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ABSTRACT

In lange mystems it mimportant for agentsto J=arn to act =f
factivel:, but = phisticated muli agent l=arning algprnth o
geoexally do oot =cale. Ao alternative appooach & to0 find 1=
siricted clasw= of games wher= simple, =Bc=nt algpnthom
comvergs. It ix shown that stage= l=arning effcjently con-
verges to Hash squilibbain lazge anomymous games i bet-
w=ph dypamcs comvemge. Two feadures axe identifisd {hat
improye comergence. Fist, rather than making l=arning
more diffcult, mor= agents are a-tually bensfical in many
wttings S=cond, proiding age=nts with statistical infrma-
tion about the beha-or of others can significantly zed uce
the number of oba=r ations nm=ded.

Categories and Subject Descriptors
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1. INTRODUCTION

Dieigner= of distibuted =stems av= fraquenth unable 4o
determine how an agent in the srstem should behaose be
cau== optimal tehavior depend=s on the uss's preference
and the ations of othes. A nadural appwoach is to hoae
apents um= 2 l=arning alemrithm. Many mulbizgsnt l=arning
algprithms hanre bee=n poo posed inch ding xim ple strategy up-
date procedures mich ax fctitious pley |10], mulixgent ve-
sions of G-fexrming 28], and no-regret d'gﬂri!hr:lu)J&].

Horymrer, as we discums in Section 2, scebing algprith o
are generally unsuitable br large distrbuted sysdems Ina
ditrntuted wstem, =ach agent has s hmited 1iew of the ac
tions of other agents. Algorithms that r=quize koowing, for
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mcample, the strategy chomen by =very agent canoot be im-
plemented. Furthermome, the sice of digtzibutied systems e
quires famt convergmnce. TTsers may yme the system b short
periods of time and conditions in the system change ove
time, o a practical Agorthm for 2 system with thousods
or millions of u=ers need=to hooe & convengence rade thad &
mblinmar in the number of ag=ntx Fagsting algnrithms t=nd
to pro-ide pedformance guarantes=s that ar= polvooomnal o
emmn mcpon=ntial, Finally, the large number of agents in the
wstem guarantess that ther= will bepoe, Agentswil] maks
mmistakex and will behan-m in unemcpectad by, Bren if no agant
chan g hix shratmgy, there can still be nome in age=nt pavoffs
For mxample, a2 gomip protoco] will match differ=nt age=nis
from ound to wund; congestion in the vodedving n=fwork
may =t mewaee delacs between agemts A lexrning xlgn-
fthm nesds to be robust to this nomes

While finding an alemithm that mtsfies thee E=quie
ments for abitrary games may te dificult, diskituted ws
tem= ham characteristios that make the problem ssger. Fost,
they involve a lagge number of agents. HoGng mon= age=nts
may m==m to make learning harder—after all| there a1= moxe
pomible interactions Howecer, it has the advantage that 1he
outcome of an ackion ty pically depends onh weakl on what
other agent=do. This makes outcome= whust to noise. Ha~
ing a large number of agents abo make it lew useful for an
age=nt totrv to influence others it becomes a betder policy 1o
try to learn an optimal responme. In contrast, with 2 smatll
numbexr of age=nt=x an agent can attempt t0 guide l=atning
mgentsinto an outcome that is bens=fical for him.

Second, diskiibuted sysems are often mongmous |1]; #
does oot matter whe doms mething, but rather Bow momg
agent=do it. For eccample, when ther= & congestion on alink
the =cpetiznce of a single agent does oot depend oo who =
=nding the packsts tut on how many av= being mant.

Finalh, and perhaps most importantly, in 2 distnbuted
watem the sysem designer controls the game agents ae
playing. This gives usa somewhat differ=nt pempecticethan
most work, which talesthe game s gho=n. Ti= do 0ot ne=d
to whe= the hard problem of finding an =ffcent aleorithm
for all games Instead, we can find algprithoms that work
efficienth for inter=sting ol of games, whete b1 us o
ter e=ting ™ mea ne tthe fy pe of games 2 weshem d =igner ohght
wizh agmnt=xto play ™ Such pames should be well behanqed ™
since= i would be sbrange=tod=sign 2 mstem wher= a0 agent's
decisions can influsnce other agents in pathological wavs,

In Section 3, we show that stege ferrméng [9] is wobust,
implementable with minimal information, and convergss =f-
ficimntly for an inter=sting clas= of games. In this algpnthm,




agents divide the rounds of the game into 2 seri=s of stapge=x
In =mach stage the agent uw= 2 fowvmd stratmey =cc=pt that
he occamionally ecploz=s, At the =nd of 2 sage, the agent
choomes 2x hix sbrategy for the nmcd Sage whate e strategy
had the highest sverage reward in the cuzz=ot sag=. M=
proncem that | under appropriate conditions 2 large sest=m of
sbage learners will follow [approximate) best-z=phy dvonamics
despite exzors and exploration.

For games whers bet-x=ph dvoamics convenge, ouz thea-
Tem gy axantess that l=arners will play 20 ap proscmate ITah
equilibdum. In comrast to pryious zeuls when= the con-
1eigence guatantes scal= poorly with the pumber of agents,
ouzr themrem gparante= convengencs in 2 finjt= amount of
time with an infinte pumber of agents. While the asump
tion that best-z=ply dyvnamics com=rge & 2 f100g one, many
inter=sting games converge voder best-r=ply dypamcs, io-
chiding dominance saliable gy me 2 0d pames with monotons
best replies Marden et al. [17] have obsenied that conver-
geoce of best-z=ply dvnamics is often a property of games
that humans demign. Mozemqer, convegence of best-z=ply
dvnarmics & a weaker s mpdion than 2 common asumpe
tion madein the mech ani=n deign It eradure, that the games
of interest hawe dominant stratmgies (aach agent hos axizad.
egy that iz optimal o0 matter what other agents do).

