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Abstract

We identify two unreasonable, though standard, assump-
tions made by database query optimizers that can adversely
affect the quality of the chosen evaluation plans. One as-
sumption is that it is enough to optimize for the ezpected
case—that is, the case where various parameters (like avail-
able memory) take on their expected value. The other as-
sumption is that the parameters are constant throughout
the execution of the query. We present an algorithm based
on the “System R”-style query optimization algorithm that
does not rely on these assumptions. The algorithm we present
chooses the plan of the least expected cost instead of the plan
of least cost given some fixed value of the parameters. In
execution environments that exhibit a high degree of vari-
ability, our techniques should result in better performance.

1 Introduction

A database query is specified declaratively, not procedurally.
Given a query, it is the job of the DBMS to choose an ap-
propriate evaluation plan for it. This task is performed by
a cost-based query optimizer. In theory, the task of the op-
timizer is simple: it performs a search among a large space
of equivalent plans for the query, estimates the cost of each
plan, and returns the plan of least cost.

In practice, things are not so simple. There are two ma-
jor problems: (1) there are far too many possible plans for
an optimizer to consider them all, and (2) accurate cost es-
timation is virtually impossible, since it requires detailed a
priori knowledge of the nature of the data and the run-time
environment. Because query optimization is such a criti-
cal component of a database system—queries are typically
optimized once and then evaluated repeatedly, often over
many months or years—much effort has gone into dealing
well with these problems. The query optimizer has become
one of the most complex software modules in a DBMS.

Dynamic programming techniques are typically used to
deal with the first problem [SACT79], although randomized
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algorithms have also been proposed [Swa89, IK90]. As we
shall see, they apply in our approach too, so we focus here
on the second problem. To accurately estimate the cost of
executing a particular plan, we need to estimate the values
of various parameters. Typically, these parameters can be
divided into three categories:

1. Parameters representing properties of the data (car-
dinalities of tables, distributions of values, etc.). The
DBMS typically maintains estimates of these parame-
ters.

2. Parameters representing properties of the query com-
ponents (e.g., sizes of groups, selectivities of predi-
cates). Much research has focused on how to make ac-
curate estimates of selectivities and result sizes. These
techniques typically use histograms [PTHS96] (part of
the data properties) or sampling [LNSS93].

3. Parameters representing properties of the run-time en-
vironment (e.g., amount of available memory, proces-
sor speed, multiprogramming level, access character-
istics of secondary storage). These are gathered from
observations of the realistic deployment environments.

If the value of a parameter cannot be exactly predicted
(which is almost always the case, especially if it can change
even during the execution of a query), it can at best be
modeled by a distribution. Current optimizers simply ap-
proximate each distribution by using the mean or modal
value. They then choose the plan that is cheapest under the
assumption that the parameters actually take these specific
values [SACT79] and remain constant during execution. We
call this the least specific cost (LSC) plan.

We propose a very different approach in this paper. We
view the query optimizer as an agent trying to make a de-
cision; it must choose among different plans. The standard
decision-theoretic approach is to choose a plan that maxi-
mizes expected utility [Res87]. Here utility is essentially the
negation of the cost: the lower the cost, the more attrac-
tive the plan. Thus, we argue that rather than choosing the
LSC plan, query optimization algorithms should be directed
towards finding the plan of least expected cost (LEC).

1.1 A Motivating Example

The following example should help motivate the use of LEC
plans. For pedagogical reasons, we focus in this example,
and throughout most of the paper, on only one parameter,
the amount of available memory, which is known to be dif-
ficult to predict accurately in practice [Loh98]. Thus we



assume that everything else (e.g., predicate selectivities) is
known. We consider the case of more than one parameter
in Section 3.6.

Example 1.1: Consider a query that requires a join be-
tween tables A and B, and the result needs to be ordered
by the join column. A has 1,000,000 pages, B has 400,000
pages, and the result has 3000 pages. Consider the following
two evaluation plans:

e Plan 1: Apply a sort-merge join to A and B. The op-
timizer cost formulas tell us that if the available buffer
size is greater than 1000 pages (the square root of the
larger relation), the join requires two passes over the
relations [Sha86]. If there are fewer than 1000 pages
available, it requires at least another pass. Fach pass
requires that 1,400,000 pages be read and written.

e Plan 2: Apply a Grace hash-join [Sha86] to A and B
and then sort their result. We know that if the avail-
able buffer size is greater than 633 pages (the square
root of the smaller relation), the hash join requires two
passes over the input relations. The subsequent sort
also incurs additional overhead, especially if the data
does not fit in the buffer.

If the available buffer memory is accurately known, it is easy
to choose between the two plans (Plan 1 when more than
1000 pages are available and Plan 2 otherwise). However,
assume that the available memory is estimated to be 2000
pages 80% of the time and 700 pages 20% of the time. (This
distribution is obtained by observing the actual query execu-
tion environment.) Current optimizers assume one specific
memory value (in this case, 2000 pages as a modal value, or
1740 pages as a mean value). In either case, the plan chosen
would be Plan 1. However, we claim that Plan 2 is likely to
be cheaper on average across a large number of evaluations.
The intuition is simple: In 80% of the runs, Plan 2 is slightly
more expensive than Plan 1 (the extra expense arises in sort-
ing the small result), whereas in 20% of the cases, Plan 1
is far more expensive than Plan 2 (the extra expense comes
from an extra pass over the data). On average, we would
expect Plan 2 to be preferable. [l

Example 1.1 shows the flaw that arises if parameter dis-
tributions are characterized by a single expected value: The
least cost plan found based on this value is not necessarily
the plan of least expected cost. Indeed, whenever there are
discontinuities in cost formulas (as is the case with database
join algorithms), such an effect is likely to arise.

1.2 Contributions

The contributions of this paper are:

1. We introduce LEC plans, which are guaranteed to be
at least as good as (and typically better than) any
specific LSC plan.

2. We show how LEC query optimization can take into
account parameters that have a constant value dur-
ing any specific query execution (static parameters),
and also those that vary during execution (dynamic
parameters). Moreover, it can be applied either at
compile-time or at start-up time.

