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Abstract Scrip, or artificial currency, is a useful tool

for designing systems that are robust to selfish behavior

by users. However, it also introduces problems for a

system designer, such as how the amount of money in

the system should be set. In this paper, the effect of

varying the total amount of money in a scrip system on

efficiency (i.e., social welfare—the total utility of all the

agents in the system) is analyzed, and it is shown that

by maintaining the appropriate ratio between the total

amount of money and the number of agents, efficiency

is maximized. This ratio can be found by increasing the

money supply to just below the point that the system

would experience a “monetary crash,” where money is

sufficiently devalued that no agent is willing to perform

a service. The implications of the presence of altruists,

hoarders, sybils, and collusion on the performance of
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1 Introduction

Money is a powerful tool for dealing with selfish be-

havior. For example, in peer-to-peer systems, a com-

mon problem is free riding Adar and Huberman (2000),

where users take advantage of the resources offered by

a system without contributing their own. One way of

dealing with the problem is to have users pay for the use

of others’ resources, and to pay them for contributing

their own resources. The incentive to free ride then dis-

appears. Similarly, monetary incentives are a potential

solution to resource allocation problems in distributed

and peer-to-peer systems: this is the business model of

cloud computing services such as Amazon EC2.

In some systems, it may not be desirable to use ac-

tual money. As a result, many systems have used an

artificial currency, or scrip. (See Gupta et al (2003);

Ioannidis et al (2002); Miller and Drexler (1988); Reeves

et al (2007); Stonebraker et al (1996); Vishnumurthy

et al (2003); Brunelle et al (2006); Peterson and Sirer

(2009); Aperjis et al (2008) for some examples of the

use of scrip in systems.) While using scrip avoids some

issues, such as processing payments, it introduces new

questions a system designer must face. How much money

should be printed? What should happen if the system

grows rapidly or there is significant churn? What will

happen if a small number of users start hoarding money

or creating sybils?

The story of the Capitol Hill Baby Sitting Co-op

Sweeney and Sweeney (1977), popularized by Krugman
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1999, provides a cautionary tale of how system perfor-

mance can suffer if these issues are not handled ap-

propriately. The Capitol Hill Baby Sitting Co-op was a

group of parents working on Capitol Hill who agreed to

cooperate to provide babysitting services to each other.

In order to enforce fairness, they issued a supply of

scrip with each coupon worth a half hour of babysitting.

At one point, the co-op had a recession. Many people

wanted to save up coupons for when they wanted to

spend an evening out. As a result, they went out less

and looked for more opportunities to babysit. Since a

couple could earn coupons only when another couple

went out, no one could accumulate more, and the prob-

lem only got worse.

After a number of failed attempts to solve the prob-

lem, such as mandating a certain frequency of going

out, the co-op started issuing more coupons. The re-

sults were striking. Since couples had a sufficient re-

serve of coupons, they were more comfortable spend-

ing them. This in turn made it much easier to earn

coupons when a couple’s supply got low. Unfortunately,

the amount of scrip grew to the point that most of the

couples felt “rich.” They had enough scrip for the fore-

seeable future, so naturally they didn’t want to devote

their evening to babysitting. As a result, couples who

wanted to go out were unable to find another couple

willing to babysit.

This anecdote shows that the amount of scrip in cir-

culation can have a significant impact on the effective-

ness of a scrip system. If there is too little money in the

system, few agents will be able to afford service. At the

other extreme, if there is too much money in the sys-

tem, people feel rich and stop looking for work. Both of

these extremes lead to inefficient outcomes. This sug-

gests that there is an optimal amount of money, and

that nontrivial deviations from the optimum towards

either extreme can lead to significant degradation in

the performance of the system.

In a companion paper Kash et al (2012), we gave a

formal model of a scrip system and studied the behavior

of scrip systems from a micro-economic, game-theoretic

viewpoint. Roughly speaking, in the model agents want

work done at random times. To get the work done, they

must have at least $1 of scrip.1 All the agents willing

to do the work volunteer to do it, and one is chosen at

random (although not necessarily uniformly at random;

agents may have different likelihoods of being chosen).

The agent who has the work done pays $1 to the agent

chosen to do it, and gains 1 unit of utility, while the

agent who does the work suffers a small utility loss. We

1 Although we refer to our unit of scrip as the dollar, these are
not real dollars, nor do we view “scrip dollars” as convertible to

real dollars.

showed that in such a scrip system, there is a nontrivial

Nash equilibrium where all agents use a threshold strat-

egy—that is, agent i volunteers to work iff i has below

some threshold of ki dollars (the threshold may be dif-

ferent for different agents). A key part of our analysis

involves a characterization of the distribution of wealth

when agents all use threshold strategies.

In this paper, we use the analysis of scrip systems

from Kash et al (2012) to understand how robust scrip

systems are, and how to optimize their performance.

We compute the money supply that maximizes social

welfare, given the number of agents. As we show, the

behavior mimics the behavior in the babysitting coop

example. Specifically, if we start with a system with

relatively little money (where “relatively little” is mea-

sured in terms of the average amount of money per

agent), adding more money decreases the number of

agents with no money, and thus increasing social wel-

fare. (Since it is more likely that an agent will be able

to pay for someone to work when he wants a job done.)

However, this only works up to a point. Once a critical

amount of money is reached, the system experiences a

monetary crash: just as in the babysitting coop exam-

ple, there is so much money that, in equilibrium, ev-

eryone will feel rich and no agents are willing to work.

We show that, to get optimal performance, we want the

total amount of money in the system to be as close as

possible to the critical amount, but not to go over it. If

the amount of money in the system is over the critical

amount, we get the worst possible equilibrium, where

no agent ever volunteers, and all agents have utility 0.

This means that, for a system designers’ point of view,

there is a significant tradeoff between efficiency and ro-

bustness.

The equilibrium analysis in Kash et al (2012) as-

sumes that all agents have somewhat similar motiva-

tion: in particular, they do not get pleasure simply from

performing a service, and are interested in money only

to the extent that they can use it to get services per-

formed. But in real systems, not all agents have this

motivation. Some of the more common “nonstandard”

agents are altruists and hoarders. Altruists are willing

to satisfy all requests, even if they go unpaid (think of

babysitters who love kids so much that they get plea-

sure from babysitting, and are willing to babysit for

free); hoarders value scrip for its own sake and are will-

ing to accumulate amounts far beyond what is actually

useful. Studies of the Gnutella peer-to-peer file-sharing

network have shown that one percent of agents sat-

isfy fifty percent of the requests Adar and Huberman

(2000); Hughes et al (2005). These agents are doing sig-

nificantly more work for others than they will ever have

done for them, so can be viewed as altruists. Anecdo-
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tal evidence also suggests that the introduction of any

sort of currency seems to inspire hoarding behavior on

the part of some agents, regardless of the benefit of

possessing money. For example, SETI@home has found

that contributors put in significant effort to make it to

the top of their contributor rankings. This has included

returning fake results of computations rather than per-

forming them Zhao et al (2005).

Altruists and hoarders have opposite effects on a

system: having altruists has the same effect as adding

money; having hoarders is essentially equivalent to re-

moving it. With enough altruists in the system, the

system has a monetary crash, in the sense that stan-

dard agents stop being willing to provide service, just

as when there is too much money in the system (the

system still functions on a limited basis after the mon-

etary crash because altruists still supply service). We

show that, until we get to the point where the sys-

tem crashes, the utility of standard agents is improved

by the presence of altruists. We show that the pres-

ence of altruists makes the critical point lower than it

would without them. Thus, a system designer trying

to optimize the performance of the system by making

the money supply as close as possible to the critical

point (but under it, since being over it would result

in a “crash”) needs to be careful about estimating the

number of altruists.

Similarly, we show that, as the fraction of hoarders

increases, standard agents begin to suffer because there

is effectively less money in circulation. On the other

hand, hoarders can improve the stability of a system.

Since hoarders are willing to accept an infinite amount

of money, they can prevent the monetary crash that

would otherwise occur as money was added. In any case,

our results show how the presence of both altruists and

hoarders can be mitigated by appropriately controlling

the money supply.

Beyond nonstandard agents, we also consider two

different manipulative behaviors in which standard agents

may engage: creating multiple identities, known as sybils

Douceur (2002), and collusion. In scrip systems where

each new user is given an initial amount of scrip, there is

an obvious benefit to creating sybils. Even if this incen-

tive is removed, sybils are still useful: they can be used

to increase the likelihood that an agent will be asked to

provide service, which makes it easier for him to earn

money. This increases the utility of the sybilling agent,

at the expense of other agents, in a manner reminis-

cent of the large view attack on BitTorrent Sirivianos

et al (2007). From the perspective of an agent consid-

ering creating sybils, the first few sybils can provide

him with a significant benefit, but the benefits of addi-

tional sybils rapidly diminish. So if a designer can make

sybilling moderately costly, the number of sybils actu-

ally created by rational agents will usually be relatively

small.

If a small fraction of agents have sybils, the situa-

tion is more subtle. Agents with sybils still do better

than those without, but the situation is not zero-sum.

In particular, even agents without sybils might be bet-

ter off, due to having more opportunities to earn money.

Somewhat surprisingly, sybils can actually result in ev-

eryone being better off. However, exploiting this fact

is generally not desirable. The same process that leads

to an improvement in social welfare can also lead to a

monetary crash, where all agents stop providing service.

The system designer can achieve the same effects by in-

creasing the average amount of money or biasing the

volunteer selection process. In practice, it seems better

to do this than to exploit the possibility of sybils.

In our setting, having sybils is helpful because it

increases the likelihood that an agent will be asked to

provide service. Our analysis of sybils applies no mat-

ter how this increase in likelihood occurs. In particular,

it applies to advertising. Thus, our results suggest that

there are tradeoffs involved in allowing advertising. For

example, many systems allow agents to announce their

connection speed and other similar factors. If this biases

requests towards agents with high connection speeds,

even when agents with lower connection speeds are per-

fectly capable of satisfying a particular request, then

agents with low connection speeds will have an unnec-

essarily worsened experience in the system. This also

means that such agents will have a strong incentive to

lie about their connection speed.

While collusion is considered a bad thing in most

systems, in the context of scrip systems with fixed prices,

it is almost entirely positive. Without collusion, if a user

runs out of money he is unable to request service until

he is able to earn some. However, a colluding group can

pool there money so that all members can make a re-

quest whenever the group as a whole has some money.

This increases welfare for the agents who collude be-

cause agents who have no money receive no service.

Collusion tends to benefit the non-colluding agents as

well. Since colluding agents work less often, it is eas-

ier for everyone to earn money, which ends up making

everyone better off. However, as with sybils, collusion

does have the potential of crashing the system if the

average amount of money is too close to the critical

point.

While a designer should generally encourage collu-

sion in scrip systems, we would expect that in most sys-

tems there will be relatively little collusion, and what

collusion exists will involve small numbers of agents. Af-

ter all, scrip systems exist to try and resolve resource-
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allocation problems. If agents could collude to opti-

mally allocate resources within the group, they would

not need a scrip system in the first place. Nevertheless,

our analysis of collusion indicates a way that system

performance could be improved even without collusion.

Many of the benefits of collusion come from agents ef-

fectively being allowed to have a negative amount of

money (by borrowing from their the other agents with

whom they are colluding). These benefits could also

be realized if agents are allowed to borrow money, so

designing a loan mechanism could be an important im-

provement for a scrip system. Of course, implementing

such a loan mechanism in a way that prevents abuse

requires a careful design.

The analysis we carry out here has a benefit beyond

showing how to deal with altruists, hoarders, sybils, and

collusion. In order to utilize our results effectively, a sys-

tem designer needs to be able to identify characteristics

of agents (with what frequency do they make requests,

how likely are they to be chosen to satisfy a request, and

so on) and what strategies they are following. This is

particularly useful because finding an amount of money

close to the point of monetary crash, but not past it,

relies on an understanding of the agents in the system.

Of course, such information is also of great interest to

social scientists and marketers. We show how relatively

simple observations of the system can be used to infer

this information.

The rest of the paper is organized as follows. In Sec-

tion 2, we repeat the formal model from Kash et al

(2012). Then in Section 3, we summarize the results

from that paper. We begin applying these results in

Section 4, where we show that the analysis leads to an

understanding of how to choose the amount of money

in the system (or, equivalently, the cost to fulfill a re-

quest) so as to maximize efficiency, and also shows how

to handle new users. In Section 5, we discuss how the

model can be used to understand the effects of altru-

ists, hoarders, sybils, and collusion and provide guid-

ance about how system designers can handle these user

behaviors. All of this guidance relies on being able to

understand what strategies agents are using and what

their preferences are. In Section 6, we discuss how these

can be inferred by examining the system. We conclude

in Section 7.

