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Abstract

Chateauneuf and Faro [3] axiomatize a weighted version of maxmin
expected utility over acts with nonnegative utilities, where weights are
represented by a confidence function. We argue that their representa-
tion is only one of many possible, and we axiomatize a more natural
form of maxmin weighted expected utility. We also provide stronger
uniqueness results.

1 Introduction

Maxmin expected utility (MMEU), axiomatized by Gilboa and Schmei-
dler [6], is one of the best-studied alternatives to subjective expected
utility (SEU) maximization [13]. Its compatibility with ambiguity-
averse preferences makes it an attractive descriptive decision model,
in light of experimental evidence (e.g., the Allais Paradox [1] and the
Ellsberg Paradox [5]) showing that intuitive decisions may violate the
ambiguity neutrality, or “independence”, property implied by the SEU
model. In the (multiple priors) MMEU decision model, there is a set
of possible probability distributions over the statespace, each giving
rise to a (potentially different) expected utility value for each object of
choice. An MMEU decision maker chooses an option that maximizes
the minimum of such expected utility values.

However, even MMEU may be too restrictive a model for represent-
ing reasonable decision-making. For example, Chateauneuf and Faro
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[3] (henceforth CF) point out that MMEU does not allow for “attrac-
tion for smoothing an uncertain act with the help of a positive constant
act”, a property that is intuitively reasonable and is demonstrated in
Example 5.2.

To deal with this, CF consider a “weighted” version of maxmin
expected utility [6]. Recall that in the MMEU model, beliefs are rep-
resented by a set of probability measures over the state space. The
distributions that are in the set are viewed as the possible distributions
over the states. However, sometimes it makes sense to treat some dis-
tributions as “more likely” than other distributions, rather than just
separating the distributions into two groups (“possible” and “impos-
sible”). CF provide a method of treating distributions differently, by
assigning a confidence value to each distribution.

Others have independently studied similar models. Klibanoff et al.
[9] propose a model of decision making that associates weights with
probability measures, but makes decisions based on a “weighted” ex-
pected utility function. Maccheroni et al. [10] study a model of decision
making where additive, instead of multiplicative, weights are associated
with probability measures. Hayashi [8] considers a model of expected
regret minimization where the regret associated with each state is taken
to a positive power before the expectation is taken. In previous work [7]
we have also considered associating multiplicative weights with prob-
ability measures in expected-regret-minimization. Others have also
proposed and studied approaches of representing uncertainty that are
similar to weighted probabilities (see, e.g. [4, 11, 14]).

In the CF model, a high confidence value on a probability measure
can be interpreted as the probability measure being “significant” or
“likely to be the correct distribution,” while a low confidence value on
a probability measure is interpreted as the probability measure being
insignificant or unlikely to be the correct distribution. These confi-
dence values are used to scale the expected utilities of the acts in a
way that reflects the relative significance of each probability measure.
Since larger weights should always magnify the influence of a distribu-
tion, one must restrict to either nonnegative or nonpositive utilities.
CF choose to restrict to nonnegative utilities, and they multiply the
expected utilities by the multiplicative inverse of the associated con-
fidence value. The maxmin expected utility criterion is then used to
compare utility acts based on these “weighted” expected utilities. In
this paper, we use the term weight to refer to the final real number that
we multiply the expected utilities by. In the CF model, the weight is
obtained by taking the multiplicative inverse of the confidence value.
Multiplying by the inverse ensures that probability measures with low
confidence have a smaller effect, since they are less likely to give the
minimum expected utility. This generalization of the maxmin expected
utility decision rule allows for a “smoothing” effect. Instead of simply
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being in or out of the set of probability measures considered possible,
probability measures now have finer weights associated with them.

However, CF also introduce a numerical confidence threshold α0 >
0; a probability measure is “discarded” (i.e., ignored) if its confidence
value is below this threshold α0. This threshold affects the resulting be-
havior of the decision model, as captured by the axioms characterizing
the decision model. Having this threshold seems to us incompatible
with the intuition behind weights. If a probability measure has low
weight, we should perhaps take it less seriously than one with high
weight, but there seems to be no good reason to ignore it altogether.
Therefore, we define a simpler version of the decision rule where there
is no threshold α0. This simplified decision rule is characterized by
removing one of the CF axioms.

Another problem with the CF approach is that of using the multi-
plicative inverse of the confidence value as the weight on the expected
utilities. This choice seems rather arbitrary. Why not use the square
of the inverse? We show that any monotonically decreasing transfor-
mation that maps (0, 1] onto R+ (the nonnegative reals) satisfies the
same axioms. Although all these transformations are characterized by
the same axioms, different transformations may lead to quite different
decisions.

It is not clear which transformation function is the “right” one.
There is no compelling argument for using 1

x rather than, say, 1
x2 . Our

axiomatization leads to some important observations:

1. What is important is the composition t ◦ φ of the transforma-
tion function t and the confidence function φ, not the confidence
function itself nor the transformation function itself; it is the
composition that determines the preferences.

2. Confidence values have no cardinal meaning: a confidence value
of 1

2 can have the same meaning as a confidence value of 1
3 if the

transformation t changes.

Moreover, as our results show, the confidence value and the trans-
formation interact. In our earlier work on minimax weighted expected
regret [7], we were able to get a strong uniqueness result in the con-
text of regret by multiplying the probability measure by the weight.
That is, instead of considering the set of probability measures and the
associated weights separately, we consider what we called subprobabil-
ity measures, which are probability measures “scaled” by a weight in
[0, 1]. By looking at these subprobbility measures, we were able to find
natural properties to ensure uniqueness of the representation. Here,
we show that by multiplying the probability measure by the weight,
we can get a uniqueness result analogous to that for regret.

With weighted regret, there is no need to apply a transformation
to the confidence values. The weights are simply the confidence val-
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ues. Equivalently, the identify function is a valid transformation for
weighted regret. We show that for maxmin weighted expected utility,
if we restrict to nonpositive utilities instead of nonnegative utilities, we
can also take the transformation to be the identity function. That is,
we can just multiply the expected utilities by a confidence value with-
out applying any transformations. We then replace the axiom saying
that there is a worst outcome with one saying that there is a best
outcome. This results in essentially the same representation theorem.

The rest of this paper is organized as follows. Section 2 sets up
some preliminary definitions. Section 3 presents the CF model and
some of their results. Section 4 considers a generalization of the CF
model. Section 5 presents a simpler model and provides a representa-
tion theorem. Proofs are collected in the appendices.

2 Formal Definitions

In this section we provide definitions that will be used to present the
CF results, as well as to develop our new results. We restrict to what is
known in the literature as the Anscombe-Aumann (AA) framework [2],
where outcomes are restricted to lotteries. This framework is standard
in the decision theory literature; axiomatic characterizations of SEU
[2] and MMEU [6] have been obtained in the AA framework.

We assume that the state space S is associated with a sigma algebra,
and we let ∆(S) denote the set of all probability distributions on S.
Given a set X (which we view as consisting of prizes or outcomes),
a lottery over X is just a probability distribution on X with finite
support. Let ∆(X) be the set of all lotteries. In the AA framework,
the set of outcomes is ∆(X). So now acts are functions from the state
space S to ∆(X). (Such acts are sometimes called Anscombe-Aumann
acts.) We denote the set of all acts by F . The technical advantage
of considering such a set of outcomes is that we can consider convex
combinations of acts. If f and g are acts, define the act αf + (1− α)g
to be the act that maps a state s to the lottery αf(s) + (1− α)g(s).

Given a utility function U on prizes in X, the utility of a lottery
l ∈ ∆(X) is just the expected utility of the prizes obtained, that is,

u(l) =
∑

{x∈X : l(x)>0}

l(x)U(x).

This makes sense since l(x) is the probability of getting prize x if
lottery l is played. The expected utility of an act f with respect to a
probability p on states is then just u(f) =

∫
S
u(f(s))dp, as usual.
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3 CF Maxmin Expected Utility with Con-
fidence Functions

The CF approach is formalized as follows. Let φ : ∆(S) → [0, 1] be a
confidence function on the probability measures, and let u be a utility
function on lotteries over X with values in R+ (all instances of R+ in
this paper include 0). Let Lα0

φ denote the set {p ∈ ∆(S) : φ(p) ≥ α0}
for α0 ∈ (0, 1].

Definition 3.1. Define �+,α0

φ so that

f �+,α0

φ g ⇔ min
p∈Lα0

φ

1

φ(p)

∫
S

u(f)dp ≥ min
p∈Lα0

φ

1

φ(p)

∫
S

u(f)dp.

The superscript + on �+,α0

φ indicates that the preference is defined
for nonnegative utilities. Note that, according to Definition 3.1, a
probability measure that has a confidence value (according to φ) lower
than α0 is simply discarded. The analogy to maxmin expected utility
of Gilboa and Schmeidler [6] is that the probability measure is not in
the belief set. Indeed, if α0 = 1, then the CF approach essentially
reduces to maxmin expected utility.

CF call confidence functions satisfying the following properties reg-
ular* fuzzy sets.

Definition 3.2. The set of regular* fuzzy sets consists of all mappings
φ : ∆(S)→ [0, 1] satisfying the following properties:

(a) φ is normal: {p ∈ ∆(S) : φ(p) = 1} 6= ∅.
(b) φ is weakly* upper semicontinuous: {p ∈ ∆(S) : φ(p) ≥ α} is

weakly* closed for all α ∈ [0, 1].

(c) φ is quasi-concave:

∀β ∈ [0, 1](φ(βp1 + (1− β)p2) ≥ min{φ(p1), φ(p2)}).

One role of regular* fuzzy sets in the CF representation is that the
condition provides a canonical representation. That is, every prefer-
ence order satisfying appropriate axioms can be represented by some
utility function, some α0 > 0, and some regular* fuzzy φ. Moreover,
there is a φ∗ within the set of regular* fuzzy sets generating these pref-
erences such that φ∗ is maximal in the sense that for every probability
measure p, φ∗ assigns weakly larger confidence to p than every other
regular* fuzzy set generating these preferences.

