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1 Intr oduction

The standardapproachto modelinguncertaintyis probabil-
ity theory In recentyears,researcheranotivatedby vary-
ing concernsncludinga dissatisctionwith someof the ax-
iomsof probabilityandadesireto represeninformationmore
qualitatvely, have introduceda numberof generalizations
andalternatvesto probability, includingDempsterShafebe-
lief functions[Shafer 1976, possibility measure§Dubois
and Prade,199d, lexicographicprobability [Blume et al.,
1991], and mary others. Ratherthan investigatingeachof
theseapproachepiecemeal] considerherean approacho
representingincertaintythatgeneralizeshemall, andletsus
understandheir commonalitiesanddifferences.

A plausibility measue [FriedmanandHalpern,1995 as-
sociatewvith a seta plausibility, whichis justanelemenin a
partially orderedspace Theonly realrequirements thatif U
is asubsebf V, thentheplausibility of U is lessthanequalto
the plausibility of V. Probability measuresire clearly plau-
sibility measuresgvery other representatiorof uncertainty
thatl amawareof canalsobe viewed asa plausibility mea-
sure.Givenhow little structureplausibility measurefave, it
is perhapsiotsurprisingthatplausibility measuregeneralize
somary othernotions. This very lack of structureturnsout
to be a significantadvantage.By addingstructureon an“as
needed’basisijt is possibleto characterizevhatis requirecto
ensurehata plausibility measurdnascertainpropertieof in-
terest.Thisbothgivesinsightinto theessentiafeaturesf the
propertiesn questionandmakesit possibleto prove general
resultsthatapplyto mary representationsf uncertainty

In thispaper| discusghreeexamplesof thisphenomenon.

¢ belief, beliefrevision,anddefaultreasoning,
e expectationanddecisionmaking,

e compactrepresentationsf uncertainty(Bayesiannet-
works).

Most of the discussionis basedon earlierwork (someof it
joint with Nir Friedman). In the next two sectionsl define
plausibility measuresnd conditionalplausibility measures.
The next threesectionsconsiderseachof thetopicsabovein
moredetail.

*Supportedn partby NSFundergrantsiRI-96-25901andlIS-
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2 Plausibility Measures

A probabilityspaceis atuple (W, F, u), whereW is a setof
worlds, F is analgebraof measuable subsetof W (thatis,
a setof subsetxlosedunderunion and complementatiorio
whichwe assignprobability),and is a probability measue,
thatis, afunctionmappingeachsetin F to anumberin [0, 1]
satisfyingthe well-known Kolmogoras axioms (u() = 0,
p(W) =1, andp(UUV) = w(U) + (V) if U andV are
disjoint).!

A plausibility spaceis a direct generalizatiorof a proba-
bility space.Simply replacethe probability measure. by a
plausibility measue P1 that,ratherthanmappingsetsin F to
numbersin [0, 1], mapsthemto elementsn somearbitrary
partially orderedset. P1(U) is read“the plausibility of set
U”. If PI(U) < PV), thenV is at leastas plausibleas
U. Formally, a plausibility spaceis atuple S = (W, F, P1),
whereW is a setof worlds, F is analgebraover W, andP1
mapssetsin F to someset D of plausibility valuespartially
orderedby arelation<p (sothat<p is reflexive, transitve,
andanti-symmetric).D is assumedo includetwo specialel-
ements,Tp and L p, suchthat Lp <p d <p Tp for all
d € D. In the caseof probabilitymeasuresp = [0, 1], and
Tp and L p arel andO, respectiely. As usual,the ordering
<p is definedby takingd, <p ds if di <p d2 andd; # ds.
| omitthesubscriptD from <p, <p, Tp, and L p when&er
it is clearfrom context.

Therearethreerequirementsn plausibility measuresThe
first two are analoguef the conventionsthat hold for all
representationsf uncertaintythewhole spacegetsthe max-
imum plausibility andthe emptysetgetsthe minimum plau-
sibility. Thethird requiremensaysthata setmustbe at least
asplausibleasary of its subsets.

PIL. PI(W) =T.
PI2. PI(0) = L.
PI3. If U C V, thenPI(U) < PI(V)).

Since<p is apartialorder, PI3 saysthat,if U C V, thenthe
plausibility of U is comparableo the plausibility of V' and,
moreawer, PI(U) < PI(V).

!Frequentlyit is alsoassumedhat;: is countablyadditive i.e., if
Ui, i > 0, arepairwisedisjoint, thenp(lJ, Ui) = >, 11(U:). Since
| focusonfinite statespacehere,countableadditivity doesnotplay
asignificantrole, sol do notassumat.



Clearly probability spacesare instancesof plausibility
spaeesAlmostall otherrepresentationsf uncertaintyin the
literaturecanalsobeviewedasinstance®f plausibility mea-
sures.Herearesomeexamples:

e A belieffunctionon W is afunctionBel : 2" — [0, 1]
satisfyingcertainaxioms[Shafer 1976. Theseaxioms
certainly imply property P13, so a belief function is a
plausibility measureThereis acorrespondinglausibil-
ity functionPlaus definedasPlaus(U) = 1 — Bel(U).?

e A possibilitymeasue [DuboisandPrade 1994 on W is
afunctionPoss: 2" — [0, 1] suchthatPosgWV) = 1,
Pos$l)) = 0, andPosgU) = sup,, ;7 (Posg{w}).

¢ An ordinal ranking (or x-ranking x on W (asdefined
by [GoldszmidtandPearl, 1997, basedn ideasthatgo
backto [Spohn,1989) is a functionmappingsubsetof
W to N* = INU{oc} suchthatx (W) = 0, k() = oo,
andx(U) = minyep(c({w})). Intuitively, anordinal
ranking assignsa degree of surpriseto eachsubsetof
worlds in W, where0 meansunsurprisingand higher
numbersdenotegreatersurprise.lt is easyto seethata
rankingx is aplausibility measuravith rangelV, where
x <p+ y if andonly if y < 2 undertheusualordering.

e A lexicographicprobability systen(LPS)[Blumeetal.,
1991 of lengthm is a sequencgi = (ug, - - - , fm) Of
probabilitymeasuresintuitively, thefirst measurén the
sequenceyyo, isthemostimportantone,followedby i1,
12, andsoon. Very roughly speakingthe probability
assignedo aneventU by a sequencesuchas (po, f41)
canbetakento be o (U) + e (U), wheree is anin-
finitesimal. Thus,evenif the probabilityof U according
to g is 0, U still hasa positive (althoughinfinitesimal)
probabilityif p(U) > 0.

In all thesecases the plausibility orderingis total. But
therearealsocase®f interestwherethe plausibility ordering
is nottotal. For example supposehatP is asetof probability
measure®n W. Let P, be the lower probability of P, so
that P.(U) = inf{u(U) : p € P}. Similarly, the upper
probability’P* is definedasP*(U) = sup{u(U) : p € P}.

