A Logical Reconstruction of SPKI

Joe Halpern
Cornell University

Ron van der Meyden
University of New South Wales

SDSI/SPKI

SDSI (Simple Distributed Security Infrastructure)
[Rivest /Lampson]

e principals identified with public keys
e cach principal has local names

— In Ron’s name space, Joe’s poker-buddies
refers to the set of principals associated with
poker-buddies in Joe’s name space

— In earlier work [CSFW ’99/J. Computer Secu-
rity '01], we gave a logic LLNC (Logic of Local
Name Containment) for capturing SDSI’s op-
erational name resolution algorithm.

SDSI has been incorporated into SPKI (Simple Pub-

lic Key Infrastructure):

e allows expiry dates for certificates and revocation

e deals with authorization and delegation

Goal of this work: extend the earlier approach to
dealing with this new features.

Monotonicity and Revocation

SDSI is monotonic: more certificates — more keys
may be bound to a given name.

Revocation means that that extra information could
result in fewer bindings.

e LLINC is monotonic

— [Ninghui Li (CSFW ’00) erroneously claimed
LLNC is nonmonotonic.]

e Do we need nonmonotonicity to handle revoca-
tion?

— No!

We give a monotonic logic with natural semantics
that can capture SPKI’s tuple reduction rules.

SPKI Syntax I: Names

e SPKI views authority as being associated with
principals = public keys.

e Instead of global names, SPKI has local name

spaces, like SDSI.

A SPKI name is either

e a key in some set K of keys,
e a local name (byte string) in some set N, or

e a compound name (name n; ny...nz), n; € KUN

For simplicity we ignore other ways SPKI has of de-
scribing principals, like hashes and threshold sub-
jects.

e There are a few other minor simplification and
white lies in talk, to simplify the presentation.

SPKI Syntax II: Certificates

A naming certificate has the form
(cert knp Vk,).
e Certificate binds name p to the local name n in k’s

local name space during the interval V = [tq, 5]
provided that k, does not revoke the certificate.

— k,. is optional

Authorization certificates have the form

(cert k p AD V k,)

e k allows p to perform the actions in A (and to del-
egate this authority, if Boolean D = true) during

interval V, provided that k, does not revoke the
certificate.

A certificate revocation list (CRL) issued by k has
the form

(crl k (canceled cq,...,cn) V)

e according to k, the certificates cq,...,cn are re-
voked during the interval V.

)

SPKI’s Tuple Reduction Rules

To see if collection C of certificates authorizes certain
actions,

1. first remove tuples ¢ which are legitimately re-
voked in a CRL in C

2. convert each remaining naming/authorization cer-
tificate ¢ to 4/5 tuple 7¢ by removing word cert
and “revoker” k,

o if c = (cert kn p Vk,), then 7¢ is (k,n,p, V).
3. rewrite tuples according to rules below:

R1. <k17 k27 true, A17 V1> + <k27 P, D27 A27 V2>
— (k1,p, D2, A1 N Ay, V; N Vy)

R2. (ki,n, ky’s m’s p, V1) + (k2,m, ks, V2)
— <k1, 11, k3’S P V1 M V2>

R3. <k1, k278 n’s P; D7 A, V1> + <k2, 11, kg, V2>
— <k17 kg’S P, D7 Aa Vl a V2>

A Logic for Reasoning about SPKI:
Syntax

Primitives:

e principal expressions: either an element of K UN
or has the form p’s q, where p, q are principal
expressions;

e the set C of certificates;
e special constant now;

e validity intervals [t1,t5], t1 < to < 0.

Formulas:
e p — q, for principal expressions p,q is a for-
mula;
e ¢ and walid(c), for c € C;

e Perm(k,p, A) and Del(k,p, A), for key k, princi-
pal expression p, set A of actions;

e now € V;

® —p, p N.

Call the resulting language L gpgr-

LLNC is the fragment of £gpg7 with only naming
certificates:

e (cert k n p) corresponds to the LLNC formula
k cert n —— p.

LLNC does not deal with time, permission, delega-
tion, or revocation.

A Logic for Reasoning about SPKI:
Semantics

The semantics for L SPK] extends that of LLNC.
Major components:

e a run: a function r : IN — P(C)).