3. We show how traditional dynamic programming query
optimizers can be easily extended to produce the LEC

plan. The extension increases the cost of query opti-
mization by a factor depending on the granularity of
the parameter distribution.

4. We extend LEC query optimization to handle queries
where the selectivity of each predicate is a parameter
modeled by a distribution.

Depending on the actual distribution of parameters that
arises in practice, the LEC plan can be much more efficient
on average than any specific LSC plan. The greater the
run-time variation in the values of parameters that affect
the cost of the query plan, the greater the cost advantage
of the LEC plan is likely to be. If such parameter distri-
butions are common, it should be well worth implementing
this approach in commercial database systems.

The rest of this paper is organized as follows. In the
next section, we review the traditional approaches to query
optimization and discuss related work. In Section 3, we
introduce LEC query optimization and discuss how LEC
plans may be generated in practice by a typical DBMS. To
this end, we consider extensions to the widely used System R
query optimization algorithm. Our algorithms apply both
in the case where parameters are static and (under some
simplifying assumptions) the case where they are dynamic.
In Section 4 we discuss the simplifying assumptions we make
in the paper and possible future directions.

2 Background

2.1 Standard Query Optimization

There are three basic approaches proposed for query opti-
mization algorithms:

e Bottom-Up Optimization: This is a synthetic approach
in which a suitable plan is created by starting from
the stored tables and building increasingly larger plans
until a plan for the entire query is formed.

o Top-Down Optimization: This is a divide-and-conquer
approach in which the entire query is divided into
pieces, each piece is optimized, and then the pieces
are put together to form the query plan.

o Transformational Optimization: This starts with some
valid complete query plan, and repeatedly transforms
it into a different valid complete plan. At every stage,
the plan of least cost is retained.

Every query optimizer uses some element of each approach.
Typically, a query is divided into a graph of “query blocks”
and some transformational optimizations are performed on
the query blocks [PHH92|. Each query block in the graph
is then typically optimized almost independently. A spe-
cific kind of query block, the SELECT-PROJECT-JOIN or
SPJ block, has received a lot of attention, because it oc-
curs in many queries and involves expensive join operations.
The optimization of an SPJ block itself could use any of
the three basic approaches. Most commercial database sys-
tems use a bottom-up optimizer based on dynamic program-
ming. This approach was first suggested in the System R
project [SACT79]. We now briefly describe how it works.
In later sections of the paper, we describe variations of this
algorithm that find LEC plans.



2.2 The System R Approach

Suppose we are given n relations, A1, ..., A,, whose join we
want to compute. For ease of exposition, assume that there
are join predicates between every pair of relations. (This is
not very realistic, but one can always assume the existence
of a trivially true predicate.) Three basic observations in-
fluence the algorithm:

1. Joins are commutative.
2. Joins are associative.

3. The result of a join does not depend on the algorithm
used to compute it. Consequently, dynamic program-
ming techniques may be applied.

The System R optimizer also applies some heuristics that
further limit the space of plans considered. Of particular
relevance to this paper are the following two heuristics:

1. Only binary join algorithms are considered. Conse-
quently, a three-relation join evaluation plan involves
the combination (i.e., join) of a two-relation join result
and a stored relation.

2. To find the best plan for a k-relation join, the only
plans considered are those that first involve joining
some subset of £k —1 of these relations and then adding
in the kth. Other possible approaches (for example,
considering the best plan for joining a subset of k£ — 2
of the relations, joining the remaining two relations,
and then joining the results) are not considered.

Given these two heuristics, System R is essentially trying to
find the permutation 7 of {1,...,n} that produces the best
plan of the form

(- ((Ar(a) D Ar(2)) X Ar(z)) = *) B Arn))-

Such plans are called left-deep plans.

Conceptually, we can think of the System R optimizer
as working on a dag with a single root (node of indegree 0).
Each node in the dag is labeled by a subset S of {1,...,n}.
The label of the root is the empty set. The nodes at depth
k are labeled by the subsets of {1,...,n} of cardinality k.
There is an edge from a node at depth k — 1 labeled by S’ to
a node at depth k labeled by S iff S’ C S. Fix a setting of
the parameters. Associated with the node labeled S is the
best left-deep plan to compute the join over S (i.e., Mies A,
the join of the relations with indices in S) for that setting
of the parameters. This plan is determined inductively as
follows. Initially, the algorithm determines the best plan
to access each of the individual relations. In the next step,
the algorithm examines all possible joins of two relations.
For each pair of relations, several different join algorithms
are considered and the cheapest evaluation plan is retained.
Assume inductively that we have associated with each node
up to depth k the plan for computing the join associated
with that node. To compute the best plan for a node S at
depth k+1, consider each j € S and let S; = S—{j} and let
B; =ies; Ai. For each j, let C; be the sum of the cost of
the best plan for accessing Aj;, the cost of the best plan for

11t is well-known that this is not quite accurate; the physical prop-
erties (“interesting orders”) of the join result depend on the specific
plan used to create it. This requires simple extensions of the opti-
mization algorithm, as described in [SAC+79]. ‘We ignore this issue
here, since our solutions apply without change in the presence of these
extensions.

computing B; (which we have already determined), and the
cost of the best plan for computing B; <t A;. We then find
the j for which C; is minimal. This gives us the the best
plan for computing <;cs A; as well as its cost. Note that
at phase (k + 1), only results from phase k are utilized. At
phase n, we label the root by the best plan to compute the
join (and its cost). Although this approach takes time and
space exponential in n, n is usually small enough in practice
to make this approach feasible.
To summarize, we have:

Theorem 2.1: The System R optimizer computes the LSC
left-deep plan for a specific setting of the parameters.

(We remark that a formal proof of Theorem 2.1 can be pro-
vided along the lines of the proof of Theorem 3.3 given be-
low.)