2 The Model

For the convenience of the reader we repeat Section 3 of

our companion paper which describes the model Kash

et al (2012).

Before specifying our model formally, we give an in-

tuitive description of what our model captures. While

our model simplifies a number of features (as does any

model), we believe that it provides useful insights. We

model a scrip system where, as in a P2P filesharing sys-

tem, agents provide each other with service. There is a

single service (such as file uploading) that agents occa-

sionally want. In practice, at any given time, a number

of agents will want service but, to simplify the formal

description and analysis, we model the scrip system as

proceeding in a series of rounds where, in each round,

a single agent wants service (the time between rounds

will be adjusted to capture the growth in parallelism

as the number of agents grows).2 In each round, af-

ter an agent requests service, other agents have to de-

cide whether they want to volunteer to provide service.

However, not all agents may be able to satisfy the re-

quest (not everyone has every file). While, in practice,

the ability of agents to provide service at various times

may be correlated for a number of reasons (if I don’t

have the file today I probably still don’t have it to-

morrow; if one agent does not have a file, it may be

because it is rare, so that should increase the probabil-

ity that other agents do not have it), for simplicity, we

assume that the events of an agent being able to pro-

vide service in different rounds or two agents being able

to provide service in the same or different rounds are

independent. While our analysis relies on this assump-

tion so that we can describe the system using a Markov

chain, we expect that our results would still hold as

long these correlations are sufficiently small. If there is

at least one volunteer, someone is chosen from among

the volunteers (at random) to satisfy the request. Our

model allows some agents to be more likely to be chosen

(perhaps they have more bandwidth) but does not al-

low an agent to specify which agent is chosen. Allowing

agents this type of control would break the symmetries

we use to characterize the long run behavior of the sys-

tem and create new opportunities for strategic behav-

ior by agents that are beyond the scope of this paper.

The requester then gains some utility (he got the file)

and the volunteer loses some utility (he had to use his

bandwidth to upload the file), and the requester pays

the volunteer a fee that we fix at one dollar. As is stan-

dard in the literature, we assume that agents discount

future payoffs. This captures the intuition that a util

now is worth more than a util tomorrow, and allows us

to compute the total utility derived by an agent in an

infinite game. The amount of utility gained by having

a service performed and the amount lost be performing

2 For large numbers of agents, our model converges to one in

which agents make requests in real time, and the time between an

agent’s requests is exponentially distributed. In addition, the time
between requests served by a single player is also exponentially

distributed.
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it, as well as many other parameters may depend on

the agent.

More formally, we assume that agents have a type

t drawn from some finite set T of types. We can de-

scribe the entire population of agents using the pair

(T, f), where f is a vector of length |T | and ft is the

fraction with type t. For most of the paper, we consider

only what we call standard agents. These are agents

who derive no pleasure from performing a service, and

for whom money has no intrinsic value. Thus, for a

standard agent, there is no direct connection between

money (measured in dollars) and utility (measured in

utils). We can characterize the type of a standard agent

by a tuple t = (αt, βt, γt, δt, ρt, χt), where

– αt > 0 reflects the cost for an agent of type t to

satisfy a request;

– 0 < βt < 1 is the probability that an agent of type

t can satisfy a request;

– γt > αt is the utility that an agent of type t gains

for having a request satisfied;

– 0 < δt < 1 is the rate at which an agent of type t

discounts utility;

– ρt > 0 represents the (relative) request rate (some

people want files more often than others). For ex-

ample, if there are two types of agents with ρt1 = 2

and ρt2 = 1 then agents of the first type will make

requests twice as often as agents of the second type.

Since these request rates are relative, we can mul-

tiply them all by a constant to normalize them. To

simplify later notation, we assume the ρt are nor-

malized so that
∑
t∈T ρtft = 1; and

– χt > 0 represents the (relative) likelihood of an

agent to be chosen when he volunteers (some up-

loaders may be more popular than others). In par-

ticular, this means the relative probability of two

given agents being chosen is independent of which

other agents volunteer.

– ωt = βtχt/ρt is not part of the tuple, but is an

important derived parameter that helps determine

how much money an agent will have.

We occasionally omit the subscript t on some of these

parameters when it is clear from context or irrelevant.

Representing the population of agents in a system

as (T, f) captures the essential features of a scrip sys-

tem we want to model: there are a large number of

agents who may have different types. Note that fixing

a particular tuple (T, f) puts a constraint on the num-

ber N of agents. For example, if there are two types,

and f says that half of the agents are of each type, then

there cannot be 101 agents. Similar issues arise when we

want to talk about the amount of money in a system.

We could deal with this problem in a number of ways

(for example, by having each agent determine his type

at random according to the distribution f). For conve-

nience, we simply do not consider population sizes that

are incompatible with f . This is the approach used in

the literature on N -replica economies Mas-Colell et al

(1995).

Formally, we consider games specified by a tuple

(T, f , h,m, n), where T and f are as defined above, h ∈
N is the base number of agents of each type, n ∈ N is

number of replicas of these agents and m ∈ R+ is the

average amount of money. The total number of agents

is thus hn. We ensure that the fraction of agents of

type t is exactly ft and that the average amount of

money is exactly m by requiring that fth ∈ N and mh ∈
N. Having created a base population satisfying these

constraints, we can make an arbitrary number of copies

of it. More precisely, we assume that agents 0 . . . ft1h−1

have type t1, agents ft1h . . . (ft1 + ft2)h − 1 have type

t2, and so on through agent h − 1. These base agents

determine the types of all other agents. Each agent j ∈
{h, . . . , hn− 1} has the same type as j mod h; that is,

all the agents of the form j + kh for k = 1, . . . , n − 1

are replicas of agent j.

We also need to specify how money is initially allo-

cated to agents. Our results are based on the long-run

behavior of the system and so they turn out to hold for

any initial allocation of money. For simplicity, at the

start of the game we allocate each of the hmn dollars

in the system to an agent chosen uniformly at random,

but all our results would hold if we chose any other

initial distribution of money.

To make precise our earlier informal description,

we describe (T, f , h,m, n) as an infinite extensive-form

game. A non-root node in the game tree is associated

with a round number (how many requests have been

made so far), a phase number, either 1, 2, 3 , or 4

(which describes how far along we are in determining

the results of the current request), a vector x where

xi is the current amount of money agent i has, and∑
i xi = mhn, and, for some nodes, some additional in-

formation whose role will be made clear below. We use

τ(i) to denote the type of agent i.

– The game starts at a special root node, denoted Λ,

where nature moves. Intuitively, at Λ, nature allo-

cates money uniformly at random, so it transitions

to a node of the form (0, 1,x): round zero, phase

one, and allocation of money x, and each possible

transition is equally likely.

– At a node of the form (r, 1,x), nature selects an

agent to make a request in the current round. Agent

i is chosen with probability ρτ(i)/hn. (Note that this

is a probability because
∑
i ρτ(i) =

∑
t fthnρt =

hn.) If i is chosen, a transition is made to (r, 2,x, i).
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– At a node of the form (r, 2,x, i), nature selects the

set V of agents (not including i) able to satisfy the

request. Each agent j 6= i is included in V with

probability βτ(j). If V is chosen, a transition is made

to (r, 3,x, i, V ).

– At a node of the form (r, 3,x, i, V ), each agent in

V chooses whether to volunteer. If V ′ is the set of

agents who choose to volunteer, a transition is made

to (r, 4,x, i, V ′).

– At a node of the form (r, 4,x, i, V ′), if V ′ 6= ∅,
nature chooses a single agent in V ′ to satisfy the

request. Each agent j is chosen with probability

χτ(j)/
∑
j′∈V ′ χτ(j′). If j is chosen, a transition is

made to (r + 1, 1,x′), where

x′` =


x` − 1 if ` = i and xi > 0,

x` + 1 if ` is chosen by nature and xi > 0,

x` otherwise.

If V ′ = ∅ or xi = 0, nature has no choice; a transi-

tion is made to (r + 1, 1,x) with probability 1.

A strategy for agent j describes whether or not he

will volunteer at every node of the form (r, 3,x, i, V )

such that j ∈ V . (These are the only nodes where j

can move.) We also need to specify what agents know

when they make their decisions. To make our results

as strong as possible, we allow an agent to base his

strategy on the entire history of the game, which in-

cludes, for example, the current wealth of every other

agent. As we show, even with this unrealistic amount of

information, available, it would still be approximately

optimal to adopt a simple strategy that requires lit-

tle information—specifically, agents need to know only

their current wealth. That means that our results would

continue to hold as long as agents knew at least this in-

formation. A strategy profile S consists of one strategy

per agent. A strategy profile S determines a probabil-

ity distribution over paths PrS in the game tree. Each

path determines the value of the following random two

variables:

– xri , the amount of money agent i has during round

r, defined as the value of xi at the nodes with round

number r and

– uri , the utility of agent i for round r. If i is a standard

agent, then

uri =


γτ(i) if the path has a node (r, 4,x, i, V ′ 6= 0)

−ατ(i) if i is chosen at node (r, 4,x, j, V ′)

0 otherwise.

Ui(S), the total expected utility of agent i if strat-

egy profile S is played, is the discounted sum of his per

round utilities uri , but the exact form of the discount-

ing requires some explanation. In our model, only one

agent makes a request each round. As the number of

agents increases, an agent has to wait a larger number

of rounds to make requests, so naively discounting util-

ity would mean his utility decreases as the number of

agents increases, even if all of his requests are satisfied.

This is an artifact our model breaking time into discrete

rounds where a single agent makes a request. In reality,

many agents make requests in parallel, and how often

an agent desires service typically does not depend on

the number of agents. It would be counterintuitive to

have a model that says that if agents make requests at a

fixed rate and they are all satisfied, then their expected

utility depends on the number of other agents. As the

following lemma shows, there is a unique discount rate

that removes this dependency.3

Lemma 1 With a discount rate of (1− (1− δt)/n), an

agent of type t’s expected discounted utility for having

all his requests satisfied is independent of the number

of replicas n. Furthermore, this is the unique such rate

such that the discount rate is δt when n = 1.

Proof The agent makes a request each round with prob-

ability ρt/hn, so his expected discounted utility for hav-

ing all his requests satisfied is

∞∑
r=0

(1− (1− δt)/n)r(ρtγt/(hn))

= (ρtγt/(hn))/(1− (1− (1− δt)/n))

= (ρtγt/h)/(1− δt)

This is independent of n and satisfies (1− (1− δt)/1) =

δt as desired. The choice of discount rate for the n = 1

case is unique by the requirement that it be δt. For n >

1, the choice is unique because otherwise the agent’s

expected discounted utility would not be (ρtγt/h)/(1−
δt) and thus would not be independent of n.

As is standard in economics, for example in the

folk theorem for repeated games Fudenberg and Tirole

(1991), we multiply an agent’s utility by (1−δt) so that

his expected utility is independent of his discount rate

as well. With these considerations in mind, the total

expected utility of agent i given the vector of strategies

S is

Ui(S) = (1− δτ(i))
∞∑
r=0

(1− (1− δτ(i))/n)rES[uri ], (1)

3 In preliminary versions of this work we used the discount rate

of δ
1/n
t . This rate captures the intuitive idea of making the time

between rounds 1/n, but results in an agent’s utility depending
on the number of other agents, even if all the agent’s requests are
satisfied. However, in the limit as δt goes to 1, agents’ normalized

expected utilities (multiplied by 1 − δt as in Equation 1) are
the same either discount rate, so our main results hold with the

discount rate δ
1/n
t as well.
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In modeling the game this way, we have implicitly

made a number of assumptions. For example, we have

assumed that all of agent i’s requests that are satisfied

give agent i the same utility, and that prices are fixed.

We discuss the implications of these assumptions in our

companion paper Kash et al (2012).

Our solution concept is the standard notion of an

approximate Nash equilibrium. As usual, given a strat-

egy profile S and agent i, we use (S′i,S−i) to denote the

strategy profile that is identical to S except that agent

i uses S′i.