CF consider the following axioms. In the axioms, the acts f and g
are viewed as being universally quantified; given an outcome x ∈ X,
we write x∗ to denote the constant act that maps all states to the
outcome x.
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Axiom 1.
a. (Transitivity): f � g � h⇒ f � h.
b. (Completeness): f � g or g � f.
c. (Nontriviality): f � g for some acts f and g.

Axiom 2 (Monotonicity). If (f(s))∗ � (g(s))∗ for all s ∈ S, then
f � g.

Axiom 3 (Continuity). For all f, g, h ∈ F , the sets {α ∈ [0, 1] :
αf + (1− α)g � h}, {α ∈ [0, 1] : h � αf + (1− α)g} are closed.

Axiom 4 (Worst Independence). There exists a worst outcome x ∈ X
such that f � x∗ for every f ∈ F . Moreover,

f ∼ g ⇒ αf + (1− α)x∗ ∼ αg + (1− α)x∗.

Axiom 4 is reminiscent of Gilboa and Schmeidler’s [6] C-independence
axiom of MMEU; C-independence is stronger in the sense that the inde-
pendence property needs to hold not only for x∗, but all other constant
acts as well.

Axiom 5 (Independence on Constant Acts).

∀x, y, z ∈ X(x∗ ∼ y∗ ⇔ 1

2
x∗ +

1

2
z∗ ∼ 1

2
y∗ +

1

2
z∗).

Axiom 5 is a weaker version of the more common independence
axiom for constant acts, where instead of 1

2 mixtures, all convex mix-
tures of the constant acts are allowed. CF chose to present this weaker
axiom, since it was shown by Herstein and Milnor [?] that Axioms 1,
3 and 5 are sufficient to satisfy the premises of the von-Neumann-
Morgenstern theorem, which says that there is an expected-utility rep-
resentation for preferences over constant acts. While we could have
used the more standard/stronger versions of the continuity and inde-
pendence axioms, to make comparisons easier, we use the versions used
by CF.

Axiom 6 (Ambiguity Aversion).

f ∼ g ⇒ pf + (1− p)g � g.

Ambiguity aversion says that when there are two equally good al-
ternatives, the decision maker prefers to hedge between these two al-
ternatives. Ambiguity aversion is also sound for MMEU [6].

Axiom 7 (Bounded Attraction for Certainty). There exists δ ≥ 1 such
that for all f ∈ F and x, y ∈ X:

x∗ ∼ f ⇒ 1

2
x∗ +

1

2
y∗ � 1

2
f +

1

2

(
1

δ
y∗ +

(
1− 1

δ

)
x∗
)
.
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As CF point out, Axiom 6 implies that if an agent is indifferent
between an act f and a constant act x∗, then she could strictly the
convex combination of f with a constant act y∗ to the combination
of x∗ and y∗. In particular, if we let y∗ = x∗, then Axiom 6 implies
that pf + (1 − p)y∗ � x∗ = px∗ + (1 − p)y∗ for all p ∈ [0, 1]. CF
explain that Axiom 7 imposes a bound on the affinity for smoothing
out an uncertain act with a constant act. Continuing with our example
and letting x∗ = 0∗ (assuming that outcomes are numbers), Axiom 7
implies that 1

2x
∗ + 1

2y
∗ � 1

2f + 1
2δy
∗ for some fixed δ specified by

Axiom 7. The fact that there exists a δ > 1 such that 1
2x
∗ + 1

2y
∗ �

1
2f + 1

2δy
∗ follows from monotonicity. The power of Axiom 7 comes

from the fact that there is a single δ ≥ 1 such that this preference holds
for all x, y ∈ X, and f ∈ F .

The Bounded Attraction for Certainty axiom in the CF represen-
tation captures the lower bound α0 in the model. Recall that if the
confidence value of a probability measure is less than α0, then that
measure is considered “impossible”, or ignored. CF show that the δ
in the Bounded Attraction for Certainty axiom can be taken to be 1

α0

in the representation. δ is roughly interpreted as an upper bound on
how much the mixing of a constant act to an act can make the act
more preferable. We essentially take α0 = 0; all probability measures
into account, regardless of their weight, as long as the weight is posi-
tive. Since weighted regret already says that regret due to probability
measures with low confidence is not taken seriously, there seems to be
no reason to ignore probability measures of low confidence altgether.
In any case, since we take α0 = 0, we would expect decision rule to
satisfy an unbounded version of attraction for certainty. Our represen-
tation theorem shows that such an axiom is not needed to characterize
maxmin weighted expected utility.

CF prove the following representation theorem:

Theorem 3.3 (CF representation theorem [3]). A binary relation �
on F satisfies Axioms 1–7 if and only if there exists a unique non-
constant function u : X → R+ such that ux∗ = 0, unique up to positive
linear transformations, a minimal confidence level α0 ∈ (0, 1], and a
regular* fuzzy set φ : ∆(S)→ [0, 1] such that �=�+,α0

φ .

Note that although CF guarantee the existence of a representation
with a regular* fuzzy set, the confidence function does not necessarily
need to be regular* fuzzy in order to satisfy Axioms 1–7. For example,
if there are two states, s1 and s2, pi is the point-mass on state si for
i ∈ {1, 2}, φ(p1) = φ(p2) = 1, and φ(p) = 0 for all other probability
measures p, then φ is not a regular* fuzzy set, since it is not quasi-

concave. Nevertheless, �+, 12
φ is determined by maxmin expected utility

and thus must satisfy Axioms 1–7, because Axioms 1–7 are strictly
weaker than the axioms for maxmin expected utility [6].
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4 t-Maxmin Weighted Expected Utility

In this section we consider a generalization of the CF approach, which
we call the t-maxmin weighted decision rule. The t-maxmin weighted
rule applies a monotonically decreasing transformation function t to
the confidence values, and then uses the maxmin criterion on expected
utilities multiplied by the transformed confidence values. The CF de-
cision rule is the special case of the t-weighted maxmin decision rule,
where t(x) = 1

x .
Let φ : ∆(S)→ [0, 1] be a confidence function, let t : (0, 1]→ R+ be

a transformation function, and let u be a nonnegative utility function.

Definition 4.1 (t-maxmin weighted expected utility). Define �+,α0

t,φ

so that

f �+,α0

t,φ g ⇔ min
p∈Lα0φ

t(φ(p))

∫
S

u(g)dp ≥ min
p∈Lα0φ

t(φ(p))

∫
S

u(f)dp.

The threshold value α0 affects the preferences �+,α0

φ only if it
is larger than the smallest confidence value. That is, let α∗0(φ) =
max{α0, infp∈∆(S) φ(p)}. It is easy to see that, for all 0 < α ≤ α∗0(φ),

we have �+,α
φ =�+,α∗0(φ)

φ .
Theorem 4.2 shows that it is not necessary to use the transfor-

mation t(x) = 1
x to map confidence values into weights with which

expected utilities are multiplied. Other functions, such as t(x) = 1
x2 ,

represent the same class of preference orders. However, there are some
constraints on the allowed transformation functions t, since we need to
“simulate” 1

φ(p) with t(φ′(p)). In addition to being strictly decreasing

(a property of t(x) = 1
x ), the condition that there exists some β > 0

such that [β, β/α∗0(φ)] ⊆ range(t) guarantees that we can “simulate”
1

φ(p) with t(φ′(p)) for some φ′ and α′0. Continuity guarantees that we

can find a preimage φ′(p) for every value in the range of t.

Theorem 4.2. For all measurable spaces (S,Σ), consequences X, non-
negative utility functions u, confidence functions φ : ∆(S) → [0, 1],
thresholds α0 > 0, and strictly decreasing, continuous transformation
functions t : (0, 1] → R+ such that there exists some β > 0 such that
[β, β/α∗0(φ)] ⊆ range(t), there exists α′0 > 0 and φ′ such that

�+,α0

φ =�+,α′0
t,φ′ ;

moreover, if φ is regular* and t(1) = β, then φ′ is regular*.

Theorem 4.2 highlights another perspective of the t-weighted maxmin
expected utility representation. In addition to viewing φ : [0, 1] as a
confidence function which is transformed and then applied to proba-
bility measures, we can also view t(φ(p)) as a weight applied to the
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probability measure p. In this paper, we use the term weight to refer
to a value in R+ with which the expected probability is multiplied,
while the term confidence refers to a value in [0, 1] in the sense used
by Chateaneuf and Faro. In the theorem statement (and later in the
paper), we take U+ to denote a nonnegative utility function.

A corollary of Theorem 4.2 is a representation theorem for the CF
axioms, that is, Axioms 1–7. Theorem 4.3 requires that t(1) > 0, since
if t(1) ≤ 0 and the confidence function is normal then the preferences
will be trivial. Theorem 4.3 provides a stronger uniqueness result than
Theorem 3.3.

Theorem 4.3. Let t : (0, 1]→ R+ be a continuous, strictly decreasing
function with t(1) > 0 and limx→0+ t(x) > c for c ∈ R+. For all X,
U+, S, α0 > 0, and φ, if U+ is nonconstant and α∗0(φ) ≥ c, then the
preference order �+,α0

t,φ satisfies Axioms 1–7, with δ = c
t(1) in Axiom 7.

Conversely, if the preference order � on the acts in F satisfies Ax-
ioms 1–7 with t(1)δ ≤ c in Axiom 7, then there exists a nonnegative
utility function U+ on X, a threshold α0 > 0, and a confidence func-
tion φ : ∆(S) → [0, 1] such that φ is regular* fuzzy, t ◦ φ has convex
upper support, and �=�+,α0

t,φ . Moreover, U+ is unique up to positive
linear transformations, and if S is finite, there is a sense in which φ
is unique (see Theorem 5.5).