— ¢ € r(t) if certificate ¢ issued at time t in r

e a local name assignment: a function

L:KxNxIN— PK).

— L(k,n, t) contains the keys associated at time
t with the name n in k’s name space.

e a permission/delegation assignment: a function
P:K xIN — P(K x Acty x {0,1}) such that
1.if (¥',a,0) € P(k,t) then (k’,a,1) ¢ P(k,t),
2.1f (ko,a,1) € P(ky,t) and (k3,a,i) € P(ky,t)

then (ks,a,7) € P(ky,t).
—If (¥',a,7) € P(k,t), k has granted permission
to k' to perform action a at time t;if i =1, k

has delegated authority to k' to propagate the
right to perform action a.

An interpretation 7 is a pair (L, P).

9

Interpreting Names

Given a local name assignment L, a keyk, and a time
t, each principal expression p is assigned a set of keys

[p] Lkt:

o [K'];xt ={k'},if ¥ € K is a key,
¢ [n];xt = L(k,n,t), if n € N is a local name,
e [psafpxt =vllalixt | ¥ €lplrxtt

This definition is essentially identical to that in

[Abadi98,HM99/01].

10

Interpreting Formulas

Truth of a formula is defined with respect to a run
r, interpretation m = (L, P), key k, and time t.

Define r, 7, k, t = ¢ by induction on structure of ¢:

o7, kat —PH——dq if IIP]]L,k,t = IIq]]L,k,tﬂ
or,mk,t=cif cer(t’ for some t’' < t,

o r,mk,t | Perm(ky,p, A) if for all ky € [p]; %, ¢
and a € A, (ky,a,i) € P(ky,t) for some i €

{0,1},
or,mk,t F Del(ki,p, A) if for all ko € [p]; x, ¢
and a € A, we have (ky,a,1) € P(ky,t),

er,m,k,t Enowe VifteV,

o r,m,k,t = walid(c) if ¢ is wvalid: it was issued
before time t in r and not revoked,

ermktEpAYiIfrmktE@+rmktEY,
or mk tEpif not r,mk,t | .

11

Consistency

So far, there is no connection between the run and
the interpretation.

e We want the meaning of local names and infor-
mation about permissions and delegations given
in the interpretation to be determined by the in-
formation given in the run.

m = (L, P) is consistent with r if, for all times t € IV,

1. if naming certificate (cert k n p V k,) is valid
at t in 7, then [n]; x + 2 [Pz x t;

2. if authorization certificate (cert k p A D V k,)
is valid at t in r, then

(a) (¥, a,i) € P(k,t) for some i € {0, 1},
(b) if D = true then (k’,a,1) € P(k,t).

Consistency by itself is not enough:

e the run in which no certificates are ever issued
is consistent with an interpretation where every
key is permitted to perform every action.

12

Minimal Interpretations

Want the interpretation to capture what is forced by
the certificates and no more.

Define an order < on interpretations:

(L,P) < (L/,P"y if L(k,n,t) C L'(k,n,t) for all
k,n,t, and if (k¥';a,7) € P(k,t), then (k' a,i) €
P'(k,t) for some i’ > i.

Proposition: For every run r there exists a unique
interpretation 7, minimal in the set of interpreta-
tions consistent with r.

Definition: . k,t =, p if r, 7., k, t E .

e © is c-valid (wrt set K of keys), written =, x ¢,
if 1, k,t =, for all r, k € K, and t.

— Sometimes K matters; we make it explicit if
it does.

13

Characterizing Certificates

A certificate ¢ has an associated formula ;.

e If ¢ is the naming certificate (cert k n p V),
then @¢ is

now € V = (k’'s n —— p).
o If c is the authorization certificate (cert k p A D V),
then ¢ is
now € V = [Perm(k,p,A) A (D = Del(k,p,A))].

Proposition: If ¢ € C then =, ¢ A valid(c) = pc.

If a certificate was issued in a run r and remains
valid, then the associated formula is true in the min-
imal interpretation consistent with r.

Conversely, the minimal interpretation consistent with
a run is the minimal one satistying all the formulas
associated with the currently valid certificates that
have been issued.

Proposition: An interpretation 7 is consistent with
a run r if, for all times t, keys k, and certificates c:

r,m, &k, t = c Awvalid(c) = ¢c.