Simulation r=ults, pr=w=nted in Section 4, show that con-
vmigence & Bt oin practice: a wystem with thowsaods of
agents can comerge in a few thoumnd wowunds, Furthe-
moze, we identify fwo factors that determine= the 1at= and
quality of convezgence. One ixthe m mber of ag=nts: has-ing
moze= agents makes the oo in the sysen more consitent
o agents can larn wsing fewer cbervations The othes
& giving agents statistical inbrmation about the behabor
of other agents; thix can spe=d comerg=nce by an order of
magnitude. Inde=d, mo=n noisy statistical information about
agent behandor, which should te relatnoely ey to obdain
and dimemminate can significantly impoove pedormance.

2. RELATED WORK

D= approach to leaning to0 play games & f0 generalize
winforcement learning algorithms such ax Qrlearning [26]
Oin= nice Eatun= of thix approach mihat it canhandle games
with staie, which ix important in dEtobuted wsteocs. In
Ctl=arning, an agent seociates a value with =xch stade
ation pajz. Then he choowes ation o in state 5, he upe
dates the value s a) bamed on the reward he zeceived
and the test valus he can achimce in the reuling dtate =
(mas, (=" 0*)). Then genmaticing to multiple agents, =
and a become vectors of the state and action of m-ery agent
and the masw ix z=placed by 2 prediction of the behaobo
of other agents. Different algorthoms use different predic
tions 1 =cample, Hash Q v 2 Iash equilibbum cakula
tion [14]. Be= |22] for 2 suzvey.

Tnfortu nately, thes= algonthms comerge too sbowly fox
a lages distdtuted wstem. The algpbthm peeds fo expe
dence =ach possible ackion profile many times to guarantes
comvergence, Bo, with ¢ agents and b srateges the nape
convergence fime & O(E"). Bren with a better repressn.
tation for anonymous games, the comegence time & =6l
O(e*) [typically & % r). There & abo 2 mor= fundamen-
tal problem with thix approach: it sy mes information that
an agent & wnlikel to haowe In order to koow which value
to update, the agent oust learn the action chomen by mexy
other xp=nt. In practice, an agent willlearn omething about

the actions of the ag=nts with whom he ditecth interacts
tut & unlikely to gain ouch infrmation atout the ations
of other ag=mi=.

Ancther approach is ne regret fezrming, where agentschoose
astrategy for mach 1ound that guarante=sihat the 1eget of
their chodces will be low. Hart and MasChlel] 18] preseat
mch alearning proced ur= that converges t0 2 correlete sque-
fEbrinm |211] gven koowledge of what the pavoffs of every
ation would hare besn jn =xch round. They ako proncide
avariant of thew alemrithen that requin= only information
about the agent's atual pavoffs [14]. However, to guarantes
convergence o within e of a corr=laded equilibcivm requiz=
Skrfe? log kr), =il too sow br lages systems Further.
moze, the convergence guarantes ix that the distribution of
play converges to =quiitoium; the strategi= of indn-idual
arpes will not convege. Better m=sulis can be achimved
in restricted ==ttingx For example, Bhm et 2. P] showed
that in routing games a continuum of no regret l=arn = wil
ap prosximate ITash squilibtcium in 2 finfte amount of time.

Foster and Young |7] uae a stage-learning procedure that
converge t0 Mash equilibdum for two plaver games D
mans and Lugos |11] showed that it converges for genetic r-
plaver games (g wheres best rapliss a1 u nique). Young [26]
uz=s a similar algorithm without =cplicit sag=s that alx
converge for generic r-plocer pames Rather than selecting
et r=phies, in the= algmithms agents chooms new actions
mandomly when not in equilibtcivm. Unfordunately, the=
algprithms involve m=arching the wholr shadegy space, =
their convergence fime & =cponsntial Another aleorithe
that uses stagesto provide 2 gtable l=arning =oviron ment =
th= BSRL algorthm b1 coordinated mcploration [24].

Matden =t al. 15, 19] us= an algprithm with experimen-
tation and bt z=plies but withow t mcplicit staeethat con
verges Br ewalily ecpclic qemes, where best-zephy dyoamies
converge when agents mo=ons st a time, zather than mo-
ing a1l 2t once, aswe asume here, Copvergence i based on
the mostence of a s=quence of mcploration moves thad laad
to =quilitdum. With r agents who explor= with probability
e, thix analysis ghes 2 comergence Hime of S(1/"). Fuz-
thermore, the guarantes r=quin=s & to te suffci=oth =matll
that apents =ee=ntially =cplor= on= 2 2 Hme 2 e nmeds to
b O(1lfr)

Thee is 2 bog history of work ecamining simple l=arn-
ing procedures such ax Fotétéous play [10], where each ageat
makes 2 best r=gponss awuming that =ach other plaver's
sratemgy is chatacterizesd by the empidcal feequency of hix
cbeerived moves, Incontrast 4o algorithms with convergence
gy arante= for pEnera] games thes sloorthms fad to con
1erge in mam games But o1 clawe= of pames whers they
do converge, they tend to do =o rapid kv, However, most work
in this ar=a awumes that the ackions of agents are obaeried
to 2l apmnts agents know the pavofmatise, and poayoffs ace
determinitic. A 1mcent approach in this tradition i boamed
on the Win or Learn Fast principle, which has limited con-
eigence guatante= but often pedforms well in practice H.

Ther= & sl 2 body of empirical work on the copvergance
of l=arning alearithm=in oultisgent s=ttings Clle=arning hax
had empirical succes= in pricing games |29)], rplaer coop
exative games J], and grid world games F.‘l]] Crme=my ald at
al. [12] showed that 2 oumber of algorithms, inchiding stage
learping, converge in & vmnety of simple games, Marden =t
al. |19] bund that their aleorithm converged st fasber in a
congestion gamethan the theoretical anat s would suge=t.



