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SDSI/SPKI

SDSI (Simple Distributed Security Infrastructure)
[Rivest /Lampson]

e principals identified with public keys
e cach principal has local names

— In Ron’s name space, Joe’s poker-buddies
refers to the set of principals associated with
poker-buddies in Joe’s name space

— In earlier work [CSFW ’99/J. Computer Secu-
rity '01], we gave a logic LLNC (Logic of Local
Name Containment) for capturing SDSI’s op-
erational name resolution algorithm.

SDSI has been incorporated into SPKI (Simple Pub-

lic Key Infrastructure):

e allows expiry dates for certificates and revocation

e deals with authorization and delegation

Goal of this work: extend the earlier approach to
dealing with this new features.



Monotonicity and Revocation

SDSI is monotonic: more certificates — more keys
may be bound to a given name.

Revocation means that that extra information could
result in fewer bindings.

e LLINC is monotonic

— [Ninghui Li (CSFW ’00) erroneously claimed
LLNC is nonmonotonic.]

e Do we need nonmonotonicity to handle revoca-
tion?

— No!

We give a monotonic logic with natural semantics
that can capture SPKI’s tuple reduction rules.



SPKI Syntax I: Names

e SPKI views authority as being associated with
principals = public keys.

e Instead of global names, SPKI has local name

spaces, like SDSI.

A SPKI name is either

e a key in some set K of keys,
e a local name (byte string) in some set N, or

e a compound name (name n; ny...nz), n; € KUN

For simplicity we ignore other ways SPKI has of de-
scribing principals, like hashes and threshold sub-
jects.

e There are a few other minor simplification and
white lies in talk, to simplify the presentation.



SPKI Syntax II: Certificates

A naming certificate has the form
(cert knp Vk,).
e Certificate binds name p to the local name n in k’s

local name space during the interval V = [tq, 5]
provided that k, does not revoke the certificate.

— k,. is optional

Authorization certificates have the form

(cert k p AD V k,)

e k allows p to perform the actions in A (and to del-
egate this authority, if Boolean D = true) during

interval V, provided that k, does not revoke the
certificate.

A certificate revocation list (CRL) issued by k has
the form

(crl k (canceled cq,...,cn) V)

e according to k, the certificates cq,...,cn are re-
voked during the interval V.
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SPKI’s Tuple Reduction Rules

To see if collection C of certificates authorizes certain
actions,

1. first remove tuples ¢ which are legitimately re-
voked in a CRL in C

2. convert each remaining naming/authorization cer-
tificate ¢ to 4/5 tuple 7¢ by removing word cert
and “revoker” k,

o if c = (cert kn p Vk,), then 7¢ is (k,n,p, V).
3. rewrite tuples according to rules below:

R1. <k17 k27 true, A17 V1> + <k27 P, D27 A27 V2>
— (k1,p, D2, A1 N Ay, V; N Vy)

R2. (ki,n, ky’s m’s p, V1) + (k2,m, ks, V2)
— <k1, 11, k3’S P V1 M V2>

R3. <k1, k278 n’s P; D7 A, V1> + <k2, 11, kg, V2>
— <k17 kg’S P, D7 Aa Vl a V2>



A Logic for Reasoning about SPKI:
Syntax

Primitives:

e principal expressions: either an element of K UN
or has the form p’s q, where p, q are principal
expressions;

e the set C of certificates;
e special constant now;

e validity intervals [t1,t5], t1 < to < 0.

Formulas:
e p — q, for principal expressions p,q is a for-
mula;
e ¢ and walid(c), for c € C;

e Perm(k,p, A) and Del(k,p, A), for key k, princi-
pal expression p, set A of actions;

e now € V;

® —p, p N.



Call the resulting language L gpgr-

LLNC is the fragment of £gpg7 with only naming
certificates:

e (cert k n p) corresponds to the LLNC formula
k cert n —— p.

LLNC does not deal with time, permission, delega-
tion, or revocation.



A Logic for Reasoning about SPKI:
Semantics

The semantics for L SPK] extends that of LLNC.
Major components:

e a run: a function r : IN — P(C)).

— ¢ € r(t) if certificate ¢ issued at time t in r

e a local name assignment: a function

L:KxNxIN— PK).