2.3 Previous Work on Dealing with Uncertainty of Pa-
rameter Values

It is widely recognized that query optimizers often make
poor decisions because their compile-time cost models use
inaccurate estimates of various parameters. There have been
several efforts in the past to address this issue. We catego-
rize them as (a) strategies that make decisions at the start
of query execution and (b) strategies that make decisions
during query execution.

Let us assume that there are some parameters that can-
not be predicted accurately at compile-time, but that are
accurately known when a query begins execution. An exam-
ple of such a parameter is the number of concurrent users.
Let us further assume that the value of this parameter stays
constant during the execution of the query. In this case, we
are aware of three kinds of strategies:

o A trivial strategy is to perform query optimization just
before query execution. This is the approach used in
database systems like Illustra [I1194], but is not par-
ticularly efficient, since the query may be executed re-
peatedly.

o Another strategy is to find the best execution plan for
every possible run-time value of the parameter. This
requires much additional work at compile-time, but
very little work at query execution time (a simple ta-
ble lookup to find the best plan for the current param-
eter value). In [INSS92], the authors suggest using
randomized optimization to reduce the compile-time
optimization effort.

o [GC94] suggests a hybrid strategy that performs some
of the search activity at compile-time. Any decisions
that are affected by the value of the parameter are
deferred to start-up time through the use of “choice
nodes” in the query evaluation plan.

For parameters that cannot be accurately predicted at
the start of query execution (like predicate selectivities),
these strategies are clearly inapplicable. We are aware of
four other strategies that address this case; all involve a po-
tential modification of query execution.

e [KD98] proposes using a regular query optimizer to
generate a single plan, annotated with the expected
cost and size statistics at all stages of the plan. These
statistics are affected by the choice of parameter value.
During actual query execution, the expected statistics
are compared with the measured statistics. If thereis a



significant difference, the query execution is suspended
and re-optimization is performed using the more accu-
rate measured value of the parameter.

e [Ant93] implements an interesting variant of this idea.
In order to execute a query, multiple query plans are
run in parallel. When one plan finishes or makes sig-
nificant progress, the other competing plans are killed.
This strategy assumes that resources are plentiful (and
so can be wasted), and is applied only to subcompo-
nents of the query (typically to individual table ac-
cesses).

e [UFA98] examines a very specific kind of parameter
variation: the cost of accessing a table across an oc-
casionally faulty network, such as the Internet. Their
strategy reoptimizes the query when the system rec-
ognizes during query execution that the source of a
table is not available. Instead of restarting the query
like [KD98], the remainder of the query plan is ad-
justed (“scrambled”) to try to make forward progress.

e [SBM93] focuses on uncertainties that can be reduced
by sampling (more specifically, the uncertainty of the
selectivity of a predicate). They use decision-theoretic
methods to pre-compute scenarios where it may be
worthwhile to do sampling (since sampling itself comes
with a cost). If such a scenario arises, they do the
sampling and modify the plan as appropriate, given the
result of the sampling. We remark that this approach
is the one perhaps closest to that advocated here in its
view of query optimization as a decision problem and
its aim of minimizing expected cost. The techniques of
[SBM93] can be combined with those suggested here.

Note that these approaches all involve making some deci-
sion after compile-time. The way they deal with uncertainty
is to wait until they have more information. We deal with
uncertainty by treating the parameters as random variables,
so our approach can be applied completely at compile-time,
as well as at start-up time or run-time. When our approach
is applied at compile-time, the size of the query plan created
does not increase as with some of these approaches.

3 LEC Query Optimization

3.1 The Formal Model

Fix a query. Like [INSS92], we start by assuming that there
is a cost function C that takes two arguments, a plan p and a
vector v of values of relevant parameters, and returns a cost.
Intuitively, C(P,v) is the cost of executing plan p under the
assumption that the relevant variables take the values v.
The standard (LSC) approach is to choose a fixed value of
v—ausually the expected value of the parameters—and find
a p with the least cost. We assume instead that there is a
probability measure on the space V of possible values of the
parameters. Given C and Pr, we can compute the expected
cost for each plan p. Let E¢(P) denote the expected cost of
p (with respect to cost function € and probability Pr); as
usual, we have

Eq(P) = Z C(P,v) Pr(v).
vey

Following standard decision-theoretic approach, our goal is
to find the LEC plan, the one whose expected cost is least.

If the distribution Pr is an accurate model of the distribu-
tion of the parameters that is encountered at run-time, and
the cost estimates € are accurate then, by definition, the
expected execution cost of the LEC plan is at least as low
as that of any specific LSC plan.

The goal of finding the LEC plan makes sense both at
compile-time and at start-up time. At start-up time, the
distribution of parameters will typically be different from
the one at compile-time. For some parameters, the distribu-
tion may be more concentrated around one value. However,
it is unlikely that there will be complete information about
all the values of the relevant parameters, even at start-up
time. This is particularly true about parameters whose val-
ues may change as we execute the query. Note that the LEC
approach applies to such dynamic parameters as well. We
need to use a probability distribution over all possible se-
quences of parameter values during the execution and then
again compute the plan with least expected cost. We explore
the details of this approach in Section 3.5. Until then, we
assume that parameters do not change value during query
execution.

This leads to some obvious questions:

1. How do we get the probability distributions?
2. How do we get the cost estimates?
3. How do we compute the LEC plan?

With regard to the first question, as we noted in the in-
troduction, the DBMS in practice is constantly gathering
statistical information. We believe that the statistics can
be enhanced to provide reasonable estimates of the relevant
probabilities, although this is certainly an area for further
research. For the purposes of this paper, we assume without
further comment that the probabilities are available. As for
the second question, we are making the same assumptions
about costs that are made by all standard query optimizers.
Finally, with regard to the last question, in the remainder
of this section, we provide a number of ways to modify the
standard optimizers so as to produce the LEC plan (or a
reasonable approximation to it). These approaches vary in
their need to modify the underlying query optimizer, the
quality of the plan produced, and the underlying assump-
tions about the distribution.