Cuz theor=m suggests an ecplanation for th == =mpixical ot
wrizations best-neply dyvnamics convergs in all thew= oy me
While our theorem applies dizactly onhy to stage l=axning, it
procidesintuition as to why algorithms that leamn quickly
enough™ and change thein tehendor “sbhwly =nough™rapidly
convergs to [Tash mquilitdum in practice.

3. THEORETICAL RESULTS

3.1 Large Anonymous Games

= are interested in anonymous games with countabhy
many agents. Asmioiog that there are countably many
apents simplifies the proofs; it & skhajhtforward to eciend
our remlts to games with 2 largs finite oumter of agent=
Cur mode] is adapted from that of |1]. Formally, a ferge

am orgmons germe & characterizad by atuplal = [N, A, R Fr).

# M & the countably infinite s=t of ag=ni=.

# Aix a finit= ==t of actions from which =ach ag=nt can
choox= [for simplicity, we asume that each agent can
choox from the same ==t of actions).

# A[A), the ==t of probabidiy distobutions over A, hax
two usful iderpretations The fimt & ax the ==t of
mived ations. For a € A we will abux= potation and
denote the mixed ation that iz o with probabilits 1 2=
a. Ine=ach zound =ach agent choomes on= of thee oizoe=d
actions The ==cond imterpoetation of g li-!i:l oo
thefration of ag=nts choosing =ach ation ae A, Th
iz important for our ootion of anonymity, which =as
an agent's uwhility should depend ool oo how many
apmnts choome mach action radher than who choome it

3 = {g: N — A[A)} ix the ==t of [mdowed ) action
profil= [ie. which action exch agent choo . [Hven
th= mic=d action of m-ery agent, we want {o ; tha
fration of agemts that =nd wp choosing ackion a. Foo
g € 3, It giilja) denote the probability with which
ageat P plavsa according to gli) € A[A). T can then
evpres the fraction of agents in g that choose action
8 as imnellfr) T L glilla), if this lim# =dsds, I
the Emit ol br all actionsa € A Jet gp e 3(A)
gne the value of the limit for mach 0. The poofiles g
that we us= ar= all determine=d tv 2 simple random
proc=ss  For such profil= g, the shong law of lang=
numbers T) gu arantess that with poobabdity 1 gp
iz well d=fin=d. Thus it will ty pically b= well defin=d
[uxing =imilar limitx) $1 us to talk sbout the fraction
of agents who do something,

* P Riza fnite ==t of payoffs agents can receive.

# Fr: A« A0A) = A[F) denotes the datdbution over
pavols that zesulis w th= agent perbrom action
a and other agent= follow action profile g e u=e 2
probability distritution ;qex pawoffs rather than 2 pay-
off to model the fact that agent pavoffs may change
evmn if oo agent changes hix srsdemey., The ecpected
utility of an agent who pedforms mized ackion = when
other ageats follow action dibribution g is w5, g) =
YoraX pp Flo)Fraalp). Cur definition of Fr in
terms of A[A) rather than & ensures the the game
iz anonyvmous e further zequire that Pr [and thus

] te Loprchidz conténuous.' For defniten=w we um=
theI1 porm axour notion of distance when specifving
continuity [the L1 distancebetweasn fwo vactorsisthe
sum of the absolute 1atues of the diference in =ach
componsnt]. Hote that this formulation seumes af
2pmntx shate a comman wtility function.

An =cample of 2 large anonymous game &= on= where, in
each wund, mach agent plays a two plaver game against an
opponent chosen 2f random. Then A & the s=t of actions
of th= two plaver game and P ix the s=t of pavoff of the
game. Dnce mrery agent choomes a0 ation, the distdbution
over actions ix charactericed by wome g € 2(A) Let moa
denote the payoff ox the ageot if he plavs 0 and the other
agent plavs o', Then the uidity of mied action = ghven
ditritution g &

dsg)= 3 slolole’ipun

aa'E A7

3.2 Best-Reply Dynamics

3iven 2 gam= I and an action distribution @, 2 natural
gral for an agent & to play the achion that macmices hix
expectad vididy with respect t0 @0 apmas,p , vl g). T
call such an artion a Best replyto @ In a practical amount
of Hime, an agent may have dificulty dete=rmining which of
two ackions with chse mcpected vhilities & better, =0 we will
allow agemnt=x t0 choome actions that are clom= to best z=plie=
Fanmabed zopl t0 5, then o' &5 a0 q-bed reply o o F
uiﬂ",,ﬂ_:l +7 >xulo,g). Thewe may be morethan one e-bet
w=ply; we denote the o=t of qbest replism ABR, (5],

Wedo oot have a xingle agent looking for a test zeply;
ey agent & trving to find a one at the same fime. IF
gt xtart off with some action distrbution g, after they
all find a et r=ply thaz= will be 2 n=w action distribu tion g,
e amume that gia) = 17|4| (agents choome theiz initial
strategy unifmrmly & random), byt ouz =l apply 4o a0y
dietrtution used to det=rmine the inftial shratmey. e =
that a mquence (@0, 00, ... ) isan q-best-reply sequenor if the
= prort of gy & 2 subset of AFR,(@); that iz gy ghoes
positive protebility only fo ap pooxdmate test r=ples fo .
A bt v=ply s=quence coneerges if thers ecstxome f such
that for afl #* == f, @ = gy, Hote that thix & 2 particulardy
strong notion of convergence becaume we equize the @ to
converges in finjts time= and not merely in the ot A game
may ha-= infinitely many best-raph s=quences, =0 we s
that epprommee best-reply dynem 5 comperge if thee el
wme =0 wch that every pbet-zeply =quence comerges
The limit d mtribution o d =ter mine 2 mised shrabeey that
# an g-Hash squilibrium.

