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Abstract

Sufficient conditions are given under which ratifiable acts exist.

1 Introduction

Jeffrey (1983) suggested that you should choose an act that would be best for “the person you
expect to be when you will have chosen”. He called an act that satisfied this property ratifiable.
Whether one should always choose ratifiable acts is a matter of ongoing debate. Skyrms (1990b)
argues that there are situations where ratifiable acts are appropriate and other situations where
they are not, whereas Harper (1986) seems to suggest that they are always appropriate. Joyce
(2012) gives a more recent perspective.

Although I personally do not believe that ratifiable acts are always appropriate, I do not
enter into this discussion here. Rather, I examine more closely the question of when ratifiable
acts exist. As Rabinowicz (1985) shows by example, in arguably natural problems, there can
exist several ratifiable acts, a unique ratifiable act, or no ratifiable “pure” acts (i.e., ones
where there is no randomization). Harper (1986) points out that existence of ratifiable act will
require randomization. This should not be surprising. Ratifiability has always been understood
as an equilibrium notion. It is well known that Nash equilibrium does not always exist in
pure strategies; to show that a Nash equilibrium always exists, Nash (1951) had to use mixed
strategies (where players can randomize over pure strategies). However, as Richter (1984) shows,
when there is a cost to randomizing, ratifiable acts may not exist.1

While Harper (1986) is willing to ignore settings where there is no ratifiable act, saying
“I regard cases where no act is ratifiable as genuinely pathological and have no qualms about
allowing that causal utility theory makes no recommendations in them”, it does not seem to
me that charging for randomization is pathological. There is a cognitive cost to randomizing.

∗Work supported in part by NSF under grants 1703846 and 1718108 and a grant from the Open Philanthropy
Foundation.

1This is also a problem for Nash equilibrium; see Section 3.
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In any case, there still remains the question of when ratifiable acts do exist. Skyrms (1990a,
1990b) suggests conditions under which ratifiable acts exist, but does not prove any theorem.
Indeed, he says “The question of the existence of ratifiable acts . . . is a delicate one which calls
for careful examination” (Skyrms 1990b).

Skyrms’ conditions for the existence of ratifiable acts are essentially that we allow random-
ization and that there is no cost for randomizing. While the intuition behind these assumptions,
and the need for them, is clear, making them precise is not trivial. Moreover, it turns out that
these assumptions do not quite suffice for ratifiable acts to exist. Here I show that once we
formalize these assumptions appropriately then, together with an additional assumption about
how conditioning works, they suffice to show that ratifiable acts exist. Not surprisingly, once
we have the appropriate conditions, the proof of the existence of ratifiable acts is quite similar
to that of the proof of the existence of Nash equilibrium. In the next section, I provide the
details.

2 The existence of ratifiable acts

Before proving the existence of ratifiable acts, I first have to define the notion. Jeffrey (1983)
does not provide a formal definition; I use Harper’s (1984) formalization, also used by Skyrms
(1990a, 1990b) and later authors.

I follow the standard Savage (1954) approach to decision theory. Specifically, I assume that
a state space S and a set O of outcomes are given. An act is a function from states to outcomes.
Let A denote the set of acts. For simplicity in this paper, I assume that S, O, and therefore
A are finite and nonempty (although for Savage, it is important that S can be infinite; indeed,
his postulates force S to be infinite).

To make sense of ratifiable acts, it has typically been assumed that there is a probability
Pr on S ×A and a utility function u mapping outcomes to utilities (real numbers).2 Given an
act a, let ua be the function on states defined by setting ua(s) = u(a(s)).

Definition 2.1: An act a is ratifiable if, for all acts a′ ∈ A,

EPr|a(ua) ≥ EPr|a(ua ′), (1)

where EPr|a(u) denotes the expected utility of a function u on states with respect to the prob-
ability Pr |a:

EPr|a(u) =
∑
s∈S

(Pr |a)(s)u(s).