3.2 Algorithm A: Using a Standard Query Optimizer as a
Black Box

For ease of exposition, we assume in the next few sections
that the only relevant parameter is the amount of available
memory, so we take v to represent this quantity. This as-
sumption is dropped in Section 3.6 We assume that we can
partition the distribution of the amount of available memory
into a small number (say b) of buckets such that the cost of a
plan is likely to remain relatively constant within a bucket.
For example, in Example 1.1, the appropriate buckets are
the intervals [0,633), [633,1000), and [1000, co). Choosing
the buckets appropriately can be nontrivial; we discuss this
issue in more detail in Section 3.7. We can identify the stan-
dard approach to doing query optimization with the special
case where there is only one bucket. Once we have chosen
the buckets, we pick a representative from each bucket; call
them mj, ..., mp. Finally, we assume that we have a proba-
bility measure Pr such that Pr(m;) characterizes how likely
we are to run the query in the ith bucket.

Given these assumptions, there is a straightforward ap-
proach to finding good approximations to the LEC plan that



uses a standard query optimizer as a black box. Suppose we
want to compute A; b4 +-+ < A,. Assume that memory
stays constant during the execution of the plan.

Algorithm A

For each value m; of the memory parameter, we run
the optimizer under the assumption that m; is the ac-
tual amount of memory available. This gives us b can-
didate plans. We then compute the expected cost of
each candidate, and choose the one with least expected
cost.

As long as the expected value of memory used by the
traditional LSC approach is one of the b possible values we
consider (and, without loss of generality, we can assume it
is), then we are guaranteed to end up with a plan whose
expected cost is no higher than that of the plan chosen by
the traditional approach. We assume that, in practice, the
actual LEC plan will have a cost close to the optimal plan
for some value m; of memory. To the extent that this is
true, Algorithm A gives us a good approximation to the
LEC plan.

The cost of Algorithm A is the cost of b invocations of
the optimizer, plus the cost of evaluating the expected cost
of each candidate plan. Each candidate plan has n—1 joins,
and each has to be costed for b different memory sizes to
determine the expected cost. There are b such candidates,
leading to a total cost of O((n—1)b”), which should be much
smaller than the cost of candidate generation, O(bn2"7').
Consequently, the approximate cost of Algorithm A is b
times the cost of a single optimizer invocation.

Note that it makes sense to use Algorithm A at start-
up time as well as at compile-time; we simply use the ap-
propriate distribution over memory sizes when checking to
see which candidate plan is best. We can also combine
these ideas with the parametric query optimization approach
of [INSS92]. We can precompute the best expected plan un-
der a number of possible distributions (ones that give good
coverage of what we expect to encounter at run-time), and
store these expected plans, for use at query execution time.

While this approach has the advantage of not requiring
any change to the optimizer whatsoever, it has two major
drawbacks. The first is that it requires us to prespecify the
buckets (this point should become clearer in Section 3.7);
the second is that it may not actually return the LEC plan.
It is conceivable that a plan not optimal for any m; actually
does better on average than any candidate considered by the
algorithm above. For example, the plan that is second-best
for some memory size may do better on other memory sizes
than the best plan for that memory size, and so may do
better in expectation. We now present a simple modifica-
tion of this approach that generates more candidate plans,
although it has the disadvantage of requiring us to modify
the basic query optimizer.

3.3 Algorithm B: Generating More Candidates

Suppose that rather than generating the best plan for each
memory size m;, we generate the top c plans, for some ¢ >
1. Tt is relatively straightforward to modify existing query
optimizers to do this. For concreteness, we show how this
can be done with System R.

Algorithm B

Assume inductively that we have associated with each
node up to depth & in the dag the top ¢ plans for com-
puting the join associated with that node. To compute

the top ¢ plans for a node S at depth k + 1, consider
each j € S and let S; = S—{j}, as before. We consider
the top c plans for computing the join over S; and the
top c plans for accessing Aj;; combining them using
each possible join method gives us the top ¢ plans for
computing the join over S if we join A; last.

While it seems that there are ¢* combinations of plans that
need to be considered here for each join method, the actual
number of combinations is lower.

Proposition 3.1: [t suffices to consider at most ¢ + clogc
combinations of plans for each join method to produce the
top ¢ plans.

Proof: Suppose si,..., sc are the top c plans for computing
S; (sorted in increasing order of cost) and a1, ...,a. are the
top c plans for accessing A; (again sorted in increasing order
of cost). Note that the cost of the combination (s;, ax) is no
higher than the combination (s;r,as) if i < i’ and k£ < k'; so
there are (at least) ik — 1 combinations with cost no higher
than (s;,axr). Thus we only have to conmsider (s;,ax) for
tk < ¢, since ik > ¢ implies we can get (at least) ¢ plans at
least as good as (si,ax).

Note that ¢k < c implies ¢ < ¢/k, so we only need to
consider the top |c/k| entries of the kth column if we arrange
the combinations in a ¢ X ¢ matrix. Thus the total number
of entries we need to consider is

c

Slil<yi=es

k=1

Recall that

—~ 1 ‘1
Z—<1+/ —dz =1+loge.
e Lz

Thus the total number of entries we need to consider is at
most ¢+ cloge. I

To compute the best ¢ plans using a particular join method
for joining S; and Aj;, we must first evaluate the cost formula
for the join method. Note that all the ¢ variants of each in-
put have the very same properties, and so behave identically
with respect to the cost formula. Consequently, the only dif-
ference between the ¢ + clog ¢ combinations arises from the
sum of the costs of the two input plans. Consequently, the
cost of checking these combinations is expected to be small
compared to the cost of evaluating a cost formula. By con-
sidering all j € S, we get j lists of ¢ top plans. We then take
the top ¢ plans from the combined list. This extension can
be easily implemented and is a relatively small and localized
change to current optimizers.

Theorem 3.2: Algorithm B computes the top c left-deep
plans for each of the b choices of parameter values at ab
times the cost of computing the single best left-deep plan for
one specific setting of the parameters, for some small con-
stant o > 0.