Chuz theor=m shows that laarne=r= can succm=sfu lly l=atn in
lazg= anonymous games where approximate best-z=phy dy-
namics converge. The number of stagm needed to conrvengs
i determined by the pumber of best z=plies nmed=d before
the =quence commges It & possibly to deign games that
hane long best-1eply ®=quences, tut it practice most games
hapm short m=quences One= condition that gusrsote= thix &
¥ oo and all the deganerate acbion distdbutionsae A iz,

'Lipchitt continuity impos=s th= additional constraint that
thewisomeconsdtamd K =udh that |Frfa, o] —Fria, p"ﬂki"p—
Fl = J for all g and &, Intuithoely, this enmp= that the
distritution of outcomes domm't changs oo famt ™ Thix = a
standard zemumption that iseasil s=nto hol in the game
that ha-e tvpically tean consider=d in the Jiteraty =




distrtutions that aedgn probability 1 tosome a e A) have
unique best zeplims. In this came, there can be at most |4
best 1=plie= beoze aquilitaium & 1mached. Furthermone, in
mch games the distincbion betwe=n p-test replies and best
1=plies iz imeleant; fo sfcently small g, 2 p-besd z=ply &
2 be=t z=phy. Tt ix not hard to show that the property that
degmn=tate siratagi= haoe= unique best r=plies & gens=ric; it
holds for almost ey game.

3.3 Stagelearners

An ag=nt who wantsto find abest raply may not koow the
=t of payofs F, th= mapping from actions 4o distributions
ovex pavolfs Pr, or the action disbribution @ (and, indesd | @
may be changing et fime), =0 he will have to0 use some ty pe
of laarning algprithm o learn it. Oz approach & to dn-ide
the play of the game into 2 s=quence of stages. In =ach stage
the agent almost atways playssome fived action a, tut 2l
meplre other ations. At the and of the stags he choom= 2
nmw o' for the nect stags bamed on what he has Jesrnsd. An
important Eatui= of this appooach is that agents maintain
their ations for the antize stage, =0 =ach stage procides a
sable spvironment in which agents can l=arn. To simplifv
our 1esuls, wespecify away of ecpbring and l=arning within
a stage [origin ally descrited in [9]), but our remlts should
generatize t0 any -1mamonatle™ learning aleorithom used o
leatn within a stage. [Tz discuss what ix ‘zeamonable™in
Section &.) In this maction, we show that, ghven 2 =itable
parameter, af the sach stage most ageots will have l=azned
abest z=ply to the =pvironment of that stage,

Chen 2 game I, in =ach 1ound §f agent | pemeds to ==
It a mmxed action sp+. Cur agents use strategies that we
denots a,, b1 a € A, whee aufa) = 1 —¢ and a, a' #
a) = ¢f[|4] — 1). Thux, with o, an ageot almost dwavs
play=a, tut with probability & =xplon=s other strategie= uni-
formly at random. Thus far we ha-e not specifisd what
information an aeent can uee i choo== =1,¢. Diiffer=nt game
may pronqide differsnt inbrmation. Al that we z=quize &
that an agmnt koow 21l of hix prmGous ations and hix pre
vious pavoffs More praceely, for all f = f, he koows hix
ation as l:dli [which is determmined by 5,¢ ) and hix pavoff
G [i) [which = determined by PI|:E|,. (@), where gy ix the
ation distdbution for zound :I’I note that we do oot s
mume that the agent koows gy ) U:i.n.g thi inbrmation, we
can ecpress the moerage vahue of an action over the pre
vious r = |1 :u] tounds [the length of a .-.'h*:ng:_:ll:I Lt
Hia, i f) ={f—r<f o f|apli) =a} be the =t of 2cant
wunds in which 8 was plaved b . Than the merage value=
BV, ) =T i laat (7 .:l."llﬂiﬂl'lf.:'l’f Wi fa, i, f)] =0
and 0 otherwime= I:EJ I we nmed the 2he of H onh at
times that are ouhiples of r, for comvenisnce we de=fin= it
for arbitrary times f.

==y that an agent is an e-Aege femnerif he choos=
hix actions as follrws. If f =0, = ix chow=n 2t random from
{u.. | aE .-l.]-. If f i a nonce=ro multiple of r, = 1x = ﬂl:i,fj,
wher=a(i, f) =argmac, . , 178,
Thus, within 2 stage, his mize=d action is fiveed and 2t the and
of 2 stage he updatexit {0 ums the action with the high =t
aerage vt during the pre-ious stage.

The evohition of 2 game played tw stage larnes & oot
determin mhic; =ach agent choos= a random 50 and the ==

TThe um= of the =mcponent 2 ix arbitrary. e z=quire onlv
that the mcpected number of times 2 sbrategy & =cplored

increyeey nw oo o scre s

N, fl. Otherwizs, sy =551

quence of as(i) and peli) he oberoes & abo random. How-
e, with a countably infi nite m=t of yg=nts we can ume the
SLJ_IT to make state ments sbout the overal] behagGor of the
game. Let gili) = =is. A run of the game conxigx of &
wquence of tdples (g 05, pr). The SLLIT guarantess that
with protability 1 the fraction of agentx who chooms 2 strat
EEy 8 in o i% gg (o). Similal, the fraction of agents who
chome o in oy that recmive pavoff pwill te Frja, gy, ) @) with
probatbility 1.

To maks= our notion of 2 stage preces, we =fer to the =
quence of fupl= (gar , Gnr, Barl .. . [g,:,,_'_,_
a5 stage r of the run, Durnng stage r thers & 2 stationary
ation distribution that we dencte @ . If S fnl)r = G
and a € AFRo(gnr), then wesay that agemd 7 hox feormed
o -best replyduding stage r of the run. As the following
mma shows, for suffci=ntl small ¢, most agents will l=an
an q-best z=ply.

ILEMMA 3.1 For off [oge enongmous qemes I1, @clion
profifes, pppreEmeions 7 > 0, od prebebilitier of error
e =0, there s om e" =10 such thet fore < e* end 2ff r,
if ofl ayrnds ere e -slege leermers, then of leastf 2 1 —= froclion
& mrenls will feen m p-best reply during Aege .