Both P, andP* give away of comparingthelik elihoodof
two subsetd/ andV of W. Thesetwo waysareincompara-
ble: it is easyto find a setP of probability measuresn W
andsubsetd/ andV of W suchthatP.(U) < P.(V) and
P*(U) > P*(V). RatherthanchoosingoetweerP, andP*,
we canassociata differentplausibility measurevith P that
capturesoth. Let Dp, p- = {(a,b) : 0 < a < b < 1} and
define(a,b) < (a/,V') iff b < o’. This putsa partial order
on Dp, p-, with LDP*,P* = (0,0) andTDp*’P* = (1,1).
DefinePlp, p-(U) = (P.(U),P*(U)). Thus,Plp, p- as-
sociateswith a setU two numbersthat canbethoughtof as
defininganinterval in termsof the lower andupperprobabil-
ity of U. It is easyto checkthatPlp, p-(U) < Plp, p« (V)
if theupperprobabilityof U is lessthanor equalto thelower

2The word “plausibility” is slightly overloaded appearingooth
in the context of “plausibility function” and“plausibility measure”.
Plausibility functionswill play only a minor role in this paper so
thereshouldnot be muchrisk of confusion.

probabilityof V. Clearly, Plp, »« satisfiedPl1-3,s0it is in-
deeda plausibility measureput one that putsonly a partial
(pre)orderon events. A similar plausibility measurecanbe
associatedavith a belief/plausibilityfunction.

The trouble with P,, P*, and even Plp, p- is that they
lose information. For example, it is not hardto find a set
‘P of probability measuresindsubsetd/, V' of W suchthat
p(U) < p(V)forall p e Pandu(U) < p(V) for some
p € P, but P.(U) = P.(V) andP*(U) = P*(V). In-
deed,thereexists an infinite setP of probability measures
suchthatu(U) < u(V) forall p € P but P.(U) = P.(V)
andP*(U) = P*(V). If all the probability measuresn P
agreethatU is lesslikely thanV, it seemgeasonabléo con-
cludethatU is lesslikely thanV'. However, noneof P., P*,
or Plp, p~ necessarilgraw this conclusion.

It is not hardto associatg/et anothermlausibility measure
with P thatdoesnotlosethisimportantinformation(anddoes
indeedconcludethatU is lesslikely thanV’). Supposewith-
outlossof generalitythatthereis someindex setl suchthat
P = {p; : i € I}. Thus,for example,if P = {u1,..., un},
thenl = {1,...,n}. (In generall maybeinfinite.) Let D;
consistof all functionsfrom I to [0, 1]. The standardooint-
wise orderingon functions—thatis, f < g if f(i) < g(4)
for all i« € I—givesapartialorderon D;. Notethat L p, is
thefunction f : T — [0,1] suchthat f(i) = 0foralli € T
and T p, is thefunction g suchthatg(i) = 1 for all i € I.
ForU C W, let fy bethefunctionsuchthat fi; (i) = u;(U)
for all i € I. Definethe plausibility measurePlp by taking
Plp(U) = fu. Thus,Plp(U) < Plp(V) iff fu(i) < fv(i)
forall i € Iiff u(U) < p(V) forall p € P. It is easyto
seethat fy = Lp, and fyy = Tp,. Clearly Plp satisfies
PI1-3. PI1 and PI2 follow sincePlp () = f; = Lp, and
Plp(W) = fw = Tp,, while PI3holdsbecauséf U C V,
thenu(U) < (V) forall u € P.

To seehow this representationvorks, considera simple
examplewhere a coin which is known to be either fair or
double-headet tossed.The uncertaintycanbe represented
by two probability measuresn p1, which givesheadsprob-
ability 1, and u»> which givesheadsprobability 1/2. Taking
theindex setto be {1, 2}, this givesusa plausibility measure
Plp suchthat Plp(H) is a function f suchthat f(1) = 1
andf(2) = 1/2; similarly, P1p(T) is afunction f’ suchthat
f/(1)y=0andf’(2) =1/2.

3 Conditional Plausibility

Supposean agents beliefs are representedby a plausibility
measurePl. How shouldthesebeliefs be updatedin light
of new information? The standardapproachto updatingin
probabilitytheoryis by conditioning.Most otherrepresenta-
tionsof uncertaintyhave ananaloguéo conditioning.Indeed,
compellingargumenthave beenmadein the context of prob-
ability to take conditionalprobability asa primitive notion,
ratherthanunconditionajprobability. Theideais to startwith
aprimitivenotionPr(-|-) satisfyingsomeconstraint§suchas
Pr(UUU'|V)=Pr(U|V)+ Pr(U'|V)if UandU’ aredis-
joint) ratherthan startingwith an unconditionalprobability
measuraanddefiningconditioningin termsof it. Theadwan-
tageof taking conditional probability as primitive is that it



allows conditioningon eventsof unconditionalprobability 0.
(If W is thewhole spacethe unconditionalprobability of V'
canbeidentifiedwith Pr(V|W); notethatPr(U|V) maybe
well definedevenif Pr(V|IW) = 0.) Although condition-
ing on eventsof measured may seemto be of little practi-
cal interest,it turnsout to play a critical role in gamethe-
ory (seefor example,[Blumeetal., 1991;Myerson,1986),
the analysisof conditional statementgsee[Adams, 1966;
McGee, 1994), andin dealingwith nonmonotonicity(see,
for example [LehmannandMagidor, 1997).

Most otherrepresentationsf uncertaintyalsohave anas-
sociatednotion of conditioning. | now discussa notion of
conditional plausibility that generalizeghemall. A condi-
tional plausibility measue (cpm)mapspairsof subsetof W
to somepartially orderedsetD. | write P1(U|V) ratherthan
P1(U, V), in keepingwith standardnhotation. An important
issuein defining conditionalplausibility is to make precise
whatthe allowableargumentdo PI are.| take the domainof
acpmto have theform F x F’ where roughlyspeaking,F’
consistf thosesetsin F onwhich conditioningis allowed.
For example for a conditionalprobabilitymeasurelefinedin
the usualway from an unconditionalprobability measureu,
F’ consistof all setsV suchthaty (V') > 0. (NotethatF" is
not an algebra—itis not closedundercomplementation.A
Popperalgebraover W is asetF x F’ of subset®f W x W
satisfyingthefollowing properties:

Accl. F isanalgebraover V.
Acc2. F'is anonemptysubsebf F.

Acc3. F' is closedundersupersetin F; thatis, if V e F/,
V CV',andV’' € F,thenV’' € F'.
(Popperalgebrasare namedafter Karl Popper who wasthe
first to considerformally conditionalprobability as the ba-
sic notion [Popper 1969. This definition of cpm is from
[Halpern,20004 which in turn is basedon the definitionin
[FriedmanandHalpern,1995.)

A conditional plausibility space (cp9 is a tuple
(W, F,F',Pl), whereF x F' is a Popperalgebraover W,
Pl: F x 7' — D, D is apartially orderedsetof plausibil-
ity values,andP1 is a conditionalplausibility measue (cpm)
thatsatisfieghe following conditions:

CPI1. P1(0|V) = L.

CPI2. P(W|V) =T.

CPI3. If U C U/, thenPI(U|V) < PI(U’|V).