Definition 1 A strategy S′i for agent i is an ε-best reply

to a strategy profile S−i for the agents other than i in

the game (T, f , h,m, n) if, for all strategies S′′i ,

Ui(S
′′
i ,S−i) ≤ Ui(S′i,S−i) + ε.

Definition 2 A strategy profile S for the game

(T, f , h,m, n) is an ε-Nash equilibrium if for all agents

i, Si is an ε-best reply to S−i. A Nash equilibrium is an

epsilon-Nash equilibrium with ε = 0.

As we show in our companion paper Kash et al

(2012), (T, f , h,m, n) has equilibria where agents use a

particularly simple type of strategy, called a threshold

strategy. Intuitively, an agent with “too little” money

will want to work, to minimize the likelihood of running

out due to making a long sequence of requests before

being able to earn more money. On the other hand,

a rational agent with plenty of money will think it is

better to delay working, thanks to discounting. These

intuitions suggest that the agent should volunteer if and

only if he has less than a certain amount of money. Let

sk be the strategy where an agent volunteers if and only
if the requester has at least 1 dollar and the agent has

less than k dollars. Note that s0 is the strategy where

the agent never volunteers. While everyone playing s0
is a Nash equilibrium (nobody can do better by volun-

teering if no one else is willing to), it is an uninteresting

one.

We frequently consider the situation where each agent

of type t uses the same threshold skt . In this case, a

single vector k suffices to indicate the threshold of each

type, and we can associate with this vector the strategy

S(k) where S(k)i = skτ(i) (i.e., agent i of type τ(i) uses

threshold kτ(i)).

For the rest of this paper, we focus on threshold

strategies (and show why it is reasonable to do so). In

particular, we show that, if all other agents use thresh-

old strategies, it is approximately optimal for an agent

to use one as well. Furthermore there exist Nash equi-

libria where agents do so. While there are potentially

other equilibria that use different strategies, if a system

designer has agents use threshold strategies by default,

no agent will have an incentive to change. Since thresh-

old strategies have such low information requirements,

they are a particularly attractive choice for a system

designer as well for the agents, since they are so easy

to play.

When we consider the threshold strategy S(k), for

ease of exposition, we assume in our analysis thatmhn <∑
t ftkthn. To understand why, note thatmhn is the to-

tal amount of money in the system. Ifmhn ≥
∑
t ftkthn,

then if the agents use a threshold S(k), the system will

quickly reach a state where each agent has kt dollars, so

no agent will volunteer. This is equivalent to all agents

using a threshold of 0, and similarly uninteresting.

3 Summary of Previous Results

In this section, we summarize the results and definitions

from our companion paper Kash et al (2012) that we

use in this paper. We also provide intuition for the re-

sults, some of which is taken from that paper. The first

theorem shows that that there exists a particular dis-

tribution of wealth such that, after a sufficient amount

of time, the distribution of wealth in the system will

almost always be close to that particular distribution.

In order to formalize this statement, we need a number

of definitions.

Let

XT,f ,h,m,n,k = {x ∈ Nhn | ∀i.xi ≤ kτ(i),
∑
i

xi = hmn}

be the set of allocations of money to agents such that

the average amount of money is m and no agent i has

more than kτ(i) dollars. The evolution of xr can be de-
scribed by a Markov chain MT,f ,h,m,n,k over the state

space XT,f ,h,m,n,k. For brevity, we refer to the Markov

chain and state space as M and X, respectively, when

the subscripts are clear from context. Let ∆f ,m,k de-

note the set of probability distributions d on ∪t∈T {t}×∏
t{0, . . . , kt} such that for all types t,

∑kt
l=0 d(t, l) = ft

and
∑
t∈T

∑kt
l=0 ld(t, l) = m. We can think of d(t, l) as

the fraction of agents that are of type t and have l dol-

lars. We can associate each state x with its correspond-

ing distribution dx ∈ ∆f ,m,k. Occasionally, we will make

use of distributions d on ∪t∈T {t} ×
∏
t{0, . . . , kt} such

that for all types t,
∑kt
l=0 d(t, l) = ft, without requir-

ing that
∑
t∈T

∑kt
l=0 ld(t, l) = m; we denote this set of

distributions ∆f ,k. Given two distributions d, q ∈ ∆f ,k,

let

H(d||q) = −
∑

{(t,j):q(t,j)6=0}

d(t, j) log d(t, j)/q(t, j)

denote the relative entropy of d relative to q (H(d||q) =

∞ if d(t, j) = 0 and q(t, j) 6= 0 or vice versa); this is
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also known as the Kullback-Leibler divergence of q from

d Cover and Thomas (1991). For q in ∆f ,k, we make use

of d∗q , the distribution in ∆f ,m,k that minimizes relative

entropy relative to q. If q happens to be in ∆f ,m,k and

not just ∆f ,k this is trivially q, but it is well defined in

general. Given ε > 0 and q, let XT,f ,h,m,n,k,ε,q (or Xε,q,

for brevity) denote the set of states x ∈ XT,f ,h,m,n,k

such that
∑

(t,j) |dx(t, j) − d∗q |2 < ε. Let Irq,n,ε be the

random variable that is 1 if dx
r ∈ Xε,q, and 0 otherwise.

Theorem 1 For all games (T, f , h,m, 1), all vectors k

of thresholds, and all ε > 0, there exist q ∈ ∆f ,k and nε
such that, for all n > nε, there exists a round r∗ such

that, for all r > r∗, we have Pr(Irq,n,ε = 1) > 1− ε.

Theorem 1 tells us that, after enough time, the dis-

tribution of money is almost always close to some d∗,

where d∗ can be characterized as a distribution that

minimizes relative entropy subject to some constraints.

For many of our results, a more explicit characteriza-

tion will be helpful. Let q(t, i) = (ωt)
i/(

∑
t

∑kt
j=0(ωt)

j).

Then the value of d∗ is given by the following lemma.

Lemma 2

d∗(t, i) =
ftλ

iq(t, i)∑kt
j=0 λ

jq(t, j)
, (2)

where λ is the unique value such that∑
t

∑
i

id∗(t, i) = m. (3)

We now turn from an analysis of the distribution

of wealth to an analysis of best replies and equilibria.

To see that threshold strategies are approximately opti-

mal, consider a single agent i of type t and fix the vector

k of thresholds used by the other agents. If we assume

that the number of agents is large, what an agent i does

has essentially no affect on the behavior of the system

(although it will, of course, affect that agent’s payoffs).

In particular, this means that the distribution q of The-

orem 1 characterizes the distribution of money in the

system. This distribution, together with the vector k of

thresholds, determines what fraction of agents volun-

teers at each step. This, in turn, means that from the

perspective of agent i, the problem of finding an optimal

response to the strategies of the other agents reduces to

finding an optimal policy in a Markov decision process

(MDP) PG,S(k),t. The behavior of the MDP PG,S(k),t
depends on two probabilities: pu and pd. Informally, pu
is the probability of i earning a dollar during each round

it is willing to volunteer, and pd is the probability that

i will be chosen to make a request during each round.

Note that pu and pd depend on aspects of m, k, and t;

if the dependence is important, we add the relevant pa-

rameters to the superscript, writing, for example, pm,ku .

This MDP is described formally in Appendix A.

For many of our later results and discussion, it will

be important to understand how pu, pd, and t affect

the optimal policy for PG,S(k),t, and thus the ε-optimal

strategies in the game. We use this understanding to

show that adding money increases social welfare in Sec-

tion 4, to understand how agent behaviors affect social

welfare in Section 5, and to identify agent types from

their behavior in Section 6. The effects of these param-

eters are captured by the following lemma.

Lemma 3 Consider the games Gn = (T, f , h,m, n) (where

T , f , h, and m are fixed, but n may vary), and fix the

vector k of thresholds of the other agents. There ex-

ists a k such that for all n, sk is an optimal policy for

PGn,S(k),t. The threshold k is the maximum value of κ

such that

αt ≤ E[(1− (1− δt)/n)J(κ,pu,pd)]γt, (4)

where J(κ, pu, pd) is a random variable whose value

is the first round in which an agent starting with κ dol-

lars, using strategy sκ, and with probabilities pu and pd
of earning a dollar and of being chosen given that he

volunteers, respectively, runs out of money.

While threshold strategies are optimal for the MDP,

given a fixed pu and pd, the probabilities pu and pd rep-

resent the typical long-run probabilities, not the exact

values in each round of the game. Nevertheless, as the

following theorem shows, threshold strategies are near

optimal in the actual game, not just in the MDP.

Theorem 2 For all games G = (T, f , h,m, n), all vec-

tors k of thresholds, and all ε > 0, there exist n∗ε and

δ∗ε,n such that for all n > n∗ε, types t ∈ T , and δt > δ∗ε,n,

an optimal threshold policy for PG,S(k),t is an ε-best re-

ply to the strategy profile S(k)−i for every agent i of

type t.

Given a game G = (T, f , h,m, n) and a vector k of

thresholds, Lemma 3 gives an optimal threshold k′t for

each type t. Theorem 2 guarantees that sk′t is an ε-best

reply to S−i(k), but does not rule out the possibility of

other best replies. However, for ease of exposition, we

will call k′t the best reply to S−i and call BRG(k) =

k′ the best-reply function. The following lemma shows

that this function is monotone (non-decreasing). Along

the way, several other quantities are shown to be mono-

tone.

Lemma 4 Consider the family of games

Gm = (T, f , h,m, n) and the strategies S(k), for mhn <
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t ftkthn. For this family of game, λm,k is non-decreasing

in m and non-increasing in k; pm,ku is non-decreasing

in m and non-increasing in k; and the function BRG

is non-decreasing in k and non-increasing in m.

Our final theorem show that there exists a non-

trivial equilibrium where all agents play threshold strate-

gies greater than zero. In the theorem, we refer to the

“greatest” vector. By this we mean that there exists a

vector that is an equilibrium and, in a component-wise

comparison, is greater than all other such equilibrium

strategy vectors. We refer to this particular equilibrium

as the greatest equilibrium.

Theorem 3 For all games G = (T, f , h,m, 1) and all

ε, there exist n∗ε and δ∗ε,n such that, if n > n∗ε and δt >

δ∗ε,n for all t, then there exists a nontrivial vector k

of thresholds that is an ε-Nash equilibrium. Moreover,

there exists a greatest such vector.

The proof of Theorem 3 also provides an algorithm

for finding equilibria that seems efficient in practice:

start with the strategy profile (∞, . . . ,∞) and iterate

the best-reply dynamics until an equilibrium is reached.

While multiple nontrivial equilibria may exist, in

the rest of this paper, we focus on the greatest equi-

librium in all our applications (although a number of

our results hold for all nontrivial equilibria). This equi-

librium has several desirable properties, discussed in

Section 5 of our companion paper Kash et al (2012).

4 Social Welfare and Scalability

In this section, we consider a fundamental question

faced by system designers: what is the optimal amount

of money and how does it depend on the size of the

system? We discuss how our theoretical results summa-

rized in Section 3 show that in order to maximize social

welfare, the optimal amount of money is some constant

per agent. Thus, a system designer that wants to maxi-

mize social welfare should manage the average quantity

of money appropriately. However, we also show that

this must be done carefully. Specifically, we show that

increasing the amount of money improves performance

up to a certain point, after which the system experi-

ences a monetary crash. Once the system crashes, the

only equilibrium will be the trivial one where all agents

play s0. Thus, optimizing the performance of the sys-

tem involves discovering how much money the system

can handle before it crashes.

In Section 2, we define the game using a tuple G =

(T, f , h,m, n). Thus, our definition of a game uses the

average amount of money m rather than the equally

reasonable total amount of money mhn. The choice is

motivated by our theoretical results. Theorem 1 shows

that the long-term distribution of money d∗ depends

on the average amount of money, but is independent

of n, provided that n is sufficiently large. Thus, since

we normalize δt by the number of agents in computing

utility, the optimal threshold policy for the MDP de-

veloped in Appendix A is also independent of n. The-

orems 2 and 3 show that such policies constitute an

ε-Nash equilibrium. Thus, modulo a technical issue re-

garding the rate of convergence of the Markov Chain

towards its stationary distribution, to determine the

optimal amount of money for a large system, it suf-

fices to determine the optimal value of m, the average

amount of money per agent.

We remark that, in practice, it may be easier for the

designer to vary the price of fulfilling a request than to

control the amount of money in the system. This pro-

duces the same effect. For example, changing the cost

of fulfilling a request from $1 to $2 is equivalent to halv-

ing the amount of money that each agent has. Similarly,

halving the the cost of fulfilling a request is equivalent

to doubling the amount of money that everyone has.