FROOP. [Shekch) Oo average, an 2gent using sategy a.
plays ackion o (1 —e)r times dudog a stage and plays adl
other actionserfie —1) time= axch. For rlarge, the raslizad
number of fimes played will be chae to0 the expectation value
with high probability. Thus, i er & suffici=ntl lazge then
the m-=rag= pavoff from each ackion will te =mcponsntiall
chx= to the true ecpected wahe (a2 standard Hoefding
bound on sumxofiid. random variables), and thus each the
larner will comectly identifv an action with apprmdmatet
the= highet mcpected payoff with probability at Jesst 1 —e.
By the SLILIT, at l=ast a2 1 — = frackion of agents will l=an
an p-best zeply. A detailed version of this proof in 2 moze
groeral stting can be found in @] [

3.4 Convergence Theorem

Thus fa1 we hw= define=d larges anonymous games where=
ap prosximate best-zeph dyvnamics converge. If all agents in
the game=aree-stags barnem then the s=quence g, &, ... of
ation distributons in 2 zun of the pame iz not 2 best.z=ph
=quence, but it is clome. The ation used by most age=nix
most of the time in =ach g, & the ation us=d in @, for some
ap proximate best z=aply mequence.

In crder to prove thix, we nmsd to define “ch==™ Cuz
definition ix bamed on the erzor rate = 2a0d ecplozation rate
e that inttoduces noi== into gn. Intuiticely, distzibution g
i ch== {0 o #, bty changng the strateges of an = fraction
of agmntx and har-ing all agants meplore an & fraction of the
time, we can go Eom an action poofile with corzesponding
ation digtzitution @ to on= with comesponding distdtbution
2. Hote that this definition will oot be sy mmetzic,

In thix definition, g identifims what [pure) action each
agent = using that leads to g g allows an' = fraction of
agents to use wme other ackion |, and § incor pozates the fact
that mach ageot iz ecploring, =0 each szsdegy & a0 a, [the
agent usially plavs o but explbo= with probability e).

DHEFMTION 3"-‘ Action dstribution & [&,el-clox= (o g i
there emist g, g', and § € such ht:

2 =pg omd 5=

r=L gl r= 1 B g L]r—l._:l



# gliled forall i M;

* ”.aq- Sr|l = 2e fikis alfows on e frecléon of agenis
ing' o pley o dfFerent sireleq from glj,

o forsomee’ Ce, iFg'(Ti=a themg(i) =a,. 1

The um= of & in the final requirameant ansures that if fwo
ditdbutions ar= |:irlll ehclome then they ate abo (o e')-clome
for afl &' e and &' Fe. A:ummp]cnfihﬂa:nmmeh:\
of thix d:ﬁ.mh:ln a, = |:III ej cloma to a, but the 1meme =
oot true, While |:e,=_:|-i:1:|=n.|:= =a 1.I!Ef|.l] distance mezsuzs
for our analisi it iz an wonatuzal notion of distance for
specifying the continuity of @, whers we= ue=d the 11 noxm.
The bllowing simple l=mma shows that this d=tincdion =
unimportant; if ¢ ixs suffcently [# e)-clome to @ then it &
chse according to the 11 messuzs 2w

Leuna 3.3 [fg és (e e)-close to g, then |[o—p|| < 2(e+
el.

FROOF. Since g & (5} chow o0 g, there st g, g*, 2nd
g ax in Definition 3.2, Consider the dtbbutions g; = g
Ay, and gy = & We can view thess thre= distriby tions 2=
1ectors, and caloulate theiz Il distances. By Dhefinition 8.2,
lor — aglle =2 ||oy — |l = 22 becauss an e fraction
of agmnts mcplore. Thus by the tdangle insquality, the T1
dixtance betwesn g and § & at most 2= +e). [

e haoe amumed that appomecmate test 1=ph ==quance=
of gn convege, but during a run of the game ageois will
atually te l=arning appeoscimate best replies to0 @,. Th=
follrwing lamma shows that this d mbinction do=s not matter
if g and g are suffici=ntly clome.

LEuua 8.4 For eff § there =Esis o d, such thetl 6F @
5 [ee)-closrlo @, 0 >0, e = 0, and & +¢& < dq then
ABRpo i@ C AFR f2).

FROOF. Let I be the mavdimum of the Lipxchitc con-
stams for all wfa, ) and dq = qf(8K ). Theo for al] g that
are | e, :; i:l:!::h:!p.a.u.d 2l ||.¢|:u“a ula, @] < |[e—g|[ K =
2/ 3K = g/ by Lamm .a

Let o ¢ ABFalg) and o IE a:g.maxﬂ-E_l,,.',:F]ul:u -1
Then wia, @)+ 7 = wia’, g). Combining this with the abm-e
g u((n,,é +q/2 =ujg’ @, Thusa ¢ AR, (5. [

Lemmas 3.1 and 3.4 give zequitements oo [e,e). Io the
statement of the theorem, we call 2, e) g-acceploble F they
sty the requizements of both lemmax for 52 and 211 g
et z=pdy ==quences converg=in T

THEOREW 4. L[et T be @ lomge ononpmons qeme wfiers
gpprommete best-reply dynomécs conwerge and Mot [2e) be
g-ecceplable for T, IF o mpenls ore e-sleqe larrmers (hem,
for ol runs, therr sdsis o p-besl-reply sequence g0, 2, - - -
suchihet in sloye r of feesl @ 1 —= frociion wdl feom @ best
reply lo @2n wih probebelily 2.