CPIA PI(U|V) =PI(UNV|V).

CPI1-3arethe obvious analogueso PI1-3. CPl4is a min-
imal propertythat guaranteeshat whenconditioningon V,
everythingis relatvizedto V. It follows easilyfrom CPI1-4

thatP1(-|V') is a plausibility measuren V' for eachfixed V.
A cpsis acceptabléf it satisfies

Accd. If V € F/,U € F,andPl(U|V) # L,thenUNV €
F.

Acceptability is a generalizationof the obsenation that if

Pr(V) # 0, thenconditioningon V' shouldbe defined. It

saysthatif PI(U|V) # Lp, thenconditioningon V N U

shouldbe defined.A cps(W, F, 7', Pl) is standad if 7/ =

{U:PUW) # L},

CPI1—4 are rather minimal requirements. For example,
they do not placeary constrainton therelationshipbetween
PIU|V) andPl(U|V') if V # V'. Onenaturaladditional
conditionis thefollowing.

CPI5. If VNV’ e F andU,U’ € F,thenPl(U|[V NV’) <
PIU'|V N V) iff PU N V|V') < PIU' NV|V).

It is nothardto shav that CPI5implies CPI4. While it seems
reasonablenote that CPI5 doesnot hold in somecasesof

interest. For example, there are two well-known ways of

defining conditioningfor belief functions(see[Halpernand
Fagin,1994), oneusingDempsters rule of combinationand
theothertreatingbelieffunctionsaslower probabilities. They

bothsatisfyCPI1-4,andneithersatisfiesCPI5.

Many plausibility space®f interesthave morestructure.n
particular thereareanalogueso additionandmultiplication.
More preciselythereis away of computingtheplausibility of
theunionof two disjoint setsin termsof the plausibility of the
individual setsanda way of computingP1(U N V|V’) given
PIUIV N V') andPI(V|V'). A cps(W,F,F ,Pl) where
P1 hasrangeD is algebraic if it is acceptablendthereare
functions® : D x D — D and® : D x D — D suchthat
thefollowing propertieshold:

Algl. If U,U’ € F aredisjointandV € F’ thenPl(U U
U'|lV) =PIU|V) & PIU'|V).

Alg2. If U € F, VNV e F, thenPl(U N V|V') =
PIUIV N V') @ PIV|V).

Alg3. ® distributes over @; more precisely a ® (b1 ®

c B by) = (a®b) DD (a® by) if
(aabl)a"'v(aabn))(aabl b - D bn) S DOmDI(®)
and (by,...,by,),(a ® by,...,a ®b,) € Domp(d),

where Dong(D) = {(PIT1|V),...,PI(U,|V))
Ui,...,U, € F arepairwisedisjointandV € F'}
andDomp(®) = {(PIU|V N V"), PI(V|V")) : U €
F,VnV eF'}.

Alg4. If (a,c), (b,c) € Domp(®), a®c < b®c,andc # L,
thena < b.

| sometimeseferto thecpm Pl asbeingalgebraicaswell.

Therearewell-known techniquegor extendingsomestan-
dard unconditionalrepresentationsf uncertaintyto condi-
tional representationsAll satisfy CPI1-4, whenviewed as
plausibility measures{indeed asshavnin [Halpern,20004,
thereis a constructionfor corverting an arbitrary uncondi-
tional plausibility space(W, F, P1) to anacceptablestandard
cps.) In mary casesthe resultingcpsis algebraic.But one
importantcasethatis notalgebraids conditionalbelief func-
tions (usingeitherdefinition of conditioning).

To give oneexampleof a constructiorthatdoesleadto an
algebraiccps, considerLPS’s. Blume, Brandenlirger, and
Dekel 1991 (BBD) defineconditioningin LPS’s asfollows.
Givenji andU € F suchthaty;(U) > 0 for someindex
i, let ﬁ|V = (Mko (|V)7 SR N/km('|v))’ Where(k07 LN km)
is the subsequencef all indices for which the probabil-
ity of U is positive. Thus, the length of the LPS /i|V de-
pendson V. Let D* consistof all sequencesag, - . ., ay) ¢
{(0,...,0),(1,...,1)} suchthata; € [0,1]fori =0,...,k,
andlet D = {0,1} U (U2 ,Dk). Roughlyspeaking,0 is



meanto represendll sequencesf theform (0, . .., 0), what-
ever their length; similarly, 1 representsll sequencesf the
form (1,...,1). Define a partial order <p on D so that
di <p dyif di = 0, dy = 1, or d; andd, arevectorsof
thesamedengthandd; is lexicographicallylessthanor equal
to d2. Notethatvectorsof differentlengthareincomparable.

An unconditionalLPS i definedon an algebraF over
W canthenbe extendedto a standarccps (W, F, 7', ji) us-
ing the definition of conditioningabore. Note thatalthough
i(U|V) may be incomparableto i(U’|V’) for V. # V/,
w(U|V) will definitelybecomparableo i(U’|V'). Moreover,
the definition of 0 and 1 guaranteeshat0 = i (0|U’) <p
gVIU) <p g(U"U") =1if U',U" € F', asrequiredby
CPl1andCPI2.

The cps (W, F, F', i) is in fact algebraic;® and ® are
functionsthatsatisfythefollowing constraints:

e if d; andds arevectorsof the samelength,d; & dy =
dy1 + da (Where+ representpointwiseaddition),
do0=0dd=d,
dl1l=18d=d,
0Rd=d®0=0,

(a1, am) ®  (0,b1,0,...,0,by,,0) =
(0,a1b1,0,...,0,ambn.0), where § representsa
possiblyemptysequencef 0s,andb, ..., b, > 0.

| leave it to thereaderto checkthatthesedefinitionsindeed
malke thecpsalgebraic.

A constructiorsimilar in spirit canbe usedto definea no-
tion of conditioningappropriatdor therepresentatioi?lp of

asetP of plausibilitymeasureghisalsoleadsto analgebraic
cps[Halpern,20004.

4 Belief Revision and Default Reasoning

4.1 Belief

Therehave beenmary modelsusedto capturebelief. Perhaps
the bestknown approachusesKripke structureq Hintikka,
1964, whereanagentbelievesy if ¢ is trueatall worldsthe
agentconsidergpossible.In termsof events(setsof worlds),
anagentbelievesU if U containsall theworldsthattheagent
considergpossible. Anotherpopularapproachs to useprob-
ability: anagentbelievesU if the probabilityof U is atleast
1 — e for someappropriate > 0.

One of the standardassumptionsboutbelief is thatit is
closedunder conjunction: if an agentbelieves U; and Us,
thenthe agentshouldalsobelieve U; N U,. This holdsfor
the definitionin termsof Kripke structures.It holdsfor the
probabilisticdefinition only if ¢ = 0. Indeed,identifying
knowledge/beliefvith “holdswith probability1” is common,
especiallyin the economics/gamtheoryliterature[ Branden-
burgerandDekel, 1987.