— L(k,n, t) contains the keys associated at time
t with the name n in k’s name space.

e a permission/delegation assignment: a function
P:K xIN — P(K x Acty x {0,1}) such that
1.if (¥',a,0) € P(k,t) then (k’,a,1) ¢ P(k,t),
2.1f (ko,a,1) € P(ky,t) and (k3,a,i) € P(ky,t)

then (ks,a,7) € P(ky,t).
—If (¥',a,7) € P(k,t), k has granted permission
to k' to perform action a at time t;if i =1, k

has delegated authority to k' to propagate the
right to perform action a.

An interpretation 7 is a pair (L, P).
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Interpreting Names

Given a local name assignment L, a keyk, and a time
t, each principal expression p is assigned a set of keys

[p] Lkt:

o [K'];xt ={k'},if ¥ € K is a key,
¢ [n];xt = L(k,n,t), if n € N is a local name,
e [psafpxt =vllalixt | ¥ €lplrxtt

This definition is essentially identical to that in

[Abadi98,HM99/01].
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Interpreting Formulas

Truth of a formula is defined with respect to a run
r, interpretation m = (L, P), key k, and time t.

Define r, 7, k, t = ¢ by induction on structure of ¢:

o7, kat —PH——dq if IIP]]L,k,t = IIq]]L,k,tﬂ
or,mk,t=cif cer(t’ for some t’' < t,

o r,mk,t | Perm(ky,p, A) if for all ky € [p]; %, ¢
and a € A, (ky,a,i) € P(ky,t) for some i €

{0,1},
or,mk,t F Del(ki,p, A) if for all ko € [p]; x, ¢
and a € A, we have (ky,a,1) € P(ky,t),

er,m,k,t Enowe VifteV,

o r,m,k,t = walid(c) if ¢ is wvalid: it was issued
before time t in r and not revoked,

ermktEpAYiIfrmktE@+rmktEY,
or mk tEpif not r,mk,t | .

11



Consistency

So far, there is no connection between the run and
the interpretation.

e We want the meaning of local names and infor-
mation about permissions and delegations given
in the interpretation to be determined by the in-
formation given in the run.

m = (L, P) is consistent with r if, for all times t € IV,

1. if naming certificate (cert k n p V k,) is valid
at t in 7, then [n]; x + 2 [Pz x t;

2. if authorization certificate (cert k p A D V k,)
is valid at t in r, then

(a) (¥, a,i) € P(k,t) for some i € {0, 1},
(b) if D = true then (k’,a,1) € P(k,t).

Consistency by itself is not enough:

e the run in which no certificates are ever issued
is consistent with an interpretation where every
key is permitted to perform every action.
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Minimal Interpretations

Want the interpretation to capture what is forced by
the certificates and no more.

Define an order < on interpretations:

(L,P) < (L/,P"y if L(k,n,t) C L'(k,n,t) for all
k,n,t, and if (k¥';a,7) € P(k,t), then (k' a,i) €
P'(k,t) for some i’ > i.

Proposition: For every run r there exists a unique
interpretation 7, minimal in the set of interpreta-
tions consistent with r.

Definition: . k,t =, p if r, 7., k, t E .

e © is c-valid (wrt set K of keys), written =, x ¢,
if 1, k,t =, for all r, k € K, and t.

— Sometimes K matters; we make it explicit if
it does.
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Characterizing Certificates

A certificate ¢ has an associated formula ;.

e If ¢ is the naming certificate (cert k n p V),
then @¢ is

now € V = (k’'s n —— p).
o If c is the authorization certificate (cert k p A D V),
then ¢ is
now € V = [Perm(k,p,A) A (D = Del(k,p,A))].

Proposition: If ¢ € C then =, ¢ A valid(c) = pc.

If a certificate was issued in a run r and remains
valid, then the associated formula is true in the min-
imal interpretation consistent with r.

Conversely, the minimal interpretation consistent with
a run is the minimal one satistying all the formulas
associated with the currently valid certificates that
have been issued.