Proof. That �+,α0

t,φ satisfies Axioms 1–7 follows from Theorem 3.3 and

Theorem 4.2, since �+,α0

t,φ =�+,α′0
φ′ for some α′0 and φ′, and �+,α′0

φ′ sat-
isfies Axioms 1–7.

Proving the converse also involves Theorems 3.3 and 4.2. If a pref-
erence order satisfies Axioms 1–7, then by Theorem 3.3 there exists
a CF representation. Moreover, the α0 in the construction of the
representation in CF’s proof of Theorem 3.3 is equal to 1

δ , where δ
is the number in Axiom 7. Also recall that α0 ≤ α∗0. Therefore,
if limx→0+ t(x) > t(1)δ and t(1) > 0, then for β = t(1), we have
[β, β/α∗0(φ)] ⊆ [β, βδ] ∈ range(t) over the domain (0, 1]. By Theo-
rem 4.2, we can conclude that there exists a t-weighted maxmin ex-
pected utility representation.

The uniqueness claim follows from Theorem 5.5 below, which re-
quires only Axioms 1–6.

It is well known that for MMEU and regret, the preference order
determined by a set P of probability measures is the same as that
determined by the convex hull of P . Thus, to get uniqueness, Gilboa
and Schmeidler [6] consider only convex sets of probability measures.
In [7], we show that a set of sub-probability measures determine the
same minimax weighted expected regret (MWER) preferences as its
convex hull. Proposition 4.5 shows that the generalized probability
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measures behave in much the same way as the probability measures in
MMEU and the sub-probability measures in MWER.

Given a set V of generalized probabilities, define the relation �V
by taking

f �V g ⇔ inf
p∈V

∫
S

u(f)dp ≥ inf
p∈V

∫
S

u(g)dp.

It is not difficult to see that we can convert back and forth between the
upper support of a weighting function and the weighting function itself.
Therefore, we lose no information by looking at the upper support of
a weighting function.

Proposition 4.4. �V α0
t◦φ

=�+,α0

t,φ .

Proof.

f �V α0
t◦φ

g iff inf
p′∈V α0

t◦φ

∫
S

u(f)dp′ ≥ inf
p′∈V α0

t◦φ

∫
S

u(g)dp′

iff inf
{q:q=t(φ(p))p,φ(p)>α0}

∫
S

u(f)dq ≥ inf
{q:q=t(φ(p))p,φ(p)>α0}

∫
S

u(g)dq

iff inf
{p:φ(p)>α0}

t(φ(p))

∫
S

u(f)dp ≥ inf
{p:φ(p)>α0}

t(φ(p))

∫
S

u(f)dp

iff f �+,α0

t,φ g,

if φ(p) is lower semi-continuous.

Recall that, given a set V in a mixture space, Conv(V ) = {αx +
(1− α)y : x, y ∈ V, α ∈ [0, 1]} is the convex hull of V .

Proposition 4.5. If V, V ′ are sets of generalized probability measures
and Conv(V ) = Conv(V ′), then �V =�V ′ .

Proof. It suffices to show that V represents the same preferences as
Conv(V ). Let V be a set of generalized probability measures. Given
β ∈ [0, 1], p1, p2 ∈ V , and an act f ∈ F , we have

β

∫
u(f)dp1 + (1− β)

∫
u(f)dp2 ≥ min{

∫
u(f)dp1,

∫
u(f)dp2}.

This means that βp1 + (1− β)p2 can be added to V without changing
the preferences, as required.
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4.1 Impact of the threshold

In the following example, we examine how Axiom 7 qualitatively affects
the weighted maxmin expected utility preferences.

Example 4.6. Suppose there are two states: S = {s0, s1}. Consider
the confidence function φ defined by φ(p) =

√
p(s1). Like CF, we let

t(x) = 1
x , and let α0 > 0 be a fixed threshold value. Let �+,α0

φ be
resulting preference relation. Let f be an act such that u(f(s0)) = 0
and u(f(s1)) = 1. Let c∗ be a constant act with utility c > 0. Then
we have that

f �+,α0

φ c∗ ⇔ inf
{p:
√
p(s1)≥α0}

√
p(s1) ≥ c.

This means that f is strictly preferred to all constant acts c∗ with
c < α0, but is considered strictly worse than all constant acts c∗ with
c > α0.

Now compare this to the preference order obtained by considering
the same confidence function c and weight function t, but with no
threshold on the confidence. Then we have that

f �+
φ c
∗ ⇔ inf

p∈∆(S)

√
p(s1) ≥ c.

Since minp∈∆(S)

√
p(s1) = 0, this means that f is strictly worse than

all constant acts c with c > 0. Clearly, imposing a threshold has a
nontrivial impact on the preference order.

We can also show how CF’s Axiom 7 is violated by �+
φ . Suppose

that the worst outcome in this example (i.e., x) is 0. If there is no
threshold (or, equivalently, if α0 = 0), then f ∼ 0∗. Thus, Axiom 7
implies that, for some fixed ε > 0, for all outcomes y, we have that
1
2y
∗ � 1

2f + εy∗. However,

1
2y
∗ �+,0

φ
1
2f + εy∗

iff y
2 ≥ infp∈∆(S)

(
1√
p(s1)

(p(s1)( 1
2 + εy) + (1− p(s1))εy)

)
= infp∈∆(S)

(
εy√
p(s1)

+ 1
2

√
p(s1)

)
It is easy to see that

inf
p∈∆(S)

(
εy√
p(s1)

+
1

2

√
p(s1)

)
=
√

2εy,

which means that for all y < 8ε, we have that 1
2y ≺

1
2f + εy, contra-

dicting Axiom 7.
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5 Maxmin Weighted Expected Utility

5.1 Removing the threshold

As discussed in the previous section, it does not seem natural to discard
probability measures if their confidence values do not meet some fixed
threshold α0 > 0. We can naturally extend the definition of t-weighted
maxmin expected utility to remove the threshold α0.

Definition 5.1 (t-maxmin weighted expected utility without α0). De-
fine �+

t,φ so that

f �+
t,φ g ⇔ inf

{p:φ(p)>0}
t(φ(p))

∫
S

u(g)dp ≥ inf
{p:φ(p)>0}

t(φ(p))

∫
S

u(f)dp.

Clearly �+,α0

t,φ =�+
t,φ′ where φ′(p) = φ(p) if φ(p) ≥ α0 and φ′(p) = 0 if

φ(p) < α0. Thus, �+
t,φ is at least as expressive as �+,α0

t,φ .

If we consider CF’s preference order �+
φ without a threshold α0,

then as Example 5.2 below shows, Axiom 7 no longer holds.

Example 5.2. Let S = {s1, s2}. Let the constant act 1̃ have constant
utility 1, so that the minimum weighted expected utility of 1̃ is 1 as
long as φ is normal. Let pc ∈ ∆(S) be the measure such that pc(s1) = c
for c ∈ [0, 1]. Let φ be a confidence function on ∆(S) such that the
confidence value for pc ∈ ∆(S) is

φ(pc) =



1, if c ≥ 1
2

1
21 , if c ∈ [ 1

8 ,
1
2 )

1
22 , if c ∈ [ 1

32 ,
1
8 )

. . .
1

2n , if c ∈ [ 1
22n+1 ,

1
22n−1 ), for n ∈ N.

Clearly, φ is normal, since φ(p 1
2
) = 1. It is also easy to see from

the definition that φ is weakly* upper semicontinuous. Lastly, to check
quasi-concavity, note that a function which is nondecreasing up to a
point and is nonincreasing from that point on is quasiconcave. There-
fore φ is quasi-concave.

We describe the utility of an act f on a state space S = {s1, . . . , sn}
using a utility profile with the format (u(f(s1)), . . . , u(f(sn))). Con-
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sider the sequence of acts {fn}n≥1 with utility profiles as follows

f1 =

(
2,

2

7

)
f2 =

(
4,

4

31

)
f3 =

(
8,

8

127

)
. . .

fn =

(
2n,

2n

22n+1 − 1

)
.

Suppose, by way of contradiction, that there is a fixed δ ∈ R such
that �+

φ satisfies Axiom 7. In Appendix B, we show that for all n ≥ 1,

fn ∼+
φ 1̃.

Now let m̃ be a constant act with constant utility m. The act
1
2fn + 1

2δ δ̃ has utility 2n−1 + 1
2 in state s1 and utility 2n−1

22n+1−1 + 1
2 in

state s2. If c ∈ [ 1
22m+1 ,

1
22m−1 ) for m ≥ 1, then the weighted expected

utility of 1
2fn+ 1

2δ δ̃ with respect to pc is at least 2n−m−2 + 2m−2. This
means that if n ≥ 4 + 2 log2 δ, then the minimum weighted expected
utility of 1

2fn + 1
2δ δ̃ is strictly greater than δ. The details are worked

out in Appendix B.
On the other hand, the minimum weighted expected utility of 1

2 1̃+
1
2 δ̃ is 1

2 (1 + δ) < δ for δ ≥ 1. Thus, 1
2fn + 1

2
1
δ δ̃ �

+
t,φ

1
2 1̃ + 1

2 δ̃ for

sufficiently large n, violating Axiom 7 with x∗ = 0̃. Although Axiom 7
is violated, it is easy to see that Axioms 1–6 hold. Indeed, as we show,
we can get a representation theorem for Axioms 1–6.

5.2 Maxmin weighted expected utility

It is useful to think of the CF model not as probability measures accom-
panied by confidence values, but rather as a set of “super-probability
measures.” By super-probability measure we mean that by multiplying
a probability measure by a positive scalar in [1,∞), we get a scaled pos-
itive vector whose components may sum up to more than 1. A super-
probability measure is therefore a nonnegative vector whose compo-
nents sum to at least 1. This notion is analogous to the sub-probability
measures used in our previous work on minimax weighted expected re-
gret [7], where a sub-probability measure is a nonnegative vector whose
components sum to at most 1. Intuitively, a sub-probability measure
is obtained by multiplying a probability measure by a scalar weight
that is at most 1. We are also interested in sets containing both super
and sub-probability measures. We will call these sets of generalized
probability measures.