With a fixed amount hmn of money, there is an opti-

mal product hnc of the number hn of agents and the

cost c of fulfilling a request.

This also tells us how to deal with a dynamic pool

of agents. Our system can handle newcomers relatively

easily: simply allow them to join with no money. This

gives existing agents no incentive to leave and rejoin as

newcomers. (By way of contrast, in systems where each

new agent starts off with a small amount of money,

such an incentive clearly exists.) We then change the

price of fulfilling a request so that the optimal ratio

is maintained. This method has the nice feature that

it can be implemented in a distributed fashion; if all

nodes in the system have a good estimate of n, then

they can all adjust prices automatically. (Alternatively,

the number of agents in the system can be posted in

a public place.) Approaches that rely on adjusting the

amount of money may require expensive system-wide

computations (see Vishnumurthy et al (2003) for an

example), and must be carefully tuned to avoid creating

incentives for agents to manipulate the system by which

this is done.

Note that, in principle, the realization that the cost

of fulfilling a request can change can affect an agent’s

strategy. For example, if an agent expects the cost to

increase, then he may want to defer volunteering to

fulfill a request. However, if the number of agents in

the system is always increasing, then the cost always

decreases, so there is never any advantage in waiting.

There may be an advantage in delaying a request, but

it is far more costly, in terms of waiting costs than in
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providing service, since we assume the need for a ser-

vice is often subject to real waiting costs. In particular,

many service requests, such as those for information or

computation, cannot be delayed without losing most of

their value.

Issues of implementation aside, we have now re-

duced the problem of determining the optimal total

amount of money for a large system to that of determin-

ing the optimal average amount of money, independent

of the exact number of agents. Before we can determine

the optimal value of m, we have to answer a more fun-

damental question: given an equilibrium that arose for

some value of m, how good is it?

Consider a single round of the game with a popula-

tion of a single type t and an equilibrium threshold k. If

a request is satisfied, social welfare increases by γt−αt;
the requester gains γt utility and the satisfier pays a

cost of αt. If no request is satisfied then no utility is

gained. What is the probability that a request will be

satisfied? This requires two events to occur. First, the

agent chosen to make a request must have a dollar,

which happens with probability approximately 1 − ζ,

where ζ = d∗(t, 0) is the fraction of agents with no

money. Second, there must be a volunteer able and will-

ing to satisfy the request. Any agent who does not have

his threshold amount of money is willing to volunteer.

Thus, if θ = d∗(t, kt) is the fraction of agents at their

threshold, then the probability of having a volunteer is

1−(1−βt)(1−θ)n. We believe that in most large systems

this probability is quite close to 1; otherwise, either βt
must be unrealistically small or θ must be very close to

1. For example, even if β = .01 (i.e., an agent can satisfy

1% of requests), (1− θ)n = 1000 agents will be able to

satisfy 99.99% of requests. If θ is close to 1, then agents

will have an easier time earning money then spending

money (the probability of spending a dollar is at most

1/n, while for large β the probability of earning a dollar

if an agent volunteers is roughly (1/n)(1/(1 − θ))). If

an agent is playing s4 and there are n rounds played

a day, this means that for θ = .9 he would be willing

to pay αt today to receive γt over 10 years from now.

For most systems, it seems unreasonable to have δt or

γt/αt this large. Thus, for the purposes of our analysis,

we approximate 1− (1− βt)(1−θ)n by 1.

With this approximation, we can write the expected

increase in social welfare each round as (1−ζ)(γt−αt).
If we have more than one type of agent, the situation

is essentially the same. The equation for social welfare

is more complicated because now the gain in welfare

depends on the γ, α, and δ of the agents chosen in that

round, but the overall analysis is the same, albeit with

more cases. In the general case,

ζ =
∑
t

d∗(t, 0) (5)

Thus our goal is clear: find the amount of money that,

in equilibrium, minimizes ζ.

In general, as the following theorem shows, ζ de-

creases as m increases. More specifically, given our as-

sumption that the system is starting at the greatest

equilibrium k, increasing m and then following best re-

sponse dynamics leads to the new greatest equilibrium

k′. As long as k′ is non-trivial, ζm′,k′ ≤ ζm,k.

Theorems 1, 2, and 3 place requirements on the val-

ues of n and δt. Intuitively, the theorems require that

the δts is sufficiently large to ensure that agents are

patient enough that their decisions are dominated by

long-run behavior rather than short-term utility, and

that n is sufficiently large to ensure that small changes

in the distribution of money do not move it far from

d∗. In the theorems in this section, assume that these

conditions are satisfied. To simplify the statements of

the theorems, we use “the standard conditions hold” to

mean that the game G = (T, f , h,m, n) under consider-

ation is such that n > n∗ and δt > δ∗ for the n∗ and δ∗

needed for the results of Theorems 1, 2, and 3 to apply.

Theorem 4 Let G = (T, f , h,m, n) be such that the

standard conditions hold, and let k be the greatest equi-

librium for G. Then if m′ > m, the best-reply dynamics

in G′ = (T, f , h,m′, n) starting at k converge to some

k′ ≤ k that is the greatest equilibrium of G′. If k′ is a

nontrivial equilibrium, then ζm′,k′ ≤ ζm,k.

Proof In the proof of Theorem 3, it is shown that start-

ing at any vector k0 greater than the greatest equi-

librium and applying best-reply dynamics (iteratively

replacing ki with the vector of best-reply strategies

ki+1 = BRG(ki)) leads to the greatest equilibrium

in a finite number of steps. Since k is an equilibrium,

BRG(k) = k. By Lemma 4, BRG is non-increasing in

m. Thus, k = BRG(k) ≥ BRG′(k). Applying best-reply

dynamics using BRG′ starting at k gives us an equilib-

rium k′ such that k′ ≤ k. By Lemma 4, BRG(k′′) is

non-decreasing in k′′, so this is the greatest equilibrium.

Suppose that k′ is nontrivial. By Equations (2) and (5),

ζm,k =
∑
t

d∗(t, 0) =
∑
t

ftλ
i
m,kq(t, i)∑kt

j=0 λ
j
m,kq(t, j)

.

Again by Lemma 4, λm,k is non-decreasing in m and

non-increasing in k. Thus, ζm′,k′ ≤ ζm,k.

Theorem 4 tells us that, as long as the system does

not crash, more money is better. The following corollary
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tells us that such a crash is an essential feature; a suffi-

cient increase in the amount of money leads to a mon-

etary crash. Moreover, once the system has crashed,

adding more money does not cause the system to be-

come “uncrashed.”

Corollary 1 Consider the family of games

Gm = (T, f , h,m, n) such that the standard conditions

hold. There exists a critical average amount m∗ of money

such that if m < m∗, then Gm has a nontrivial equi-

librium, while if m > m∗, then Gm has no nontrivial

equilibria in threshold strategies. (A nontrivial equilib-

rium may or may not exist if m = m∗.)

Proof To see that there is some m for which Gm has

no nontrivial equilibrium, fix m. If there is no nontriv-

ial equilibrium in Gm, we are done. Otherwise, suppose

that the greatest equilibrium in Gm is k. Choose m′ >∑
t ftkt, and let k′ be the greatest equilibrium in Gm′ .

By Theorem 4, k′ ≤ k. But if k′ is a nontrivial equilib-

rium then, in equilibrium, each agent of type t has at

most k′t ≤ kt dollars. But then m′ >
∑
t ftkt ≥

∑
ftk
′
t,

a contradiction.

Let m∗ be the infimum over all m for which no non-

trivial equilibrium exists in the game Gm. (We know

that m∗ > 0 by Theorem 3.) Clearly, by choice of m∗,

if m < m∗, there is a nontrivial equilibrium in Gm.

Now suppose that m > m∗. By the construction of

m∗, there exists m′ with m > m′ ≥ m∗ such that no

nontrivial equilibrium exists in Gm′ . Let the greatest

equilibria with m′ and m be k′ and k, respectively. By

Theorem 4, k ≤ k′. Thus k is also trivial.

Figure 1 shows an example of the monetary crash

in the game with two types of agents (with parameters

αt, βt, γt, δt, ρt, χt) where thirty percent are of the first

type, there are 10 agents in the base economy, 100 repli-

cas, and the average amount of money is m. Formally,

the game is:

({(.05, 1, 1, .95, 1, 1), (.15, 1, 1, .95, 1, 1)}, (.3, .7), 10,m, 100).

Corollary 1 tells us that this crash is a very sharp

phenomenon; with some amount of money the system

performs well, but with just slightly more the system

stops working. This is a result of the way increasing the

amount of money affects agent’s best reply functions.

Figure 2, reproduced from our companion paper Kash

et al (2012), gives an example of a best reply function

with one type of agent. It shows, for a particular fixed

value of m, how the optimal strategy for an agent de-

pends on the the strategies of the other agents. Thus,

an equilibrium is a point on the line y = x: the optimal

strategy is exactly the strategy the other agents are us-

ing. In this simple case, increasing m causes every point

Fig. 1 Social welfare for various average amounts of money,

demonstrating a monetary crash.

to shift downward (since strategies are discrete, there

may be some minimum increase for a particular point

to shift). With a large enough increase in m, every point

except (0,0) will be below the line and so there will be

no nontrivial equilibrium. The sharpness is a result of

there being a critical value m∗ at which the last point

drops below the line.

Fig. 2 A hypothetical best-reply function with one type of agent.

In light of Corollary 1, the system designer should

try to find m∗, the point where social welfare is maxi-

mized. In doing so, it is helpful to have an understand-

ing of the types and strategies of agents in the systems,

an issue we discuss in Section 6. In practice, the system

designer may want to set the average amount of money

m to be somewhat less than m∗. Since there will be a

crash if m > m∗, small changes in the characteristics of

the population or mistakes by the designer in modeling

them could lead to a crash if she chooses m too close

to m∗.

The phenomenon of a monetary crash is intimately

tied to our assumption of fixed prices. We saw such a
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crash in practice in the babysitting co-op example. If

the price is allowed to float freely, we expect that, as

the money supply increases, there will be inflation; the

price will increase so as to avoid a crash. However, float-

ing prices can create other monetary problems, such

as speculation, booms, and busts. Floating prices also

impose transaction costs on agents. In systems where

prices would normally be relatively stable, these trans-

action costs may well outweigh the benefits of floating

prices, so a system designer may opt for fixed prices,

despite the risk of a crash.

We believe there may also be a happy medium be-

tween a single, permanent fixed price and prices that

change freely from round to round; indeed, our advice

to system designers points naturally toward it. In par-

ticular, our advice about how to optimize the amount

of money relies on experimentation and observation to

determine what agents are doing and what their util-

ities are. This information then tells the designer how

much money she should provide. Since adjusting the

amount of money is equivalent to adjusting prices, the

designer could incorporate this process into a price set-

ting rule. Depending on the nature of the system, this

could either be done manually over time (if the infor-

mation is difficult to gather and analyze) or automati-

cally (if the information gathering and analysis can it-

self be automated). From this perspective, a monetary

crash, though real, is not something to be feared. In-

stead, it is just a strong signal that the current price,

while probably not too far off from a very good price,

requires adjustment. Naturally, this relies on a process

that proceeds slow enough that agents myopically ig-

nore the effects of future price changes in determining

their current action.

Finally, a system designer could consider interven-

tions other than adjusting the amount of money. One

obvious opportunity is the process by which volunteers

are selected. Our model assumes this process is random,

but it need not be. For example, the system designer

could attempt to bias the process in favor of agents with

smaller amounts of money. Like increasing the average

amount of money, this could increase efficiency since

agents would spend less time with no money, but could

potentially cause a crash, since agents have less of an

incentive to save for the future. Our techniques rely on

the choice of agents being independent of how much

money they have, do not allow us to rigorously analyze

this situation. Biasing the volunteer selection rule is an

idea we return to in Section 5.3, as agents who create

sybils increase their probability of being chosen.

5 Dealing with Nonstandard Agents

The model in Section 2 defines the utility of standard

agents, who value service and dislike using their re-

sources to provide it to others. This seems like a natural

description of the way most people use distributed sys-

tems. However, in a real system, not every user will be-

have they way the designer intends. A practical system

needs to be robust to nonstandard behaviors. In this

section, we show how our model can be used to under-

stand the effects of four interesting types of nonstan-

dard behavior. First, an agent might provide service

even when he will receive nothing in return, behaving

as an altruist. Second, rather than viewing money as a

means to satisfy future requests, an agent might place

an inherent value on it and start hoarding it. Third,

an agent might create additional identities, known as

sybils, to try and manipulate the system. Finally, agents

might collude with each other.