A numberof other approacheso modeling belief have
beenproposedecently in the gametheory and philosophy
literature. One, due to Brandenlirger 1999, usesfilters.
GivenasetV of possibleworlds, a filter F is a nonempty
setof subset®f W that(1) is closedundersuperset¢sothat
if U € FandU C U’,thenU’ € F), (2) is closedunderfi-
niteintersectior(sothatif U, U’ € F,thenUNU’ € F), and

(3) doesnot containtheemptyset. Givenafilter 7, anagent
is saidto believe U iff U € F. Notethatthe setof setswhich
aregivenprobability 1 by a probability measurdorm afilter.

Corversely every filter F definesa finitely additive proba-
bility measurePr: the setsin F getprobability 1; all others
getprobability 0. We canalsoobtainafilter from the Kripke
structuredefinition of knowledge.If theagentconsidergos-
siblethe setU C W, thenlet F consistof all supersebf

U. Thisis clearly afilter (consistingof preciselythe events
the agentbelieves). Corversely in a finite spacea filter 7

determinesa Kripke structure.The agentconsidergossible
preciselytheintersectiorof all thesetsin F (which s easily
seento be nonempty). In aninfinite spacea filter may not
determinea Kripke structurepreciselybecausehe intersec-
tion of all setsin thefilter maybeempty Theeventsbelieved
in aKripke structureform afilter whosesetsareclosedunder
arbitraryintersection.

Another approachto modeling belief, due to Branden-
burger andKeisler2000,usesLPS’s. Saythatan agentbe-
lievesU in LPSji if thereis somej < m suchthaty;(U) =1
foralli < jandu;(U) = 0fori > j. It is easyto seethat
beliefsdefinedthis way areclosedunderintersection.Bran-
denhurgerandKeislergive anelegantdecision-theoretigus-
tification for this notion of belief. Interestingly van Fraassen
1995definesa notion of belief using conditionalprobability
spaceshatcanbeshavnto becloselyrelatedto thedefinition
givenby BrandenbirgerandKeislet

Plausibilitymeasuregrovide aframeawork for understand-
ing whatall theseapproachefave in common. Saythatan
agentbelievesU with respectto plausibility measue P1 if
PI(U) > PI(U); thatis, the agentbelievesU if U is more
plausiblethannot. It is easyto seethat, in general this def-
inition is not closedunderconjunction.In the caseof proba-
bility, for example this definitionjust saysthatU is believed
if the probability of U is greaterthan1/2. What condition
on a plausibility measureP] is neededo guaranteehatthis
definitionof beliefis closedunderconjunction?Trivially, the
following restrictiondoesthetrick:

PI4”. If PI(Uy) > P1(U;) andPl(Uz) > P1(Us), thenPl(U1 N
UQ) > Pl(Ul n Ug)

| actuallywanta strongerversionof this property to deal

with conditional beliefs. An agentbelieves U conditional

on V, if given V, U is more plausiblethan U, thatis, if

PI(U|V) > PI(U|V). In the presencef CPI5 (which | im-

plicitly assumédor thissection)conditionalbeliefsareclosed
underconjunctionif thefollowing holds:

Pl4. If P(U1NV) > PI({U;NV) andPl(U;NV) > PI(U2N

V), thenPl(Ul NUsN V) > Pl(Ul NUsN V)
A moreelggantrequirements thefollowing:

Pl4. If Uy, U, and U; are pairwisedisjoint sets,P1(U; U
UQ) > Pl(Ug), and Pl(Ul U Ug) > PI(UQ), then
Pl(Ul) > Pl(UQ U Ug)

In words, P14 saysthatif U; U Us is moreplausiblethanUs

andif U; U Uj is moreplausiblethanUs, thenU; by itselfis

alreadymoreplausiblethanU; U Us.

Remarkably in the presenceof PI1-3, Pl4 and PI4" are
equialent:



Proposition 4.1 ([FriedmanandHalpern,19964) P1 satis-
fiesPl1-4iff Pl satisfiesPl1-3and PI4’.

Thus, for plausibility measuresPl4 is necessarand suf-
ficient to guaranteghat conditionalbeliefsare closedunder
conjunction. Proposition4.1 helpsexplain why all the no-
tionsof belief discussedbove areclosedunderconjunction.
More precisely for eachnotion of belief discusseckarlier, it
is trivial to constructa plausibility measurePl satisfyingPl4
that capturest: P1 give plausibility 1 to the eventsthat are
believedandplausibility O to therest.

Pl4 is requiredfor beliefsto be closedunderfinite inter-
section(i.e., finite conjunction).lt doesnotguaranteelosure
underinfinite intersectionThisis afeature:beliefsarenotal-
ways closedunderinfinite intersection.The classicexample
is the lottery paradox[Kyburg, 1961]: Considera situation
with infinitely mary individuals,eachof whomholdsaticket
to alottery. It seemgeasonabléo believe thatindividual
will notwin, for ary ¢, yetthatsomeonaewill win. If E; isthe
eventthatindividual: doesnotwin, thisamountgo believing
E\,E,, Es,... andalso believing U; E; (and not believing

N; E;). It is easyto capturethis with a plausibility measure.

LetW = {ws, wa, ...}, wherew; istheworld whereindivid-
uali wins(sothatE; = W —{w;}). Let Pl,; beaplausibility
measurghatassignglausibility 0 to theemptyset,plausibil-
ity 1/2 to all finite sets,andplausibility 1 to all infinite sets.
It is easyto seethat Pl ratifiesPl4. Neverthelesseachof
E is believedaccordingto Pl asis U; E;.

As shavn in [Friedmaretal., 2004, the key propertythat
guaranteethat (conditional)beliefsareclosedunderinfinite
intersectioris thefollowing generalizatiorof Pl4:

Pl4*. For ary index setI suchthat0 € I, if {U; : i € I} are
pairwisedisjointsets,U = U, U;, andforall i € T —
{0}, PI(U — U;) > PI(U;), thenP1(Uy) > PHU — Uy).

Becausél4* doesnothold for Pl it canbeusedto rep-
resentthe lottery paradox. BecauseP14* doeshold for the
plausibility measureorrespondingo beliefsin Kripke struc-
ture, belief in Kripke structuress closedunderinfinite con-
junction. A countableversionof Pl4* holdsfor o-additive
probability measureswhich is why probability-1beliefsare
closedundercountableconjunctiongbut not necessarilyn-
derarbitraryinfinite conjunctions).

4.2 Belief Revision

An agents beliefschangeover time. Conditioninghasbeen
the standardapproachto modelingthis changein the con-
text of probability However, conditioninghasbeenargued
to be inapplicablewhen it comesto belief revision, be-
causeanagentmaylearnsomethingnconsistentvith herbe-
liefs. This would amountto conditioningon a setof mea-
sure0. As a consequencefinding appropriatemodels of
belief changehasbeenan active areain philosophyandin
both artificial intelligence[Gardenfors,1988; Katsunoand
Mendelzon,1991. In the literature,two modelshave been
studiedin detail: Belief revision [Alchourron et al., 1985;
Gardenfors 198§ attemptsto describehow an agentshould
accommodatea new belief (possibly inconsistentwith his
other beliefs) abouta staticworld. Belief update[Katsuno

and Mendelzon,1991], on the other hand, attemptsto de-
scribehow an agentshouldchangehis beliefsasa resultof
learningabouta changen theworld.