13



It is often helpful to consider the set of generalized probability mea-
sures supporting the weighting function. For generalized probability
measures p and p′, let p′ ≥ p if for all s ∈ S, p′(s) ≥ p(s).

Definition 5.3 (Upper Support). The upper support of a nonnegative
weighting function t ◦ φ is the set V t◦φ = {p′ : ∃p(φ(p) > 0 and p′ ≥
t(φ(p)))}.

The upper support of t ◦ φ contains the set of generalized probabil-
ities t(φ(p))p, as well as all generalized probabilities that are larger.
Including these larger generalized probabilities does not change the
underlying preferences of the upper support, since these larger gen-
eralized probabilities will never provide minimum expected utilities.
While adding larger generalized probabilities does not affect the mini-
mum expected utility, working with the upper support turns out to be
technically convenient, as we shall see.

Define a relation �V t◦φ by taking

f �V t◦φ g ⇔ inf
p∈V t◦φ

∫
S

u(f)dp ≥ inf
p∈V t◦φ

∫
S

u(g)dp.

Just as before, we can convert back and forth between the upper sup-
port of a weighting function and the weighting function itself. The
proof is analogous to that for Proposition 4.4 and is left to the reader.

Proposition 5.4. �V t◦φ=�+
t,φ .

For the results beyond this point, we assume that the state space
S is finite, since we make use of results due to Halpern and Leung [7],
which are proved under the assumption of a finite state space.

Theorem 5.5. Let t : (0, 1] → R+ be a strictly decreasing function
with t(1) > 0. For all X, nonconstant U+, S, and normal φ, the pref-
erence order �+

t,φ satisfies Axioms 1–6. Furthermore, if t is continu-
ous, limx→0+ t(x) = ∞, and the preference order � on the acts in F
satisfies Axioms 1–6, then there exists a a nonnegative utility function
U+ on X and a regular* fuzzy confidence function φ : ∆(S) → [0, 1]
such that t ◦ φ has convex upper support, and �=�+

t,φ. Moreover, U+

is unique up to positive linear transformations, and φ is unique in the
sense that if φ′ is such that �+

t,φ′=� and φ′◦t has convex upper support,
then φ = φ′.

Theorem 5.5 characterizes t-maxmin weighted expected utility with-
out the threshold α0 of CF. By doing so, we show that the lower bound
α0 on the confidence or weight of probabilities is not a crucial part of
the characterization of a weighted version of MMEU. Moreover, we
provide a uniqueness result that is in some sense stronger than that by
CF [3], in that our uniqueness result directly identifies a “representa-
tive” set of beliefs, while the CF construction [3] needs to be maximal

14



in order to be unique. For example, consider a state space S with two
states, and the regular* fuzzy set φ such that φ(p) = 1 for all p ∈ ∆(S).
Consider a second regular* fuzzy set φ′ where φ′(p) = 1

1+mins∈S p(s)
. It

is not difficult to check that both sets induce the same maxmin pref-
erences in the Chateaneuf and Faro representation, since the supports
of the two regular* fuzzy sets have the same convex hull.

The requirement that limx→0+ t(x) = ∞ is necessary to model
probability measures that are arbitrarily close to being “ignored”. This
requirement was not necessary in the representation that made use of
a lower bound α0. However, there is another natural way to relax the
constraints on t without introducing a lower bound α0. As we show
in the next section, if instead of restricting to nonnegative utilities,
we restrict to nonpositive utilities, then we can drop the requirement
that limx→0+ t(x) = ∞, thus allowing a larger set of transformation
functions.

5.3 Nonpositive utilities

Although the preceding results provide a relatively simple characteriza-
tion of t-weighted maxmin expected utility, we have not yet presented
the full picture. In the preceding results, just as in the CF model [3],
we have restricted utilities of acts to be nonnegative. It is easy to see
why the restriction to nonnegative utilities was necessary. A larger
weight makes positive utilities better but negative utilities worse. If
we were to allow utilities to range over positive and negative values,
the resulting decision rule would have very different, rather unintuitive
behavior.

It turns out we can get a simpler decision rule, characterized almost
exactly1 by Axioms 1–6, if we look at nonpositive utilities instead of
nonnegative utilities; in this section, we consider a representation that
is restricted to nonpositive utilities, rather than nonnegative utilities.
We use the notation U− to indicate a nonpositive utility function.

Definition 5.6 (Weighted maxmin representation). Given a confi-
dence function φ : ∆(S)→ [0, 1] and strictly increasing transformation
function t : [0, 1]→ R+, define �−t,φ as follows:

f �−t,φ g ⇔ min
p∈∆(S)

t(φ(p))
∑
s∈S

p(s)u(f, s) ≥ min
p∈∆(s)

t(φ(p))
∑
s∈S

p(s)u(g, s).

The − superscript on �−t,φ denotes that the relation is defined on
acts with nonpositive utilities. One benefit of using nonpositive utilities

1Because we restrict to nonpositive utilities instead of nonnegative utilities, instead of
a worst outcome/act we now have a best outcome/act instead. Thus Axiom 4 no longer
holds and is replaced by Axiom 8.
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instead of nonnegative utilities is that we no longer need to transform
confidence values φ(p) in (0, 1] into multiplicative weights t(φ(p)) ∈
[0,∞). Instead, because a larger multiplicative confidence value results
in utilities that are more negative, we can simply use the confidence
function as the weights. Equivalently, we can take t to be the identity.
Arguably this is the most natural choice for t, and minimizes concerns
regarding which transformation function to use.

We show that preferences generated by the weighted maxmin rep-
resentation is characterized by Axioms 1–6, with Axiom 4 replaced by
the following axiom:

Axiom 8 (Best Act Independence). There exists a best outcome x ∈ X
such that x∗ � f for every f ∈ F . Moreover,

f ∼ g ⇒ αf + (1− α)x∗ ∼ αg + (1− α)x∗.

In the case of nonpositive utilities, as is in the case of minimax
weighted expected regret (MWER) [7], it is useful to look at the lower
support V t◦φ formed by the set of sub-probabilities, defined by

V t◦φ = {p′ : ∃p(p′ ≤ t(φ(p))p)}.

Theorem 5.7. Let t : [0, 1]→ R+ be a strictly increasing, continuous
transformation such that t(1) > 0 ≥ t(0). For all X, nonconstant U−,
S, and regular* fuzzy φ, the preference order �−t,φ satisfies Axioms
1–3, 5–6, and 8. Conversely, if a preference order � on the acts in
F satisfies Axioms 1–3, 5–6, and 8, then there exists a nonpositive
utility function U− on X and a confidence function φ : ∆(S) → [0, 1]
such that φ is regular* fuzzy, has convex lower support, and �=�−t,φ.

Moreover, U− is unique up to positive linear transformations, and φ is
unique in the sense that if φ′ is such that �−t,φ′=� and φ◦ t has convex
lower support, then φ = φ′.

Note that the transformation t in Theorem 5.7 has domain [0, 1]
instead of (0, 1). This is because in a setting with nonpositive utilities,
a confidence value of 0 can be mapped to a weight of 0, contribut-
ing nothing to the definition of the preferences. This is analogous to
a measure being ignored in the case of nonnegative utilities. Further-
more, t is required to be strictly increasing, instead of decreasing, since
a larger multiplier amplifies the significance of a negative utility value.
We need that t(1) > 0, since if t(1) = 0 then the preferences will be
trivial. In the second part of the theorem, we need t(0) ≤ 0 in order to
find a representation for all possible preferences that satisfy the axioms.
For example, suppose the preference � is such that (c, 0) ∼ (c′, 0) for
all c, c′ ∈ R−. Intuitively, this means that the first state is ignored.
More precisely, any probability measure giving positive probability to
the first state should be ignored. If t(0) > 0, then we do not have the
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representation power to ignore these probability measures. Therefore,
we are unable to find a representation for �.

5.4 The case of general acts

We have considered two different settings, one restricted to nonnegative
utilities, and one restricted to nonpositive utilities. One might wonder
whether a maxmin weighted expected utility representation could ap-
ply to a setting that include both positive and negative utilities. Recall
that in the case of nonnegative utilities, a large positive multiplier on
the utility decreases the impact of the constraint or weighted proba-
bility measure, while in the case of nonpositive utilities, a large posi-
tive multiplier on the utility increases the impact of the constraint or
weighted probability measure. As a result, to have reasonable behavior
when dealing with both positive and negative utilities, the multiplier
on a utility value must depend not only on the probability measure,
but also on the utility value itself (whether it is positive or negative).
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A Proof of Theorem 4.2

Proof of Theorem 4.2 . We assume that t is continuous and strictly
decreasing, and that there exists some β > 0 such that [β, β/α∗0(φ)] ∈
range(t). Recall that α∗0(φ) = max{α0,minp∈∆(S) φ(p)}.

Let α′0 = t−1( β
α∗0

) and for all p ∈ ∆(S), let φ′(p) = t−1( β
φ(p) ). It is

easy to see that, for all acts f, g,

min
p∈Lα0

φ

1

φ(p)

∫
S

u(f)dp ≥ min
p∈Lα0

φ

1

φ(p)

∫
S

u(g)dp

iff min
{p:φ(p)≥α′0}

β

φ(p)

∫
S

u(f)dp ≥ min
{p:φ(p)≥α′0}

β

φ(p)

∫
S

u(g)dp

iff min
p∈Lα′0φ

′
t(φ′(p))

∫
S

u(f)dp ≥ min
p∈Lα′0φ

′
t(φ′(p))

∫
S

u(g)dp,

since for all p ∈ Lα0
φ,

β

φ(p)
= t(t−1(

β

φ(p)
)) = t(φ′(p)).
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Now we show that if t(1) = β, then φ′ must be a regular* fuzzy set.
Since φ is normal, there exists p∗ such that φ(p∗) = 1. By definition
of φ′, φ′(p∗) = t−1( β

φ(p∗) ) = t−1(β) = 1, so φ′ is normal.