FROOF. oo = gby, T gois [fe}chee to g, Avume g, &
1|‘:=M_:I -clom= to p. By Lemma 3.1 at lesst 2 1 —e fackion will

o gf2-best :c_p]} to gq. By Lemma 34, thiziza g-hest
wply to gn. Thus goy will be (2,2} che 'h:l PnpL. O

Themem 3.5 guarantemthat after 2 finite number of stag=—

agents will be clom=to an appredmate ITash aquditoiu.m poo-
fil=. Specifically, gn will be [ e)-cloze t0 an [.ITash equi-
trium profils g, Hote that this mesns that g, & actually

an -Hash equiliboum for alarger ¢ that dependson e e,
and the Tipachitz constant J{.

Chur thre= r=quitaments ©1 a practical l=arning algorithm
weze that # z=quiz= minimal information, convezge quickly
in a large wstem, and be wobust to nome=, Stage learning 1e
quires only that an agent know his own payoffs =0 the first
condition ix satisfied. Thesrem 3.5 shows that it st
the other two requioements. Convergence is guarantes=d in
a finite pumber of stages Thile the pumber of dage de
pend=on the game in S=ction 32 we azgued that in many
came it will be quite xmall. Finally, mwtusto=s comes from
tolezating an = fration of emom. While in our pooofs we
swmyme] thews =r10rs wez= dus to learning, the analves &
th= = me if ;om= of thiz noi== & from other souzces such
&% churn [agentxentering and leaving the system ) or agents
making srzors Ve discwss this #w e more in Sechion &

4. SIMULATION RESULTS

Themem 8.5 guarantessconvegence for a s Hcenth smatl
emcpbration probability e, but decz=asing & al=n incyeas= r
the=l=ngth of 2 stags. Incr=aming the l=ngth of 2 stage means
that agents take longer to m=ach equilitoium, = for stage
larping to be practical, e needs to be z=latively lage. To
show that & can be lasge in practics, we t=sted populations
of stage leatnem in 2 number of games whers best z=ph
dyoamics converges and experimnced convergence with & he
twemn 101 and 05 Thi alkws convezgence within a faw
thouzand round=in many games. T hile our theor=m appli=
only to stage learning | the an alysis pro-des oty ition ax to
why armamnable algorithm that changes siowly manough that
other learners hon-= a chance 40 Jearn best z=pli=s should con-
1rege axowell To test 2 very differsnt tvpe of aleorithm, we
il implemanted the noregr=t l=arning algprithm of Hatt
and MaxtCollell [14]. This algprithm alo quickly comenged
chz= t0 Hash equilitcum, although in many games it did
ot converge 2 clomety am stags l=avning.

Chur themetica] r=ults make two mgoificant predictions

about fartors that influence the rad = of convegence. Iammal.l

tells us that the l=ngth of & stage & det=rmin=d tv the= pum-
ber of time= =axch stratmpy nemeds to te =cplored to get an
accurate mstimate of #=x value. Thus the amount of jofor-
mation provided by each olmsriation has 2 latge efect oo
the rate of convezgence. For ecample, in a random match
ing pame= an agents payvoff pronde=s information about the
stratemgy of on=other agent. Oin the other hand, if he rocenq=—
hix ecpectad payvoff for being matched | 2 single ote=n-ation
provides infrmation about the sntine distotution of strade
gies. In the ladter came the ag=nt can l=arn with many fewer
obeeriation=s

A r=lated paed iction isthat haing more ageots will l=ad 1o
faster comvergence, paticulark in gpames where poyoffs aoe
determined by the x-=rags baha-or of other agents hecaums
1arancein poyoffsd usto mcploration and st akes deczeae—
a5 the pumber of agents incrmaw=, Our expenmental r=ulis
flustzate toth of thes phenomena

Ta tegbmd the learning behanior of dape l=arners and no.
=gzt learners in 2 number of games, including pro=oner's
dilemma, a chmbing game ], the congedion game dexribed
in [17] with both ACF and =erial mech anisms, and fwo differ-
ent contrbution games [called 2 Diamond-fy pesearch model
in |2d]). W implemeantad pavoffs both by randomly match
ing players and by ghing each playver what his expected pay-
off would have besn had he besn raodomly madched [zome
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Figure 1: Comvergence with the average

pavolfs were ad justed to make the games symmetric). Re
m ks wers mimilar aczoms the differ=nt games = we 1=port
only the r=mlix for a cogtribution game.

In the contribution game, agents chooms stradegies fromQ
to 19, indicating how much =fFfort they contribute to 2 collec
tive mnterprise. Thetalus=to 20 age=nt dependxon how much
he contrtutes, 2 well as how ouch other agent=s contribute.
If he contritutes o and the comritution of the other agents
& y, then his ubility is 2oy —efr), when= £[0) =0, £1) = 1,
:l::l.'_:l =|::r—1_:ll:'f|:|:|::rE2|...|3.a.u.d :l::l.'_:l = 4+2rirr > i
Ve conmidered two vermions of this game. In the fizsd, p =
determined by the average frategy of the other agenis. In
the=m=cond | i deter mined by zand omby matching the agent
with another agent.

Chr implementadion of stage l=atnem & as dexzited in
Zection 30, with ¢ = 0.08 when y i determminesd by the ao-
erage and & =001 when g isdetermined by zandom match
ing. Rather than taking the langth of stage r ax 1fe? wa
=t r =250 and 2000, r=spectively; this gives belter perfor-
mance, Cui implementadion of no-regret leatners is bamed
on that of Hart and Mas Colell [14], with impovementssug-
gectad by Craspwald et al. [12]

Figuz= 1 shows thermmlis br larner= in the vemion of the
game when= yis the sverage strategy of other agents Bach
curie shows the dtance from equilitoium 2 2 function of
the number of zound sof 2 population of agents of 2 gh-en st
uxing agien arning algorithm, The sl were e aged
over 10 runs. Since the pavofs for neaby shategies e
ch=s we=want our notion of distance to take into account
that ageots plaving 7 ame chower 0 squilibbum [3) than thows
playing v=m0. Therefme, we consider the ecpected distance
of g kom equilibtdum: ¥, glall — 3|, To detxmine g we
cou nted the number of Hmes =ach action was oqer the l=ogth
of 2 sage =0 in pracktice the ditance will pmer be cewo
due t0 mistakes and expbration. For eas of pres=ntation,
the gmaph shows only populations of siz= up fo0 100; sionlar
re=ultx were= obtained for populations wp to 5100 age=nt=