14

What we have so far:

e An expressive logic for reasoning about SPKI:

— The logic can talk about permission, delega-
tion, validity of certificates, names

— It has a natural semantics.

e A way of translating certificates into the logic.
What we want:

e To connect the tuple reduction process to reason-
ing in the logic.

15

Soundness of Tuple Reduction

Given naming and authorization certificates C' and

CRLs Cg, let Tuples(C,Cg) be the tuples corre-
sponding to certificates in C' that are guaranteed not

to have been revoked:

o E.go. if
—c=(certknpVk,) €,
— (crl k, (canceled cq,...,cn) V) € Cg, and
—c#cip,1=1,...,n,
then c = (knp VNV') € Tuples(C, Cp).

— Important assumption: CRLs are issued for
non-overlapping intervals.

e Key point: Tuples(C,Cp) is monotonic in both
C' and CR

Theorem: If Tuples(C,Cg) —* ¢, then

16

Completeness

Completeness is somewhat more subtle.

A concrete certificate has a corresponding tuple of
the form (k,n,k’,[t,t]) (in the case of naming cer-
tificates) or (k,k’ D, {a}, [t,t]) (in the case of autho-
rization certificates).

e concrete certificates talk about the keys that are
bound to names and the keys that are authorized
to perform single actions at a single point in time.

(k,n, k', V) subsumes (k,n, k', [t,t]) if t € V.

Completeness Theorem I: If c is a concrete cer-
tificate and = (AclECUCR c’) = ¢, then
Tuples(C, Cr) —* 1¢r for some ¢’ that subsumes c.

Conclusion: R1-R3 suffice for concrete certificates.

17

Getting Full Completeness

There are two major impediments to getting full
completeness.

Impediment 1: Want conclusions about names other
than keys. R2 and R3 do not suffice. Suppose

e c; is (cert kq,n,ko’s m’s p,|[t,t]),
® C, is (cert ko,m, q,|[t,t]), and
e c3is (cert kq,n,q’s p,|t,t]).

Clearly |=. ci1 A ca = ¢c,. But tuple reduction can’t
get this.

Problem: R2 applies only if third component is a
key.

R2. <k1, 11, k27S m’s P, V1> + <k2, m, k3, V2>
— <k1, 1, kg’S P Vin V2>

Generalize R2 to R2':

R2". (ki,n,ky’s m’s p,Vy) + (ko,m, q, V)
— (ky,n,q’s p, V1 N V).

Similarly generalize R3 to R3'.

18

Impediment 2: Want conclusions about arbitrary
time intervals. Add following rule:

R4(a) <k7 n,p, V1> + <k7 n,p, V2> — <k7 n,p, V3>
if Vi UVy D V3.

R4(b) <k7p7D17A17V1>+<k7p7D27A27V2> - <k7p7D3aA37V3>
if D3 = Dy A Dy is a tautology, V; U Vy D V3, and
A; U Ay D As.

Completeness Theorem II: If |K| > |C|+|c|, and
IZC,K (AC’ECUCR CI) = ¢, then

Tuples(C, Cr) —r1,r k3 R4} Tc-

[t seems reasonable to assume that in practice | K| >
|C| + |c|. Some restriction on |K| is necessary.

Example: Suppose that K = {k}.
e c is (cert k,n,k,V)
e ¢’ is (cert k,n,k’s m, V).
=.x ¢ = ¢ (since =, g n+—— k = k’'sn —— k’sm).

e There are no rules that let us derive this.

e Cardinality of K also an issue in completeness

theorems for LLNC.

19

Conclusions

We have provided a semantic basis for SPKI.

e The logic shows the sense in which the tuple re-
duction rules are complete.

e New reduction rules are needed full completeness

e Translating the English description to the logic
forces us to clarify some ambiguities.

e No need for nonmononotonicity to handle revo-
cation.

e Focus here is on reduction rules, but the logic
should be useful for general reasoning about names
and authorization.

— Can translate queries about names and actions

to the logic, and use Logic Programming tech-
nology to answer them (cf. [HM99/01])

x which principals are authorized to perform
a certain action,

x which actions is a principal allowed to per-
form,

x which names have a particular principal bound
to them.

20