To show that φ′ is weakly* upper semicontinuous, we must show
that the set Lαφ

′ = {p ∈ ∆(S) : φ′(p) ≥ α} is weakly* closed for
α ∈ [0, 1]. In other words, we have to show that the set Lαφ

′ contains
all of its limit points, for all α ∈ [0, 1]. Now, for α = 0, Lαφ

′ = ∆(S)
and is closed. So consider the case α > 0.

Recall from our definition of φ′ that φ′(p) = t−1( β
φ(p) ) for all p.

Suppose pn → p. Observe that β
φ(pn) is in the domain of t−1 for all

n, since [β, β/α∗0(φ)] ∈ range(t). Note that for all p, φ′(p) ≥ α if and
only if

t−1(
β

φ(p)
) ≥ α

iff
β

φ(p)
≤ t(α)

iff φ(p) ≥ β

t(α)
,

where t(α) ≥ β since 0 < α ≤ 1, t is monotonically decreasing, and
t(1) = β. Since φ is assumed to be weakly* upper semicontinuous, and
φ(pn) ≥ β

t(α) for all n, we have φ(p) ≥ β
t(α) . Therefore, φ′(p) ≥ α, as

required.
Finally, to show that φ′ is quasi-concave, let γ ∈ [0, 1]. Using the

fact that t is strictly monotonically decreasing, we have that

φ(γp1 + (1− γ)p2) ≥ min(φ(p1), φ(p2))

⇒ β

φ(γp1 + (1− γ)p2)
≤ max(

β

φ(p1)
,

β

φ(p2)
)

⇒ t−1(
β

φ(γp1 + (1− γ)p2)
) ≥ min(t−1(

β

φ(p1)
), t−(

β

φ(p2)
))

⇒ φ′(γp1 + (1− γ)p2) ≥ min(φ′(p1), φ′(p2)).

For the other direction, suppose that t(1) = β and that φ′ is a
regular* fuzzy confidence function. We want to show that φ defined
by φ(p∗) = 1

t(φ′(p∗)) is also regular* fuzzy. The arguments for this

direction are analogous to those used to show the first direction.

B Details of Example 5.2

We now show that for all n ≥ 1, fn ∼+
φ 1̃.
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Suppose c ∈ [ 1
22m+1 ,

1
22m−1 ). The weighted expected utility of fn

with respect to pc is

2m
[
c2n + (1− c) 2n

22n+1 − 1

]
, for m ∈ {0, 1, 2, . . .}.

If m = n, note that

2n
[

1

22n+1
2n +

22n+1 − 1

22n+1

2n

22n+1 − 1

]
= 1.

If m < n, then

2m
[
c2n + (1− c) 2n

22n+1 − 1

]
≥ 2m

[
1

22m+1
2n +

22m−1 − 1

22m−1

2n

22n+1 − 1

]
=

2n

2m+1
+

22m−1 − 1

2m−1

2n

22n+1 − 1

≥ 2n

2m+1
≥ 1.

If m > n, then

2m
[
c2n + (1− c) 2n

22n+1 − 1

]
≥ 2m

[
1

22m+1
2n +

22m−1 − 1

22m−1

2n

22n+1 − 1

]
=

2n

2m+1
+

22m−1 − 1

2m−1

2n

22n+1 − 1

≥ 2n

2m+1
+

22m−1 − 1

2m−1

1

2n+1

≥ 2n

2m+1
+

22m−1

2m+n
− 1

2m+n

≥ 2m−n−1 ≥ 1.

If c ∈ [ 1
2 , 1], then the weighted expected utility of fn is

c2n + (1− c) 2n

22n+1 − 1
≥ c2n ≥ 2n−1.

Therefore, for all n, the minimum weighted expected utility of fn is 1,
so fn ∼+

φ 1̃.
Now let m̃ be a constant act with constant utility m. The act

1
2fn + 1

2δ δ̃ has utility 2n−1 + 1
2 in state s1 and utility 2n−1

22n+1−1 + 1
2 in

state s2. If c ∈ [ 1
22m+1 ,

1
22m−1 ) for m ≥ 1, then the weighted expected

utility of 1
2fn + 1

2δ δ̃ with respect to pc is

2m
[
c

(
2n−1 +

1

2

)
+ (1− c)

(
2n−1

22n+1 − 1
+

1

2

)]
≥ 1

2m+1

(
2n−1

)
+

22m−1 − 1

2m−1

(
1

2

)
≥2n−m−2 + 2m−2.
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Suppose that n ≥ 4 + 2 log2 δ and δ ≥ 1. If n ≥ m+ 2 + log2 δ,

2n−m−2 + 2m−2 > 2log2 δ = δ.

Otherwise, if n < m + 2 + log2 δ, since n ≥ 4 + 2 log2 δ, it follows
that m ≥ log2 δ + 2, and

2n−m−2 + 2m−2 > 2log2 δ = δ.

If c ≥ 1
2 , then the weighted expected utility of 1

2fn + 1
2δ δ̃ with

respect to pc is

c

(
2n−1 +

1

2

)
+ (1− c)

(
2n−1

22n+1 − 1
+

1

2

)
>

1

2
2n−1 ≥ 1

2
23+2 log2 δ ≥ 22δ2 > δ,

since δ ≥ 1. This means that if n ≥ 4 + 2 log2 δ, then the minimum
weighted expected utility of 1

2fn + 1
2δ δ̃ is strictly greater than δ.

C Proof of Theorem 5.5

We show here that if a family of preferences � satisfies Axioms 1–6,
then � can be represented as maximizing weighted expected utility
with respect to a regular confidence function and a utility function.
We make use of many of the same techniques as used in [7]. Key
differences are highlighted.

First, we establish a von-Neumann-Morgenstern expected utility
function over constant acts. This part follows the CF proof, rather
than the proof in [7].

Lemma C.1. If Axioms 1, 3 and 5 hold, then there exists a noncon-
stant function U : X → R, unique up to positive affine transformations,
such that for all constant acts l∗ and (l′)∗,

l∗ � (l′)∗ ⇔
∑

{y: l∗(y)>0}

l(y)U(y) ≥
∑

{y: l′(y)>0}

l′(y)U(y).

Proof. As noted by CF, it was shown by Herstein and Milnor [?] that
Axioms 1, 3 and 5 are sufficient to satisfy the premises of the von-
Neumann-Morgenstern theorem.

Since U is nonconstant, we can choose a U such that the minimum
value that it takes on is 0 (for some constant act), and the maximum
value it takes on is at least 1. If c is the utility of some lottery lc,
let l∗c be a constant act such that l∗(s) = lc, so that u(l∗c ) = c. The
following lemma, whose proof is given in [7] (Lemma 2), follows from
Lemma C.1.

20



Lemma C.2. u(l∗c ) ≥ u(l∗c′) iff l∗c � l∗c′ ; similarly, u(l∗c ) = u(l∗c′) iff
l∗c ∼ l∗c′ , and u(l∗c ) > u(l∗c′) iff l∗c � l∗c′ .

In [7] a slightly different continuity axiom (Axiom 9) is used.

Axiom 9 (Mixture Continuity). If f � g � h, then there exist q, r ∈
(0, 1) such that

qf + (1− q)h � g � rf + (1− r)h.

It is not difficult to derive Mixture Continuity from completeness (Ax-
iom 1) and Axiom 3. Therefore, from here on, we assume that the
preference order satisfies Mixture Continuity.

We establish some useful notation for acts and utility acts (real-
valued functions on S). Given a utility act b, let fb, the act corre-
sponding to b, be the act such that fb(s) = lb(s), if such an act exists.
Conversely, let bf , the utility act corresponding to the act f , be de-
fined by taking bf (s) = u(f(s)). Note that monotonicity implies that
if fb = gb, then f ∼ g. That is, only utility acts matter. If c is a real,
we take c∗ to be the constant utility act such that c∗(s) = c for all
s ∈ S.

C.1 Defining a functional on utility acts

Our proof uses the same technique as that used in [7]. Specifically,
like Gilboa and Schmeidler [6], we define a functional I on utility acts
such that the preference order on utility acts is determined by their
value according to I (see Lemma C.4). Using I, we can then deter-
mine the weight of each probability in ∆(S), and prove the desired
representation theorem.

Recall that u represents � on constant acts, and that only utility
acts matter to �. The space of all nonnegative utility acts is the set
B+ of real-valued functions b on S where b(s) ≥ 0 for all s ∈ S. We
now define a functional I on utility acts in B+ such that for all f, g
with bf , bg ∈ B+, we have I(bf ) ≥ I(bg) iff f � g. Let

Rf = {α′ : l∗α′ � f}.

If 0∗ ≤ b ≤ 1∗, then fb exists, and we define

I(b) = sup(Rfb).

For the remaining utility acts b ∈ B+, we extend I by homogeneity.
Let ||b|| = |maxs∈S b(s)|. Note that if b ∈ B+, then 0∗ ≤ b/||b|| ≤ 1∗,
so we define

I(b) = ||b||I(b/||b||).
It is worth noting that while in [7] I was extended from the nonpos-

tive utility acts to the entire set of real-valued acts in order to invoke a
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separating theorem for Banach spaces, the extension is not performed
here. Consequently, we will be using a different separating hyperplane
theorem than in [7].

Lemma C.3. If bf ∈ B+, then f ∼ l∗I(bf ).