Belief revision andbelief updatedescribeonly two of the
mary waysin which beliefscanchange.Using plausibility,
it is possibleto constructa generalframework for reasoning
aboutbeliefchangeseelFriedmanandHalpern,1997). The
key pointis thatit is possibleto describebelief changingus-
ing conditioningwith plausibility, even thoughit cannotbe
donewith probability. Startingwith aconditionalplausibility
measuresatisfyingPl4 (thisis necessarjor beliefto have the
right properties)and conditioningon new informationgives
usageneraimodelof belief change.Belief revision andbe-
lief updatecanbecapturedy puttingappropriateeonstraints
ontheinitial plausibility [FriedmanandHalpern,1999. The
samdramevork canbeusedo captureothernotionsof belief
changesuchasageneraMarkovian modelsof beliefchange
[FriedmanandHalpern,1996H andbelief changewith unre-
liable obsenations[Boutilier etal., 199§. Thekey pointis
thatbelief changesimply becomesonditioning(anditerated
belief changebecomesteratedconditioning).

4.3 Default Reasoning

It hasbeenarguedthatdefaultreasoningplaysamajorrolein
commonsenseasoningPerhapsotsurprisingly therehave
beenmary approacheso default reasoningoroposedn the
literature(see[Gabbayet al., 1993;Ginsbeg, 1987). Many
of the recentapproacheso giving semanticdo defaultscan
be viewed as consideringstructuresof the form (W, X, r),
where W is a set of possibleworlds, 7(w) is a truth as-
signmentto primitive propositionsfor eachworld w € W,
and X canbe viewed asa “measure’on W. Someexam-
plesof X include possibility measuregDubois and Prade,
1991], x-rankings[Goldszmidtand Pearl, 1996, parame-
terizedprobability distributions [Pearl,1989 (theseare se-
quence®f probabilitydistributions;theresultingapproachs
more commonlyknown ase-semanticy and prefeenceor-
ders[Krausetal., 1990;Lewis, 1973.

Somaevhat surprisingly all of theseapproachesre char
acterizedby the six axiomsandinferencerules, which have
beencalledtheKLM properties(sincethey werediscussedby
Kraus,LehmannandMagidor 1990). Assume(asis typical
in theliterature)thatdefaultsareexpressedn termsof anop-
erator—, wherep— is read"if ¢ thentypically/likely/by
default ). For example,the default “birds typically fly” is
represente@ird—Fly. We furtherassumefor now thatthe
formulasy and that appearin defaults comefrom some
propositionalanguagel with aconsequenceelationt-.

LLE. If Fz ¢ < ¢/, thenfrom ¢— infer o' —1)
(left logical equivalence).

RW. If 2 ¢ = ¢/, thenfrom p— infer p—’
(right wealening).

REE p— ¢ (reflexivity).

AND. Fromp—1; andp—1)s infer p—apy A 1hs.

OR. From; —1) andps—) infer 1 V o —1).

CM. Fromp—11 andp—)y infer o A ia—1y
(cautiousmonotonicity).



LLE statesthatthe syntacticform of the antecedenis ir-
relevant. Thus,if ¢; andy, areequivalent,we candeduce
pa—) from 1 —1). RW describes similar propertyof the
consequentif v (logically) entailsy’, thenwe candeduce
p—1’ from p—1). This allows usto combinedefault and
logical reasoning REF stateghat ¢ is alwaysa default con-
clusionof ¢. AND statesthatwe cancombinetwo default
conclusions.If we canconcludeby default both ), and,
from ¢, thenwe can also concludey; A ¥y from . OR
stateghatwe areallowedto reasorby caseslf the samede-
faultconclusiorfollows from eachof two antecedentghenit
alsofollows from their disjunction. CM stateghatif ¢; and
1o aretwo default conclusion®f ¢, thendiscoveringthaty)o
holdswheny holds(aswould be expected giventhe default)
shouldnot causeusto retractthe default conclusioni;.

ThefactthattheKLM propertiecharacterizeéomary dif-
ferentsemanti@pproachebasbeernviewedasrathersurpris-
ing, sincetheseapproacheseemto capturequite different
intuitions. As Pearl1989saidof the equivalencebetweenc-
semanticsand preferentialstructures,’lt is remarkablethat
two totally differentinterpretationsof defaultsyield identi-
cal setsof conclusionsand identical setsof reasoningma-
chinery” Plausibility measures$elp us understandvhy this
shouldbe so. In fact, plausibility measuregrovide a much
deeperunderstandingf exactly what propertiesa semantic
approachmusthave in orderto becharacterizety the KLM
properties.

Thefirst stepto obtainingthis understandings to give se-
manticsto defaults using plausibility. A plausibility struc-
ture is atuple (W, P1, ), wherePl is a plausibility measure
on W. A conditionalpo—1 holdsin this structureif either
Pi([¢]) = L or Pi([e A ¢]) > Pl([e A —]) (where[o]
is the setof worlds satisfyingthe formulac). This approach
is just a generalizatiorof the approachfirst usedto define
defaultswith possibilitymeasure$DuboisandPrade 1991].
Notethatif Pl satisfiesCPI5,thisis equivalentto sayingthat
PI[¢]|[e]) > P[] ITe]) if [¢] # L (the implicit as-
sumptionhereis that[¢] € F' iff [¢] # L).

While this definition of defaultsin termsof plausibility is
easilyseento satisfyREF, RW, andLLE, it doesnot satisfy
AND, OR,or CM in generallt is easyto constructountere-
amplestaking P1 to be a probability measurePr (in which
casethe definition boils down to p— if Pr(Je]) = 0 or
Pr([+]/[¢]) > 1/2). As obsenredearlier, if P1 satisfiesPl4
(which it doesnotin generalif P1 is a probability measure),
thenthe AND rule is satisfied. As shavn in [Friedmanand
Halpern,19964, Pl4 alsosufficesto guarante€cM (cautious
monotonicity). Theonly additionalpropertythatis neededo
guaranteehat OR holdsis thefollowing:

PIS. If PI(T/) = PI(V) = L, thenPl(TU U V) = L.

A plausibility structure(W, P1, ) is qualitativeif P1 satis-
fiesPI1-5.In [FriedmanandHalpern, 19964, it is shavn that
a necessargndsuficient conditionfor a collectionof plau-
sibility structurego satisfythe KLM propertiesis thatthey
be qualitative. More precisely givena classP of plausibil-
ity structuresadefaultd is entailedby a setA of defaultsin
P, written A |=p d, if all structuresn P thatsatisfyall the
defaultsin A alsosatisfyd. Let SYT% consistof all quali-

tative plausibility structures.Write A Fp p—) if p—1) is
provablefrom A usingtheKLM properties.

Theorem4.2 [FriedmanandHalpern,19963 S C S@FL if
andonlyif for all A, ¢, and®, if A Fp ¢—1 thenA g
=Y.