Proposition: An interpretation 7 is consistent with
a run r if, for all times t, keys k, and certificates c:

r,m, &k, t = c Awvalid(c) = ¢c.
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What we have so far:

e An expressive logic for reasoning about SPKI:

— The logic can talk about permission, delega-
tion, validity of certificates, names

— It has a natural semantics.

e A way of translating certificates into the logic.
What we want:

e To connect the tuple reduction process to reason-
ing in the logic.
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Soundness of Tuple Reduction

Given naming and authorization certificates C' and

CRLs Cg, let Tuples(C,Cg) be the tuples corre-
sponding to certificates in C' that are guaranteed not

to have been revoked:

o E.go. if
—c=(certknpVk,) €,
— (crl k, (canceled cq,...,cn) V) € Cg, and
—c#cip,1=1,...,n,
then c = (knp VNV') € Tuples(C, Cp).

— Important assumption: CRLs are issued for
non-overlapping intervals.

e Key point: Tuples(C,Cp) is monotonic in both
C' and CR

Theorem: If Tuples(C,Cg) —* ¢, then
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Completeness

Completeness is somewhat more subtle.

A concrete certificate has a corresponding tuple of
the form (k,n,k’,[t,t]) (in the case of naming cer-
tificates) or (k,k’ D, {a}, [t,t]) (in the case of autho-
rization certificates).

e concrete certificates talk about the keys that are
bound to names and the keys that are authorized
to perform single actions at a single point in time.

(k,n, k', V) subsumes (k,n, k', [t,t]) if t € V.

Completeness Theorem I: If c is a concrete cer-
tificate and = (AclECUCR c’) = ¢, then
Tuples(C, Cr) —* 1¢r for some ¢’ that subsumes c.

Conclusion: R1-R3 suffice for concrete certificates.
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Getting Full Completeness

There are two major impediments to getting full
completeness.

Impediment 1: Want conclusions about names other
than keys. R2 and R3 do not suffice. Suppose

e c; is (cert kq,n,ko’s m’s p,|[t,t]),
® C, is (cert ko,m, q,|[t,t]), and
e c3is (cert kq,n,q’s p,|t,t]).

Clearly |=. ci1 A ca = ¢c,. But tuple reduction can’t
get this.

Problem: R2 applies only if third component is a
key.

R2. <k1, 11, k27S m’s P, V1> + <k2, m, k3, V2>
— <k1, 1, kg’S P Vin V2>

Generalize R2 to R2':

R2". (ki,n,ky’s m’s p,Vy) + (ko,m, q, V)
— (ky,n,q’s p, V1 N V).

Similarly generalize R3 to R3'.
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Impediment 2: Want conclusions about arbitrary
time intervals. Add following rule:

R4(a) <k7 n,p, V1> + <k7 n,p, V2> — <k7 n,p, V3>
if Vi UVy D V3.

R4(b) <k7p7D17A17V1>+<k7p7D27A27V2> - <k7p7D3aA37V3>
if D3 = Dy A Dy is a tautology, V; U Vy D V3, and
A; U Ay D As.

Completeness Theorem II: If |K| > |C|+|c|, and
IZC,K (AC’ECUCR CI) = ¢, then

Tuples(C, Cr) —r1,r k3 R4} Tc-

[t seems reasonable to assume that in practice | K| >
|C| + |c|. Some restriction on |K| is necessary.

Example: Suppose that K = {k}.
e c is (cert k,n,k,V)
e ¢’ is (cert k,n,k’s m, V).
=.x ¢ = ¢ (since =, g n+—— k = k’'sn —— k’sm).

e There are no rules that let us derive this.

e Cardinality of K also an issue in completeness

theorems for LLNC.
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Conclusions

We have provided a semantic basis for SPKI.

e The logic shows the sense in which the tuple re-
duction rules are complete.

e New reduction rules are needed full completeness

e Translating the English description to the logic
forces us to clarify some ambiguities.

e No need for nonmononotonicity to handle revo-
cation.

e Focus here is on reduction rules, but the logic
should be useful for general reasoning about names
and authorization.

— Can translate queries about names and actions

to the logic, and use Logic Programming tech-
nology to answer them (cf. [HM99/01])

x which principals are authorized to perform
a certain action,

x which actions is a principal allowed to per-
form,

x which names have a particular principal bound
to them.
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