Once we have the top ¢ plans for each of the b memory
sizes, we can then again compute the expected cost of each
of these cb plans, and choose the plan of least expected cost.
As we showed in the previous section, the computation of
expected costs of candidate plans is small compared to the
cost of candidate generation. In this case, the number of
candidates is increased by a factor of ¢, but we still expect



Algorithm B to be roughly b times as expensive as a single
optimizer invocation.

While Algorithm B generates more candidates (and thus
is more likely to end up with a good approximation to the
LEC plan), it still does not necessarily end up with the LEC
plan. As we now show, if we are willing to modify the basic
query optimization algorithm further, we can produce the
actual LEC plan.

3.4 Algorithm C: A Generic Algorithm for Computing the
LEC Plan

We now provide a generic modification of the basic System R
query optimizer that can directly compute the LEC plan,
merging the candidate generation and costing phases. We
assume inductively that we have associated with each node
up to depth k in the dag the plan with least expected cost
for computing the join associated with that node (as well as
the expected cost itself). We further assume that with each
node we have associated a probability distribution over the
possible memory sizes. Intuitively, this is the probability
distribution over the available memory when we reach that
node during an actual execution of a query plan containing
the node as a subplan. If we assume that memory size does
not change during the course of executing the plan, and
that join operations are not pipelined in the plan, then the
distribution is the same at every node. We do away with
this restriction in the Section 3.5.

Algorithm C

Again, we proceed inductively down the dag. For each
stored relation A;, find an LEC access path for it. To
compute the plan with least expected cost for a node
at depth k£ + 1 labeled S, consider each j € S and let
S; = S — {j}- The expected total cost of S is the
expected cost of computing S; (which, by assumption,
we already have in hand) added to the expected cost
of joining S; and A;, which we can compute given
the probability distribution of available memory. If
we consider a probability distribution over b different
memory sizes, this computation requires b evaluations
of the cost formula for the join algorithm. We retain
the plan for S with the least expected total cost, dis-
carding all the other candidates.

Theorem 3.3: Algorithm C gives us the LEC left-deep plan.

Proof: The proof is a straightforward adaptation of the
argument for the correctness of the basic System R algo-
rithm, using the fact that expectation distributes over ad-
dition. Suppose S is a nonempty subset of {1,...,n}. Let
Ps denote a left-deep plan for computing t<;cs A;. We can
conceptually think of Ps as consisting of a choice of j € S,
a plan P2 for accessing A4;, and, if |S| > 1, a plan P§ for
computing B;j = dies; A; and a plan Pg for computing
B Aj. If |S| > 1 then

(D(P57 V) = (D(Pgav) + G(P§7 V) + @(P?,V)
It follows that
E¢(Ps) = E¢(P5) + Ec(P§) + Ec(PS).

Let /ISS be the plan that Algorithm C outputs for S. We

want to show that E¢(Ps) < Eg(Ps) for all Ps. We proceed
by induction on |S]|.

For the base case we have |S| = 1. Suppose S = {:}.

Then E¢ (/F;s) < E¢(Ps), since Algorithm C will choose an
LEC access path for A;. Now assume that the claim holds
for all S with |S| = k. Let S be a subset of {1,...,n}
with k£ + 1 elements. For all j € S, let P(j) be a plan
such that P(j)* = Ps;, P(j)® = Py, and P(j)™ is an
LEC method to compute the join. It is clear from the de-
scription of Algorithm C that Ps € {P(j) : j € S} and
that E¢(Ps) = min{P(j) : j € S}. Suppose Pg is an ar-
bitrary left-deep plan to compute <;cs A;. Suppose Pg
computes Mies; A; first. Thus Pé‘ computes Mies; A;.
By the induction hypothesis and the definition of P(j), we
see that E¢(P%) > E¢(Ps;) = E¢(P(j)"). Furthermore,

Ec(PE) > Ec(P;;) = Ec(P(j)"), since Py;y is an LEC
access path. Finally, E¢(P%') > Ec¢(P(5)™), since P(5)™ is
an LEC join method. Thus E¢(Ps) > E¢(P(j)) > Ec(Ps)

as required. [l

If we assume that memory does not change as we execute
the plan, then the cost of the computation is b times the
cost of the standard computation using a single memory
size. Again, Algorithm C works both at compile-time and at
start-up time. And again, we can combine these ideas with
those of parametric query optimization, precomputing the
LEC plans under various assumptions about the probability
distributions and storing them for use at start-up time.

3.5 Dealing with Change During Execution

So far we have assumed that the amount of available memory
stays constant throughout the execution of the plan. This
may not be so reasonable if the query takes a long time (on
the order of minutes or more). During the execution, con-
current new queries may start while old queries may finish.
If we assume that available memory is mainly determined by
the number of queries being run concurrently, then it may
well change during the execution.

To deal with dynamic memory changes, we assume a
probability measure over the possible sequences of memory
sizes. We then must evaluate each candidate plan with re-
spect to this sequence and determine its expected cost. To
keep the analysis from becoming too unwieldy, we assume
that plan execution takes place in phases, each correspond-
ing to a join in the plan. We assume that memory does not
change during the execution of a phase, but can change be-
tween phases. If we compute a join over n relations, there are
n—1 phases. Thus, we need to consider possible run-time en-
vironments corresponding to each sequence of memory sizes
of length n — 1. We need to use a probability distribution
over all such memory size sequences.

Where does this distribution come from? Perhaps the
most natural assumption is to assume that we have some
distribution over the initial memory sizes, and that there is
a transition probability describing how likely memory is to
change by m units, for each value of m. For simplicity, we
assume that this transition probability depends only on the
current memory usage, not on the time. This is a reasonable
assumption for 24 X 7 systems in stable operational mode.

Under these simplifying assumptions, we can apply Al-
gorithm C presented in the previous subsection to calculate
the LEC plan even with dynamic memory. We simply as-
sociate the initial distribution with the root of the dag, and
use the transition probabilities to compute the distribution
associated with each node in the tree. We can then apply the
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Figure 1: Distributions Needed at Each Node and What
Depends on Them

algorithm without change, since Algorithm C does not rely
on the fact that v consists of a single memory size. Note,
however, that the complexity of Algorithm C is clearly af-
fected, since the parameter space is potentially much bigger
(since if there are by memory values we consider, there are
bar™"! sequences of length n — 1).