In [Friedmanand Halpern, 19964, it is shown that pos-
sibility structures,x-structures,preferentialstructures,and
PPDscanall be viewed asqualitative plausibility structures.
Theoremd.2 thusshavs why the KLM propertieshold in all
thesecasesWhy arethereno further propertieqthatis, why
arethe KLM propertiesnot only sound,but complete)?To
shav thatthe KLM propertiesare completewith respecto
a classS of structures,we have to ensurethat S contains
“enough” structures.In particular if A t/p p—), we want
to ensurethat thereis a plausibility structurePL € S such
that PL =pr, A and PL-,; o—1. Thefollowing weak
conditionon S guaranteethis.

Definition 4.3 We saythatS is rich if for every collection
©1,...,¢n,n > 1, of mutuallyexclusive formulas thereis a
plausibility structurePL = (W, Pl, 7) € S suchthat:

PI(lea]) > Pi(pa]) > -+ > P([p,]) = L.

Therichnessconditionis quite mild. Roughlyspeakingit
saysthatwe do not have a priori constraintson the relative
plausibilitiesof acollectionof disjointsets.It is easilyseerto
holdfor the plausibility structureghatarisefrom preferential
structures(resp.,possibility structures x-structures PPDs).
More importantly richnesss a necessarandsuficient con-
dition to ensureghatthe KLM propertiesarecomplete.

Theorem4.4: [Friedmanand Halpern, 19964 A setS of
qualitative plausibility structuesis rich if and only if for all
finite A and defaultsp—1), wehavethat A =5 p—) im-
pliesA Fp p—1).

This resultshaws thatif the KLM propertiesare soundwith
respecto aclassof structuresthenthey arealmostinevitably
completeaswell. More generally Theoremst.2 and4.4 ex-
plainwhy theKLM propertiesaresoundandcompletefor so
mary approaches.

Thediscussiorup to now hasfocusedon propositionade-
faults,but usingplausibility, it is fairly straightforvardto ex-
tendto thefirst-ordercasesee[Friedmaretal., 200d.

5 Expectation and DecisionTheory

Agentsmust make decisions. Perhapghe best-knavn rule

for decisionmakingis that of maximizing expectedutility.

This requiresthat agentshave probabilitiesfor mary events
of interest,andnumericalutilities. But mary otherdecision
rules have beenproposed,ncluding minimax, regret mini-

mization,andrulesthatinvolverepresentationsf uncertainty
otherthanprobability Again, usingplausibility allows usto

understandvhatis requiredto getvariousdesirableproper

tiesof decisionrules.

Sinceexpectationplayssuchakey role in maximizingex-
pectedultility, | startby consideringexpectation. Given a
probability measureu on somesamplespacelV, the cor-
respondingexpectationfunction £, mapsgamblesover W/



(thatis, randomvariableswith domainT andrangethe re-
als)to reals. Therearea numberof equivalentdefinitionsof
E,,. Thestandardneis

EJX)= Y ap(X =u). (1)

zeV(X)

(Herel amimplicitly assuminghat X = z (thatis, the set
{w: X (w) = z}) is measurable.)

Asiswell known, E,, islinear(E,(aX+Y) = aE,(X)+
E,(Y)), monotonic(if X <Y, thenE,(X) < E,(Y)), and
it mapsaconstanfunctiontoits value(thatis, a is thegamble
thatmapsall elementf W to a, the E,, (@) = a). Moreover,
thesethree propertiescharacterizeprobabilistic expectation
functions. If anexpectationfunction E hastheseproperties,
thenE = E,, for someprobability measureu.

A W-D' expectationfunctionis simply a mappingfrom
randomvariableswith domain¥ and rangesomeordered
setD’ to D’. Herel focuson expectationfunctionsthatare
generatedy someplausibility measurejustas E,, is gener
atedfrom p, usingadefinitionin the spirit of (1). To dothis,
we needanalogue®f + and x, muchin thespirit of (but not
identicalto) the & and® usedin the definition of algebraic
cps.

Definition 5.1 :  An expectation domain is a tuple
(D, D’,H,X), whereD and D’ aresetsorderedby <p and
<p, respectiely, D is a setof plausibility values(so that
it haselementsL and T suchthat L <p d <p T for all
deD),B:D' xD — D'andX: D' x D — D' 11

Given an expectationdomain(D, D’, H,X) anda plausi-
bility measureP1 on somesetW, it is possibleto definea
W-D' expectationfunction Ep; by usingthe obvious ana-
logueof (1), replacing+ by H and x by X.

Whatdoesthis buy us? For onething, we cantry to char
acterizethe propertiesof B andX that give Ep, properties
of interest,suchaslinearity andmonotonicity(see[Halpern,
20004 for details). For anotherit turnsoutthatall standard
decisionrulescanbe expressedsexpectedutility maximiza-
tion with respecto anappropriatechoiceof plausibility mea-
sure,lH, andXl. To make this precise assumehatthereis a
setA of possibleactionsthat an agentcanperform. An ac-
tion a mapsaworld w € W to anoutcome.For simplicity,
| identify outcomeswith world-actionpairs (w, a). Assume
thattheagenthasa utility functionu on outcomesin the ex-
ampleshelow, therangeof the utility functionis therealsbut,
in generaljt canbeanarbitrarypartially orderedsetD’. Let
ua betherandomvariablesuchthatu,(w) = u(w,a). The
agentis uncertainaboutthe actualworld; this uncertaintyis
representedby someplausibility measure. The questionis
which actionthe agentshouldchoose.

As | saidearliet if the agents uncertaintyis represented
by a probability measureu, the standarddecisionrule is to
choosdheactionthatmaximizesexpectedutility. Thatis, we
chooseanactiona suchthatE,, (a) > E,(a’) foralla’ € A.
However, thereareotherwell-known decisionrules.

e For minimax, let worst(a) = min{u,(w) : w € W};
worst(a) is the utility of the worst-caseoutcomeif a
is performed. This too leadsto a total preferenceor-
deron actions,wherea is preferredto a’ if worst(a) >

worst(a’). The minimax rule saysto choosethe action
a (or one of them, in caseof ties) suchthat worst(a)
is highest. The action chosenaccordingto this rule is
the onewith the bestworst-caseoutcome. Notice that
minimax makessenseno matterhow uncertaintyis rep-
resented.Now take D = {0,1} and D’ = IR, both
with the standardorder and considerthe plausibility
measurePl,,,,, wherePl,,,(U) = 1if U # § and
Plym(0) = 0. Let B be min andlet X be multiplica-
tion. With this choiceof H and[X, it is easyto seethat
Epy,,,. (ua) = wWorst(a), so expectedutility maximiza-
tion with respecto Pl,,,,, is minimax.

As afirst stepto definingregret minimization,for each
world w, let a,, beanactionthatgivesthe bestoutcome
in world w; thatis, u(w,a,) > u(w,a) foralla € A.

