1); we proceed case-by-case
as above. Let ω̃ ∈ Ω̃. If 1 ≤ h′ ≤ n and h′ ∈ P̃Rj [ω̃], then either ω̃ = h′, in
which case we are done, or else j = h′ and ω̃ = (ω, h′), in which case

s̃j(h
′) = β(h′)j = s̃j(ω, h

′),

as desired. As noted already, (ω′, h′) /∈ P̃Rj [ω̃] whenever h′ > 0. So suppose

finally that (ω′, 0) ∈ P̃Rj [ω̃]; we must then have ω̃ = (ω, h) where h 6= j
and ω′ ∈ PRj [ω], which entails:

s̃j(ω
′, 0) = sj(ω

′) = sj(ω) = s̃j(ω, h),

as desired.
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(b) It is easy to see from the definitions that for all ω, ω′ ∈ Ω and each 1 ≤ j ≤ n,

s̃j(ω, 0) = sj(ω),

and
P̃Rj(ω, 0)(ω′, 0) = PRj(ω)(ω′).

(c) Since P̃Rh(ω, h) = δh and s̃(h) = β(h), we see that player h at state (ω, h)
places full probability on a strategy profile in which he is not playing a best
response; it follows immediately that (ω, h) |= ¬RATh.

(d) If j 6= h then
P̃Rj(ω, h) = PR0

j (ω) = P̃Rj(ω, 0),

as desired.

(e) Let j 6= i and ω ∈ Ω be given. By part (c), we know that (ω, j) 6|= RATj ,

and by part (d), we know that P̃Ri(ω, j) = P̃Ri(ω, 0), which establishes
that (ω, 0) is i-rich with respect to RATj . This completes the proof.

Corollary 7.19: Every finite Γ-structure (Ω, s,
−−→
PR) can be extended to a finite

Γ-structure (Ω′, s′,
−−→
PR′) such that, for each 1 ≤ i ≤ n, Ω is i-rich with respect

to {RATj : j 6= i} in (Ω′, s′,
−−→
PR′).

7.6 The HP result revised

Theorem 7.20: A strategy σi for player i in a game Γ is strongly rationalizable
if and only if there exists a finite maximal Γ-structure M such that

(a) for each 1 ≤ i ≤ n, [[CB∗(RAT )]] is i-rich with respect to {RATj : j 6= i},
and

(b) there is some ω ∈ Ω such that si(ω) = σi and (M,ω) |= CB∗(RAT ).

Proof: First suppose that σi is strongly rationalizable. The first part of our
construction we take from [Halpern and Pass 2011], Theorem 3.5, which pro-

duces a finite probability Γ-structure (Ω, s,
−−→
PR) with the following properties:

(i) (Ω, s,
−−→
PR) |= RAT ;

(ii) for all ω′ ∈ Ω and each 1 ≤ j ≤ n, ω′ ∈ PRj [ω′];

(iii) there is a state ω ∈ Ω such that si(ω) = σi.

29



We next apply Corollary 7.19 to obtain a finite probability structure (Ω′, s′,
−−→
PR′)

extending (Ω, s,
−−→
PR) in which Ω is i-rich with respect to {RATj : j 6= i} for

all i. Let M = (Ω′, s′,
−−→
PR′,

−→
R ) be the unique maximal Γ-structure based on

the probability Γ-structure (Ω′, s′,
−−→
PR′). It is straightforward to verify using

properties (i) and (ii) together with the construction given in Section 7.5 that
Ω = [[CB∗(RAT )]]M . It therefore follows that M satisfies the conditions of the
Theorem.

For the converse, suppose that M = (Ω, s,
−−→
PR,

−→
R ) satisfies the conditions of

the Theorem. We again borrow a construction provided in [Halpern and Pass
2011], Theorem 3.5. First observe that for each 1 ≤ j ≤ n, any k ≥ 1, and any
formula ϕ, we have

[[CB∗ϕ]]M ⊆ [[(EB∗)k+1ϕ]]M

⊆ [[B∗j ((EB∗)kϕ)]]M

⊆ [[Bj((EB
∗)kϕ)]]M

= {ω ∈ Ω : PRj [ω] ⊆ [[(EB∗)kϕ]]M}

In particular, ω′ ∈ [[CB∗(RAT )]]M implies that PRj [ω′] ⊆ [[(EB∗)kRAT ]] for
all k ≥ 1, or in other words,

PRj [ω′] ⊆
∞⋂
k=1

[[(EB∗)kRAT ]]M = [[CB∗(RAT )]]M .

For each 1 ≤ j ≤ n, define

Zj = {sj(ω′) : ω′ ∈ [[CB∗(RAT )]]M}.