Theorem 3.4: Given the simplifying assumptions above,
Algorithm C returns the LEC left-deep plan even in the pres-
ence of dynamically varying parameters.

Proof: While v now consists of a sequence of memory sizes,
the proof of Theorem 3.3 works here also, since that proof
did not rely on the fact that v is a single memory size in
any way. I

3.6 Dealing with Multiple Parameters

We have focused on only one parameter so far (i.e., the
amount of available memory). In practice, we typically have
to deal with a number of parameters. In this section, we
consider the effect of multiple parameters on our algorithms
(specifically, available memory and the selectivities of all
the query predicates). Selectivities, in particular, are noto-
riously uncertain. We believe that by representing the un-
certainty by a probability distribution and computing the
LEC plan, we can ameliorate some of the difficulty. Note
that the ideas of [SBM93] for deciding when to sample may
also be usefully applied here. We focus on the static case in
this section. We can apply the idea from Section 3.5 to deal
with the dynamic case.

When the amount of available memory is the only un-
certainty, we need only a single probability distribution at
every node in the dag to allow us to compute the LEC plan.
When there is more than one uncertain parameter, we may
need to expand that to a joint distribution, whose size may
grow exponentially as the number of parameters. Since in-
dependence often holds in practice or is the default assump-
tion of existing query optimizers, we assume for the rest of
this section that all parameters of interest are independent.
This simplifying assumption means that we can carry a sep-
arate distribution for each parameter and avoid the expo-
nential blow-up in the description of the joint distribution.
If are some dependencies between the variables, but not too
many, we can still describe the distribution succinctly using
a Bayesian network [Pea88]. We believe that the techniques
that we present here will also be applicable to that case.

Note that the standard formulas for computing the cost
of a join plan typically take three parameters: the sizes of the
two relations being joined and the amount of available mem-
ory. Thus, to compute the expected cost of a join method

applied to a particular pair of relations, we need just three
distributions. This means that even though we may have
many more parameters to deal with, if we apply Algorithm C
to the multi-parameter setting, at each node only three dis-
tributions are required to compute the LEC plan for that
node. To be able to apply this idea inductively at every
node in the dag, we also need to compute the distribution
of the size of the result of the join, since the parent node
of the current node (should there be any) needs that as the
distribution of one of its input size. In order to compute
the distribution of the size of the result, we need to have a
distribution of the selectivity of the join predicates. Thus
at each node, we need exactly four distributions—the three
distributions for computing expected cost plus the distri-
bution for the selectivity of the join predicate—mo matter
how many distributions we start with. Figure 1 shows the
distributions we carry at each node and the quantity that
depends on them.

Here is the generic modified algorithm. As in Section 3.4,
the algorithm works on the dag.

Algorithm D

To compute the LEC plan for a node at depth £+1 la-
beled S, consider each j € S and let S; = S —{j}. Let
B; = s, A;. We assume inductively that we have
the LEC plan for S; as well as the distribution of | B;|.
We also assume we have the best way to access A; and
the distribution of |A;| after any initial selection. We
evaluate the cost formula for each triple of possible val-
ues of M, |B;| and |A;|, and use that to compute the
expected cost of calculating S; b A; for each method.
Taking bx to denote the number of buckets for random
variable X, this shows that we need be|Bj|b|AJ-| eval-
uations to compute the expected cost of a particular
method for computing S; >4 A;. We can compute the
expected cost for each choice of j, and retain the plan
of least expected cost. The total cost of this naive com-
putation is bys Z b|Bj|b|A].| for each join algorithm
considered.

jJES

To compute the distribution for the size of the result,
we fix a j and compute, for each triple (a, b, o) of possi-
ble values of |A;|, |Bj|, and selectivity o the probabil-
ity that the join has size abo. (Since we are assuming
independence, this is just the product of Pr(|4;| = a),
Pr(|B;| = b), and the probability that the selectivity
is 0.) From this we can fill in the distribution for the
size of the result.

Thus, we require O(b|Bj‘b‘Aj‘b(,) operations to compute the
distribution. Since the size of the result is independent of
the choice of j, we need to do this computation for only one
7; we can choose the j for which b|B].|b|AJ.| is minimal. In
practice, we expect that we will have bj4;| = b/, for all j,
so the choice will not matter.

To summarize, the generic method given above takes
Zjes be|Bj|b|A]-| evaluations of the cost formula and takes
O(b|B;|bj4; bs) operations to compute the distribution for
|Bj < Aj|. Can we do better if we have more knowledge of
the cost formula? Most join methods used in practice have
relatively simple cost formulas. We pick sort-merge join and
page nested-loop join as examples, and demonstrate in the
next two subsections that we can indeed do much better.



3.6.1 The Case of Sort-Merge Join

Le2t L = max{|A|, | B|}; the cost of sort-merge join for A < B
is:

2-(JA|+|B]) if M >VL

C(SM,v) =< 4-(|A|+|B|) if VL<M <L
6- (1Al +|Bl) it M < VL
Note that

E¢(SM) = E¢(SM: |A] <|B|) Pr(|A| < |B|)+
Ec¢(SM : |A] > |B|)Pr(|4] > |B]).

We now show how the first term can be computed efficiently.
The second term can be computed analogously; we leave the
details to the reader. Let Fy = E(|A| : |A| < b) +b. Let
Val(X) denote the representatives from the bx buckets for
variable X. We can rewrite the first summand as follows:3

> Pr(B|=b)

beVal(|B)

2F, Pr(M > \/b) +
AR Pr(Vb< M <Vb) + |. (1)
6F, Pr(M < V/b)

We now describe how to compute E¢(SM : |A| < |B|)
and Pr(|A| < |B|) in time O(bsm + bja| + bp|). First we
compute Pr(M > m) for each m € Val(M). We can easily
compute all Val(M) probabilities in time O(bar). We store
these values in a table. By table lookup, we can then com-
pute Pr(M > b), Pr(v/b < M < /b), and Pr(M < V/b), for
each value of b, in constant time.