Theregretof a in world w is u(w, a,,) —u(w, a); thatis,
theregretof a in w is the differencebetweenrthe utility

of performingthe bestactionin w (the actionthat the
agentwould perform,presumablyif sheknew theactual
world was w) andthat of performinga in w. Finally,

defineregret(a) = max,cw regret(a, w). Intuitively, if

regret(a) = k, thena is guaranteedo be within & of

the bestactionthe agentcould perform,evenif the she
knew exactly what the actualworld was. The decision
rule of minimizing regretchoosegheactiona suchthat
regret(a) is aminimum.

To expressregret in terms of maximizing expected
utility, it is easiestto assumethat for each action
a, max,ecw ua(w) = 1. This assumptionis with-

out loss of generality: if v (w,a) = u(w,a) —

max, ew u(w', a) + 1, thenmax,ew u, (w) = 1, and
minimizing regretwith respect:’ givesthe sameresult
as minimizing regret with respectto u. With this as-
sumptiontake D = [—oo, 1] with the standardrdering
and D’ = IR with thereverseordering,thatis x <p- y

if > y. Let Ploy(U) = maxycy,aca u(a, w), let
a®b = a—>b, andlet a Hb = min(a,b). Intu-

itively, PI(U) X b is the regret an agentwould feel if

sheis given utility b but could have performedthe ac-
tion thatwould give herthe bestoutcomeon herchoice
of world in U. With this choiceof H and[X, it is easy
to seethat Epy,, (ua) = regret(a), so expectedutility

maximizationwith respecto Pl,.., is just regret mini-

mization(giventheorderingon D’).

Supposethat uncertaintyis representedy a setP of
probability measuresndexed by someset/. Thereare
two naturalwaysto getapartialorderonactionsfrom P
andareal-valuedutility u. Define-1 sothata =1, a’
iff min,cp £, (ua) > max,cp E,(us,). Thatis, a is
preferredto a’ if the expectedutility of performinga is
atleastthatof performinga’, regardlessvhich probabil-
ity measuran P describeghe actualprobability. Nat-
urally, =7 is only a partial order on actions. A more
refined partial order can be obtainedas follows: De-
finea >3 a’ if E,(ua) > E,(ua) forall p € P.
It is easyto shaw thatif a =1 a’ thena =% &/, al-
thoughthe corversemay not hold. For example,sup-
posethat P = {u, '} andactionsa anda’ are such



that £, (ua) = 2, Ey(ua) = 4, Eu(uar) = 1, and
E,(ua) = 3. Thena anda’ areincomparableaccord-
ingto =1, buta =% a’.

Let the set D of plausibility valuesbe that used for
Plp, thatis, the functionsfrom I to [0, 1], with the
pointwiseordering. Let D’ be the functionsfrom I to
IR, let H be pointwise addition, and let X be point-
wise multiplication. The differencebetweenz%) and
~2, is capturedby consideringtwo differentorderson
D'. For =1, order D' by >L,, where f >}, g if
min,e; f(i) > max;eq g(i), while for =2, order D’
by >%,, wheref >2, g if f(i) > g(i) foralli € I.
If Ep1, is the expectationfunction correspondingo
this definition of B and X, thenit is easyto seethat

Epy, (ua) ZJD, Epy, (ua/) iff a t],p a’,forj=1,2.

It canbe shownn that every partial orderon actionscanbe
representeds the orderinginducedby expectedutility ac-
cordingto someplausibility measureon W. Thatis, given
somepartialorder>> onactionsthatcanbetakenin someset
W of possibleworlds, thereis a plausibility measurePl on
W andexpectatiordomain(D, D', H, X) suchthattherange
of Pl is D anda utility functionon W x A with rangeD’
suchthat Epi(ua) > Epi(ua) iff a = a’. Thus,viewing
decisionrulesasinstancesf expectedutility maximization
with respecto the appropriatesxpectationfunction provides
a generalframenork in which to study decisionrules. For
example,it becomegpossibleto askwhatpropertieof anex-
pectationdomainareneededo getvariousof Savages 1954
postulatesl hopeto reporton thisin futurework.

6 Compact Representationof Uncertainty

Supposdhat W is a setof possibleworlds characterizedy

n binary randomvariablesX = {Xy,...,X,} (or, equiva-

lently, n primitive propositions).Thatis, aworld w € W is

atuple (z1,...,z,), wherex; € {0,1} is thevalueof X;.

Thatmeanghatthereare2™ worldsin W, sayws, - . ., wan.

A naive descriptionof a probability measureon W requires
2" — 1 numbersyyy, ..., asn_1, Whereq; is the probability
of world w;. (Of coursetheprobabilityof ws- is determined
by the otherprobabilities sincethey mustsumto 1.)

If n isrelatively small,describinga probabilitymeasuren
this naive way is not so unreasonablejyut if n is, say 1000
(certainly not unlikely in mary practicalapplications)then
it is completelyinfeasible. One of the most significantre-
centadwancesn Al hasbeenin work on Bayesiametworks
[Pearl,1989, atool that allows probability measurego be
representedh acompactvay andmanipulatedn acomputa-
tionally feasibleway. | briefly review Bayesiametworkshere
andthendiscusghe extentto which theideascanbe applied
to otherrepresentationsf uncertainty More detailscanbe
foundin [Halpern,20004.

Recall that a (qualitatve) Bayesiannetwork (sometimes
called a belief networR is a dag, thatis, a directedacgyclic
graph,whosenodesarelabeledby randomvariables. Infor-
mally, the edgesin a Bayesiametwork canbe thoughtof as
representingausalinfluence.

GivenaBayesiametwork G andanodeX in G, think of
the ancestos of X in the graphasthoserandomvariables

thathave a potentialinfluenceon X. Thisinfluenceis medi-
atedthroughthe parentsof X, thoseancestor®f X directly
connectedo X. Thatmeanghat X shouldbe conditionally
independenbf its ancestorsgivenits parents. The formal
definition requires,in fact, that X be independentot only
of its ancestorsbut of its nondescendantgivenits parents,
wherethe nondescendantsf X arethosenodesY suchthat
X isnottheancestoof Y.

Definition 6.1 Givena qualitatve Bayesiannetwork G, let
Parg(X) bethe parentsof the randomvariable X in G; let
Gpes(X) beall thedescendantsf X, thatis, X andall those
nodesY suchthat X is anancestoof Y'; let ND¢(X), the
nondescendansf X in G, consistof X — Desg(X). The
Bayesiannetwork G (qualitatively) representghe probabil-
ity measureu if X is conditionallyindependenof its nonde-
scendantgivenits parentsforall X € X. I

A qualitatve Bayesiannetwork G givesqualitative infor-
mationaboutdependencandindependencdyut doesnotac-
tually givethevaluesof theconditionalprobabilities.A quan-
titative Bayesiannetwork provides more quantitatie infor-
mation, by associatingvith eachnode X in G a conditional
probability table (cpt) thatquantifiegheeffectsof theparents
of X on X. For example,if X'sparentsn G areY andZ,
thenthe cpt for X would have an entry denoteddy —; z—x
for all (j,k) € {0,1}2. As thenotationis meantto suggest,
dy—jnz=r = (X = 1Y = j N Z = k) for theplausibility
measureu representethy G. (Of course thereis no needto
have anentryfor (X = 0|Y = j N Z = k), sincethisis
justl — (X = 1Y = jN Z = k).) Formally, aquantitative
Bayesiametworkis a pair (G, f) consistingof a qualitatve
Bayesiannetwork G and a function f that associatesvith
eachnodeX in G acpt,wherethereis anentryin theinterval
[0, 1] in the cpt for eachpossiblesettingof the parentsof X
If X is arootof G, thenthecptfor X canbethoughtof as
giving the unconditionalprobabilitythat X = 1.