The results of this section give a system designer

insight into how to design a scrip system that takes

into account (and is robust to) a number of frequently-

observed behaviors.

5.1 Altruists

P2P filesharing systems often have large numbers of

free riders; they work because a small number of altru-

istic users provide most of the files. For example, Adar

and Huberman 2000 found that, in the Gnutella net-

work, nearly 50 percent of responses are from the top

1 percent of sharing hosts. A wide variety of systems

have been proposed to discourage free riding. However,

according to our model, unless this system mostly elim-

inates the altruistic users, adding such a system will

have no effect on rational users.

To make this precise, take an altruist to be some-

one who always volunteers to fulfill requests, regardless

of whether the other agent can pay. Agent i might ra-

tionally behave altruistically if, rather than suffering a

loss of utility when satisfying a request, i derives posi-

tive utility from satisfying it. Such a utility function is

a reasonable representation of the pleasure that some

people get from the sense that they provide the music

that everyone is playing. For such altruistic agents, the

strategy of always volunteering is dominant. While hav-

ing a nonstandard utility function might be one reason

that a rational agent might use this strategy, there are

certainly others. For example a naive user of filesharing

software with a good connection might well follow this

strategy. All that matters for the following discussion

is that there are some agents that use this strategy, for
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whatever reason. For simplicity, we assume that all such

agents have the same type ta.

Suppose that a system has a altruists. Intuitively, if

a is moderately large, they will manage to satisfy most

of the requests in the system even if other agents do

no work. Thus, there is little incentive for any other

agent to volunteer, because he is already getting full

advantage of participating in the system. Based on this

intuition, it is a relatively straightforward calculation to

determine a value of a that depends only on the types,

but not the number n, of agents in the system, such

that the dominant strategy for all standard agents i is

to never volunteer to satisfy any requests.

Proposition 1 For all games (T, f , h,m, 1) with fta >

0, there exists a value a such that, if n > a/(ftah) (i.e.,

there are at least a altruists), then never volunteering

is a dominant strategy for all standard agents.

Proof Consider the strategy for a standard agent i in

the presence of a altruists. Even with no money, agent

i will get a request satisfied with probability 1 − (1 −
βta)a just through the actions of the altruists. Consider

a round when agent i is chosen to make a request. If

he has no money (because he never volunteered), his

expected utility is γτ(i)(1 − (1 − βta)a). His maximum

possible utility for the round is γτ(i). Thus, a strategy

where he volunteers can increase his utility for a round

by at most γτ(i)(1− βta)a. Thus, even if the agent gets

every request satisfied, his expected utility can increase

by at most

(1− δτ(i))
∑∞
r=0

ρτ(i)
hn γτ(i)(1− βta)a(1− 1−δτ(i)

n )r

= (1− δτ(i))(ρτ(i)/h)γτ(i)(1− βta)a/(1− δτ(i))
= (ρτ(i)/h)γτ(i)(1− βta)a.

Clearly this expression goes to 0 as a goes to infinity. If

we take a large enough that the expression is less than

αt for all types t, then the value of having every future

request satisfied is less than the cost of volunteering

now, so no agent will ever volunteer.

Consider the following reasonable values for our pa-

rameters: βt = .01 (so that each player can satisfy 1% of

the requests), γt = 1, αt = .1 (a low but non-negligible

cost), δt = .9999/day (which corresponds to a yearly

discount factor of approximately 0.95), and an aver-

age of 1 request per day per player. Then as long as

a > 1145 to ensure that not volunteering is a domi-

nant strategy. While this is a large number, it is small

relative to the size of a large P2P network. While the

number of altruists needed to degrade the performance

of the system increases somewhat with the number of

agents, the point remains that a small fraction of altru-

ists can discourage the rest of the system from providing

service.

Proposition 1 shows that with enough altruists, the

system eventually experiences a monetary crash, since

all agents will use a threshold of zero. However, in-

teresting behavior can still arise with smaller numbers

of altruists. consider the situation where an a fraction

of requests are immediately satisfied at no cost with-

out the requester needing to ask for volunteers. Intu-

itively, these are the requests satisfied by the altruists,

although the following result also applies to any setting

where agents occasionally have a (free) outside option.

The following theorem shows that social welfare is in-

creasing in a.

Let G = ({t}, 1, h,m, n) be a game with a single

type for which the standard conditions hold. Consider

the family Ga of games (parameterized by a) that result

from G if a fraction a of requests can be satisfied at no

cost. That is, the game Ga is the same as G, except

that if an agent i makes a request, with probability a,

it is satisfied at no cost, and with probability 1 − a,

an agent is chosen among the volunteers to satisfy the

request, just as in G, and the i is charged 1 dollar to

have the request satisfied.

Theorem 5 For the interval of values of a where there

is no monetary crash in Ga, social welfare increases as

a increases (assuming that the greatest equilibrium is

played by all agents in Ga).

Proof An agent’s utility in a round where he makes a

request and it is satisfied at no cost is γt. Since such

rounds occur with probability a, by assumption, our

normalization guarantees that the sum of standard agents’

expected utilities in rounds where a request is satisfied

at no cost is aγt The same analysis as in Section 4 shows

that the sum of agents’ expected utilities in each of the

remaining rounds is (1 − a)(1 − ζ(a))(γt − αt), where,

as before, ζ(a) = d∗(t, 0, a), the equilibrium value of

d∗(t, 0) in the game Ga. Thus, expected utility as a

function of a is

aγt + (1− a)(1− ζ(a))(γt − αt). (6)

To see that this expression increases as a increases, we

would like to take the derivative relative to a and show

it is positive. Unfortunately, ζ(a) may not even be con-

tinuous. Because strategies are integers, there will be

regions where ζ(a) is constant, and then a jump when

a critical value of a is reached that causes the equilib-

rium to change. At a point a in a region where ζ(a) is

constant, ζ ′(a) = 0, so the derivative of Equation (6)

is γt − (1− ζ(a))(γt − αt) > 0. Hence, social welfare is

increasing at such points.

Now consider a point a where ζ(a) is discontinuous.

Such a discontinutity occurs when the greatest equi-

librium, the greatest value k for which BRGa(k) = k,



14

changes. We show that, for a fixed k, BRGa(k) is non-

increasing in a. Since increasing a can only cause the

BRGa(k) to decrease, the discontinuity must be caused

by a change from an equilibrium k to a new equilib-

rium k′ < k. Fix a vector k of thresholds, and let

pk,m,au be the probability that i will earn a dollar in

a given round if he is willing to volunteer, given that

a fraction a of requests is satisfied at no cost (so that

pk,m,0u is what we earlier called pk,mu ); we similarly de-

fine pk,m,ad , his probability of being chosen to make a

request. It is easy to see that pk,m,au = (1−a)pk,m,0u and

pk,m,ad = (1−a)pk,m,0d . The random variable J(κ, pu, pd)

in Equation (4) describes the first time at which an

agent starting with κ dollars and using the threshold κ

while earning a dollar with probability pu and spend-

ing a dollar with probability pd reaches zero dollars. As

a increases, pk,m,au and pk,m,ad both decrease, but the

ratio pk,m,au /pk,m,ad remains constant. Intuitively, this

means that the agent “slows down” his random walk

on amounts of money by a factor of 1/(1 − a). This

slowdown occurs because, each time the agent would

have an opportunity to volunteer or would have spent

a dollar, with probability a the opportunity is taken by

an altruist instead, so the expected time to take a step

increases by a factor of 1/(1 − a). Thus, the value of

the expectation in Equation (4), and hence the right-

hand side of Equation (4), decreasing as a function of

a. By Lemma 3, (BRGa(k))t is the maximum value of

κ such that Equation (4) is satisfied. Decreasing the

right-hand side can only decrease the maximum value

of κ, so BRGa(k) is non-increasing as a function of a.

By Lemma 4, λm,k is non-increasing in k (unless

the system crashes, after which it remains crashed even

when a is increased further, as in Corollary 1, where

the points at which social welfare is increasing form

an interval). Since, as we have just shown, if there is

a discontinuity at ζ(a) when a increases, the greatest

equilibrium changes at a from k to k′ < k, we must have

λm,k′ ≥ λm,k. In Equation (2) for i = 0, the value of

the numerator is independent of λ, but the denominator

with λm,k′ is greater than or equal to the denominator

with λm,k. Thus d∗(t, 0, a) = ζ(a) is non-increasing at

a. By Equation (6), this means that expected utility is

increasing at a. Thus, in either case, social welfare is

increasing in a.

Theorem 5 and Proposition 1 combine to tell us that

a little altruism is good for the system, but too much

causes a crash. Figure 3 demonstrates this phenomenon.

As we saw in Section 4, such crashes are caused when

m, the average amount of money, is too large. By de-

creasing m appropriately, even relatively large values

of a can be exploited, as Figure 4 shows. The “social

welfare without adjustment” plot is the same data from
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Figure 3, with the corresponding plot of the amount of

money horizontal since m was held fixed. By decreas-

ing the average amount of money appropriately as the

number of altruists increases, a system designer can in-

crease social welfare while avoiding a crash of the econ-

omy (the system will still function due to the presence

of altruists). Note that, in discussing social welfare, our

formulation excludes the welfare of the altruists, since

our focus here is on the effects of altruism on standard

agents.

5.2 Hoarders

Whenever a system allows agents to accumulate some-

thing, be it work done, as in SETI@home, friends on

online social networking sites, or “gold” in an online

game, a certain group of users seems to make it their

goal to accumulate as much of it as possible. In pur-

suit of this, they will engage in behavior that seems

irrational. For simplicity here, we model hoarders as

playing the strategy s∞. This means that they will vol-

unteer under all circumstances. Our analysis would not
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change significantly if we also required that they never

made a request for work. Our first result shows that,

for a fixed money supply, having more hoarders makes

standard agents worse off.

Consider a game G = (T, f , h,m, n) such that the

standard conditions hold. Consider the family Gfh of

games (parameterized by fh) that result from G if a

fraction fh of agents are hoarders. That is, Gfh = (T ×
{0, 1}, f ′, h′,m, n) where an agent of type (t, 0) is a stan-

dard agent of type t, but an agent of type (t, 1) is a

hoarder and always uses the strategy s∞ (his probabil-

ities are still determined by βt, ρt, and χt). Define f ′

by taking f ′(t,0) = (1 − fh)ft and f ′(t,1) = fhft for all

types t. Let h′ be the smallest multiple of h such that

f(t,i)h
′ is an integer for all t and i. (We need to adjust

h because otherwise the number of agents in the base

game may not be well defined.) Finally, to account for

the changed h, let δ(t,i) = 1− (1− δt)h/h′.

Theorem 6 In the family Gfh of games, social welfare

is non-increasing in fh (if the greatest equilibrium is

played by all agents in Gfh).

Proof Let k(fh) denote the greatest equilibrium in Gfh .

An increase in fh is equivalent to taking some num-

ber of standard agents and increasing their strategy

to s∞. It follows from Lemma 4 that BRGfh
is non-

decreasing in fh, and so k(fh) is non-decreasing in fh.

Again by Lemma 4, λm,k(fh) is non-increasing in fh.

Let ζfh = 1/(1− fh)
∑
t d
∗((t, 0), 0, fh) be the fraction

of non-hoarders with zero dollars, where d∗((t, 0), 0, fh)

is the value of d∗((t, 0), 0) at the greatest equilibrium

of Gfh . By Equation (2), ζ(fh) is non-decreasing in fh.

Thus, social welfare is non-increasing in fh.

Hoarders do have a beneficial aspect. As we have

observed, a monetary crash occurs when a dollar be-

comes valueless, because there are no agents willing to

take it. However, with hoarders in the system, there is

always someone who will volunteer, so there cannot be

a crash. Thus, for any m, the greatest equilibrium will

be nontrivial and, by Theorem 4, social welfare keeps

increasing as m increases. So, in contrast to altruism,

where the appropriate response was to decrease m, the

appropriate response to hoarders is to increase m. In

fact, our results indicate that the optimal response to

hoarders is to make m infinite. This is due to our unre-

alistic assumption that hoarders would use the strategy

s∞ regardless of the value of m. There is likely an upper

limit on the value of m in practice, since it is unlikely

that hoarders would be willing to hoard scrip if it is so

easily available.