Proof. Suppose that bf ∈ B+ and, by way of contradiction, that
l∗I(bf ) ≺ f . If f ∼ l∗0, then it must be the case that I(bf ) = 0, since

I(bf ) ≥ 0 by definition of sup, and f ∼ l∗0 ≺ l∗ε for all ε > 0 by
Lemma C.2, so I(bf ) < ε for all ε < 0. Therefore, f ∼ l∗I(bf ). Other-

wise, since bf ∈ B+, by monotonicity, we must have l∗0 ≺ f , and thus
l∗0 ≺ f ≺ l∗I(bf ). By mixture continuity, there is some q ∈ (0, 1) such

that q · l∗0 + (1− q) · l∗I(bf ) ∼ l(1−q)I(bf ) � f , contradicting the fact that

I(b) is the least upper bound of Rf .
If, on the other hand, l∗I(bf ) � f , then l∗I(bf ) � f � l∗c , where the

existence of l∗c is guaranteed by Axiom 4. If f ∼ l∗c then it must be
the case that I(bf ) = c. This is because I(bf ) ≥ c since l∗c � l∗c , and
I(bf ) ≤ c since for all c′ > c, l∗c′ � f ∼ l∗c .

Otherwise, l∗I(bf ) � f � l
∗
c , and by Axiom 3, there is some q ∈ (0, 1)

such that q · l∗I(bf ) + (1− q)l∗c ≺ f . Since qI(bf ) + (1− q)c > I(bf ), this

contradicts the fact that I(bf ) is an upper bound of Rf . Therefore, it
must be the case that l∗I(bf ) ∼ f .

We can now show that I has the required property.

Lemma C.4. For all acts f, g such that bf , bg ∈ B+, f � g iff I(bf ) ≥
I(bg).

Proof. Suppose that bf , bg ∈ B+. By Lemma C.3, l∗I(bf ) ∼ f and g ∼
l∗I(bg). Thus, f � g iff l∗I(bf ) � l

∗
I(bg), and by Lemma C.2, l∗I(bf ) � l

∗
I(bg)

iff I(bf ) ≥ I(bg).

We show that the axioms guarantee that I has a number of standard
properties. The proof of each property is analogous to its counterpart
in [7], but here we deal with nonnegative utility acts, as opposed to
nonpositive utility acts.

Lemma C.5. (a) If c ≥ 0, then I(c∗) = c.

(b) I satisfies positive homogeneity: if b ∈ B+ and c > 0, then
I(cb) = cI(b).

(c) I is monotonic: if b, b′ ∈ B+ and b ≥ b′, then I(b) ≥ I(b′).

(d) I is continuous: if b, b1, b2, . . . ∈ B+, and bn → b, then I(bn) →
I(b).

(e) I is superadditive: if b, b′ ∈ B+, then I(b+ b′) ≥ I(b) + I(b′).
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Proof. For part (a), if c is in the range of u, then it is immediate from
the definition of I and Lemma C.2 that I(c∗) = c. If c is not in the
range of u, then since [0, 1] is a subset of the range of u, we must have
c > 1, and by definition of I, we have I(c∗) = |c|I(c∗/|c|) = c.

For part (b), first suppose that ||b|| ≤ 1 and b ∈ B+ (i.e., 0∗ ≤ b ≤
1∗). Then there exists an act f such that bf = b. By Lemma C.3,
f ∼ l∗I(b). We now consider the case that c ≤ 1 and c > 1 separately.

If c ≤ 1, by Worst Independence, cfb + (1 − c)l∗0 ∼ cl∗I(b) + (1 − c)l∗0.

By Lemma C.4, I(bcfb+(1−c)l∗0 ) = I(bcl∗
I(b)

+(1−c)l∗0 ). It is easy to check

that bcfb+(1−c)l∗0 = cb, and bcl∗
I(b)

+ (1 − c)l∗0 = cI(b)∗. Thus, I(cb) =

I(cI(b)∗). By part (a), I(cI(b)∗) = cI(b). Thus, I(cb) = cI(b), as
desired.

If c > 1, there are two subcases. If ||cb|| ≤ 1, since 1/c < 1, by
what we have just shown I(b) = I( 1

c (cb)) = 1
c I(cb). Crossmultiply-

ing, we have that I(cb) = cI(b), as desired. And if ||cb|| > 1, by
definition, I(cb) = ||cb||I(bc/||cb||) = c||b||I(b/||b||) (since bc/||cb|| =
b/||b||). Since ||b|| ≤ 1, by the earlier argument, I(b) = I(||b||(b/||b||) =
||b||I(b/||b||), so I(b/||b||) = 1

||b||I(b). Again, it follows that I(cb) =

cI(b).
Now suppose that ||b|| > 1. Then I(b) = ||b||I(b/||b||). Again, we

have two subcases. If ||cb|| > 1, then

I(cb) = ||cb||I(cb/||cb||) = c||b||I(b/||b||) = cI(b).

And if ||cb|| ≤ 1, by what we have shown for the case ||b|| ≤ 1,

I(b) = I(
1

c
(cb)) =

1

c
I(cb),

so again I(cb) = cI(b).
For part (c), first note that for b, b′ ∈ B+, if ||b|| ≤ 1 and ||b′|| ≤

1, then the acts fb and fb′ exist. Moreover, since b ≥ b′, we must
have (fb(s))

∗ � (fb′(s))
∗ for all states s ∈ S. Thus, by Monotonicity,

fb � fb′ . If either ||b|| > 1 or ||b′|| > 1, let n = max(||b||, ||b′||). Then
||b/n|| ≤ 1 and ||b′/n|| ≤ 1. Thus, I(b/n) ≥ I(b′/n), by what we have
just shown. By part (b), I(b) ≥ I(b′).

For part (d), note that if bn → b, then for all k, there exists nk
such that bn − (1/k)∗ ≤ bn ≤ bn + (1/k)∗ for all n ≥ nk. Moreover, by
the monotonicity of I (part (c)), we have that I(b− (1/k)∗) ≤ I(bn) ≤
I(b+ (1/k)∗). Thus, it suffices to show that I(b− (1/k)∗)→ I(b) and
that I(b+ (1/k)∗)→ I(b).

To show that I(b − (1/k)∗) → I(b), we must show that for all
ε > 0, there exists k such that I(b − (1/k)∗) ≥ I(b) − ε. By positive
homogeneity (part (b)), we can assume without loss of generality that
||b−(1/2)∗|| ≤ 1 and that ||b|| ≤ 1. Fix ε > 0. If I(b−(1/2)∗) ≥ I(b)−ε,
then we are done. If not, then I(b) > I(b) − ε > I(b − (1/2)∗). Since
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||b|| ≤ 1 and ||b − (1/2)∗|| ≤ 1, fb and fb−(1/2)∗ exist. Moreover,
by Lemma C.4, fb � f(I(b)−ε)∗ � fb−(1/2)∗ . By mixture continuity,
for some p ∈ (0, 1), we have pfb + (1 − p)f(b−(1/2)∗ � f(I(b)−ε)∗ . It
is easy to check that bpfb+(1−p)fb−(1/2)∗ = b − ((1 − p)/2)∗. Thus, by
Lemma C.4, fb−((1−p)/2)∗ � f(I(b)−ε)∗ , and I(b−((1−p)/2)∗) > I(b)−ε.
Choose k such that 1/k < (1−p)/2. Then, by monotonicity (part (c)),
I(b− (1/k)∗) ≥ I(b− ((1− p)/2)∗) > I(b)− ε, as desired.

The argument that I(b + (1/k)∗) → I(b) is similar and left to the
reader.

For part (e), if ||b||, ||b′|| ≤ 1, and I(b), I(b′) 6= 0, consider b
I(b) and

b′

I(b′) . Since I( b
I(b) ) = I( b′

I(b′) ) = 1, it follows from Lemma C.3 that

f b
I(b)
∼ f b′

I(b′)
. By Ambiguity Aversion, for all p ∈ (0, 1], pf b

I(b)
+

(1 − p)f b′
I(b′)

� f b
I(b)

. Thus, taking p = I(b)
I(b)+I(b′) , I( b+b′

I(b)+I(b′) ) =

1
I(b)+I(b′)I(b+b′) = I( I(b)

I(b)+I(b′)
b
I(b)+ I(b′)

I(b)+I(b′)
b′

I(b′) ) ≥ I( b
I(b) ) = I( b′

I(b′) ) =

1. Hence, I(b+ b′) ≥ I(b) + I(b′).
If either ||b|| > 1 or ||b′|| > 1, and both I(b) 6= 0 and I(b′) 6= 0,

then the result easily follows by positive homogeneity (property (b)).
If either I(b) = 0 or I(b′) = 0, let bn = b + 1

n

∗
and b′n = b′ + 1

n

∗
.

Clearly ||bn|| > 0, ||b′n|| > 0, bn → b, and b′n → b′n. By our argument
above, I(bn + b′n) ≥ I(bn) + I(b′n) for all n ≥ 1. The result now follows
from continuity.

C.2 Defining the confidence function

In this section, we use I to define a confidence function φ that maps
each p ∈ ∆(S) to a confidence value in [0, 1]. The heart of the proof
involves showing that the resulting function φ so determined gives us
the desired representation.

Given a confidence function φ, for b ∈ B+, define

WE (b) = inf
p∈P

φ(p)(
∑
s∈S

b(s)p(s)).

Define
E (b) = inf

p∈P

∑
s∈S

b(s)p(s).

and
Ep(b) =

∑
s∈S

b(s)p(s).

For each probability p ∈ ∆(S), define

φt(p) = inf{α ∈ R : I(b) ≤ αEp(b) for all b ∈ B+}, (1)
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and let φt(p) =∞ if the inf does not exist. Note that φt(p) ≥ 1, since
Ep((c)

∗) = I((c)∗) = c for all distributions p and c ∈ R. Moreover, it
is immediate from the definition of φt(p) that φt(p)Ep(b) ≥ I(b) for all
b ∈ B+. The next lemma shows that there exists a probability p where
we have equality.

Lemma C.6. (a) For some distribution p, we have φt(p) = 1.