I remark that Pr |a is sometimes denoted Pr(· | a), and (Pr | a)(s) is typically written Pr(s | a);
I use these notations interchangeably. Intuitively, Definition 2.1 says that a is ratifiable if the

2Actually we do not quite need a probability Pr on S × A. Rather, for each act a ∈ A, we must have
a conditional probability Pra on S. Intuitively, Pra(s) = Pr(s | a), the probability of s given that act a is
performed. To my mind, having such a family of conditional probabilities is more reasonable than having a
probability on S × A. To be more consistent with the literature, I assume a probability Pr on S × A here,
although the reader can easily check that all that is ever used are the conditional probability Pr(· | a). I also
implicitly assume through that Pr(a) (or, more precisely, Pr(S × {a})) is positive, so that conditioning on a is
well defined.
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agent would be at least as happy with a as with any other act a ′ conditional on a having been
performed.

Next, I make precise the notion that there is “no cost for randomizing”. Given A (which
a view as a set of pure—deterministic—acts), let A∗ be the convex closure of A, so that if
A = {a1, . . . , an}, then A∗ consists of all acts of the form α1a1+· · ·+αnan, where α1+· · ·+αn = 1
and αi ≥ 0 for i = 1, . . . , n. The act α1a1 + · · · + αnan is interpreted as “perform a1 with
probability α1 and . . . and perform an with probability αn”. Similarly, let O∗ be the convex
closure of O. Extend u to a function u∗ : O∗ → IR in the obvious way, by taking

u∗(α1o1 + · · ·+ αnon) = α1u(o1) + · · ·+ αnu(on). (2)

The assumption that there is no cost for randomization is captured by assuming that

(α1a1 + · · ·+ αnan)(s) = α1a1(s) + · · ·+ αnan(s) : (3)

the outcome of performing the act α1a1+· · ·+αnan in state s is, with probability α1, the outcome
of performing act a1 in state s and . . . and with probability αn, the outcome of performing an
in state s. That is, performing a convex combination of acts in state s leads to the obvious
convex combination of outcomes in O∗; there are no “untoward” outcomes. By way of contrast,
if there were a penalty for randomizing, both a1(s) and a2(s) might give the outcome $1,000,
although (.5a1 + .5a2)(s) gives an outcome of $0. Of course, this is inconsistent with (3). In
combination with (2), (3) ensures that the utility of performing the act α1a1 + · · ·+αnan is the
appropriate convex combination of the utilities of performing a1, . . . , an.

Assumption (3) does not suffice to show the existence of ratifiable acts. To explain why, I first
introduce the additional assumption that is needed, which involves conditioning on randomized
acts. More precisely, we need to extend Pr to a probability Pr∗ on S ×A∗. Again, as I pointed
out above, all we really need to know is Pr(· | a∗) for acts a∗ ∈ A∗. Supposed that we know
Pr(· | a) and Pr(· | a ′) for a, a ′ ∈ A. What should Pr∗(· | αa + (1− α)a ′) be? One approach to
defining this is to use Jeffrey’s rule and take

Pr∗(· | αa + (1− α)a ′) = αPr(· | a) + (1− α) Pr(· | a ′). (4)

This seems reasonable: with probability α, a will be played, in which case Pr(· | a) describes the
conditional probability; and with probability (1− α), a ′ will be played, in which case Pr(· | a ′)
describes the conditional probability. While this is reasonable and what I will assume to get
the result, note that it is a nontrivial assumption.

To understand the issues involved, consider a variant of Newcomb’s problem: There are two
boxes, a red box and a blue box, and an extremely accurate predictor has put $1,000 in one
of them and nothing in the other. The agent must choose one of these boxes; that is, we take
A = {r, b}. We can take O to consist of two outcomes: getting $1,000 and getting nothing. If
the predictor predicts that the agent will choose the red box, then he puts the $1,000 in the
blue box; if he predicts that the agent will choose the blue box, he puts the $1,000 in the red
box. Thus, conditional on choosing the red box, the agent would prefer to choose the blue box;
conditional on choosing the blue box, the agent would prefer to choose the red box. So neither
r nor b is ratifiable.