For stage l=arning, incr=zsing the population =ice has 2
dramatic impact. With two agents, mistakes and et oplies
to the reulis of thew= mmstakes cxyme behaibor to be quite
chantic. With ten agentx, aoents syucomefully l=arn | although
muistake and = tophimal shiategi= at= quite fr=quent. W 'ith
one by ndr=d agent=s, all the ageots convegge quickly to equi-
btrjum strategjes and mistakes are rare; dlmost all of the

T
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\ \& — ~ — No-Regret 100
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Figure & Convergence with random matching

ditance from equiiteiu misdue to scploration.

Hoimgr=t learning alw copvemges quickh, but the 'qual-
#y™ of convergence [how clba we get o equilibium) is oot
am high., The major problam & that » significant fraction of
agemnt= play near opdimal actions rather than optimal action.
This may ha= a pumber of caus=s. Fist, the guarante= =
that the v mplotic e of @ will be an =squilibrivm, which
allows the short perods that we consider to be far from equi-
ltejum. Se=cond, the quality of convengence depends on e
w tight convegence may =quiz= a much bwer zate of =
plozation and thus a ouch boger copergence time. Finally,
thix aleorithm ix guarantesd to converge only $0 2 comelated
esquilitdum, which may not be 2 [ash aquilitaim.

Figure= 2 shows the tesulis when agent poyvoffs are dete-
min=d tv randomly matching agentx. Bven fr lage oum-
bers of stags l=atnem convengmncs is oot astight and takes
on the=ordex of t=n timesboger. Thixisar=lt of theinfo-
mation available 40 agentx TVhen payoffs wer= determinsd
v the arerage shiategy, 2 single obseriation was sufficiant
to matate s strategy, o we could ume very short dag= To
deal with the noj=e= introd woed by random matching we ne=d
ouch Jonger stages The number of stage= to0 convergeance
i similar, Buven with Jonger stages and 2 large oumber of
agemnts mixtakes ave quite common. HMmerthel=e apents do
s commfully l=arn, The pedformance of oo 1=gret l=arners =
l== affect=d becau== they u=e= payoff inbrmation fom the
enkiz= run of the game, while stage l=arnem dimcad pavof
information at the and of mach stage.

Convergence in the random matching game takes appoome
imately 20,000 ounds, which is too sbw 1 many applica-
tions If awsiem design r=quizes this tv pe of matching, thix
makes l=arning problamatic. Howmoer, the n=ults of Fie-
ur= 1 mggest that the l=atning could be done much faster
if the system designer could supply agents with more infor-
mation, Thissupgests that collecting statitical infoxmation
about the behm—bor of apeots may be 2 cotical feature for
ensuring fast convergence. If agent=s koow =nough atout the
game to0 determine their ecpected payoffs fom this statish-
cal information, then they can dizectly l=arn, ax in Figuz= 1.
Bren with l=w knowledgs showt the game statistical jnfor-
mation can still spesd lexrning, for evample, by helping an
agent determmins whether the resulis of expbiring an action
weze ty pical or due to0 the other age=nt uxing 2 rav= ation.



5. DISCUSSION

While our r=w ks show that a natural l=arning algmidhm
can lmarn =ffci=ntly in an itereding clses of games, thers
ar= many further jsue= that mert exploration.

Other Learning Algorithms

Cuz theor=m asumes that agents us= 2 simple Tuls for l=ar-
ing within mach stage: they a-=rapge the w2he of payofs
m=cenred. Howener, there are certainly other rules for =
timating the 1alue of a0 action; any of thews can he umad
2 bog ax the rule guarante= that =oom can be made a-
bitrarily rave given suffcient tims=. It &= alo oot pece=wsry
to restrict apems to stage le=arning. Stage lexning guar-
antem a stationary emvionment for a period of time, tut
mch grct teharior maw oot be nemmded o1 practical. Other
appmache mich ase=cponemtiall discounting the we=ght of
obmeriations |12, 19] or MWinor Laarn Fast |4 allow an algo-
mthm to focus its larning on zecent obsen-ations and po-
1ide a stable moriron ment in which other agent=can l=xrn.

Other Update Rules

In addition to vsing diffexent algorithmsto estimate the 1al-
uss of actions, & learner could abo change the way he uss
thows 12t to0 updats hix beharinr. For exampls, zather
than basing hix n=w siratmgy on only the last stage, ha could
bame it on the eotire hisory of stages a0d wee 2 mulein the
spirit of fchitious play . Since ther= ar= pa meswhey= fictitious
play converges tut best-re=ph; dynamics do not, this could
mctand our r=sulis to another interesting claws of games, 2=
bog = the =r1ors in each period do oot accuonulate ovwe
time. Another posdbiity is to uwpd ate probabdstically oo
uss atolerance to determins whether to updade (2= 2. |7,
W]). Thix could allow convergence in games where bed.
w=pl dyvpamcs oscillate oo deczesse the fraction of agents
who make mistakes once the systam reaches =quilitoium.

Model Assumptions

Chur mode] makes =n-=xal ynreatistic 2 mptions, most oo-
tably that ther= are countably many agents who afl shae
the=am= wiil#y function. Besentially the same rewlts holdx
with a large, finfte oumber of agents, alding a fow mooe=
“erzor terms®. In particular, since there & always a2 small
probabdity that every apem makes s oistake at the sme
time, we can pronqe only that no more than a 1 — = fraction
of the ag=ntx make soors in most 1ounds, and that agents
spending most of theiz time plaving equiliboum stratege=

= hane 2o implicitly a=ssumed that the ==t of ag=nix &
fivemd. W= could mamily allow for churm: aygents sntering and
lav-ing the m=stem. A r=awnabls policoy 1 n=whi-azdving
agents & o pick azandom a, 40 use in the ned dage. If
all apents do this # follows that convergence & unafectsd ;
we can treat the new agents 2x part of the = fraction that
made a mistake in the last gtage. Furthermoze, this telk us
that newl ardving agents catch uwp™ wexy quickly, After a
singls stage new apgenis are guarantesd to have leszned 2
et z=ply with probability at lest 1 —e.