5.3 Sybils

Unless identities in a system are tied to a real world

identity (for example by a credit card), it is effectively

impossible to prevent a single agent from having multi-

ple identities Douceur (2002). Nevertheless, there are a

number of techniques that can make it relatively costly

for an agent to do so. For example, Credence uses cryp-

tographic puzzles to impose a cost each time a new iden-

tity wishes to join the system Walsh and Sirer (2006).

Given that a designer can impose moderate costs to

sybilling, how much more need she worry about the

problem? In this section, we show that the gains from

creating sybils when others do not diminish rapidly, so

modest costs may well be sufficient to deter sybilling

by typical users. However, sybilling is a self-reinforcing

phenomenon. As the number of agents with sybils gets

larger, the cost to being a non-sybilling agent increases,

so the incentive to create sybils becomes stronger. There-

fore, measures to discourage or prevent sybilling should

be taken early before this reinforcing trend can start.

Finally, we examine the behavior of systems where only

a small fraction of agents have sybils. We show that un-

der these circumstances a wide variety of outcomes are

possible (even when all agents are of a single type),

ranging from a crash (where no service is provided) to

an increase in social welfare. This analysis provides in-

sight into the tradeoffs between efficiency and stability

that occur when controlling the money supply of the

system’s economy.

When an agent of type t creates sybils, the only

parameter of his type that may change as a result is χt,

if we redefine the likelihood of an agent being chosen

to be the likelihood of the agent or any of his sybils

being chosen. The other parameters, such as ρ, remain

unchanged because there is no particular reason that

having multiple identities should cause the agent to,

for example, desire service more often. For simplicity,

we assume that each sybil is as likely to be chosen as the

original agent, so creating s sybils increases χt by sχt.

(Sybils may have other impacts on the system, such

as increased search costs, but we expect these to be

minor.)

Increasing χt benefits an agent by increasing his

value of ωt and thus pu, his probability of earning a dol-

lar (see Equation (8) in Appendix A). When pu < pd,

the agent has more opportunities to spend money than

to earn money, so he will regularly have requests go

unsatisfied due to a lack of money. In this case, the

fraction of requests he has satisfied is roughly pu/pd, so

increasing pu by creating sybils results in a roughly lin-

ear increase in utility. As Theorem 7 shows, when pu is

close to pd, the increase in satisfied requests is no longer
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Fig. 6 The effect of sybils on utility

linear, so the benefit of increasing pu begins to dimin-

ish. Finally, when pu > pd, most of the agent’s requests

are being satisfied, so the benefit from increasing pu is

very small. Figure 5 illustrates an agent’s utility as pu
varies for pd = .0001.4 We formalize the relationship

between pu, pd, and the agent’s utility in the following

theorem, whose proof is deferred to Appendix B.

Theorem 7 Fix a game G and vector of thresholds k.

Let Rk,t = pk,tu /ptd. In the limit as the number of rounds

goes to infinity, the fraction of the agent’s requests that

have an agent willing and able to satisfy them that get

satisfied is (Rk,t −Rkt+1
k,t )/(1−Rkt+1

k,t ) if Rk,t 6= 1 and

kt/(kt + 1) if Rk,t = 1.

Theorem 7 gives insight into the equilibrium behav-

ior with sybils. Clearly, if sybils have no cost, then cre-

ating as many as possible is a dominant strategy. How-

4 Except where otherwise noted, the remaining figures in this
section assume that m = 4, n = 10000 and that there is a single

type of rational agent with α = .08, β = .01, γ = 1, δ = .97,

ρ = 1, and χ = 1. These values are chosen solely for illustration,
and are representative of a broad range of parameter values. The

figures are based on calculations of the equilibrium behavior.
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Fig. 7 Sybils can improve utility

ever, in practice, we expect there is some modest over-

head involved in creating and maintaining a sybil, and

that a designer can take steps to increase this cost with-

out unduly burdening agents. With such a cost, adding

a sybil might be valuable if pu is much less than pd, and

a net loss otherwise. This makes sybils a self-reinforcing

phenomenon. When a large number of agents create

sybils, agents with no sybils have their pu significantly

decreased. This makes them much worse off and makes

sybils much more attractive to them. Figure 6 shows

an example of this effect. This self-reinforcing quality

means that it is important to take steps to discourage

the use of sybils before they become a problem. Luckily,

Theorem 7 also suggests that a modest cost to create

sybils will often be enough to prevent agents from cre-

ating them because with a well chosen value of m, few

agents should have low values of pu.

We have interpreted Figures 5 and 6 as being about

changes in χ due to sybils, but the results hold regard-

less of what caused differences in χ. For example, agents

may choose a volunteer based on characteristics such as

connection speed or latency. If these characteristics are

difficult to verify and do impact decisions, our results

show that agents have a strong incentive to lie about

them. This also suggests that the decision about what

sort of information the system should enable agents to

share involves tradeoffs. If advertising legitimately al-

lows agents to find better service or more services they

may be interested in, then advertising can increase so-

cial welfare. But if these characteristics impact deci-

sions but have little impact on the actual service, then

allowing agents to advertise them can lead to a situ-

ation like that in Figure 6, where some agents have a

significantly worse experience.

We have seen that when a large fraction of agents

have sybils, those agents without sybils tend to be starved

of opportunities to work (i.e. they have a low value of
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pu). However, as Figure 6 shows, when a small frac-

tion of agents have sybils this effect (and its corre-

sponding cost) is small. Surprisingly, if there are few

agents with sybils, an increase in the number of sybils

these agents have can actually result in a decrease of

their effect on the other agents. Because agents with

sybils are more likely to be chosen to satisfy any par-

ticular request, they are able to use lower thresholds

and reach those thresholds faster than they would with-

out sybils, so fewer are competing to satisfy any given

request. Furthermore, since agents with sybils can al-

most always pay to make a request, they can provide

more opportunities for other agents to satisfy requests

and earn money. Social welfare is essentially propor-

tional to the number of satisfied requests (and is ex-

actly proportional to it if everyone shares the same val-

ues of α and γ), so a small number of agents with a

large number of sybils can improve social welfare, as

Figure 7 shows. Note that, although social welfare in-

creases, some agents may be worse off. For example, for

the choice of parameters in this example, social welfare

increases when twenty percent of agents create at least

two sybils, but agents without sybils are worse off unless

the twenty percent of agents with sybils create at least

eight sybils. As the number of agents with sybils in-

creases, they start competing with each other for oppor-

tunities to earn money and so adopt higher thresholds,

and this benefit disappears. This is what causes the

discontinuity in Figure 6 when approximately a third

of the agents have sybils.

This observation about the discontinuity also sug-

gests another way to mitigate the negative effects of

sybils: increase the amount of money in the system.

This effect can be seen in Figure 8, where for m = 2

social welfare is very low with sybils but by m = 4 it is

higher than it would be without sybils.

Unfortunately, increasing the average amount of money

has its own problems. Recall from Section 4 that, if the

average amount of money per agent is too high, the sys-

tem will crash. It turns out than just a small number

of agents creating sybils can have the same effect, as

Figure 8 shows. With no sybils, the point at which so-

cial welfare stops increasing and the system crashes is

between m = 10.25 and m = 10.5 (we only calculated

social welfare for values of m that are multiples of 0.25,

so we do not know the exact point of the crash). If one-

fifth of the agents each create a single sybil, the system

crashes if m = 9.5, a point where, without sybils, the

social welfare was near optimal. Thus, if the system de-

signer tries to induce optimal behavior without taking

sybils into account, the system will crash. Moreover,

because of the possibility of a crash, raising m to tol-

erate more sybils is effective only if m was already set

conservatively.

This discussions shows that the presence of sybils

can have a significant impact on the tradeoff between

efficiency and stability. Setting the money supply high

can increase social welfare, but at the price of making

the system less stable. Moreover, as the following the-

orem shows, whatever efficiencies can be achieved with

sybils can be achieved without them, at least if there

is only one type of agent. In the theorem, we consider

a system where all agents have the same type t. Sup-

pose that some subset of the agents have created sybils,

and all the agents in the subset have created the same

number of sybils. We can model this by simply taking

the agents in the subsets to have a new type s, which is

identical to t except that the value of χ increases. Thus,

we state our results in terms of systems with two types

of agents, t and s.

Theorem 8 Suppose that t and s are two types that

agree except for the value of χ, and that χt < χs. If k =

(kt, ks) is an ε-Nash equilibrium for G = ({t, s}, f , h,m, n)

with social welfare w, then there exist h′, m′, and n′

such that k′ = (ks) is an ε-Nash equilibrium for G′h′,m′,n′ =

({t}, {1}, h′,m′, n′) with social welfare greater than w.

We defer proof of Theorem 8 to Appendix B.

The analogous result for systems with more than

one type of agent is not true. Figure 6 shows a game

with a single type of agent, some of whom have created

two sybils. However, we can reinterpret it as a game

with two types of agents, one of whom has a larger

value of χ. With this reinterpretation, Figure 6 shows

that social welfare is higher when all the agents are

of the type th with the higher value of χ than when

only 40% are. Moreover, if only 40% of the agents have

type th, social welfare would increase if the remaining

agents created two sybils each (resulting in all agents
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having the higher value of χ). Note that this situation,

where there are two types of agents, of which one has a

higher value of χ, is exactly the situation considered by

Theorem 8. Thus, the theorem shows that for any equi-

librium with two such types of agents, there is a better

equilibrium where one of those types creates sybils so

as to effectively create only one type of agent.

While situations like this show that it is theoreti-

cally possible for sybils to increase social welfare be-

yond what is possible to achieve by simply adjusting

the average amount of money, this outcome seems un-

likely in practice. It relies on agents creating just the

right number of sybils. For situations where such a pre-

cise use of sybils would lead to a significant increase in

social welfare, a designer could instead improve social

welfare by biasing the algorithm agents use for selecting

which volunteer will satisfy the request.

Thus far, we have assumed that when agents cre-

ate sybils the amount of money in the system does not

change. However, the presence of sybils increases the

number of apparent agents in the system. Since social

welfare depends on the average amount of money per

agent, if the system designer mistakes these sybils for

an influx of new users and increases the money supply

accordingly, she will actually end up increasing the av-

erage amount of money in the system, and may cause a

crash. This emphasizes the need for continual monitor-

ing of the system rather that just using simple heuristics

to set the average amount of money, an issue we discuss

more in Section 6.

5.4 Collusion

Agents that collude gain two major benefits. The pri-

mary benefit is that they can share money,5 which makes

them less likely to run out of money (and hence unable

to make a request), and allows them to pursue a joint

strategy for determining when to work. A secondary

benefit, but important in particular for larger collusive

groups, is that they can satisfy each other’s requests.

The effects of collusion on the rest of the system de-

pend crucially on whether agents are able to volunteer

to satisfy requests when they personally cannot satisfy

the request but one of their colluding partners can. In

a system where a request is for computation, it seems

relatively straightforward for an agent to pass the com-

putation to a partner to perform and then pass the

answer back to the requester. On the other hand, if a

request is a piece of a file it seems less plausible that

5 We assume that colluding agents act to maximize the sum

of their utilities. Of course, this may not be optimal for any par-
ticular agent, so sustaining collusion is a problem for would-be

colluders.

an agent would accept a download from an unexpected

source, and it seems wasteful to have the chosen vol-

unteer download it for the sole purpose of immediately

uploading it. If it is possible for colluders to pass off

requests in this fashion, they are able to effectively act

as sybils for each other, with all the consequences dis-

cussed in Section 5.3. However, if agents can volunteer

only for requests they can personally satisfy, the effects

of collusion are almost entirely positive.

Since we have already discussed the consequences of

sybils, we will assume that agents are able to volunteer

only to satisfy requests that they personally can sat-

isfy. Furthermore, we make the simplifying assumption

that agents that collude are of the same type, because

if agents of different types collude their strategic deci-

sions become more complicated. For example, once the

colluding group has accumulated a certain amount of

money, it may wish to have only members with small

values of α volunteer to satisfy requests; or when it is

low on money, it may wish to deny use of money to

members with low values of γ. This results in strate-

gies that involve sets of thresholds rather than a single

threshold. While there seems to be nothing fundamen-

tally different about the situation, it makes calculations

significantly more difficult.