Definition 6.2: A quantitatve Bayesiannetwork (G, f)
(quantitatively)represents or is compatiblewith, the prob-
ability measurey if G qualitatvely representg andthe cpts
agreewith p in that, for eachrandomvariable X, the entry
in the cpt for X givensomesettingY; = y1,...,Yr = yi
of its parentsis u(X = 1|Y1 = y1 N ...NY, = yi) if
pYi = y1n...NY, = y) # 0. (It doesnot mat-
ter what the cpt entry for Y1 = y1,...,Y, = vy is if
pYi=mn...nY,=yr) =0.)1

It caneasilybe shovn usingthe chainrule for probability
(seefor example,[Pearl,1989) thatif (G, f) quantitatiely
represents:, then . canbe completelyreconstructedrom
(G, f). More precisely the 2™ valuesu(X; = 21N ... N
X, = z,) canbecomputedrom (G, f); from thesevalues,
w(U) canbecomputedor all U C W.

Bayesiametworksfor probabilityhaveanumberof impor-
tantproperties:

1. Every probability measurds representedy a qualita-
tive Bayesiametwork (in fact,in generatherearemary
qualitatve Bayesiannetworks that representa given
probabilitymeasure).



2. A qualitatve Bayesiannetwork that represents prob-
ability measuren can be extendedto a quantitatve
Bayesiametwork thatrepresents, by addingcpts.

3. A gquantitatve Bayesiannetwork representsa unique
probability measure. This is important becauseif
a world is characterizedby the valuesof n random
variables, so that there are 2™ worlds, a quantitatve
Bayesiametwork canoftenrepresené probabilitymea-
sureusingfar fewer than2 numbers.If a nodein the
network hask parentsthenits conditional probability
tablehas2” entries.Thereforejf eachnodehasat most
k parentsin the graph,thenthereare at mostn2* en-
triesin all thecpts. If k& is small,thenn2* canbe much
smallerthan2™ — 1.

4. A Bayesian network supports efficient algorithms
for computing conditional probabilities of the form
Pr(X; = z;|X; = z;); thatis, they allow for efficient
evaluationof probabilitiesgivensomeinformation.

To what extent is probability necessanto achiese these
propertiesMore preciselywhatpropertieof probabilityare
neededo achiese them? Here again, plausibility measures
allow usto answetthis question.

Given a cps (W, F,F',Pl), U,V € F are plausibilis-
tically independenigiven V' (with respectto P1), written
I;(U, VIV, if VNV € F impliesPIU|V N V') =
PIUIV") andU N V' € F' implies P(V|IU N V') =
PI(V|V’). This definition is meantto capturethe intuition
that(conditionalon V') U andV areindependenif learning
aboutU givesno informationaboutl” andlearningaboutV’
givesno informationaboutlU. Notetheexplicitly symmetric
natureof the definition. In the caseof probability if learning
aboutU givesno informationaboutV’, thenit is immediate
that learningabout V' gives no informationaboutU. This
doesnot hold for anarbitraryplausibility measuré.

If X = {X1,....,X,}, Y = {¥1,...,V,,}, and Z =
{Z1,..., 7} aresetsof randomvariables,thenX andY
areconditionallyindependengiivenZ (with respecto P1) if
X, =x1n...NnX, = x, is conditionallyindependenbf
Yi=y1N...NYy =ypgivenZ; = z1N...NZ, = z; for
all choicesof 1, ..., Tn, Y1, -+ s Y, 215 - - - 5 2k

With thesedefinitions,the notion of a qualitatve Bayesian
network asdefinedn Definition 6.1 makesperfectsenséf the
probabilitymeasure: is replacedyy aplausibility measuré’l
everywhere. The following resultshavs that representation
by a qualitatve Bayesiannetwork is possiblenot justin the
caseof probability, but for any algebraiccps.

3An equivalentdefinitionof U andV beingindependentvith re-
spectto aprobabilitymeasure: is thatu (U NV|V') = u(U|V') x
w(V|V"). However, | wantto give adefinitionof independencthat
doesnotrequireananalogueo multiplication. But evenin analge-
braiccps,therequirementhatu(UNV V') = u(UV)@u(V|V’)
is not always equivalentto the definition given here(see[Halpern,
200043). Also notethatif V NV’ ¢ F’ (in the caseof probabil-
ity, this would correspondo V N V'’ having probability 0), then
PI(U|V N V') is notdefined. In this case thereis no requirement
that PL(U|V N V') = PI(U|V’). A similar obseration holds if
unv' ¢ F.

Theorem 6.3 ([Halpern,20004) If (W, F, 7', Pl) isanal-
gebraic cps,thenthere s a qualitativeBayesiametworkthat
representsl.

Clearly a qualitatve Bayesiannetwork that represent$1
can be extendedto a quantitatve Bayesiannetwork (G, f)
thatrepresent®1 by filling in the conditionalplausibility ta-
bles. But doesa quantitatie Bayesiametwork (G, f) repre-
sentsa unique(algebraic)plausibility measureRecallthat,
for the purposesof this section,| have taken W to consist
of the 2™ worlds characterizedby the n. binary randomvari-
ablesin X. Let PLp g ¢ consistof all algebraicstandard
cpss of the form (W, F, 7', Pl), where F = 2, sothat
all subsetof W are measurableandthe rangeof Pl is D.
With this notation,the questionbecomesvhethera quantita-
tive Bayesiametwork (G, f) suchthatthe entriesin thecpts
arein D determinesuniqueelemenin PLp g . It turnsout
thattheansweris yes,providedthat (D, @, ®) satisfiessome
conditions.Theconditionsaresimilarin spiritto Alg1-4, ex-
ceptthat now they are conditionson (D, @, ®), ratherthan
conditionson a plausibility measurej omit the detailshere
(again,seelHalpern,20004). Thekey pointis thatthesecon-
ditionsaresufficientto allow anarbitraryplausibilitymeasure
to have acompactepresentationMoreover, sincethetypical
algorithmsin probabilisticBayesiametworksuseonly alge-
braic propertiesof 4+ and x, they apply with essentiallyno
changeo algebraigplausibility measures.

7 Conclusions

Thereis no reasonto believe that one representatiomf un-
certaintyis bestfor all applications.This makesit usefulto
have a framawvork in which to comparerepresentationsis |

hopel have corvincedthe readey plausibility measuregjive
ussuchaframework, andprovide avantagepointfrom which
to look at representationsf uncertaintyandunderstandvhat
makesthemtick—whatpropertiesof eachonearebeingused
to getresultsof interest.More discussiorof theseandrelated
topicscanbefoundin [Halpern,2000d.
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