(b) For all b ∈ B+, there exists p such that φt(p)Ep(b) = I(b).

Proof. The proofs of both part (a) and (b) use a separating hyperplane
theorem. If U is a convex subset of B+, and b /∈ U , then there is a
linear functional λ that separates U from b, that is, λ(b′) < λ(b) for all
b′ ∈ U . We proceed as follows.

For part (a), we must show that there exists a probability measure
p such that for all b ∈ B+, we have Ep(b) ≥ I(b). This would show
that φt(p) = 1.

Let U = {b′ ∈ B+ : I(b′) ≥ 1}. U is closed (by continuity of I)
and convex (by positive homogeneity and superadditivity of I), and
(0)∗ /∈ U . Thus, there exists a linear functional λ such that λ(b′) >
λ((0)∗) = 0 for b′ ∈ U . We can assume without lost of generality that
λ(1∗) = 1.

We want to show that λ is a positive linear functional, that is, that
λ(b) ≥ 0 if b ≥ 0∗. Clearly this holds for b′ such that I(b′) ≥ 1. If
b′ ≥ 0∗, I(b′) < 1, and I(b′) > 0, note that cI(b′) = I(cb′) ≥ 1 for some
c ≥ 0. Therefore, I(b′) ≥ 1

c ≥ 0. If b′ ≥ 0∗ and I(b′) = 0, note that
for all c > 0, λ(b′ + c∗) ≥ 0 by the previous case. Thus, λ(b′) ≥ 0. It
follows that λ is a positive functional.

Define the probability distribution p on S by taking p(s) = λ(1s).
To see that p is indeed a probability distribution, note that since 1s ≥ 0
and λ is positive, we must have λ(1s) ≥ 0. Moreover,

∑
s∈S p(s) =

λ(1∗) = 1. In addition, for all b′ ∈ B, we have

λ(b′) =
∑
s∈S

λ(1s)b
′(s) =

∑
s∈S

p(s)b′(s) = Ep(b
′).

Next, we claim that, for b ∈ B+,

for all c > 0, if I(b) > c, then λ(b) > c. (2)

To see why the claim is true, note that if I(b) ≥ c, then I(b/c) ≥ 1
by positive homogeneity, so λ(b/c) ≥ 1 and λ(b) ≥ c. Therefore,
λ(b) ≥ I(b), as desired.

The proof of part (b) is similar to that of part (a). We want to
show that, given b ∈ B+, there exists p such that φt(p)Ep(b) = I(b).
First consider the case where ||b|| ≤ 1. If I(b) = 0, then there must
exist some s such that b(s) = 0, for otherwise there exists c > 0 such
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that b ≥ c∗, so I(b) ≥ c. If b(s) = 0, let ps be such that ps(s) = 1.
Then Eps(b) = 0, so part (b) of the Lemma holds in this case.

If ||b|| ≤ 1 and I(b) > 0, let U = {b′ : I(b′) ≥ I(b)}. Again, U is
closed and convex, and b /∈ U , so there exists a linear functional λ such
that λ(b′) > λ(b) for b′ ∈ U . Since 1∗ ∈ U and we can assume without
loss of generality λ(1∗) = 1, we must have λ(b) < 1.

The same argument as that used in the proof of (a) shows that λ
is a positive functional.

Therefore, λ determines a probability distribution p such that, for
all b′ ∈ B+, we have λ(b′) = Ep(b

′). p, of course, will turn out to be
the desired distribution. To show this, we need to show that φt(p) =
I(b)/Ep(b). By definition, φt(p) ≥ I(b)/Ep(b). To show that φt(p) ≤
I(b)/Epb, we must show that I(b)

Ep(b) ≥
I(b′)
Epb′

for all b′ ∈ B+. Equivalently,

we must show that I(b)λ(b′)/λ(b) ≥ I(b′) for all b′ ∈ B+.
Essentially the same argument used to prove (2) also shows that

for all c > 0, if I(b′)
I(b) ≥ c, then λ(b′)

λ(b) ≥ c.

In particular, if I(b′)
I(b) ≥ c, then by positive homogeneity, I(b′)

c ≥ I(b),

so b′

c ∈ U , and λ( b
′

c ) > λ(b) and hence λ(b′)
λ(b) ≥ c.

It follows that λ(b′)/(λ(b)) ≥ I(b′)/(I(b)) for all b′ ∈ B+. Thus,
I(b)λ(b′)/λ(b) ≥ I(b′) for all b′ ∈ B+, as required.

Finally, if ||b|| > 1, let b′ = b/||b||. By the argument above, there
exists a probability measure p such that φt(p)Ep(b/||b||) = I(b/||b||).
Since Ep(b/||b||) = Ep(b)/||b||, and I(b/||b||) = I(b)/||b||, we must have
that φt(p)Ep(b) = I(b).

We can now complete the proof of Theorem 5.5. By Lemma C.6
and the definition of φt(p), for all b ∈ B+,

I(b) = inf
p∈∆(S)

φt(p)Ep(b). (3)

Recall that, by Lemma C.4, for all acts f, g such that bf , bg ∈ B+,
f � g iff I(bf ) ≥ I(bg). Thus, f � g iff

inf
p∈∆(S)

(
φt(p)

∑
s∈S

u(f(s))p(s)

)
≥ inf
p∈∆(S)

(
φt(p)

∑
s∈S

u(g(s))p(s)

)
.

To get the confidence function φ from φt, note that limx→0+ t(x) =
∞ and t(1) > 0. We let φ(p) = t−1(t(1)φt(p)), with the special case
φ(p) = 0 if φt(p) = ∞. (Note that t(1)φt(p) is in the range of t−1,
since φt(p) ≥ 1, t is nonincreasing, and limx→0+ t(x) =∞.)
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C.3 Properties of the confidence function

In this section, we show that the confidence function φ that we con-
structed satisfies the properties claimed in Theorem 5.5.

We first show that t ◦ φ = φt has convex upper support. To that
end, we show that if c1 ≥ φt(p1) and c2 ≥ φt(p2), then for all α ∈ (0, 1),

(αc1p1 + (1− α)c2p2) (S) ≥ φt
(

αc1p1 + (1− α)c2p2

(αc1p1 + (1− α)c2p2) (S)

)
.

By the definition of φt, it suffices to show that for all b ∈ B+,

I(b) ≤ (αc1p1 + (1− α)c2p2) (S)E αc1p1+(1−α)c2p2
(αc1p1+(1−α)c2p2)(S)

(b). (4)

It is easy to see that the inequality holds. Let b ∈ B+. The right-hand
side of (4) is equal to∑
s∈S

((αc1p1(s) + (1− α)c2p2(s))b(s)) = αc1Ep1(b) + (1− α)c2Ep2(b)

≥ αφt(p1)Ep1(b) + (1− α)φt(p2)Ep2(b)

≥ αI(b) + (1− α)I(b) (by (3))

≥ I(b).

We now show that φ is regular*. Since we’ve shown that, for some
p∗, φt(p

∗) = 1, we have φ(p∗) = t−1(t(1)1) = 1. Therefore φ is normal.
Secondly, we show that φ is weakly* upper semicontinuous. We

show that if {pn} → p and φ(pn) ≥ α for all n, then φ(p) ≥ α. Suppose
for the purpose of contradiction that φ(p) < α. Then φt(p) = t(φ(p)) >
t(α). By continuity of t, φt(pn) = t(φ(pn)) > t(α) for all sufficiently
large n, implying that φ(pn) < α, contradicting the assumption that
φ(pn) ≥ α. Therefore φ(p) ≥ α, as required.

We now show that φ is quasiconcave; that is, φ(βp1 + (1− β)p2) ≥
min{φ(p1), φ(p2)} for any β ∈ [0, 1]. Since t is strictly decreasing, so is
t−1. Thus, −t−1 is strictly increasing. Moreover, if φt is quasiconvex
then −t−1 ◦φt is also quasiconvex. Since the negative of a quasiconvex
function is quasiconcave, t−1 ◦ φt is quasiconcave. Therefore, if we
show that φt is quasiconvex, this would show that φ = t−1 ◦ φt is
quasiconcave.

Recall from (1) that

φt(p) = inf{α ∈ R : I(b) ≤ αEp(b) for all b ∈ B+}.

If max{φt(p1), φt(p2)} ≤ c for c ∈ R, then for all b ∈ B+, we have

I(b) ≤ cEp1(b),
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and
I(b) ≤ cEp2(b).

Therefore, for all b ∈ B+ and all β ∈ [0, 1], by the linearity of Ep(b)
with respect to the parameter p,

I(b) ≤ cEβp1+(1−β)p2(b).

This means that φt(βp1 + (1− β)p2) ≤ c. Thus, φt(βp1 + (1− β)p2) ≤
max{φt(p1), φt(p2)}. Therefore, φt is quasiconvex.

C.4 Uniqueness of the representation

In this section, we show that our constructed φ is the only regular*
fuzzy confidence function such that t ◦ φ has convex upper support,
and such that �+

t,φ=�. Our uniqueness result is similar in spirit to
the uniqueness results of Gilboa and Schmeidler [6], who show that
the convex, closed, and non-empty set of probability measures in their
representation theorem for MMEU is unique.

The proof of this result, like the proof of uniqueness in Gilboa
and Schmeidler [6], uses a separating hyperplane theorem to show the
existence of acts on which two different representations must ‘disagree’.
The proof presented here is essentially the same as that used in [7], with
only superficial changes to accommodate our definitions and notation.

Lemma C.7. For all confidence functions φ′, if �+
t,φ′=� and t ◦ φ′

has convex upper support, then φ = φ′.

Proof. Suppose for contradiction that there exists a regular* fuzzy
confidence function φ′ 6= φ such that t ◦ φ′ has convex upper sup-
port, and that �+

t,φ′=�
+
t,φ. Consider the two upper supports V t◦φ and

V t◦φ′ . V t◦φ and V t◦φ′ are both closed. To see why, consider a se-
quence {pn}n∈N contained in pn ∈ V t◦φ such that pn → p. We show
that p ∈ V t◦φ, by showing that for some q ∈ ∆(S), φ(q) > 0 and
p ≥ t(φ(q))q.