Next we compute Pr(|A| < b) for each b € Val(|B|) and
store these values in a table. Since Pr(|A| < ¥') = Pr(|A| <
b) +Pr(b < |A] < b'), for b < V', we can compute all of these
probabilities in time O(bj 4|+ b5|) (because we need only go
through each set of buckets once).

Then we compute E(|A| : |A| < b) for each b € Val(|B|)
and store these values. Again, this can be done in time
O(bja| + bjp), since E(|A] : |[4] < V') = E(|4] : |4] <
b)Pr(JA| < b) + E(|A| : b < |A] < ¥')Pr(b < |4] < V') for
b < b' (and so we only need to go through each set of buckets
once).

We can now compute E¢(SM : |A| < |B]|) using (1).
Note we need only constant time to compute each summand,
since for each b € Val(|B|) (since F, can be computed by
adding b to E(|A| : |A| < b), which we already have, and it
takes only constant time to compute the probabilities involv-
ing M, since they have been stored. Thus, we can compute
the expectation in total time O(bam + b4| + bp|) (including
the time it take to compute all the values we have stored in
the tables).

Finally, we need to compute Pr(|A| < |B|). This can be
done in time O(b)p)), since

Pr(|A[<[Bl)= > Pr(|Al <b)Pr(|B| =b),

beVal(|B|

and we have already computed Pr(|A| < b).

20ur formulas consider 1/O costs only and are based on the anal-
ysis presented in [Sha86], simplified to three cases. Commercial
database systems use more complicated formulas, usually represented
in the form of complex code. These are sometimes the result of aim-
ing for too much accuracy when modeling the algorithm, despite the
fact that the parameters used to instantiate the model are inaccurate.
We speculate that a return to simple formulas in combination with
LEC optimization may result in more reliable query optimizers.

3We write X = z as an abbreviation for the statement “X takes
on a value in the bucket whose representative is z”.

The whole computation takes time O(by +bj4 +b|B|), so
the algorithm we informally described is linear in the total
number of buckets. Note that this algorithm is (asymptoti-
cally) optimal, since we must at least look at the entries in
the individual distributions.

We need to carry out this computation for every node
in the dag. (The A and B above become B; and Aj;, using
our earlier notation.) Note that some of the cost can be
amortized over the nodes. We need to do the computation
of Pr(M > m) for m € Val(M) and and Pr(4; < a) for
a € Val(A;j), j=1,...,n only once, since these probability
distributions do not change over the course of the execution.
If we precompute these values, then the amount of work at
each node is only O(b,|) (for sort-merge).

3.6.2 The Case of Nested-Loop Join

As another example, we look at the nested-loop join method.
Let S = min{|A|,|B|}. The cost formula for A b B using

nested-loop join is:

_ | + 18] if M>S+2
‘D(NL"’)—{ Al +]A|-|B] if M<S+2

As in the previous section, we split E¢(NL) into two terms:
Ec(NL : |A] < |B|)Pr(J4] < |B|) and E¢(NL : |4] >
|B|) Pr(|A| > |B|). Again we focus on the first term and
leave the second term to the reader. Let G, = E(|B] :
a < |B|), for a € Val(]A|). Note that the first term can be
rewritten as follows:

a+ Gq PI'MZG,+2+
Evzl(lAl)Pr(|A|=a)(Ea+aG1)P(r(M<a+)2) ) (2)

As before, we can do the computation in time O(by +bj4| +
big|). The procedure is very similar to that for sorted-merge
join, so we just sketch the details here.

We again compute Pr(M > m) for each m € Val(M).
This takes O(bys) steps and enables us to compute Pr(M >
a + 2) in a constant number of steps. Next we compute
Pr(a < |B|) for each a € Val(|A|). As before, we can com-
pute all Val(|A|) probabilities in time O(b 4| + bjp|). Then
we compute E(|B| : a < |B]) for each a € Val(|A|). Argu-
ments similar to those used in the sort-merge case show that
this can be done in time O(bj4| + b;g|). We can then com-
pute Eg(NL : |A| < |B|) using (2). Again each summand
only requires constant time, since we already have G, and
we can determine the probabilities involving M in a constant
number of steps. Finally, we can compute Pr(|A| < |B|) in
time O(b4)), just as in the case of sort-merge.

The whole process again takes time O(bar + ba + b‘B‘),
so the algorithm is linear in the (total) number of buckets.

As before, we only considered a single node in the dag.
If we precompute Pr(M > m) and Pr(B > b), then the
amount of work at each node for nested-loop is O(b)4)).

3.6.3 The Distribution of the Result Size

We showed that the expected cost of specific join methods
can be computed in time linear to the number of buckets.
However, recall that we also need to compute the distri-
bution for the size of the result at each node. This takes
time O(bja|bgbs). Can we do better? Again, for spe-
cific distributions, it may be possible. However, we can say
more. Suppose for uniformity we decide to have b buck-
ets at every node for each variable. If we have b buckets



for each of the variables |A|, |B|, and o, then we can get
as many as b buckets for the size of the join A > B. To
maintain b buckets, we would have to “rebucket” after com-
puting the probability. Instead of rebucketing after doing
the computation, we can rebucket each of |A|, |B|, and o

so that they have /b buckets. Then the whole computa-
tion takes time O(b), as desired, and we have b buckets for
|A >t B|. More generally, if we rebucket each of |A|, |B],

and o so that they have {/bja|, 3/b/p|, and V/bs buckets,

respectively, then we can carry out the computation in time

O( ‘3/1)|A‘b|3|bcr +b|A| +b|B‘ +bg) = O(b‘A| +b‘B| +ba) steps.