It follows from condition (b) that σi ∈ Zi. For each σ′j ∈ Zj , let

Ωσ′j = {ω′ ∈ [[CB∗(RAT )]]M : sj(ω
′) = σ′j},

and define µσ′j to be the probabililty measure obtained by projecting

∑
ω′∈Ωσ′

j

PRj(ω′)
|Ωσ′j |

onto Σ−j(Γ). As noted above, for each ω′ ∈ [[CB∗(RAT )]]M we have PRj [ω′] ⊆
[[CB∗(RAT )]]M ; therefore Supp(µσ′j ) ⊆ Z−j . Furtheremore, since player j is

rational at each state [[CB∗(RAT )]]M , it follows by definition that σ′j is a best
response to the projection of PRj(ω′) onto Σ−j(Γ) for each ω′ ∈ Ωσ′j ; thus σ′j
is also a best response to µσ′j , being a convex combination of these projections.

It remains to show that for each strategy profile −→σ ′ ∈ Z1 × · · · × Zn and all
players j and h, if µσ′j (σ

′
−j) > 0 then µσ′h(σ′−h) > 0. To this end, suppose

µσ′j (σ
′
−j) > 0. If j = h then we are done, so suppose that j 6= h. By definition,
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there exists a state ω′ ∈ Ωσ′j such that PRj(ω′)([[σ′−j ]]M ) > 0, from which

it follows that PRj(ω′)([[−→σ ′]]M ) > 0. We can therefore find ω′′ ∈ PRj [ω′]
satisfying s(ω′′) = −→σ ′; moreover, since ω′ ∈ [[CB∗(RAT )]]M , we can deduce
that ω′′ ∈ [[CB∗(RAT )]]M as well.

It follows from this, in particular, that ω′′ |= B∗h(RATj). By assumption, ω′′

is h-rich with respect to RATj ; since M is maximal, Proposition 5.2 therefore
applies to show that ω′′ ∈ PRh[ω′′]. Since also ω′′ ∈ Ωσ′h , it follows that µσ′h
assigns positive probability to σ′−h. This completes the proof and shows that σi
is strongly rationalizable, as desired.

7.7 The HP result revisited

Recall that A denotes the collection of all formulas of the form

CB∗(RAT )⇒ (Bi¬play(−→σ )⇒ ¬play(−→σ )).

Lemma 7.21: Any maximal Γ-structure satisfying condition (a) in Theorem
7.20 validates every formula of A.

Proof: LetM = (Ω, s,
−−→
PR,

−→
R ) be a maximal Γ-structure that satisfies condition

(a) in Theorem 5.4, and suppose ω ∈ Ω is such that ω |= CB∗(RAT ). Given any
two players i 6= j, from condition (a) we can deduce that ω is i-rich with respect
to RATj ; moreover, since certainly ω |= B∗iRATj , Proposition 5.2 implies that
ω ∈ PRi[ω]. It follows immediately that

ω |= Bi¬play(−→σ )⇒ ¬play(−→σ ),

as desired.

Proposition 7.22: If M is a finite Γ-structure such that M |= A, and (M,ω) |=
CB∗(RAT ) ∧ playi(σi), then σi is strongly rationalizable.

Proof: We attain this result with a slight modification to the proof given in
[Halpern and Pass 2011] and largely reproduced in the proof of Theorem 7.20.

Specifically, given a finite Γ structure M = (Ω, s,
−−→
PR,

−→
R ), we repeat verbatim

the proof of the “converse direction” given in Theorem 7.20, up to but not in-
cluding the final paragraph. This makes sense because the final paragraph was
the only place where we made use of either maximality or richness of M , as-
sumptions we do not have access to here. Instead, we replace the final paragraph
by the following simple argument:

Since M |= A, it follows that

ω′′ |= play(−→σ ′)⇒ ¬Bh¬play(−→σ ′),
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and so ω′′ |= ¬Bh¬play(−→σ ′). This in turn implies the existence of a state
ω′′′ such that ω′′′ ∈ PRh[ω′′] and s(ω′′′) = −→σ ′. Moreover, condition (P3)
implies that ω′′′ ∈ PRh[ω′′′], and since ω′′ ∈ [[CB∗(RAT )]]M , we must have
ω′′′ ∈ [[CB∗(RAT )]]M as well. From this it follows that ω′′′ ∈ Ωσ′h , and therefore
that µσ′h assigns positive probability to σ′−h, as desired.

Corollary 7.23: A strategy σi for player i in a game Γ is strongly rationalizable
if and only if there exists a finite Γ-structure M such that M |= A and a state
ω satisfying si(ω) = σi and (M,ω) |= CB∗(RAT ).

Proof: Proposition 7.22 establishes the “if” direction, whereas Theorem 7.20
together with Lemma 7.21 establish the converse.
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