Finally, we= have asmumed that all agents hare the mme
uidiy function. Cur m=uls can =asily be ectended to io-
chide afinte pumber of differ=nt ty pes of agants =ach with
their own wtility funchion, since the STIIT can be applied 0
e=ach tyvpe of agent. e beli=ve that our r=ulis hold =ven
if the ==t of pomitl= ty pes is infinite. This can happen, foo
emeamn ple if an agent's utility depend=s on 2 v2luation drawn

from wme intercal, Howeer, some care is p=eded {o d =fins
bt p=ply ==quences in this came=

Sate

Oine common featuz= of distributed syseos ot addoeseesd
in thiz work & state. For emcample in 2 scrip wostem whers
age=nt= pay mach other for s=n-c= using an jnt=rnal cumency
or scrip, whether 2n agent should ===k to pro-ide ==n-ce
dependson the amount of money he curmenth has |3].

In principle, we could ectend our Eamewmk t0 games
with state: in mach stape =ach agent choowes 2 policy to
usually follow and ecplores other ackions with probatility e.
Bach xent could then use some ofpolicy efjorithm jon=
wher= the agent can laarn withowt controlling the ==quencs
of obteeriations me= [16] Br ecample] to learn a0 optimal
policy to0 u== in the nect stage. Oine major problem with this
approach i that standard algprith om learn oo slowhy for oux
purpors. For evample, Qilearning [26] 4y pically nmeds to
obeer1e mach state action pair hundred= of fimes in practice.
The bw =cplomation poobabidiy means that the ecpected
I'Ell'll."l“ rounds nemded fo0 explore each sven once b1 =ach
pair is large. cient learning r=quires moze specialic=d
alpprithm= that can make better ym= of the gtrucuze of 2
problam, but this abo makes pro-iding 2 general guazantes=
of convergence more d #Hcult. Ansther problem isthat, even
if an apent mcplires mach action fox each of his possibls lacal
states the pavof he r=cehes will depend on the states of
the other agents and thus the actions they chome, TV= need
wme property of the game 0 guarantes thix dstdtution
of states i in =0 me menme wel] behaoed 7

Diepite the=e concerns, preliminary r=ults = gee=st that
simple larning agorithos work well fr games with state
In mcperimentzon 2 game uxing the model of a sc1ip systam
fiom |38], we bund that a stagelearning aleorithm that v
aspaciatived algorithm for d stermining the valu= of actions
in mach stage converges to0 equilibbum quickly d espite chuzn
and agents l=arning at differsot rades

Mixed Equilibria

Angther re=siriction of our rewlts & that our agents only
larn pure shategies, Cneway to addres this & to discz=tize=
the mived srategy space [sa=eg. [7]). If one of the reilting
sk abmgje ix suffcdently cloms to 20 =quilibeium sradegy and
bt z=ply dvnammics converge with the diEcebived strat=gi=s
then weecpect agents to converge 10 2 near-equilitcivm dis
tritution of strategies e b= had =mpincal oo uxing
thix approach to learn to play zock- poper screnrs

Unexpected and Byzantine Behavior

In practice, we ecpect that oot all agents will te toving o
larn optimal teharior in 2 lagge system, Some agents may
simply play ome patticular [poedbly mpeed ) srategy that
they are comfortable with, without frving to l=arn 2 bette
srategy. Cthers may e larning tut with an wnanticpated
utility function. T haterer theiz zmsmons if thess w fBoenth
few much apents are choosing ther strategeiid. fom fved
distribtions [or af Jezst fiseed o1 mach sbage], then our el
hold without change. This iz becavse we al=ady allow an
e Eaction of agent= to make abitrary mistakes =0 we can
trmat thews aomntx 2x smph mitaken.

Byvcantine ag=m= who might wih to dimupt lexning 2=
ouch as pomible, do oot fit = neadly into ouwr framework;
they nm=d not pla the same stratmey for an =ntire stage



However, we ecpect that since corz=ct agents ax= random-
fong their decismions 2 small number of Bicantine agmntx
should oot be abl= to0 caum= many agents t0 make mstak=

6. CONCLUSION

Leatning in dstobuted syst=ms requies algorithms that
are - alable to thousands of agents and can beimplemented
with minimal information about the ationsof other agent=
Mot general- puz pos= mulisgent laarning algorithor fail one
or both of thess requiraments. V= b= shown here that
=t age l=arning can be an effci=nt ol tion in large anony mous
games where appomdmate best-zeph dyvoaomes l=ad fo ap
proecimate pure stratmgy Tash equilitoa Many inter=cting
clame= of gameshave this pro perty, and it is f=quantly found
in demigned games In contzast to pr=dous work, the time
to convergence guaramesd by the theorem domss not jncos s
with th= numter of agentx I mystem designers can find
an approprisie game satisfving thes= pooperties on which 4o
bame theiz wstems, they can be confident that nodes can
effcimnth l=arn approprate tehm-or.

Chur re=ults ako highlight two factors that ad conve-
geoce. First, hading mor= l=arners often improves perfor-
mance, Nith moz= laners, the nome introduced into pay-
offs by ecplbization and mristales becomes more consict=nt.
Ze=cond, haqing more infrmation typically impam-es perfor-
mance, Publicly a-ailable statistics about the obsen-ed be
heoior of agents can allow an agent to larn affectncel while
making fewer local otemn-ations.
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