3.7 Strategies for Partitioning the Parameter Space

As we have seen, the complexity of all our algorithms to
computing or approximating the LEC plan depends on par-
titioning the parameter space into a number of buckets. A
large number of buckets gives a closer approximation to the
true probability distribution, leading to a better estimate
of the LEC plan. On the other hand, a smaller number of
buckets makes the optimization process less expensive. (As
we mentioned earlier, the algorithm with one bucket reduces
to the standard System R algorithm.) For specific examples
(such as Example 1.1), choosing the buckets is straightfor-
ward, as a function of the join algorithms being considered
and the sizes of the relations being joined. We do not yet
have a general mechanism for choosing buckets optimally
and efficiently. However, we have insights that should help
us explore this issue in future work.

Consider our first two algorithms (Sections 3.2 and 3.3)
which used the System R algorithm on a number of param-
eter settings to generate candidate plans, and then evalu-
ated each of these candidates to find the one of least ex-
pected cost. The partitioned parameter distributions are
used in two ways: the first is to generate candidate plans
(by computing the best plan or c¢ best plans for each pa-
rameter value considered) and the second is in computing
the actual expected cost of the candidates generated. Dif-
ferent, but related, issues arise in each case. When gener-
ating candidates, we are basically interested in determining
the region of parameter space in which to search for good
candidates. We can partition it coarsely at first, and then
generate more candidates in the region of parameter space
that seems most likely to contain the best candidates. When
computing costs, recall that our goal is to find the candidate
of least expected cost. We do not always need an extremely
accurate estimate of the cost to do this. We expect to be
able to associate a degree of accuracy with each particu-
lar partitioning—that is, a guarantee that the estimated
expected cost of a plan using this partitioning is within a
certain degree of the true expected cost. We may be able to
use coarse bucketing to eliminate many plans and then use
a more refined bucketing to decide among the remaining few
plans.

This insight applies even more to our third algorithm
(Section 3.4), which actually computes the LEC plan. If
there are j algorithms being compared at a given node in the
dag, the expected cost of only one of them (the algorithm
of least cost) needs to be computed accurately, since the
other plans are pruned. With respect to the pruned plans,
we simply need to be satisfied that their expected costs are
higher than the chosen plan. Consequently, we can start
with a coarse bucketing strategy to do the pruning, and
then refine the buckets as necessary.

Moreover, note that we do not have to use the same par-
titioning strategy at every node. We should use the partition

appropriate to the strategies being considered at that node.
The cost formulas of the common join algorithms are very
simple, at least with respect to a parameter like available
memory. As we saw, for fixed relation sizes, the cost for
a sort-merge join has one of three possible values, depend-
ing on the relationship between the memory and the size of
the larger relation; similarly, the cost of a nested-loop join
has only one of two possible values. Consequently, if we
are considering a sort-merge join (resp., nested-loop join)
for fixed relation sizes, we need deal with only three (resp.,
two) buckets for memory sizes. In general, we expect that
we will be able to use features of the cost formulas to reduce
the number of buckets needed on a per-algorithm per-node
basis.

Another way to approach bucketing is to realize that,
ultimately, we want to compute the expected cost. Fix a
plan P. Note that we can express Eg(P) as follows:

oo

Ec(P) =) cPr(C(P,v) =c).

c=0

For a fixed ¢, values of v that yields C(P,v) = c are called a
level set of C(P,v). If the cost of P has relatively few level
sets, then it may be wise to bucket the parameter space with
these level sets in mind. Suppose C(P,v) has /£ level sets. In
principle, we can compute E¢(P) with £ evaluations of the
cost function, ¢ multiplications, and £ — 1 additions.* We
can do this if we have the probabilities for each level set. In
general the buckets will not correspond to level sets and we
may evaluate the cost function many times only to get the
same answer each time. So if we bucket the joint distribution
by using the level sets (instead of bucket each parameter
separately), we can minimize the computation involved in
computing the expected cost. The cost function may have
many level sets. If we are willing to settle for an approximate
answer, we can bucket the range of the function, thereby
coalescing some of the level sets. One problem with this
approach is that the probability of each level set may not be
easy to determine.

4 Concluding Remarks

This paper presents the simple idea of searching for query
execution plans with the least expected cost. To the best
of our knowledge, this is a new approach to query optimiza-
tion, departing from the established approach used for the
past two decades. Our approach can be viewed as a gener-
alization of the traditional approach in the sense that the
traditional approach is essentially our approach restricted
to one bucket (in the static case). Although this paper pro-
poses the approach, we are aware that many details need
to be worked out. To make our task easier, we have made
simplifying assumptions. We now revisit some of these as-
sumptions.

e Our presentation of the System R query optimization
algorithm is rather simplistic. The major issue we do
not consider is parallelism, which can play a role in
two ways (either through bushy join trees or through
pipeline parallelism). In both cases, there is an in-
teraction between the parallel components in terms of
memory used. While we have ignored this issue, cur-
rent query optimizers do model it, and we believe the

4This is also a lower bound, if we want the exact expected cost
(and if we treat the cost function as a black box).



same techniques can be applied to LEC optimization
as well.

In dealing with changes during the execution of the
plan, we made the simplifying assumption that no
change occurs during any one join “phase”. This is
clearly an approximation of reality. Further, pipelined
joins should be treated together as a single phase while
other algorithms (like a sort-merge join) may involve
multiple phases. While we have certainly made sim-
plifying assumptions here, we note that our approach
at least allows us to tackle a problem not addressed by
other works in this area.

When we considered multiple parameters, we assumed
that the parameters were independent. This may not
always be a reasonable assumption in practice. It
would be of interest to see to what extent we could ex-
tend our techniques to situations were there are some
dependencies between the variables.

Although there is clearly work that needs to be done before
we can use LEC query optimization in production database
systems, we believe that it is an approach well worth ex-
ploring. We are currently prototyping the algorithm of Sec-
tion 3.4 to test its benefits against realistic queries and ex-
ecution environments. Such a prototype will also be useful
to investigate the impact of bucket choice (see Section 3.7)
on the quality of LEC plans.
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