With these assumptions, we now examine how col-

luding agents will behave. Because colluding agents share

money and types, it is irrelevant which members ac-

tually perform work and have money. All that mat-

ters is the total amount of money the group has. This

means that when the group needs money, everyone in

the group volunteers for a job; otherwise, no one does.

Thus, the group essentially acts like a single agent, us-

ing a threshold that is somewhat less than the sum of

the thresholds that the individual agents would have

used, because it is less likely that c agents will make ck

requests in rapid succession than a single agent mak-

ing k. Furthermore, some requests will not require scrip

at all because they can potentially be satisfied by other

members of the colluding group. When deciding whether

the group should satisfy a member’s request or ask for

an outside volunteer to fulfill it, the group must decide

whether it should pay a cost of α to avoid spending

a dollar. Since not spending a dollar is effectively the

same as earning a dollar, the decision is already opti-

mized by the threshold strategy; the group should al-

ways attempt to satisfy a request internally unless it is

in a temporary situation where the group is above its

threshold.

Figure 9 shows an example of the effects of collu-

sion on agents’ utilities as the size of collusive groups

increases. As this figure suggests, the effects typically go

through three phases. Initially, the fraction of requests
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Fig. 9 The effect of collusion on utility

colluders satisfy for each other is small. This means

that each collusive group must work for others to pay

for almost every request its members make. However,

since they share money, the colluders do not have to

work as often as individuals would. Thus, other agents

have more opportunity to work, and every agent’s pu
increases, making all agents better off.

As the number of colluders increases, the fraction

of requests they satisfy internally grows significant. We

can think of pd as decreasing in this case, and view

these requests as being satisfied “outside” the scrip sys-

tem because no scrip changes hands. This is good for

colluders, but is bad for other agents whose pu is lower,

since fewer requests are being made. Even in this range,

non-colluding agents still tend to be better off than if

there were no colluders, because the overall competition

for opportunities to work is still lower. Finally, once

the collusive group is large enough, it will have a low

pd relative to pu. This means the collusive group can

use a very low threshold, which again begins improv-

ing utility for all agents. The analogous situation with

sybils is transitory, and disappears when more agents

create sybils. However, with collusion, this low thresh-

old is an inherent consequence of colluders satisfying

each other’s requests, and so persists and even increases

as the amount of collusion in the system increases. Since

collusion is difficult to maintain (the problem of incen-

tivizing agents to contribute is the whole point of us-

ing scrip), we would expect the size of collusive groups

seen in practice to be relatively small. Therefore, we

expect that for most systems collusion will make no

agent worse off, and some better off. Note that, as with

sybils, the decreased in competition that results from

collusion can also lead to a crash. However, if the sys-

tem designer is monitoring the system, and encouraging

and expecting collusion, she can reducem appropriately

and prevent a crash.

These results also suggest that creating the ability

to take out loans (with an appropriate interest rate)

is likely to be beneficial. Loans gain the benefits of

reduced competition without the accompanying cost

of fewer requests being made in the system. However,

implementing a loan mechanism requires addressing a

number of other incentive problems. For example, white-

washing, where agents take on a new identity (in this

case to escape debts) needs to be prevented Friedman

and Resnick (2001).

6 Identifying User Strategies

Lemma 2 used relative entropy to derive an explicit

formula for the distribution of money d∗ given a game

(T, f , h, n,m) and vector of strategies k. In this section,

we want to go in the opposite direction: given the dis-

tribution of money, we want to infer the strategies k,

the set of types present T , and the fraction of each type

f . For those interested in understanding the agents us-

ing a scrip system, knowing the fraction of agents using

each strategy can provide a window into the preferences

of those agents. For system designers, this knowledge

is useful because, as we show in Section 4, how much

money the system can handle without crashing depends

on the fraction of agents of each type.

In equilibrium, the distribution of money has the

form described in Lemma 2. Note that, in general, we

do not expect to see exactly this distribution at any

given time, but it follows from Theorem 1 that, after

sufficient time, the distribution is unlikely to be very

far from it. Does this distribution help us identify the

strategies and types of agents?

As a first step to answering this question, given a

distribution of money d (where d(i) is the fraction of

agents with i dollars) such that d(i) is a rational num-

ber for all i (this constraint is necessary if d(i) is to

represent the fraction of agents with i dollars in a real

system), suppose that the maximum amount of money

to which d gives positive probability is K. A vector

f of length K + 1 whose components are all rational

numbers, where fi is intuitively the fraction of agents

playing the threshold strategy si, is an explanation of

d if there exists a λ such that

d(j) =
∑
i

dλ(i, j),

where

dλ(i, j) = fiλ
j/(

i∑
l=0

λl) (7)

if j ≤ i and 0 otherwise. Note that Equation (7) is very

similar to Equation (2) from Lemma 2. In the following
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lemma, we show why we call f an explanation: given a

distribution d and an explanation f we can find a game

G where f is the fraction of agents of each type and

d is the equilibrium distribution of money (by which

we mean that the value of d∗ in Lemma 2 is such that

d(i) =
∑
t d
∗(t, i)). Note that this definition implicitly

assumes that wt = 1 for all t, a point to which we return

later.

Lemma 5 If f is an explanation for d, then there ex-

ists a game G = (T, f , h,m, n) and vector k of thresh-

olds such that k is an ε-Nash equilibrium for G and the

equilibrium distribution of money is d.

Proof Let T = {0, . . . ,K}, h be the minimum integer

such that hd(i) is an integer for all i, m =
∑
i id(i), and

k be such that ki = i. For each type i, choose βi, χi, and

ρi arbitrarily, subject to the constraint that βχ/ρ = 1

(so that, by definition, ωi = 1 for all types i). Finally,

choose an arbitrary n.

By Lemma 3, for any n, an optimal threshold policy

in the MDP PG,S(k),i for an agent of type i is sκ, where

κ is the maximum value such that

αt ≤ E[(1− (1− δt)/n)J(κ,pu,pd)]γt. (4)

Fix δi and γi, and let g(κ) be the sequence of values of

the right hand side of Equation (4) for natural num-

bers κ. Recall that the random variable J(κ, pu, pd)

represents the round at which an agent starting with

κ dollars runs out of money. Since J(0, pu, pd) = 0 for

all histories, g(0) = γt. The time at which an agent

runs out of money is increasing in his initial amount of

money. Thus, J(κ, pu, pd) is a strictly increasing func-

tion of κ, so g(κ) is strictly decreasing. Choose αi such

that g(i+ 1) < αi < g(i).

Thus, we have established parameters (αi, βi, γi, δi, χi, ρi)

for each type i so that si an optimal policy for agents

of type i in the MDP PG,S(k),i. By Theorem 2, taking n

and the δi sufficiently large makes k a ε-Nash equilib-

rium for G. By Lemma 2, the equilibrium distribution

of money is d.

In general, there is not a unique explanation of a

distribution d. Say that a distribution of money d is

fully-supported if there do not exist i and j such that

i < j, d(j) > 0, and d(i) = 0. For any game G, if

all agents play threshold strategies then the resulting

distribution will be fully-supported because it has the

form given in Lemma 2. As the following lemma shows,

a fully-supported distribution can be explained in an

infinite number of different ways.

Lemma 6 If d is a fully-supported distribution of money

with finite support, then there exist an infinite number

of explanations of d.

We defer the proof of Lemma 6 to Appendix C.

Lemma 6 shows that d has an infinite number of

explanations. Lemma 5 shows that we can find an (ap-

proximate) equilibrium corresponding to each of them.

The explanations f we construct in the proof of Lemma 6

seem unnatural; typically fi > 0 for all i. We are inter-

ested in a more parsimonious explanation, one that has

a small support (i.e., the number of thresholds i for

which fi > 0 is small), for reasons the following lemma

makes clear.

Lemma 7 Let f be an explanation for d. If s is the

size of the support of f , then any other explanation will

have a support of size at least K − s.

Proof Suppose that f is an explanation for d. By Lemma 5,

there is a game G = (T, f , h,m, n) and vector k of

thresholds such that k is an ε-Nash equilibrium for G

and the equilibrium distribution of money is d. More-

over, the proof of Lemma 5 shows that we can take T =

{0, . . . ,K}, ki = i, and ωi = 1 for each type i ∈ T . By

Equation (2) in Lemma 2, d∗(t, i) = ftλ
iq(t, i)/

∑kt
j=0 λ

jq(t, j),

where λ is the (unique) value that satisfies Equation (3).

We first show that if fi−1 = 0, then d(i)/d(i − 1) = λ.

Since, for all i, ωi = 1, it is immediate from the defini-

tion of q for Lemma 2 that q(i, j) = q(i, j′) for all j and

j′. Thus, the q terms cancel, so d∗(i, j) = fiλ
j/

∑ki
l=0 λ

l.

Let bi = fi/
∑ki
l=0 λ

l; then d∗(i, j) = λjbi. Only agents

with a threshold of at least j can have j dollars, so

d(j) =
∑
j

d∗(i, j) =
∑
{tl:l≥j}

d∗(l, j) =
∑
{tl:l≥j}

blλ
j = Bjλ

j ,

where Bj =
∑
{tl:l≥i} bl. If fi−1 = 0, then Bi = Bi−1,

so d(i)/d(i− 1) = λ.

Since s strategies get positive probability according

to f , at least k−s of the ratios d(i)/d(i−1) with 1 ≤ i ≤
K must have value λ. Any other explanation f ′ will have

different coefficients fi in Equation (7), so the value

λ′ satisfying it will also differ (since the requirement

that d(K) = dλ(K,K) uniquely defines a value of λ).

This means that the K − s ratios with value λ must

correspond to strategies i such that fi > 0. Thus, the

support of any other explanation must be at least K−s.

If s � K, Lemma 7 gives us a strong reason for

preferring the minimal explanation (i.e., the one with

the smallest support); any other explanation will in-

volve significantly more types of agents being present.

For s = 3 and K = 50, the smallest explanation has

a support of three thresholds, and thus requires three

types; the next smallest explanation requires at least

47 types. Thus, if the number of types of agents is rela-

tively small, the minimal explanation will be the correct

one.
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The proof of Lemma 7 also gives us an algorithm for

finding this minimal explanation. Since d(i) = Biλ
i,

taking logs of both sides, log d(i) = logBi + i log λ.

Because Bi is constant in ranges of i where fti = 0,

a plot of log d(i) will be a line with slope λ in these

ranges. Thus, the minimal explanation can be found by

finding the minimum number of lines of constant slope

that fit the data. For a simple example of how such a

distribution might look, Figure 10 shows an equilibrium

distribution of money for the game

({(.05, 1, 1, .95, 1), (.15, 1, 1, .95, 1)}, (.3, .7), 10, 4, 100)

so the only difference between the types is that it costs

the second type three times as much to satisfy a re-

quest) and the equilibrium strategy profile (20, 13). Fig-

ure 11 has the same distribution plotted on a log scale.

Note the two lines with the same slope (λ) and the

break at 13.

Fig. 10 Distribution of money with two types of agents.

Fig. 11 Log of the distribution of money with two types of
agents.

Our notion of an explanation requires that f sat-

isfy Equation (7), which, unlike Equation (2), does not

contain a q(t, i) term. Thus, it implicitly assumes that

for all types t, ωt = 1. Note that the game G in the

proof of Lemma 7 was constructed so at to ensure that

ωt = 1 for all types t. When ωt is allowed to differ, we

no longer have the simple form for Bi used in Lemma 7.

This is because the types do not share the same value

of ωt. However, for a single type t it is the case that

d∗(t, i)/d∗(t, i − 1) = λωt. ωτ(j) can be estimated by

observing the results of requests, so by observing a suf-

ficient number of agents the system designer should be

able to estimate the values d∗(t, i) and ωt for some type

t and thus learn λ. If several, but not all, types t have a

common value of ωt, the procedure above can be used

to determine ft and kt for each type and the resulting

value of λ.

This procedure allows us to use a distribution of

money to infer the minimal explanation of the number

of types of agents: the fraction of the population com-

posed of each type, and the strategy each type is play-

ing. (Note that we cannot distinguish multiple types

with a shared ωt playing the same strategy.) We would

like to use this information to learn about the prefer-

ences of agents: their values of αt, γt, and δt. Lemma 3

shows how we can do this. Once we find an explana-

tion, the value of λ determines ptu and ptd for each type

t. Then Equation 4 puts constraints on the values of

αt, βt, and γt. Over time, if T , the set of types, re-

mains constant, but f , n, and m all vary as agents join

and leave the system, a later observation with a slightly

would give another equilibrium with new constraints on

the types of the agents. A number of such observations

potentially reveal enough information to allow strong

inferences about agent types.