Now suppose that we extend A to A∗. To make this concrete, suppose that we allow a
randomizing device; the agent can set the device to a number α between 0 and 1, and will
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then play the act αr+ (1−α)b. Assuming (3) and (4), a straightforward argument shows that
choosing α = 1/2 gives the unique ratifiable act. However, suppose that we change the game so
that if the predictor predicts that the agent randomizes, that is, if the predictor predicts that
the agent will set α strictly between 0 and 1, then the predictor will put $1,000 in the red box.

Let the state space S consist of two states; in s1, the predictor puts $1,000 in the red box,
and in s2, the predictor puts $1,000 in the blue box. We can assume that (3) holds: the outcome
of randomizing over acts is the appropriate convex combinations of outcomes. On the other
hand, (4) does not hold; randomizing is strong evidence for state s1.

Assuming (3) and (4) allows us to prove the existence of a ratifiable act in A∗; that is, there
are ratifiable acts once we allow randomization.

Theorem 2.2: If (3) and (4) hold, then there is always a ratifiable act in A∗

Proof: The argument proceeds very much like the argument for the existence of a Nash
equilibrium, using Kakutani’s (1941) fixed-point theorem. I first state Kakutani’s theorem, and
then explain all the terms in the statement of the theorem by showing how they hold in the
setting of interest.

Kakutani’s Fixed-Point Theorem: If X is a non-empty, compact, and convex subset of
IRn, the function f : X → 2X has a closed graph, and f(x) is non-empty and convex for all
x ∈ X, then f has a fixed point, that is, there exists some x ∈ X such that x ∈ f(x).

We take the X in Kakutani’s theorem to be A∗. If |A| = n, then we can identify the element
α1a1 + · · · + αnan ∈ A∗ with the tuple (α1, . . . , αn) ∈ IRn. With this identification, A∗ is a
closed subset of IRn (“closed” just means that if x1, x2, . . . is a sequence of element in A∗ that
converges to y, then y ∈ A∗); by construction it is convex (if x, y ∈ A∗, then so is αx+ (1−α)y
for α ∈ [0, 1]); it is nonempty, since it includes A and A is non-empty; and it is clearly a
bounded subset of IRn (since all components in a tuple in A∗ are between 0 and 1). Since A∗

is closed and bounded, by standard results, it is compact.
Let the function f in the theorem be the best-response function. More precisely, given

x ∈ A∗, let gx : A∗ ×A∗ → IR be defined by taking

g(x, y) =
∑
s∈S

Pr∗(s | x)u∗(y(s));

that is, g(x, y) describes how the agent feels about y given that she actually played x. Assump-
tions (3) and (4), together with the definition of u∗, guarantee that g is a continuous function.
Now define

f(x) = {y : ∀z ∈ A∗(g(x, y) ≥ g(x, z))}.

That is, y ∈ f(x) if the agent feels that playing y would have been one of her best choices,
if she actually plays x. Note that x is ratifiable precisely if x ∈ f(x). The fact that f(x)
is a convex set follows from our assumption on the utility function: if y, y′ ∈ f(x), then
g(x, y) = g(x, y′) = g(x, αy + (1 − α)y′), so αy + (1 − α)y′ ∈ f(x) for all α ∈ [0, 1]. Since A∗

compact and g is continuous, g(x, ·) takes on a maximum in A∗, so f(x) is nonempty. The
function f has a closed graph; that is, whenever xn → x, yn → y, and yn ∈ f(xn), then
y ∈ f(x). That f has a closed graph follows easily from the fact that g is continuous. Since the
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assumptions of Kakutani’s fixed-point theorem hold, f has a fixed point. As I observed above,
this fixed point is a ratifiable act.3 This completes the proof.