We first show that p ≥ t(φ(q))q for some q ∈ ∆(S). Recall that
for all n, there exists qn ∈ ∆(S) such that pn ≥ t(φ(qn))qn. Since
qn ∈ ∆(S), qkm → q for some subsequence {qkm} and q ∈ ∆(S).
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Therefore, we have

p = lim
n→∞

pn

≥ lim sup
n→∞

t(φ(qn))qn, since pn ≥ t(φ(qn))qn

= lim
n→∞

sup
m≥n

t(φ(qkm))qkm

= lim
n→∞

sup
m≥n

t(φ(qkm)) lim
m→∞

qkm

= lim
n→∞

t( inf
m≥n

φ(qkm)) lim
m→∞

qkm , since t is nonincreasing and continuous

= t(lim inf
m→∞

φ(qkm)) lim
m→∞

qkm , by continuity of t

≥ t(φ(q))q,

since φ(q) ≥ lim supm→∞ φ(qkm) ≥ lim infm→∞ φ(qkm) by upper semi-
continuity of φ, and t is nonincreasing.

It remains to show that φ(q) > 0. To that end, suppose for the
purpose of contradiction that φ(q) = 0. Then it must be the case
that limm→∞ φ(qkm) = 0, since if there exists an ε > 0 such that
limm→∞ φ(qkm) ≥ ε, then by upper semicontinuity of φ it must be
the case that φ(q) ≥ ε. Since limx→0+ t(x) = ∞, we have that
limm→∞ t(φ(qkm)) = ∞. However, recall that pn ≥ t(φ(qn))qn for
all n. Since qn ∈ ∆(S) and hence does not vanish, pn cannot be a
convergent sequence. Hence it must be the case that φ(q) > 0.

Therefore, p ∈ V t◦φ, as required, and that V t◦φ is closed. The same
argument shows that V t◦φ′ is closed.

Without loss of generality, let q ∈ V t◦φ′\V t◦φ. Since V t◦φ and {q}
are closed, convex, and disjoint, and {q} is compact, the separating
hyperplane theorem [12] says that there exists θ ∈ R|S| and c ∈ R such
that

θ · p > c for all p ∈ V t◦φ, and θ · q < c. (5)

By scaling c appropriately, we can assume that |θ(s)| ≤ 1 for all s ∈ S.
Now we argue that it must be the case that θ(s) ≥ 0 for all s ∈ S (so
that θ corresponds to the utility profile of some act with nonnegative
utilities). Suppose that θ(s′) < 0 for some s′ ∈ S. By (5), θ · p >
c for all p ∈ V t◦φ. Let p∗ ∈ V t◦φ be any measure with φ(p∗) = 1, and
let p∗∗ ∈ V t◦φ be defined by

p∗∗(s) =

{
p∗(s), if s 6= s′

|S|max{|c|,maxs′′∈S |p
∗(s′′)|}

|θ(s′)| , if s = s′.

We have defined p∗∗ such that p∗∗ ≥ p∗, since for all s ∈ S, p∗∗(s) ≥
p∗(s). To see how, note that p∗∗(s) = p∗(s) for s 6= s′, and p∗∗(s) ≥
maxs′′∈S |p∗(s′′)| ≥ p∗(s) for s = s′. Therefore, p∗∗ is in V t◦φ.
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Our definition of p∗∗ also ensures that θ·p∗∗ =
∑
s∈S p

∗∗(s)θ(s) ≤ c,
since ∑

s∈S
p∗∗(s)θ(s) =p∗∗(s′)θ(s′) +

∑
s 6=s′

p∗∗(s)θ(s)

≤p∗∗(s′)θ(s′) +
∑
s 6=s′
|p∗∗(s)|, since |θ(s)| ≤ 1

=− |S|max{|c|,max
s′′∈S

|p∗(s′′)|}+
∑
s6=s′
|p∗∗(s)|

≤−|c| ≤ c.

This contradicts (5), which says that θ · p > c for all p ∈ V t◦φ. Thus
it must be the case that θ(s) ≥ 0 for all s ∈ S.

Consider the θ given by the separating hyperplane theorem, and let
f be an act such that u ◦ f = θ. f ∼ l∗d for some constant act l∗d. Since
V t◦φ and V t◦φ′ as sets of generalized probabilities both represent �,
and V t◦φ and V t◦φ′ both contain a normal probability measure,

min
p∈V t◦φ

p · (u ◦ f) = min
p∈V t◦φ

p · (u ◦ l∗d) = d = min
p∈V t◦φ′

p · (u ◦ f).

However, by (5),

min
p∈V t◦φ

p · (u ◦ f) > c > min
p∈V t◦φ′

p · (u ◦ f),

which is a contradiction.

D Proof of Theorem 5.7

Proof. The proof is almost the same as the proof of Theorem 5.5. We
point out the differences, which are mostly straightforward adaptations
from B+ to B−. Lemma C.1 and Lemma C.2 hold without change. By
Axiom 8, we can assume that the maximum value that u takes on is 0,
and by Axiom 1 we can assume that the minimum is no greater than
−1.

We now define a functional I on utility acts, as before. All occur-
rences of B+ in the proof of Theorem 5.5 needs to be replaced by B−,
defined by the real-valued functions b on S where b(s) ≤ 0 for all s ∈ S.

More specifically, let

Rf = {α′ : l∗α′ � f}.

If 0∗ ≥ b ≥ (−1)∗, then fb exists, and we define

I(b) = sup(Rfb).
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For the remaining utility acts b ∈ B+, we extend I by homogeneity, as
before.

The analog of Lemma C.3 for bf ∈ B− follows from analogous
arguments used in the original proof. The case of l∗I(bf ) ≺ f , however,

is a bit simpler than for the positive case.

Lemma D.1. If bf ∈ B−, then f ∼ l∗I(bf ).

Proof. Suppose, by way of contradiction, that l∗I(bf ) ≺ f . If f ∼ l∗0,

then I(bf ) ≥ 0 by the definition of I. However, we also have I(bf ) ≤ 0
by Lemma C.4, so I(bf ) = 0, and therefore f ∼ l∗I(bf ), as required.

Otherwise, f ≺ l∗0 by monotonicity, so l∗I(bf ) ≺ f ≺ l∗0, which, when

taken together with mixture continuity, contradicts the definition of
I.

The proof of Lemma C.4 still holds. The analog of Lemma C.5 also
follows from simular arguments; we discuss some key differences below.

Lemma D.2. (a) If c ≤ 0, then I(c∗) = c.

(b) I satisfies positive homogeneity: if b ∈ B− and c > 0, then
I(cb) = cI(b).

(c) I is monotonic: if b, b′ ∈ B− and b ≥ b′, then I(b) ≥ I(b′).

(d) I is continuous: if b, b1, b2, . . . ∈ B−, and bn → b, then I(bn) →
I(b).

(e) I is superadditive: if b, b′ ∈ B−, then I(b+ b′) ≥ I(b) + I(b′).

Proof. For part (b), instead of making use of Axiom 4 (worst indepen-
dence), we use Axiom 8 (best independence).

For part (e), note that since I(b) is nonpositive for b ∈ B−, I( b
I(b) ) is

not defined, unlike in the case of nonnegative utilities. We use the same
proof as in [7]: Clearly, I( b

−I(b) ) = −1. Therefore, f b
−I(b)

∼ f b′
−I(b′)

∼

l∗−1. From Axiom 6 (ambiguity aversion), taking p = −I(b)
−I(b)−I(b′) , we

have

I

(
−I(b)

−I(b)− I(b′)

b

−I(b)
+

−I(b′)

−I(b)− I(b′)

b′

−I(b′)

)
≥ I(

b

−I(b)
) = −1,

which implies that I(b+ b′) ≥ I(b) + I(b′), as required.

We now use I to define a confidence function φ. WE ,E , and E are
defined as before. For each probability p ∈ ∆(S), define

φt(p) = sup{α ∈ R : I(b) ≤ αEp(b) for all b ∈ B−}.

Note that φt(p) ≤ 1, since Ep((c)
∗) = I((c)∗) = c for all distributions p

and c ∈ R. Moreover, φt(p) ≥ 0 for all b ∈ B−. The next lemma shows
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that there exists a probability p where we have equality. The proof of
the lemma is similar to that of Lemma C.6, and is left to the reader.

Lemma D.3. (a) For some distribution p, we have φt(p) = 1.

(b) For all b ∈ B−, there exists p such that φt(p)Ep(b) = I(b).

By Lemma D.3 and the definition of φt(p), for all b ∈ B−,

I(b) = inf
p∈∆(S)

φt(p)Ep(b).

We have f � g

iff inf
p∈∆(S)

(
φt(p)

∑
s∈S

u(f(s))p(s)

)
≥ inf
p∈∆(S)

(
φt(p)

∑
s∈S

u(g(s))p(s)

)

iff t(1) inf
p∈∆(S)

(
φt(p)

∑
s∈S

u(f(s))p(s)

)
≥ t(1) inf

p∈∆(S)

(
φt(p)

∑
s∈S

u(g(s))p(s)

)
.

Since t is strictly increasing, t(1) > t(0). Therefore, since φt(p) ∈ [0, 1]
and t(0) ≤ 0, t(1)φt(p) is in the range of t, and we can define

φ(p) = t−1(t(1)φt(p)).

We now have f � g

iff inf
p∈∆(S)

(
t(φ(p))

∑
s∈S

u(f(s))p(s)

)
≥ inf
p∈∆(S)

(
t(φ(p))

∑
s∈S

u(g(s))p(s)

)
.

Finally, uniqueness of the representation follows from arguments
analogous to those for nonnegative utilities.
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