Thus far we have implicitly assumed that there are

only a small number of types of agents in a system.

Given that a type is defined by six real numbers, it

is perhaps more reasonable to assume that each agent

has a different type, but there is a small number of

“clusters” of agents with similar types. For example, we

might believe that generally agents either place a high

value or a low value on receiving service. While the ex-

act value may vary, the types of two low-value agents

or two high-value agents will be quite similar. We have

also assumed in our analysis that all agents play their

optimal threshold strategy. However, computing this

optimum may be too difficult for many agents. Even

ignoring computational issues, agents may have insuf-

ficient information about their exact type or the exact

types of other agents to compute the optimal thresh-

old strategy. Both the assumption that there are a few

clusters of agents with similar, but not identical, types
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and the assumption that agents do not necessarily play

their optimal threshold strategy, but do play a strategy

close to optimal, lead to a similar picture of a system,

which is one that we expect to see in practice: we will

get clusters of agents playing similar strategies (that is,

strategies with thresholds clustered around one value),

rather than all agents in a cluster playing exactly the

same strategy. This change has relatively little impact

on our results. Rather than seeing straight lines rep-

resenting populations with a sharp gap between them,

as in Figure 11, we expect slightly curved lines repre-

senting a cluster of similar populations, with somewhat

smoother transitions.

7 Discussion

In this paper, we have examined some of the practical

implications of the the theoretical results about scrip

systems from our companion paper Kash et al (2012).

For those interested in studying the agents of scrip sys-

tems, our characterization of equilibrium distribution

of money forms the basis for techniques relevant to in-

ferring characteristics of the agents of a scrip system

from the distribution of money. For a system designer,

our results on optimizing the money supply provide a

simple maxim: keep adding money until the system is

about to experience a monetary crash.

We have also seen that our model can be used to un-

derstand the effects of nonstandard agent behavior on

a scrip system. It provides insight into the effects of al-

truists and hoarders on a scrip system and guidance to

system designers for dealing with them (less and more

money respectively). Sybils are generally bad, but can

typically be discouraged by imposing a moderate cost

and possibly biasing the process for selecting a volun-

teer. On the other hand, collusion tends to be a net

benefit and should be encouraged. Indeed, the entire

purpose of the system is to allow users to collude and

provide each other with service despite incentives to

free ride.

We remark that we are not the first to study the

effects of altruists, sybils, and collusion on system be-

havior (although we believe we are the first to study

it in the context of scrip systems). Work on the evo-

lution of cooperation stresses the importance of altru-

ists willing to undertake costly punishment Hauert et al

(2007). Yokoo et al. 2004 studied the effects of sybils in

auctions. Solution concepts such as strong Nash equilib-

rium Aumann (1959) and k-t robust equilibrium Abra-

ham et al (2006) explicitly address collusion in games;

Hayrapetyan et al. 2006 study collusion in congestion

games and find cases where, as with scrip systems, col-

lusion is actually beneficial.

Although we believe that our analysis should al-

ready provide a great deal of insight to a system de-

signer hoping to use a scrip system, many interesting

open questions remain for future work. To name a few:

– Our model makes a number of strong predictions

about the agent strategies, distribution of money,

and effects of variations in the money supply. It also

provides techniques to help analyze characteristics

of agents of a scrip system. It would be interesting

to test these predictions on a real functioning scrip

system to either validate the model or gain insight

from where its predictions are incorrect.

– In many systems there are overlapping communities

of various sizes that are significantly more likely to

be able to satisfy each other’s requests. For exam-

ple, in a P2P filesharing system, people are more

likely to be able to satisfy the requests of others

who share the same interests. It would be interest-

ing to investigate the effect of such communities on

the equilibrium of our system.

– It seems unlikely that altruism and hoarding are the

only two types of “irrational” behavior we will find

in real systems. Are there other major types that

our model can provide insight into? Furthermore,

it seems natural that the behavior of a very small

group of agents should not be able to change the

overall behavior of the system. Can we prove results

about equilibria and utility when a small group fol-

lows an arbitrary strategy? This is particularly rel-

evant when modeling attackers. See Abraham et al

(2006) for general results in this setting.
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A Definition of the MDP

In this appendix, we repeat the formal definition of the MDP
from our companion paper Kash et al (2012). Taking notation

from Puterman 1994, we formally define the MDP PG,S(k),t =

(S,A, p(· | s, a), r(s, a)) that describes the game where all the
agents other than i are playing S(k)−i and i has type t.

– S = {0, . . . ,mhn} is the set of possible states for the MDP

(i.e., the possible amounts of money compatible with the dis-
tribution d∗).

– A = {0, 1} is the set of possible actions for the agent, where

0 denotes not volunteering and 1 denotes volunteering iff an-

other agent who has at least one dollar makes a request.

– pu is the probability of earning a dollar, assuming the agent
volunteers (given that all other agents have fixed their thresh-

olds according to k and the distribution of money is exactly

d∗. Each agent of type t′ who wishes to volunteer can do so
with probability βt′ . Assuming exactly the expected number

of agents are able to volunteer, υt′ = βt′ (ft′ − d∗(t′, kt′ ))n
agents of type t′ volunteer. Note that we are disregarding the
effect of i in computing the υt′ , since this will have a negli-

gible effect for large n. Using the υts, we can express pu as

the product of two probabilities: that some agent other than
i who has a dollar is chosen to make a request and that i is

the agent chosen to satisfy it. Thus,

pu =

(∑
t′

ρt′ (ft′ − d∗(t′, 0))

)(
χtβt∑
t′ χt′υt′

)
. (8)

– pd is the probability of agent i having a request satisfied,

given that agent i has a dollar. Given that all agents are

playing a threshold strategy, if the total number n of agents
is sufficiently large, then it is almost certainly the case that

some agent will always be willing and able to volunteer. Thus,

we can take pd to be the probability that agent i will be
chosen to make a request; that is,

pd =
ρt

hn
(9)

– r(s, a) is the (immediate) expected reward for performing
action a in state s. Thus, r(s, 0) = γtpd if s > 0; r(0, 0) = 0;

r(s, 1) = γtpd − αtpu if s > 0; and r(0, 1) = −αtpu.

– p(s′ | s, a) is the probability of being in state s′ after per-

forming action a in state s; p(s′ | s, a) is determined by pu
and pd; specifically, p(s + 1 | s, 1) = pu, p(s − 1 | s, a) = pd
if s > 0, and the remainder of the probability is on p(s | s, a)

(i.e., p(s | s, a) = 1− (p(s+ 1 | s, 1) + p(s− 1 | s, a)).

– u∗(s) is the expected utility of being in state s if agent i uses
the optimal policy for the MDP PG,S(k),t

– u(s, a) is the expected utility for performing action a in state
s, given that the optimal strategy is followed after this action;

u(s, a) = r(s, a) + δ

mhn∑
s′=0

p(s′ | s, a)u∗(s′).

B Proofs from Section 5

Theorem 7. Fix a game G and vector of thresholds k. Let

Rk,t = pk,tu /ptd. In the limit as the number of rounds goes to in-
finity, the fraction of the agent’s requests that have an agent

willing and able to satisfy them that get satisfied is (Rk,t −
Rkt+1

k,t )/(1−Rkt+1
k,t ) if Rk,t 6= 1 and kt/(kt + 1) if Rk,t = 1.

Proof Consider the Markov chainM that results from fixing the
agent’s policy to skt in PG,S(k),t.M satisfies the requirements to

have a limit distribution (see Theorem A.1 of Kash et al (2012)).
It can be easily verified that the distribution gives the agent prob-

ability Ri(1 − R)/(1 − Rk+1) of having i dollars if R 6= 1 and

probability 1/(k+1) if R = 1 satisfies the detailed balance condi-
tion and thus is the limit distribution. This gives the probabilities

given in the theorem.

Theorem 8. Suppose that t and s are two types that agree
except for the value of χ, and that χt < χs. If k = (kt, ks) is an

ε-Nash equilibrium for G = ({t, s}, f , h,m, n) with social welfare

w, then there exist m′, and n′ such that k′ = (ks) is an ε-Nash
equilibrium for G′

m′,n′ = ({t}, {1}, h,m′, n′) with social welfare

greater than w.

Proof We prove the theorem by finding m′, and n′ such that
agents in G′

m′,n′ that play some strategy k get essentially the

same utility that an agent with sybils would by playing that

strategy in G. Since ks was the optimal strategy for agents with
sybils in G, it must be optimal in Gm′,n′ as well. Since agents

with sybils have utility at least as great as those without, social

welfare will be at least as large in G′
m′,n′ as in G. To do so, we

find a value of m′ so that, from his perspective, being in G with

sybils or G′ without results in exactly the same MDP. The natu-

ral way to do so is to treat m′ as a continuous value, which might
result in a value such that hm′n (the total amount of money) is

not an integer. To complete the proof, we show that an n′ can be

found that allows us to avoid this problem.
Since an agent can earn a dollar only if he is able to sat-

isfy the current request, 0 < pm,k,su < βs. The constraint that

hm′n′, the total amount of money, is a natural number means
that m′ must be a rational number. For the moment, we ignore

that constraint and allow m′ to take on any value in [0, k′t]. From

Equation (8), pm
′,k′,t

u is continuous in d∗qk′ , which, by Lemma 2,

is continuous in λm′,k′ and thus m′. We use this continuity to

show that we can find a value of m′ such that pm,k,su = pm
′,k′,t

u .

By Equation (3), if m′ = 0 then d∗qk′ ,m(t, 0) = 1, and if m′ = k′t
then d∗qk′ ,m(t, k′t) = 1. Combining these with Equation (8) gives

p0,k
′,t

u = 0 and pm
′,k′,t

u = βt. Thus, by the Intermediate Value

Theorem, there exists an m′ such that pm,k,su = pm
′,k′,t

u . For

this choice of m′, observe that by Lemma 3, PG,S(k),s and

PGm′ ,S(κ′),t have the same optimal threshold policy.

If m′ is rational, say m′ = a/b, take n′ = bn; then hm′n′ is
an integer and, by the argument above, k′ is an equilibrium for

Gm′,n′ . Since pm
′,k′

u = pk,su > pk,tu , we must have ζGm′,n′ < ζG.

Thus, social welfare has increased. Ifm′ is not rational, we instead

use a rational value m′′ sufficiently close to m′ that k′ is still an
equilibrium for Gm′,n′ and ζGm′′,n′′ < ζG.

C Proof of Lemma 6

Lemma 6. If d is a fully-supported distribution of money with
finite support, there exist an infinite number of explanations of

d.

Proof Fix λ. The distribution d and λ determine an explana-
tion f as follows. By Equation (7), we need f to satisfy d(j) =∑K
i=0 dλ(i, j).

Recall that K is the maximum value for which d(K) > 0.
Start by considering fK . By the definition of dλ, dλ(i, j) = 0 if

j > i. Thus, the constraint becomes

d(K) = dλ(K,K) = fKλ
K/(

K∑
l=0

λl).
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Take fK to be the unique value that satisfies this equation. Once
we have defined fK , again apply the constraint and take fK−1

to be the unique value that satisfies

d(K − 1) = dλ(K,K − 1) + dλ(K − 1,K − 1)

= fKλ
K−1/(

K∑
l=0

λl) + fK−1λ
K−1/(

K−1∑
l=0

λl).

Iterating this process uniquely defines f as the unique value that

satisfies

d(j) =

K∑
i=j

dλ(i, j) =

K∑
i=j

fiλ
j/(

i∑
l=0

λl),

or

fi = (

i∑
l=0

λl)/λi

d(i)−
K∑

j=i+1

fjλ
i/(

j∑
l=0

λl)

 .

However, f may not be an explanation, since some fj may be

negative. This happens exactly when

d(i) <

K∑
j=i+1

fjλ
i/(

j∑
l=0

λl). (10)

As λ grows large, the right-hand side of (10) tends to 0. Since d
is fully-supported, we must have d(i) > 0. Thus, we can ensure

that (10) does not hold for any i by taking λ sufficiently large.

Thus, for sufficiently large λ, f provides an explanation for d.
Continuing to increase λ will give an infinite number of different

explanations.
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