3 Discussion

I have provided sufficient conditions for the existence of ratifiable acts. The key conditions are
the assumption that there is no cost for randomizing, which is captured by requiring that the
outcome of performing a convex combination of deterministic acts is the convex combination
of the outcomes of the individual deterministic acts, and an assumption that can be viewed as
saying that randomizing has no evidential value, which is captured by requiring that condition-
ing on a convex combination of deterministic acts is equivalent to the convex combination of
conditioning on the individual deterministic acts.

Interestingly, the fact that charging for randomization can affect the existence of equilibrium
has also been noted in a game-theoretic context. Halpern and Pass (2015) consider a setting
where, associated with each action in a normal-form game, there may be a cost. They show that,
in this setting, the analogue of Nash equilibrium may not exist. Interestingly, their example
involves a cost for randomization. Consider first the standard rock-paper-scissors game where,
as usual, rock beats scissors, scissors beats paper, and paper beats rock. If a player’s choice
beats the other player’s choice, then he gets a payoff (utility) of 1 and the other player gets
−1; if both players make the same choice, they both get 0. As is well known, this game has a
unique Nash equilibrium, where players randomize, choosing each action with probability 1/3.

Now suppose that we modify the game slightly, and charge ε for randomizing. That is, if
a player randomizes, no matter how he randomizes, his payoffs are decreased by ε > 0 (so,
for example, he gets 1 − ε if his choice beats the other player’s choice and −ε if there is a
draw). The intuition here is that randomization is cognitively expensive. In any case, with this
utility function, it is easy to see that there is no Nash equilibrium, no matter how small ε is
(as long as it is positive). For suppose that we have a Nash equilibrium (a1, a2). If a1 involves
randomization, then player 1 can do better by deterministically playing the best response to
whichever action player 2 puts the highest probability on. (If player 2 puts equal probability
on several actions, player 1 chooses one of them and plays a best response to that.) This
deterministic choice gets at least as high a payoff as a1 ignoring the ε cost of randomizing,
and thus must be strictly better than a1 when the cost of randomization is taken into account.
Thus, player 1 does not randomize in equilibrium. A similar argument shows that player 2 does
not randomize in equilibrium either. But it is clear that there is no equilibrium for this game
where both players use deterministic strategies.

Halpern and Pass also show that if randomization is free (and a few other technical con-
ditions hold), then the analogue of Nash equilibrium does exist in their framework. Very
roughly speaking, “randomization is free” means that the cost of a randomized act of the form
α1a1 + · · ·+αnan is the sum of α1 times the cost of a1 and . . . and αn times the cost of an. The
similarity to (3) should be clear. Note that this condition is violated in the rock-paper-scissors
example.

3Exactly the same arguments show that, under the assumptions above, Skyrms’ (1990a) deliberation process,
which is intended to model which strategy to play in a game or which act to choose in a decision problem, also
converges.
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But what should we do if this condition does not hold? Charging extra for randomiza-
tion, as in the rock-paper-scissors example, does not seem so unreasonable, given the cognitive
costs of randomizing. Interestingly, as observed by Halpern and Pass (2015), there are rock-
paper-scissors tournaments (indeed, even a rock-paper-scissors world championship), and books
written on rock-paper-scissors strategies (Walker and Walker 2004). Championship players are
clearly not randomizing uniformly (they could not hope to get a higher payoff than an opponent
by doing this). This leaves open the question of what an appropriate solution concept would
be in such a situation. This question also applies in the case of ratifiability, but is perhaps less
serious in that context. I agree with Joyce (2012) that the agent should choose the best act
according to the prescriptions of causal decision theory. If this results in some regret after the
fact, then so be it—it was still the right choice. But for those who believe that ratifiability is
a normative requirement, this is an important question that must be addressed.
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